

1 **Age-dependent increased sag amplitude in human pyramidal neurons
2 dampens baseline cortical activity**

3 Alexandre Guet-McCreight¹, Homeira Moradi Chameh², Sara Mahallati^{2,6}, Margaret Wishart¹,
4 Shreejoy J. Tripathy^{1,3,4}, Taufik A. Valiante^{2,4,5,6,7,8,9}, Etyay Hay^{1,3,10}

5 ¹Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health ²Krembil Brain Institute, University Health Network ³Department
6 of Psychiatry, University of Toronto ⁴Institute of Medical Sciences, University of Toronto ⁵Department of Electrical and Computer Engineering,
7 University of Toronto ⁶Institute of Biomaterials and Biomedical Engineering, University of Toronto ⁷Department of Surgery, University of
8 Toronto ⁸Center for Advancing Neurotechnological Innovation to Application ⁹Max Planck-University of Toronto Center for Neural Science and
9 Technology ¹⁰Department of Physiology, University of Toronto

10

11 **Abstract**

12 Aging involves various neurobiological changes, although their effect on brain function in
13 humans remains poorly understood. The growing availability of human neuronal and circuit data
14 provides opportunities for uncovering age-dependent changes of brain networks and for
15 constraining models to predict consequences on brain activity. Here we found increased sag
16 voltage amplitude in human middle temporal gyrus layer 5 pyramidal neurons from older
17 subjects, and captured this effect in biophysical models of younger and older pyramidal neurons.
18 We used these models to simulate detailed layer 5 microcircuits and found lower baseline firing
19 in older pyramidal neuron microcircuits, with minimal effect on response. We then validated the
20 predicted reduced baseline firing using extracellular multi-electrode recordings from human
21 brain slices of different ages. Our results thus report changes in human pyramidal neuron input
22 integration properties and provide fundamental insights on the neuronal mechanisms of altered
23 cortical excitability and resting state activity in human aging.

24

25

26

27

28 Corresponding authors: Dr. Etyay Hay and Dr. Alexandre Guet-McCreight
29 Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health
30 250 College St, Toronto, Ontario, M5T 1R8
31 Email:
32 etary.hay@camh.ca
33 alexandre.guet-mccreight@camh.ca

34

35 **Introduction**

36 Aging of the human brain is a variable and multifaceted process in terms of cognitive, cellular
37 and anatomical changes (Peters, 2006). Among the different age-associated declines in cognitive
38 performance, older people often exhibit slower cortical processing (Bucur & Madden, 2010) and
39 reduced discrimination acuity (Legge et al., 2008, 2019). Whereas the underlying cellular and
40 circuit mechanisms that cause these deficits remain unknown, studies in monkeys indicate that a
41 decline in working memory with age is associated with reduced baseline and response spike rates
42 in prefrontal cortex, which may involve increased hyperpolarization-activated cyclic nucleotide-
43 gated (HCN) current, or h-current (Ramos et al., 2006; Wang et al., 2007, 2011). The increasing
44 availability of human neuronal transcriptomic and electrophysiological datasets (Gouwens et al.,
45 2018; Hodge et al., 2019; Chameh et al., 2021; Goriounova et al. 2018) offers an opportunity to
46 look for neuronal changes across age demographics and, through computational modeling,
47 determine their impacts on signal processing and behavior.

48 In cortical pyramidal neurons, h-current modulates signal integration, particularly in the
49 apical dendrites due to increased density with distance from soma (Kole et al., 2006). Increased
50 h-current, which is the primary contributor to generating and shaping sag voltage, results in a
51 more depolarized resting membrane potential (Williams & Stuart, 2000; Beaulieu-Laroche et al.,
52 2018) and decreased input resistance (Song & Moyer, 2017), which consequentially dampens
53 excitatory post-synaptic potential (PSP) summation (Williams & Stuart, 2000; Beaulieu-Laroche
54 et al., 2018). Moreover, increased sag voltage amplitude and depolarized resting membrane
55 potentials have been reported in pyramidal neurons of deeper layers in human cortex (Chameh et
56 al., 2021). Previous studies suggest age-associated changes in h-current which could underlie
57 cognitive decline (Ramos et al., 2006; Wang et al., 2007, 2011), whereby blockade of HCN
58 channels can rescue age-associated declines in both working memory and associated spike rates
59 in prefrontal cortex (Wang et al., 2007). Conversely, in mice, deletion of HCN1 channel subunit
60 expression or h-current block in prefrontal cortex leads to a reduction in the prevalence of
61 persistent spiking and deficits in working memory (Thuault et al., 2013), indicating that h-current
62 also supports cortical function.

63 There is increasing data of h-current properties in human neurons as measured by
64 transcriptomics and sag voltage recordings. Recent studies showed that HCN channel subunits
65 are more ubiquitously expressed in pyramidal neurons across cortical layers of humans relative

66 to rodents, with larger sag voltage in deeper layers compared to superficial layers (Kalmbach et
67 al., 2018; Chameh et al., 2021; Rich et al., 2021). However, it is unknown if sag changes with
68 age in human neurons as suggested by the above studies in monkeys.

69 We analyzed sag voltage recordings from human cortical layer 5 pyramidal (L5 Pyr)
70 neurons of younger and older subjects to check for age-associated changes in h-current and
71 membrane properties. We then developed younger and older human pyramidal neuron models
72 using these electrophysiological datasets, which we incorporated into microcircuit models. We
73 simulated baseline and response activity in these human microcircuit models to characterize the
74 effects of age-associated changes in Pyr neuron sag amplitude on cortical processing and resting
75 state activity.

76

77 **Methods**

78 **Electrophysiology data.** We used whole-cell recordings of human middle temporal gyrus layer
79 5 (L5) pyr neurons reported previously in datasets from Krembil Brain Institute (KBI; Chameh et
80 al., 2021; Younger: n = 60 neurons; Older: n = 13 neurons; see Table S1 for further breakdown
81 of neuron recording counts across male/female) and Allen Brain Institute (ABI; Gouwens et al.,
82 2018; Younger: n = 50 neurons; Older: n = 14 neurons; see Table S2 for further breakdown of
83 neuron recording counts across male/female). Subject age in the KBI and ABI datasets ranged
84 between 21 - 58 years, and 23 - 83 years, respectively. We grouped the subjects into younger (<
85 50 years) and older (\geq 50 years) in line with previous studies (Davis et al., 1990; Bucur &
86 Madden, 2010; McIntosh et al., 2014). We also used intracellular recordings of human putative
87 L5 parvalbumin (PV, neuron ID: 528687520) interneurons available from ABI (Gouwens et al.,
88 2018). We used reconstructed human neuron morphologies from ABI for the L5 Pyr neuron
89 (Neuron ID: 562381210; donor age = 34 years, female) and the PV interneuron. The L5
90 pyramidal neuron morphology with fully-reconstructed dendrites that we chose was a typical
91 intratelencephalic-projecting (IT)-like, which is the most abundant Pyr neuron type in human
92 cortical layer 5 (Chameh et al., 2021; Hodge et al., 2019; Kalmbach et al., 2021). We used
93 another morphology that had fully-reconstructed dendrites (Neuron ID: 529863215; donor age =
94 67 years, male) to test the generalization of the modeling results. We used depolarizing and
95 hyperpolarizing current steps for neuron model optimization (**Tables S3-S5**), whereby Pyr
96 neuron data was from the KBI dataset because it included a larger range of hyperpolarizing and

97 depolarizing step current amplitudes (i.e., as low as -400 pA and as high as 300 pA). Three
98 depolarizing supra-threshold steps were used for fitting spiking features at low, medium and high
99 firing rates. The hyperpolarizing step currents were used for fitting passive and sag features.

100 For data collection for the KBI dataset (Chameh et al., 2021), we visualized the cortical
101 layers using an IR-CCD camera (IR-1000, MTI, USA) with a $\times 40$ water immersion objective
102 lens. Using the IR-DIC microscope, the boundary between layer 1 and 2 was easily
103 distinguishable in terms of cell density. Below L2, the sparse area of neurons (L3) was followed
104 by a tight band of densely packed layer 4 (L4) neurons. L4 was followed by a decrease in cell
105 density (L5). Following electrophysiological recording, we confirmed human cortical layers
106 using DAPI-staining on sections (500 μm) cleared with the CLARITY technique.

107 We also used extracellular recordings using MEA (electrode pitch: 200-300 micrometer;
108 TiN electrode array – Multi Channel 151 Systems, Germany) from resected human middle
109 temporal gyrus slices (500 μm thickness) maintained active in carbogenated (95% O_2 , 5% CO_2)
110 artificial cerebral spinal fluid (Florez et al., 2015; Chameh et al., 2021). The electrodes were
111 registered on the slices to identify the anatomical location of the single units recorded. Putative
112 cell types were identified based on waveform features, mainly the peak to trough latency of the
113 average spike waveform (Barthó et al., 2004). We used the waveform feature to cluster units into
114 broad spiking and narrow spiking units. Subsequent spike rate analyses were performed on
115 broad-spiking units (putative pyramidal neurons). Subject age ranged between 19 – 65 years and
116 were grouped subjects into younger (< 50 years) and older (≥ 50 years) groups (Younger: n =
117 376 L2/3, 119 L4, and 401 L5 units from 17 subjects; Older: n = 148 L2/3, 37 L4, and 51 L5
118 units from 5 subjects). While we had L6 data, we did not include this age comparison because of
119 too little data in the older group.

120

121 **Electrophysiological feature analysis.** To maximize our usage of the datasets, we z-scored the
122 raw sag amplitudes respective to the means and standard deviations at each current step (where
123 \pm z-score values indicated sag amplitudes above or below the mean of the corresponding
124 current step) and then pooled the data across current steps accordingly. The data was then
125 grouped by demographic parameters (i.e. age and/or gender). This method was supported by the
126 z-scored metrics exhibiting a flat relationship with current magnitude and across current steps.
127 We performed similar z-scoring for other features such as sag ratio and input resistance. All the

128 above features were computed using functions from the Electrophys Feature Extraction Library
129 (eFEL), and sag ratio was computed as the ratio of sag amplitude and the maximal deflection.

130

131 **Statistical tests.** For data that exhibited significantly non-uniform distributions (Omnibus test of
132 normality, $p < 0.05$) and unequal variances between younger and older groups (Levene test, $p <$
133 0.05), we used Welch's t-tests for between group comparisons (Ruxton, 2006; Skovlund &
134 Fenstad, 2001). Otherwise, we used paired-sample t-tests or Mann Whitney U tests where
135 applicable. To estimate how age and other covariates were associated with sag amplitude, we ran
136 analyses of linear mixed-effect models in R using the lmer function from the lmerTest package
137 (Kuznetsova et al., 2017) with restricted maximum likelihood, where subject and cell identifiers
138 were modelled as random effects and either age or age group were modelled as fixed effects
139 (*Sag amplitude ~ Age + (1|Subject ID) + (1|Cell ID)*). We conducted similar tests to
140 account for multiple spiking units from the same subject (*Spike rate ~ Age + (1|Subject ID)*).
141 We then used likelihood ratio tests to compare the full models against the corresponding reduced
142 models with the fixed effects dropped.

143

144 **Human L5 microcircuit models.** We simulated L5 microcircuits comprised of 1000 neurons
145 distributed along a layer 5 volume (500x500x700 μm^3 , 1600 to 2300 μm below pia; Mohan et al.,
146 2015) using NEURON (Carnevale & Hines, 2006) and LFPy (Hagen et al., 2018). In addition to
147 Pyr and PV neurons, the microcircuit models included somatostatin (SST) and vasoactive
148 intestinal peptide (VIP) interneurons, using previous human L2/3 neuron models (Yao et al.,
149 2022), because there was no human data for these interneurons from L5. Neurons of a given type
150 had the same model (morphology and biophysical properties) but differed in the randomization
151 of their synaptic connectivity and background input. The proportions of the four neuron types in
152 the microcircuit were: 70% Pyr, 15% SST, 10% PV, and 5% VIP. These were approximated
153 using ultra high-depth human neocortex single-nucleus RNA-seq data from the Allen Institute
154 for Brain Sciences “Multiple Cortical Areas - Smart-seq (2019)” dataset (<https://portal.brain-map.org/atlas-and-data/RNA-seq/human-multiple-cortical-areas-smart-se>), with sample
155 collection and data analysis methodologies described previously (Hodge et al., 2019).
156 Specifically, we used data from the upper and lower limb primary somatosensory cortical
157 regions. In general, for microcircuit model parameters we used human cellular and circuit data

159 when available, and data from rodents or monkeys when human data was not available
160 (summarized in **Table S6**).

161

162 **Human neuron models.** We developed multi-compartmental models for the Pyr and PV
163 neurons using the BluePyOpt Python module to perform multi-objective optimizations (Van Geit
164 et al., 2016). We used a set of ion channel mechanisms taken from previously published models
165 (Hay et al., 2011, 2013; Yao et al., 2022). The models were fit in one step where all passive and
166 active parameters and features were optimized simultaneously (**Tables S3-S5**). We set the
167 following parameters: axial resistance (R_a) = 100 Ω cm, sodium reversal potential (E_{Na}) = 50
168 mV, potassium reversal potential (E_K) = -85 mV, and percent of free calcium ($CaDynamics_{gamma}$)
169 = 0.0005 (Hay et al., 2011). We also set the somatic and axonal Na_T kinetics controlling the half
170 voltage ($Vshift$) and slopes of the voltage steady-state activation (m) and inactivation (h)
171 sigmoidal functions to $Vshift_m = 0$, $Vshift_h = 10$, $Slope_m = 9$, and $Slope_h = 6$. The specific
172 membrane capacitance (c_m) was 0.9 μ F/cm² for the Pyr models, and 2 μ F/cm² for the PV model
173 to reproduce membrane time constants (possibly due to errors in PV dendritic diameter
174 estimation; **Table S7**). Model optimization was run using parallel computing clusters
175 [Neuroscience Gateway (NSG; Sivagnanam et al., 2013) & Scinet (Loken et al., 2010; Ponce et
176 al., 2019): 400 processors with a population size of 400, across 300 generations and an
177 approximate total runtime of 5 hours]. Ion channels were inserted primarily in the soma and axon
178 initial segment compartments, where we included some of the same somatic objective
179 experimental targets to constrain the axonal spiking (**Tables S3-S5**). Additionally, \bar{g}_H was
180 distributed uniformly across all dendritic sections of the PV model (similarly to the SST and VIP
181 models). For Pyr neurons, we have adapted an exponential function used in previous models
182 (Hay et al., 2011) to an equivalent sigmoidal function allowing saturation at a certain distance
183 from soma, so that \bar{g}_H increased with distance from soma along the basal and apical dendrites as
184 follows:

$$185 \quad \bar{g}_H = \bar{g}_{H,soma} (0.5 + (24/(1+ \exp((X - 950)/-285)))) \quad (1)$$

186 where X is the distance from soma in μ m. Model performance in reproducing the
187 electrophysiology features was assessed in terms of standard deviation from the experimental
188 mean. For Pyr models we used the statistics over the set of recorded neurons from the KBI

189 dataset, and for the PV model (where data from only a single human neuron was available), we
190 used the population variance from the rodent literature (Zurita et al., 2018).

191
192 **Synaptic connectivity models.** We used previous models of NMDA/AMPA excitatory and
193 GABA_A inhibitory synapses, that incorporated presynaptic short-term plasticity parameters for
194 vesicle-usage, facilitation, and depression, as well as separate time constant parameters for the
195 AMPA and NMDA -mediated components of excitatory synapses (Fuhrmann et al., 2002; Hay et
196 al., 2013; Mäki-Marttunen et al., 2019). We set the same time constant parameters for all
197 connection types ($\tau_{rise,NMDA} = 2$ ms; $\tau_{decay,NMDA} = 65$ ms; $\tau_{rise,AMPA} = 0.3$ ms; $\tau_{decay,AMPA} = 3$ ms;
198 $\tau_{rise,GABA} = 1$ ms; $\tau_{decay,GABA} = 10$ ms), as well as the reversal potential values ($E_{exc} = 0$ mV; $E_{inh} = -$
199 80 mV).

200 For Pyr→Pyr connections, we fitted the synaptic conductance and vesicle-usage
201 parameters using the human experimental literature (Seeman et al., 2018). We simulated the
202 experimental conditions (e.g., chloride reversal potential, and holding currents) and adjusted the
203 conductance and vesicle-usage parameters to achieve the target postsynaptic (PSP) amplitudes
204 and failure rates on average across 50 randomizations of synaptic locations and events. For the
205 conductance and vesicle-usage parameters of all other connection types, as well as the
206 depression, facilitation, and numbers of synaptic contacts (N_{syns}) for all connections, we used
207 values reported by the Blue Brain Project (Ramaswamy et al., 2015). For SST→Pyr connections,
208 we used a higher conductance, consistent with SST→Pyr conductance of human synaptic
209 connections in L2/3 (Yao et al., 2022). The synaptic parameters of the different connections are
210 summarized in **Table S8**. Specific synaptic locations onto Pyr neurons were dependent on the
211 connection type, where Pyr→Pyr synapses were placed on both basal and apical dendritic
212 compartments, PV→Pyr connections were placed on basal dendritic compartments, and
213 SST→Pyr connections were placed on apical dendritic compartments. Apart from these
214 specifications, synapse locations were chosen randomly from a uniform distribution.

215 We initially set unidirectional connection probability (p_{con}) according to the rodent
216 literature (Blue Brain Project and ABI), except for Pyr→Pyr connections, where p_{con} could range
217 from 7% to 12% according to human literature (Campagnola et al., 2022; Seeman et al., 2018).
218 We adjusted connection probabilities guided by the reported experimental ranges to reproduce
219 the intrinsic activity, which required a Pyr→Pyr connection probability of 9%. The connection

220 probability for the different types of connections in the microcircuit, along with the synaptic
221 conductance (G_{syn}), number of contacts per connection, relaxation time constants from
222 facilitation, relaxation time constants from depression, and utilization of synaptic efficacy (*use*)
223 parameters, are all summarized in **Table S8**.

224

225 **Modeling microcircuit intrinsic activity.** We constrained the microcircuit to generate baseline
226 spike rates within range and close to the medians recorded for different L5 neuron types in
227 rodents *in vivo* (range, median; Pyr: 0.4 - 11.5 Hz, 2.6 Hz; PV: 4.6 - 22.0 Hz, 17.2 Hz; SST: 0.5 -
228 6.9 Hz, 1.7 Hz; VIP: 8.5 – 21.0 Hz, 11.1 Hz; Yu et al., 2019), by adjusting the p_{con} values guided
229 by the reported experimental ranges for all connection types, and by adjusting the background
230 input (see below). We modeled L5 Pyr neurons as a homogenous population, and did not
231 differentiate between subtypes (intratelencephalic-projecting type 1 and type 2, and
232 extratelencephalic-projecting), and the experimental target rates did not differentiate subtypes
233 either. We calculated the simulated rates across non-silent neurons (> 0.2 Hz) over 4.5 seconds
234 of baseline simulation. Average rates were then computed across 30 randomized microcircuits.
235 The microcircuit received random uncorrelated background excitatory input using Ornstein-
236 Uhlenbeck (OU) point processes (Destexhe et al., 2001), placed at halfway the length of each
237 dendritic arbor to ensure similar levels of inputs along each dendritic path. For the Pyr models,
238 we placed 5 additional OU processes along the apical trunk at 10%, 30%, 50%, 70%, and 90% of
239 the apical dendritic length. We set the base excitatory OU conductance to the following: Pyr = 76
240 pS; SST = 32 pS; PV = 1545 pS (due to higher rheobase); VIP = 75 pS. We did not use an
241 inhibitory OU conductance since the model microcircuit provided sufficient inhibition.
242 Furthermore, we scaled the OU conductance values to increase with distance from soma by the
243 multiplying them with the exponent of the relative distance from soma (ranging from 0 to 1):
244 $\bar{g}_{OU} = \bar{g} \times \exp(X_{relative})$.

245

246 **Tonic inhibition.** We modelled tonic inhibition using a previous model for outward rectifying
247 tonic inhibition (Bryson et al., 2020). We used previous estimates of tonic inhibition conductance
248 (G_{tonic} ; uniformly across all somatic, basal, and apical compartments) from a human L2/3
249 microcircuit model (G_{tonic} : 0.938 mS/cm² for all neuron types; Yao et al., 2022), since total tonic
250 inhibition current in L2/3 Pyr neurons was similar to estimates of the total tonic inhibitory

251 current measured in L5/6 neurons (Scimemi et al., 2006). As well, it has previously been shown
252 that Pyr neurons and interneurons in L5/6 have similar levels of tonic inhibition after correcting
253 for cell capacitance (Scimemi et al., 2006).

254

255 **Modeling microcircuit response activity.** We modelled Pyr neuron responses according to
256 previous studies of somatosensory cortex in awake monkeys during tactile stimulation of the
257 finger by indentation with an edge at varying orientations (Thakur et al., 2006; Bensmaia et al.,
258 2008). We constrained neuronal tuning curve maximal rates in the range of 10 to 120 Hz (Thakur
259 et al., 2006; Bensmaia et al., 2008), and tuning curve half-width in the range of 34° to 49°
260 (Bensmaia et al., 2008). We applied orientation-selectivity to 50% of the Pyr neurons (Bensmaia
261 et al., 2008), as well as the PV and VIP neurons (Sermet et al., 2019). Pyr basal dendrites, PV
262 neurons, and VIP neurons were stimulated using excitatory AMPA/NMDA synapses with the
263 same synaptic dynamics and conductance as the intra-cortical excitatory synapses above. We
264 injected the thalamic input synapses with noisy artificial presynaptic inputs spiking at 100 Hz,
265 with inter-spike intervals randomly sampled from a negative exponential distribution, over the
266 course of a 100 ms window, in line with the spiking of ventral posterior nucleus neurons (which
267 provide inputs to somatosensory cortex) recorded in awake monkeys during finger indentations
268 (Song & Semework, 2015). Average response rates were calculated over the 100 ms window
269 following stimulus onset. We did not tightly constrain the response spike rates of the
270 interneurons due to a lack of experimental data, but rather constrained the PV and VIP neurons
271 to be activated, while SST neuron response rates were either unchanged or silenced (Gentet et
272 al., 2012; Yu et al., 2019; Sermet et al., 2019; Muñoz et al., 2017).

273 Neurons in the microcircuit had different preferred orientations, so that angles from 0 -
274 180° were represented uniformly across Pyr neuron number 1 – 350. The tuning curve of each
275 neuron followed a Gaussian distribution with a standard deviation of 42° (Bensmaia et al., 2008),
276 and was implemented by varying the number of thalamic input synapses (at peak of gaussian:
277 $N_{syn,Pyr} = 45$ synapses). A similar stimulation paradigm was applied also to the PV and VIP
278 interneurons (peak $N_{syn,PV} = 30$ synapses, $N_{syn,VIP} = 30$ synapses), although with a broader tuning
279 curve (standard deviation of 147° and 294°, respectively; Wang et al., 2004) which allowed
280 sufficient activation of PV and VIP interneurons for SST neuron suppression (Gentet et al., 2012;
281 Muñoz et al., 2017). Across random seeds, we additionally applied a non-systematic noise of

282 $\pm 30\%$ (sampled from a uniform distribution) to the number of thalamic input synapses,
283 corresponding to input errors e.g. due to finger position and in tactile surface irregularities, as
284 well as noise in the signal progression along the CNS hierarchy from the periphery. We also
285 tested a condition where synapses were placed on apical dendrites instead of basal dendrites,
286 using 67 synapses to elicit an equivalent average response rate as in the regular basal input
287 condition of the microcircuits with younger Pyr neurons. In addition, we tested a condition of
288 low basal or apical input, using 31 and 45 synapses, respectively.

289

290 **Classifier models.** Discrimination accuracy using the microcircuit model outputs to 85° vs. 95°
291 stimulus orientations was assessed for microcircuits with younger vs older Pyr neuron models
292 using classifier models available in the scikit-learn Python module. We used angles
293 symmetrically close to 90° because this angle corresponded to the middle-preference for the
294 neuronal population. For each microcircuit model with younger and older Pyr neurons, stimulus
295 discrimination was tested for a single circuit (i.e., fixed connectivity between the neurons) across
296 80 randomizations of background OU excitation and stimulus amplitude (N_{syn}). Output PSPs
297 from each Pyr neuron during response (0 - 100 ms post-stimulus) were first computed by
298 convolving the neuron output spike trains with an averaged AMPA ($\tau_r = 0.5$ ms; $\tau_d = 3$ ms) and
299 NMDA ($\tau_r = 2$ ms; $\tau_d = 65$ ms) PSP waveform:

$$PSP_{\frac{AMPA}{NMDA}}(t) = \frac{\left(e^{-t/\tau_{d,AMPA}} - e^{t/\tau_{r,AMPA}}\right) + \left(e^{-t/\tau_{d,NMDA}} - e^{t/\tau_{r,NMDA}}\right)}{2}$$

300 We then computed the area under the curve of the resulting PSPs for each Pyr neuron and used it
301 as feature input to the classifier models. We trained and tested with three different types of
302 classifier models: 1) a linear support vector model, 2) a Gaussian naïve Bayes model, and 3) a
303 multi-layer perceptron model (see **Table S9** for full descriptions of classifier model input
304 arguments). Training was done using a random subset of 15 of the 80 stimulus presentations per
305 orientation and testing was done on the other 65. We derived performance statistics for the
306 classifiers using 300 random permutations of the stimulus presentations used for training and
307 testing. We chose PSP area under curve as the feature inputs because this measure is
308 representative of the amount of charge that downstream postsynaptic neurons will receive.

309

310 **PSP summation simulations.** To investigate the effects of h-channel density changes with age
311 on synaptic integration, we simulated PSP summation in the younger and older neuron models
312 using a 50 Hz or 25 Hz train of 5 step current pulses (2 ms, 3 nA each) injected at a presynaptic
313 neuron soma (Pyr, SST, or PV) to trigger a train of action potentials and consequently PSPs in a
314 Pyr neuron. Connectivity parameters to the postsynaptic Pyr neuron were the same as in circuit
315 simulations (**Table S8**), except for Pyr→Pyr neuron conductance, which was reduced to 0.3 nS
316 to prevent the postsynaptic Pyr neuron from spiking. We simulated 20 trials (with randomized
317 synaptic probability) across 20 connections (randomized synaptic locations) and calculated the
318 mean and 95% confidence intervals across connections by bootstrapping (500 iterations) the trial
319 means. We ran these simulations with and without DC current compensating for resting
320 membrane potential differences between the younger and older neuron models. We compensated
321 the resting membrane potential by injecting positive current in the younger Pyr neuron (6.65 pA)
322 and negative current in the older Pyr neuron (-6.65 pA). We used two metrics for assessing PSP
323 summation – peak PSP amplitude and area under the PSPs.

324

325 **Human HCN1 channel transcriptomics data.** We accessed transcriptomic data from the MTG
326 of 8 human postmortem brains (Hodge et al., 2019; <https://portal.brain-map.org/atlas-and-data/rnaseq/human-mtg-smart-seq>; younger: n = 5 donors, ages 24 – 48 years; older: n = 3
327 donors, ages 50 – 66 years). Data frames were prefiltered in Python to only include gene counts
328 from glutamatergic neurons located in L5 and to combine intron and exon gene count data
329 frames. We analyzed gene expression using the Seurat v3 toolkit in R (Stuart et al., 2019), where
330 we log-normalized gene counts by dividing each count by the total count for that cell, scaling
331 this by a factor of 10,000, and then computing the natural log-transform using the log1p function.
332 Log-normalized counts for HCN1 transcripts were compared between younger and older cells
333 using a Wilcoxon Ranked Sum test, and the log-fold change of average expression was
334 computed.

336

337 **Model population analysis.** We analyzed the population parameter sets of younger and older
338 Pyr neuron models generated from our multi-objective optimizations by first selecting sets of
339 acceptable models, across the entire optimization history, based on performance (e.g., within 2
340 SD from the target experimental means, except 3 SD for AP width, AHP depth features, and

341 AHP slow time). To narrow down our selection to models that captured both sag voltage
342 amplitude and mean frequency well, we set the SD thresholds for these features to less than 1
343 SD. Models were then sorted by overall error scores and duplicate models were removed. After
344 selecting these sets of models, we normalized their conductance parameter values by the upper
345 and lower search limits used in the optimization (0 corresponding to the lower limit and 1
346 corresponding to the upper limit).

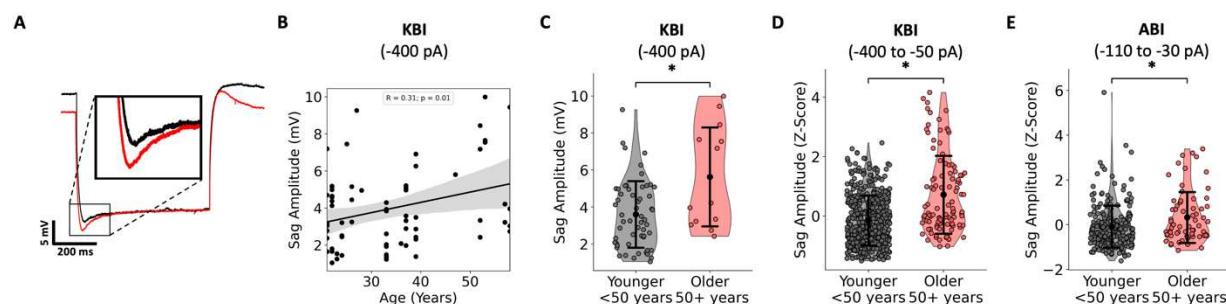
347

348 **Microcircuits with heterogenous Pyr neuronal models.** We tested the robustness of our results
349 using microcircuit simulations that had heterogenous models for Pyr neurons, sampled randomly
350 from the top 30 highly-ranked models among the model population sets (see above).

351

352

353 **Results**

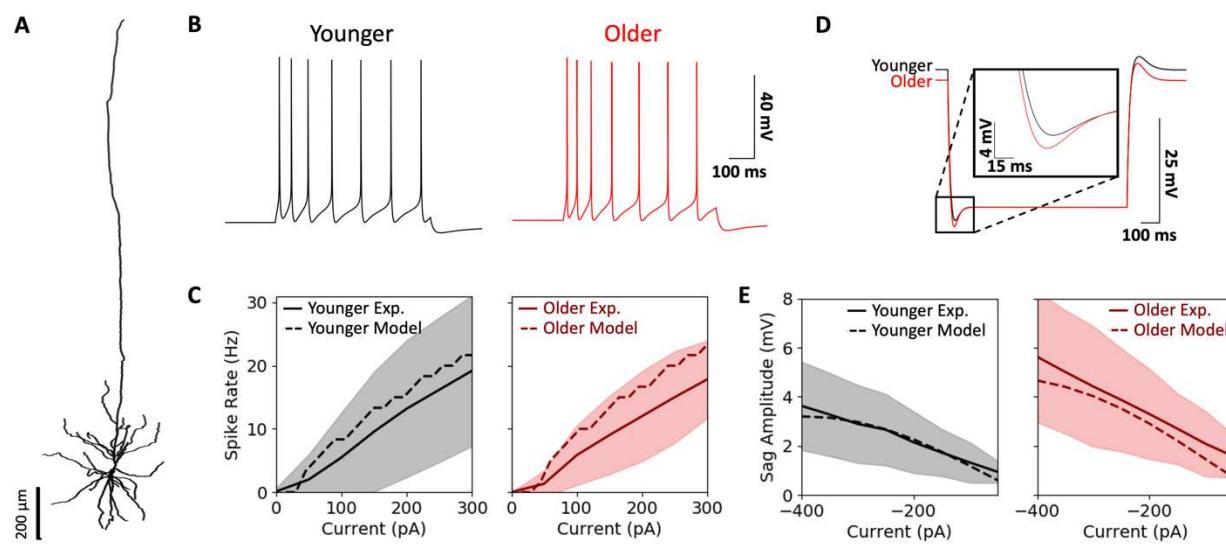

354 **Increased sag amplitude in older L5 human pyramidal neurons**

355 We first analyzed sag amplitude in human L5 Pyr neurons (**Fig. 1A**) from the Krembil Brain
356 Institute (KBI) and Allen Brain Institute (ABI) datasets across subject age, and in younger (< 50
357 years) vs older (≥ 50 years) groups. The sag amplitude in the KBI dataset increased with age
358 (Pearson correlation, $R = 0.31$, $p < 0.05$, **Fig. 1B**), and also between younger and older subject
359 groups (two-sample Welch's t-test, $p < 0.05$, Cohen's $d = 1.00$; **Fig. 1C**). The increase was seen
360 for example steps (**Fig. 1B-C**) and also when comparing sag amplitudes across all steps (see
361 Methods, two-sample Welch's t-test, $p < 0.05$, Cohen's $d = 0.91$; **Fig. 1D**). Sag amplitude across
362 steps increased similarly between younger and older subject groups in the ABI dataset (two-
363 sample Welch's t-test, $p < 0.05$, Cohen's $d = 0.41$; **Fig. 1E**). Similar results were seen when
364 comparing sag ratio across age groups.

365 Variable resting potentials across neurons were not controlled for in either set of
366 experiments but correlated weakly with sag amplitude and ratio. Importantly, none of the
367 additional features we analyzed (i.e., resting potential, input resistance, steady-state voltage,
368 membrane time constant) exhibited consistent changes with age across both datasets. While the
369 effects were strong on the neuronal level, when averaged per subject we only found trends
370 towards increasing sag with age in both datasets (**Fig. S1A**), potentially due to the small subject
371 sample size. However, linear mixed-effect models using age group as fixed effects further

372 indicated that the effects on sag amplitude were driven by age and not cell/subject variability
373 (likelihood ratio test, $p < 0.05$). Similar support was seen in linear mixed-effect models using age
374 as fixed effect (likelihood ratio test, $p = 0.06$).

375 The increase in sag amplitude in older participants was also seen in gender-specific
376 comparisons, which we were able to conduct using the KBI dataset due to an even distribution of
377 female participants in the younger and older groups and an even distribution of male participants
378 in the younger group (Fig. S1B). Sag amplitude in older females was significantly larger than in
379 younger females (two-sample Welch's t-test, $p < 0.05$, Cohen's $d = 0.96$, Fig. S1C). Although a
380 similar comparison was not possible for male participants, in the younger group males and
381 females had similar sag amplitudes (Fig. S1D), further indicating that effects were due to age
382 differences and not gender.



383
384 **Figure 1. Increased sag amplitude in older human L5 Pyr neurons.** **A.** Example experimental voltage
385 response to hyperpolarizing current injection (-400 pA/600 ms) recorded in L5 Pyr neurons from younger
386 (< 50 years, black) and older (≥ 50 years, red) subjects from the KBI dataset. Traces were aligned by
387 steady-state voltage. Inset shows sag voltage comparison. **B.** Sag amplitudes in the KBI dataset increased
388 with age (for example current steps of -400 pA). Shaded area in all regression plots denotes the
389 bootstrapped 95% confidence intervals. **C.** Sag amplitudes were larger in older compared to younger
390 subjects (for example current steps of -400 pA). **D-E.** Sag amplitude increased across all hyperpolarizing
391 current steps (z-scored) in older compared to younger subjects in the KBI dataset (D, -400 pA to -50 pA
392 step amplitudes) and in the ABI dataset (E, -110 pA to -30 pA step amplitudes). Error bars in all plots
393 denote standard deviation.
394

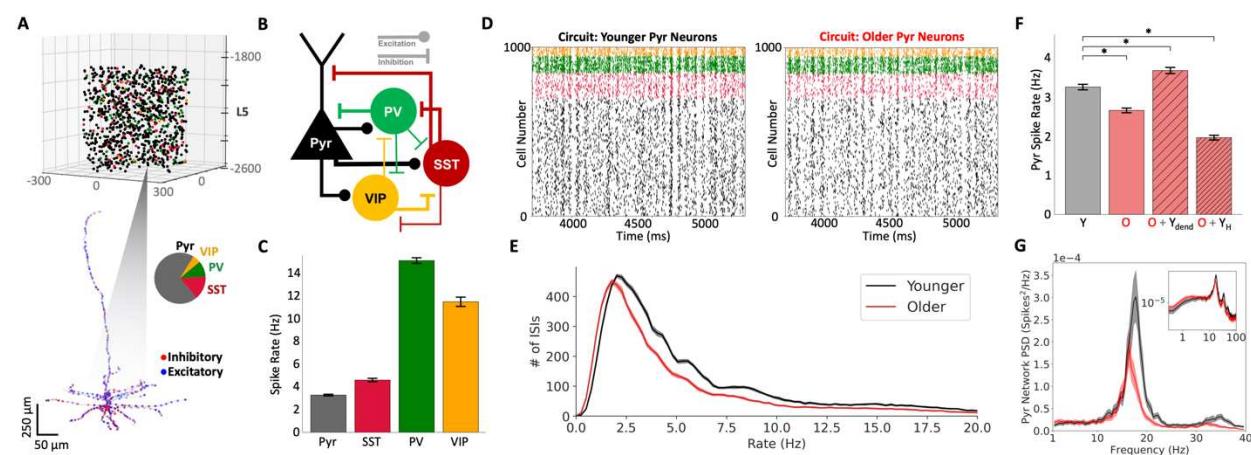
395 We generated models for younger and older L5 Pyr neuron models using multi-objective
396 evolutionary algorithm optimization, constrained with recordings from the KBI dataset and a
397 human neuron morphology (Fig. 2). Younger and older neuron models ($n = 57$ and 52,
398 respectively) reproduced the experimental spiking features and hyperpolarization sag features
399 (Fig. 2B-E; Tables S3-S4), whereby all features were within the experimental range (1 - 3
400 standard deviations, SD, Tables S3-S4 and Figs. S2-S3, see Methods). The only exception was
401 spike width, which was narrower than the experimental range, a typical limitation of the

402 particular ion channel kinetics we have used. Similar quality fits were obtained when optimizing
403 using an alternate reconstructed neuron morphology reconstruction (see Methods, **Fig. S4A-C**).
404 We chose exemplar models for younger and older neurons (**Table S7**) that best reproduced the
405 different features (**Fig. S2, S3**) and had a similar fit quality between younger and older models
406 (**Fig. S4B**). As seen experimentally, spiking features were similar between the younger and older
407 neuron models (**Fig. 2B-C**), but the older neuron model had a larger sag amplitude (**Fig. 2D-E**).
408 Though the older neuron model had a more depolarized resting membrane potential (-69.8 vs. -
409 71.2 mV, respectively, in line with the experimental population mean targets shown in **Tables**
410 **S3-S4**), we note that there were no significant differences in resting membrane potential between
411 younger and older pyramidal neuron datasets. Accordingly, the older model neuron had a larger
412 h-channel density, and this difference was seen also when comparing G_H in the set of acceptable
413 models for younger and older neurons derived from the optimization algorithm (**Fig. S4C, top**),
414 as well as when using an alternate morphology (**Fig. S4C, bottom**; Bonferroni adjusted $p < 0.01$,
415 Wilcoxon Ranked Sum test). Due to the increased h-current density along the apical dendrites,
416 the difference between younger and older model neurons was more pronounced in the distal
417 apical dendrites (**Fig. S4D**). This difference in h-channel density was further supported by an
418 increased HCN1 subunit expression in older human MTG L5 excitatory neurons (Benjamini-
419 Hochberg adjusted $p < 0.01$, Wilcoxon Ranked Sum test, Cohen's d : 0.18, log-fold increase:
420 0.11; **Fig. S4E**).

421

423 **Figure 2. Human L5 Pyr neuron models capture electrical properties in younger and older data. A.** Reconstructed human L5 Pyr neuron morphology, used in the younger and older neuron models. **B.** Spiking output of younger and older Pyr neuron models in response to a depolarizing step current of 135 pA and duration of 600 ms. **C.** Spike frequency and input current relationship for younger and older models (dashed) was within the experimental range, < 1 SD (shaded) from the experimental mean (solid). **D.** Voltage response to hyperpolarizing step current of -400 pA and duration of 1000 ms in the younger and older models. Traces are aligned according to their steady-state voltages to highlight differences in sag amplitude (inset). **E.** Sag amplitude and input current relationship for younger and older models (dashed) were within the experimental range, < 1 SD (shaded) from the experimental mean (solid).
432

433 **Dampened baseline spiking in L5 microcircuit models with older Pyr neurons**

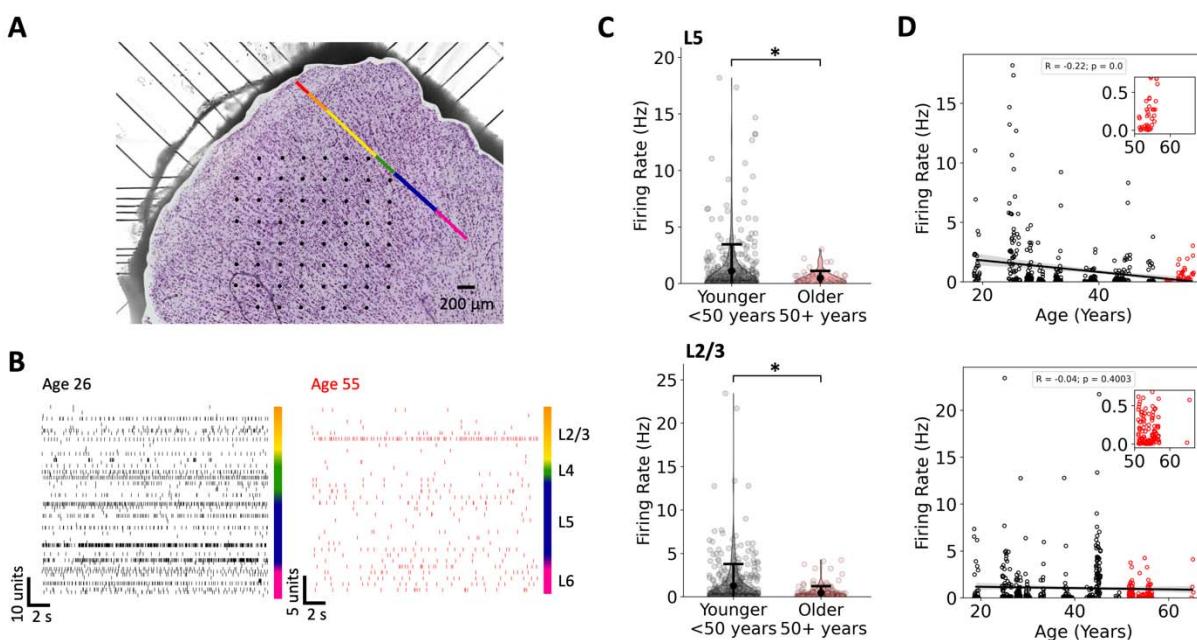

434 We next integrated our younger and older Pyr neuron models into cortical microcircuit models,
435 complete with similarly detailed models of human PV, SST, and VIP inhibitory neurons (**Fig.**
436 **3A,B**). We used previous models for human SST and VIP interneurons and fitted models for the
437 human L5 PV interneuron (**Tables S7**). The passive and active firing features of the PV
438 interneuron model were within the experimental variance of population data from corresponding
439 neurons in rodents, except for AP half-width which is more dependent on the particular
440 parameters used for the channel kinetics (Yao et al., 2022). We constrained Pyr→Pyr
441 connections to reproduce experimental EPSP amplitudes reported in human L5 Pyr neurons
442 (model: 0.81 ± 0.69 mV, experimental: 0.80 ± 0.69 mV; Seeman et al., 2018). The remaining
443 connections were constrained using rodent data (**Table S8**).

444 Using the younger Pyr neuron model, we simulated human cortical L5 microcircuits of
445 1000 neurons with experimentally derived cortical dimensions and proportions of different
446 neuron types (**Fig. 3A, B**). Each neuron received random background excitation corresponding to
447 cortical and thalamic drive, to enable recurrent activity. We tuned the connection probabilities
448 between neuron types and the background excitation levels to reproduce baseline firing rates
449 previously reported for the neuron types *in vivo* (**Fig. 3C, D**). The mean firing rate for simulated
450 Pyr neurons was 3.27 ± 0.07 Hz, PV: 15.03 ± 0.29 Hz, SST: 4.56 ± 0.18 Hz and VIP: $11.36 \pm$
451 0.32 Hz ($n = 30$ randomized microcircuits).

452 We then simulated L5 microcircuit models using the older Pyr neuron model, and found a
453 downward shift in the distribution of instantaneous baseline Pyr neuron spike rates (**Fig. 3E**,
454 Mann-Whitney U, $p < 0.001$) and a decrease in mean Pyr neuron spike rates (**Fig. 3F**, paired-
455 sample t-test, $p < 0.001$, Cohen's d : -8.7). We also tested this effect when changing the h-channel
456 mechanism kinetics to values that have been used in previous modeling work (Hay & Segev,
457 2015; Rich et al., 2021), and consistently obtained decreased baseline Pyr neuron spike rates.

458 This age effect on microcircuit firing remained consistent also when simulating microcircuits
459 with heterogeneous Pyr neuronal models (see Methods) or a larger network size of 2600 neurons
460 (paired-sample t-tests, $p < 0.01$; Cohen's $d = -13.8$ and -3.5 , respectively). This decrease in
461 baseline spike rate could be recovered and even increased by changing dendritic h-channel
462 density and passive membrane parameter values in the older Pyr neuron model dendrites to the
463 values used in the younger Pyr neuron model dendrites (Fig. 3F, paired-sample t-test, $p < 0.001$;
464 Cohen's $d: 5.4$), indicating that the change in spike rate was primarily driven by differences in
465 dendritic integration. Baseline spike rates could not be recovered by lowering the dendritic h-
466 channel density value alone to the value used in the younger model, and even decreased the spike
467 rates further (Fig. 3F, paired-sample t-test, $p < 0.001$; Cohen's $d: -18.6$). Thus, the age-
468 associated decrease in spike rate was not due to changes in h-channels alone, but a combination
469 of changes in both the depolarizing h-current and the hyperpolarizing leak current. Baseline
470 spike rates could also not be recovered by changing the axo-somatic sodium, potassium, and
471 calcium channel parameters in the older model to the values used in the younger model, which
472 rather decreased the spike rates further (paired-sample t-test, $p < 0.001$; Cohen's $d: -13.2$).

473 In line with decreased spike rates, the microcircuit models with older Pyr neurons also
474 generated rhythmic population spiking with decreased peak frequency and power compared to
475 the model with younger Pyr neurons (Fig. 3G). The spiking in both types of microcircuit models
476 was in the beta frequency range, consistent with beta range frequency oscillations reported
477 previously in local field potential recordings of L5 (Roopun et al., 2006).

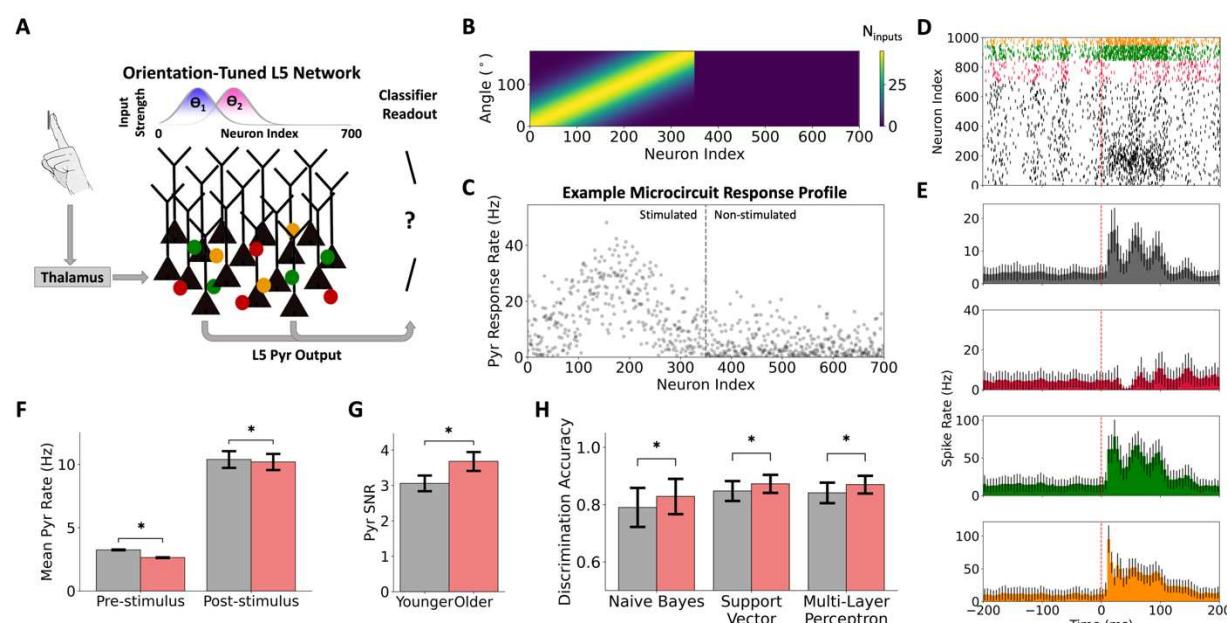


478
479 **Figure 3. Dampened baseline spiking in human cortical microcircuit models with older Pyr**
480 **neurons.** A. The model microcircuit comprised of 1000 neurons, with the somas distributed in a
481 $500 \times 500 \times 700 \mu\text{m}^3$ volume along L5 (1600 to 2300 μm below pia). The proportions of the different
482 neuron types were according to the experimental transcriptomics data in human somatosensory cortical

483 L5 (pie chart, Pyr: 70%; SST: 15%; PV: 10%; VIP: 5%). The neurons of all four types were modeled with
484 detailed morphologies, as in Figure 2. The blue and red dots denote example excitatory and inhibitory
485 synapses, respectively. **B.** Schematic diagram of the key connections between different neuron types in
486 the microcircuit. **C.** Spike rates in the different neuron types reproduced experimental baseline firing rates
487 (mean and standard deviation, $n = 30$ younger Pyr neuron microcircuits). **D.** Example raster plot of
488 baseline spiking in the microcircuit models with younger and older Pyr neurons, color-coded according to
489 neuron type. **E.** Distributions of instantaneous firing rates of Pyr neurons from younger and older
490 microcircuit models (bootstrapped mean and 95% confidence intervals of 30 microcircuits). **F.** Mean Pyr
491 neuron spike rate (excluding silent Pyr neurons firing at <0.2 Hz) significantly decreased in microcircuit
492 models with older (red; O) compared to younger (black; Y) Pyr neurons ($n = 10$ microcircuits). Spike
493 rates were recovered when changing the dendritic h-channel density and leak current parameters in the
494 older models to that of the younger models (O + Y_{dend}), but not when changing dendritic h-channel
495 density alone (O + Y_H). **G.** Spikes PSD of Pyr neurons for both microcircuit models (younger, black;
496 older, red), bootstrapped mean and 95% confidence intervals ($n = 30$ randomized microcircuits). Inset –
497 PSD in log scale, illustrating the 1/f relationship between power and log frequency.
498

499 To validate our model prediction that baseline spike rates of older human L5 pyramidal
500 neuron microcircuits are reduced, we analyzed multi-electrode array (MEA) extracellular
501 recordings across all layers of human cortical slices (**Fig. 4A-B**). These slices exhibited lower
502 firing rates (**Fig. 4C**) compared to the simulated microcircuits (which modeled *in vivo* activity),
503 but they exhibited the same dampening in older vs younger microcircuits. In the L5 areas of the
504 slice, spike rates of broad-spiking single units (putative Pyr neurons) in older subjects were
505 decreased compared to younger subjects (two-sample Welch's t-test, $p < 0.05$; younger: mean =
506 1.09 Hz, 95% CI = 0.87 - 1.30 Hz; older: mean = 0.49 Hz, 95% CI = 0.30 - 0.64 Hz; Cohen's d : -
507 0.27, respectively; $n = 401$ units from 14 younger subjects, $n = 51$ units from 4 older subjects;
508 **Fig. 4C, top**). Similarly, spike rates in L2/3 areas of the slice were also decreased in older
509 subjects compared to younger subjects (two-sample Welch's t-test, $p < 0.05$; younger: mean =
510 1.27 Hz, 95% CI = 0.97 - 1.52 Hz; older: mean = 0.46 Hz, 95% CI = 0.31 - 0.57 Hz; Cohen's d : -
511 0.37; $n = 376$ units from 14 younger subjects, $n = 148$ units from 5 older subjects; **Fig. 4C,**
512 **bottom**). L5 rates were also found to decrease with age (Pearson correlation, $R = -0.22$, $p <$
513 0.05), but not L2/3 rates (**Fig. 4D**). Spike rates did not change significantly in L4 broad-spiking
514 units with age, though this may be partly due to the presence of stellate neurons in L4. Compared
515 to the 18.3% decrease in spike rates in our models with older L5 Pyr neurons due to sag
516 amplitude changes alone, the L5 MEA data from older subjects showed a larger 55% decrease,
517 but with a smaller effect size (Cohen's d : -8.7 vs -0.27, respectively) due to the larger variability
518 in the data. When averaged for each subject, neither L2/3 nor L5 rates decreased significantly
519 with age, possibly due to the small subject sample size. We note, however, that linear mixed-

520 effect models supported that the effects on spike rate were driven by age and not subject
521 variability for both L5 and L2/3 (likelihood ratio test, $p < 0.05$).
522

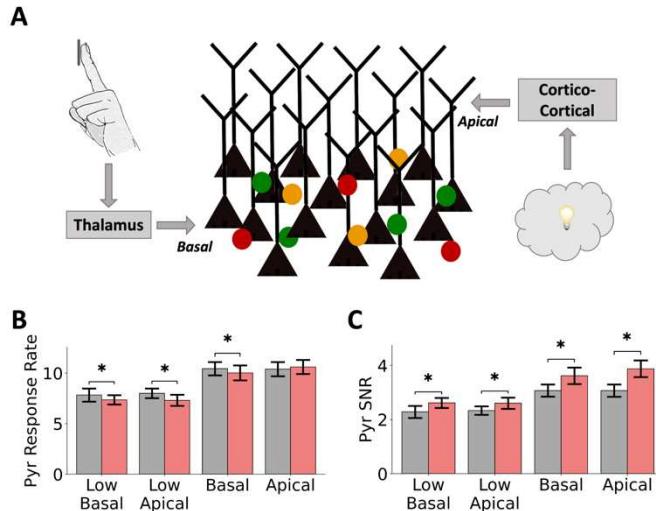


523
524 **Figure 4. MEA recordings reveal dampened microcircuit spiking in older human cortical L5 and**
525 **L2/3 Pyr neurons. A.** Human cortical tissue (500 μ m thickness; 5X lens) in a 60-channel MEA. Black
526 dots denote electrode locations and the color bar denotes layers 1 (red, upper left) through 6 (pink, lower
527 right) of the human cortical slice which was Nissl stained after the recording and overlaid on the image of
528 slice during the recording. **B.** Example spike trains of single units ordered by cortical depth and grouped
529 by layer (colour bar) from a younger subject (age 26, $n = 65$ units) and an older subject (age 55, $n = 32$
530 units). Units that were not spiking in this time range are omitted. **C.** Distribution of firing rates obtained
531 from extracellular recordings by planar MEAs across layers of cortical slices. Error bars denote the
532 bootstrapped mean firing rates and 95% confidence intervals. Firing rate was significantly decreased in
533 older L5 (top) and L2/3 (bottom) Pyr neurons (two-sample Welch's t-test). **D.** Firing rate measured in L5
534 (top) and L2/3 (bottom) neurons as a function of subject age. Inset plots show expanded axes for the older
535 firing rate data. L5 neuron firing rates decreased significantly with age (Pearson correlation). The shaded
536 area denotes the bootstrapped 95% confidence intervals.
537

538 Increased sag amplitude has minimal effect on microcircuit stimulus response

539 To assess the effect of sag amplitude changes on microcircuit response, we examined tuning
540 selectivity as a typical and generalizable example of cortical processing. We simulated
541 orientation-selectivity in our models by applying thalamic inputs to orientation-selective
542 neurons, with tuning curves as reported experimentally from monkey somatosensory cortex (Fig.
543 **5A, B**). We simulated different presentations of 85° or 95°, representing a small orientation
544 difference, and thus a challenging discrimination task due to similar levels of circuit activation

545 (Fig. 5B). Stimulus inputs included randomized additive noise and were applied to a microcircuit
 546 with fixed connectivity but random background input (Fig. 5C-E). Across 80 stimulus
 547 presentations for each angle, response rates of Pyr neurons were reduced in microcircuits with
 548 older Pyr neurons (paired-sample t-test, $p < 0.05$; younger: 10.39 ± 0.66 Hz; older: 10.19 ± 0.64
 549 Hz; Cohen's d : -0.3, Fig. 5F), although to a much lesser degree than the decrease in baseline
 550 rates (paired-sample t-test, $p < 0.001$; younger: 3.25 ± 0.03 Hz; older: 2.64 ± 0.03 Hz; Cohen's d :
 551 -19.8). The larger dampening of baseline activity compared to response thus imposed an
 552 increased signal-to-noise ratio (SNR) in microcircuits with older Pyr neurons compared to those
 553 with younger Pyr neurons (Fig. 5G; paired-sample t-test, $p < 0.001$; younger: 3.06 ± 0.22 ; older:
 554 3.68 ± 0.27 ; Cohen's d : 2.5). Pyr neuron sag amplitude changes thus did not account for reduced
 555 response rates and decreased SNR seen in aging, indicating the involvement of other
 556 mechanisms.

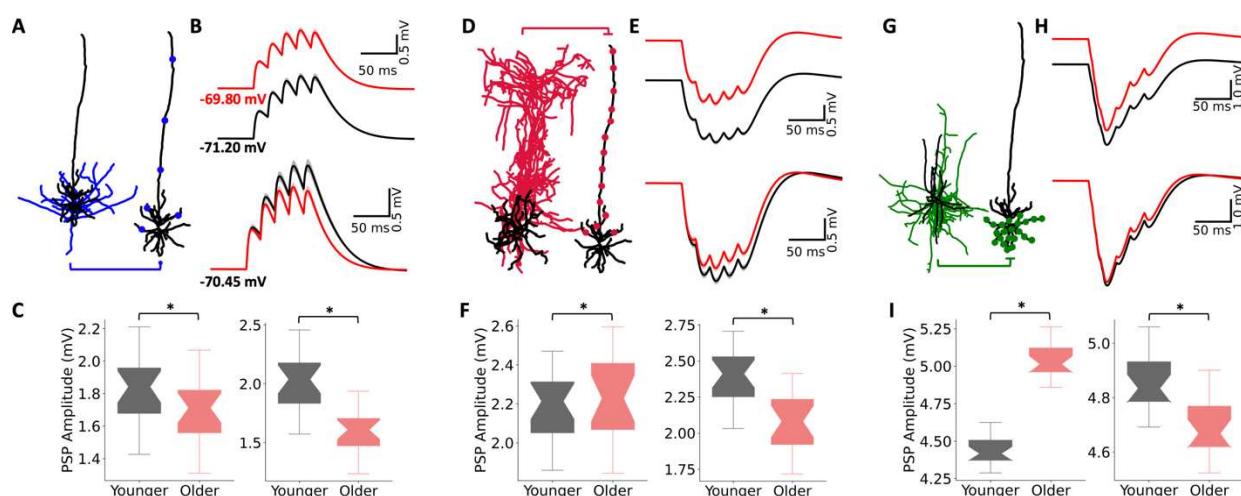


557
 558 **Figure 5. Increased sag amplitude in older Pyr neurons has minimal effects on stimulus response.**
 559 **A.** Stimulus response simulation paradigm, where orientation-selective neurons in the L5 microcircuit
 560 received thalamic inputs corresponding to tactile edges of different orientations (e.g. \square_1 , \square_2). The
 561 Gaussian distributions show the activation of different subgroups of neurons in response to different
 562 orientations. L5 Pyr neuron output responses to randomized stimulus presentations for each stimulus
 563 orientation (85° or 95°) were inputted into classifiers to assess discrimination accuracy. **B.** Orientation-
 564 tuning of Pyr neurons in the microcircuit, relating the number of thalamic inputs to each tactile edge
 565 orientation. **C.** Example average response rate for neurons in a microcircuit with younger Pyr neurons
 566 during ($n = 80$) presentations of the 85° stimulus. **D.** Example raster plot of simulated spike response in a
 567 microcircuit model with younger Pyr neurons during presentation of an 85° stimulus. Dashed line denotes
 568 the stimulus time. **E.** Average peri-stimulus time histograms during ($n = 80$) 85° stimulus presentations in
 569 the microcircuit model with younger Pyr neurons. **F.** Baseline and response spike rates to 85° inputs

570 (mean \pm SD) in both microcircuit models ($n = 80$ stimulus presentations each). **G.** Moderately increased
571 SNR in cortical microcircuit models with older Pyr neurons compared to those with younger Pyr neurons.
572 **H.** Moderately increased stimulus classification accuracy using readout from cortical microcircuits with
573 older Pyr neurons compared to those with younger Pyr neurons, across different classifier types ($n = 300$
574 permutations of the train/test datasets).

575

576 We next determined the implications of SNR on the accuracy of discrimination of
577 stimulus orientations using readout from microcircuits with older vs. younger Pyr neurons. The
578 readout comprised of Pyr neuron output metrics that served as feature inputs into different
579 classifier types (**Fig. 5H**). Across all classifiers, we found a moderate increase in discrimination
580 accuracy when using output features from microcircuit models with older Pyr neurons compared
581 to the microcircuit models with younger Pyr neurons (**Fig. 5H**; two-sample t-test, $p < 0.05$;
582 Cohen's d values: Naïve Bayes = 0.6; Support Vector = 0.7; Multi-Layer Perceptron = 0.9). The
583 increase in microcircuit SNR mediated by the changes in sag amplitude mechanisms in older L5
584 Pyr neurons therefore led to some improvement in decoding signals from the neuronal activity
585 readout. We also ran similar tests using spike rate or maximum PSP amplitude as alternative
586 feature inputs, and these generated results that were consistent with our results when using area
587 under the curve. We next examined Pyr neuron responses to apical dendrite inputs, as well as
588 lower stimulus magnitudes (**Fig. 6A**). In all cases, changes to response rates were minimal (**Fig.**
589 **6B**; Cohen's d , paired-sample t-test: low basal = -0.8, $p < 0.01$; low apical = -1.3, $p < 0.001$;
590 basal = -0.6, $p < 0.01$; apical = 0.3, $p > 0.05$) and SNR was higher in microcircuit models with
591 older Pyr neurons (**Fig. 6C**; paired-sample t-test, $p < 0.001$, Cohen's d : low basal = 1.6; low
592 apical = 1.4; basal = 2.0; apical = 2.9). These effects on SNR were smaller for responses to
593 weaker inputs (**Fig. 6C**) due to larger reductions in response rates with age in this condition (**Fig.**
594 **6B**). Thus, in all simulated tests, Pyr neuron sag amplitude changes alone could not sufficiently
595 account for the reductions in response rates and discrimination acuity seen experimentally in
596 aging.


597

598 **Figure 6. Age-associated changes are robust across stimulus location and amplitude. A.** Stimulus
599 response simulation paradigm, where the Pyr cells are stimulated by either thalamic inputs (representing
600 tactile edges) onto their basal dendrites, or cortical inputs (representing associative information) onto their
601 apical dendrites. **B.** Minimal effects on response rates in cortical microcircuit models with older Pyr
602 neurons compared to those with younger Pyr neurons ($n = 30$ stimulus presentations) for low/high input
603 onto basal/apical dendrites. **C.** Increased Pyr neuron SNR in cortical microcircuit models with older Pyr
604 neurons compared to those with younger Pyr neurons.

605

606 As the differences in excitability between younger and older Pyr neuron models were
607 primarily driven by changes in dendritic h-channel density and membrane leak current
608 parameters (Fig. 3E), we examined excitatory (Fig. 7A) and inhibitory (Fig. 7D,G) PSP
609 summation in the models to characterize possible reasons for the dampened firing rates in
610 microcircuits with older Pyr neurons. The peak excitatory (Fig. 7B, top) and inhibitory (Fig.
611 7E,H, top) PSPs (from Pyr and SST/PV connections, respectively) in the older neuron model
612 were more depolarized than in the younger neuron model, due to the depolarized resting
613 membrane potential resulting from larger h-channel density. In addition, the inhibitory PSP
614 amplitude of the PV→Pyr connection increased considerably (paired-sample t-test, $p < 0.05$,
615 Cohen's d : 5.4; Fig. 7I, left). While we also observed decreased Pyr→Pyr (paired-sample t-test,
616 $p < 0.05$, Cohen's d : -0.6) and increased SST→Pyr (paired-sample t-test, $p < 0.05$, Cohen's d :
617 0.2) amplitudes (Fig. 7C,F, left), these effects were small. When current-compensated to
618 equalize resting membrane potential between the models, excitatory (Fig. 7B, bottom) and
619 inhibitory (Fig. 7E,H, bottom) PSP summation in the older neuron model were dampened
620 compared to the younger neuron model (paired-sample t-test, $p < 0.05$, Cohen's d : Pyr→Pyr = -
621 1.9, SST→Pyr = -1.7, PV→Pyr = -1.5; Fig. 7C,F,I, right). Across all connection types, the PSP

622 time course was shortened in the older neuron model, reflecting the larger h-current effects.
623 Although the net effect on IPSP and EPSP summation in the microcircuit depends on the circuit
624 state and neuronal membrane potential, these results indicate dampened excitation and boosted
625 inhibition in older Pyr neurons which would generally account for the reduced firing rates. We
626 obtained similar significant effects also when using a lower stimulation frequency of 25 Hz
627 (paired-sample t-test, $p < 0.05$, Cohen's d : Pyr→Pyr = -0.5, SST→Pyr = 0.25, PV→Pyr = 4.8),
628 as well as during 25 Hz stimulation with current-compensation to equalize resting potentials
629 (paired-sample t-test, $p < 0.05$, Cohen's d : Pyr→Pyr = -1.3, SST→Pyr = -1.3, PV→Pyr = -1.3).

630

631 **Figure 7. Synaptic input summation in younger and older neuron models.** **A.** Pyr→Pyr connections
632 tested for EPSP summation. Circles mark synaptic contacts onto the post-synaptic Pyr neuron. **B.** Top
633 traces show EPSP summation (50 Hz train of 5 step current pulses) in the younger (black) and older (red)
634 neuron models (20 connections, 20 trials/connection), bootstrapped mean and 95% confidence intervals.
635 Bottom traces show the same as the top traces, but when resting membrane potential is equalized between
636 younger and older neuron models by current compensation. **C.** Summary statistics of peak PSP amplitude
637 in younger and older Pyr neuron models corresponding to the traces in B,top (left) and B, bottom (right).
638 The box boundaries denote the interquartile ranges, the notches in the boxes denote the medians, and the
639 whiskers denote the ranges. **D-F.** Same as A-C but for IPSP summation of SST→Pyr (D-F) and PV→Pyr
640 (G-I) connection types.

641

642 Discussion

643 Here we found an increase in sag amplitude of human cortical L5 pyramidal neurons with
644 age, which led to reduced baseline activity and noise during response in simulated human
645 cortical microcircuits. Analysis of extracellular recordings using MEA across layers *ex vivo*
646 further confirmed a decrease in L5 pyramidal neuron spike rates in cortical tissue from older
647 individuals. We demonstrated the link mechanistically using novel detailed models of human L5

648 microcircuits that integrated human cellular and circuit data. Our simulations show that although
649 changes in Pyr neuron sag amplitude mechanisms did not play a role in age-dependent reduced
650 response rates and discrimination acuity, the sag amplitude changes alone can account for the
651 reduced baseline spike rates seen in aging. Our models thus reproduce age-dependent changes in
652 cortical resting state activity, and may serve to further study their implications and clinical
653 relevance in aging.

654 The reduced baseline and response rates in our microcircuit models in aging, and the
655 involvement of h-currents, agree with previous studies in monkeys (Wang et al., 2007, 2011).
656 Two key differences in the above studies, however, were a larger reduction in response rates
657 accompanied with cognitive deficits in working memory, and a global suppression of h-channels
658 rescuing both response spike rates and working memory deficits. The further reductions in spike
659 rates that we observed when simulating reduced Pyr neuron h-channel conductance and the
660 improved discrimination accuracy with older Pyr neurons were more in line with the effects of
661 HCN1 deletion or blocking h-current that have been reported for mouse prefrontal cortex
662 (Thuault et al., 2013). While the effects of h-current suppression on prefrontal cortex spiking and
663 working memory remain to be clarified, our findings thus indicate that the effects of global h-
664 channel suppression on circuit spiking in monkeys likely go beyond the impact in Pyr neurons
665 that we have modelled here. These discrepancies may be due to multi-regional effects, or the
666 involvement of age-changes in other mechanisms as indicated by our simulations of response
667 and discrimination acuity. Possible additional age-associated mechanisms through which
668 reduction in response rates and cortical processing quality could occur include reduced SST and
669 VIP inhibition (Mohan et al., 2018), neuronal atrophy (Prevot et al., 2021), homeostatic
670 reductions in tonic inhibition (Chen et al., 2010; Prevot et al., 2021), and reduced NMDA/AMPA
671 ratios (Pegasiou et al., 2020). There may also be sag amplitude changes in other neuron types
672 such as SST interneurons, which exhibit large sag amplitude like Pyr neurons, but for which
673 aging data is not yet available. The possible involvement of the above mechanisms may also
674 depend on associative distal dendritic inputs onto L5 pyramidal neurons, which we demonstrated
675 can exhibit similar effects on baseline and response rates due to increased sag-current in the
676 microcircuit models with older Pyr neurons. In this work, although we focused on group effects
677 in line with previous studies (Bucur & Madden, 2010; Davis et al., 1990; McIntosh et al., 2014),
678 we also reported significant correlations between both L5 Pyr neuron sag amplitudes and spike

679 rates with age. In both comparisons, the age effect on sag was stronger when examined at larger
680 hyperpolarizing current steps or across current steps. Further studies and protocols would benefit
681 from ensuring a large range of hyperpolarizing step amplitudes. Our comparison across neurons
682 rather than subjects is supported by the similar inter- and intra- subject neuronal data variability,
683 and by the effects not being driven by any one individual, but it will also be of interest in future
684 studies to increase the subject sample size and thus better establish the effect across subjects
685 rather than neuron samples. Analysis of *ex vivo* MEA data also validated our predictions of
686 decreased L5 pyramidal neuron spiking in cortical microcircuits of older individuals. While the
687 decrease in microcircuit spiking was greater than the changes seen in our microcircuit models
688 involving sag amplitude change alone, differences in the magnitude of the decrease could be
689 attributed to the more silent state of the *in vitro* tissue (which is therefore more susceptible to
690 dampening mechanisms) and/or the involvement of other mechanisms mentioned above.
691 Whereas in the current study we have assessed the functional impact of Pyr neuron changes with
692 age, it will be of interest in future studies to explore how additional diverse mechanisms refine
693 our results to explain the rest of the effects seen in aging.

694 We studied the effect of the age-dependent cellular changes on sensory cortical
695 processing, since the underlying microcircuits are well-studied (Yu et al., 2019; Thakur et al.,
696 2006; Bensmaia et al., 2008) and since sensory processing worsens with age. Previous studies
697 showed that tactile acuity decreases with age (Legge et al., 2008, 2019), and perceptual speeds
698 and reaction times are slower (Bucur & Madden, 2010). Though we constrained the *in vivo*
699 aspects of our model using rodent and monkey data due to unavailability of corresponding
700 human data (**Table S6**), the backbone of our models (i.e., morphologies, neuronal excitability,
701 cell type proportions, Pyr to Pyr connectivity) was constrained by human data and so we expect
702 our findings to be relevant to the neurophysiology of human circuits. Furthermore, the simulation
703 of cortical response to sensory stimuli served to study a prototypical cortical microcircuit
704 processing to bottom-up inputs together with recurrent inputs from the microcircuit neurons onto
705 Pyr neuron basal and apical dendrites (Hay & Segev, 2015). The consistent age effects we saw
706 when simulating the processing of apical inputs, which would correspond to cortico-cortical
707 connections from higher-order cortical areas, indicate that the results should generalize to other
708 types of cortical processing relevant to aging.

709 The age-dependent reduction in microcircuit spike rates involved a combination of
710 dendritic mechanisms underlying the increased sag amplitude, including h- and leak-currents.
711 Despite the older models being more depolarized, circuit spiking was reduced due to increased h-
712 current dampening synaptic summation, in agreement with previous studies (Williams & Stuart,
713 2000; Song & Moyer, 2017), and due to a reduced excitatory driving force and an increased
714 inhibitory driving force. While we modeled the altered sag amplitude via a change in h-channel
715 density proportionally along the apical dendrites, future experiments should determine if there is
716 also a change in the dendritic distribution of h-channels, which may impact the proportion of
717 proximal vs distal densities and thus differentially affect input integration. The increase in h-
718 current estimated from our models and electrophysiology was further supported by analysis of
719 HCN1 expression in human Pyr neurons. HCN channel subunits are expressed ubiquitously
720 across layers of human cortex, more than in rodents, further suggesting their importance in
721 human Pyr neurons (Kalmbach et al., 2018). While most of the data we used was healthy tissue
722 obtained from people with epilepsy (Chameh et al., 2021), HCN channels can be up- or down-
723 regulated in epilepsy depending on the brain area and/or species (Albertson et al., 2011; Arnold
724 et al., 2019; Bender et al., 2003), and we cannot discount the possible influence of this in our
725 findings. A notable difference between the KBI and ABI datasets was the use the synaptic
726 blockers in the ABI dataset, which can account for the larger (~2-fold) input resistance values in
727 that dataset. Though our findings were mostly conserved across the two datasets, future studies
728 can investigate the effects of synaptic currents which can enhance the recruitment of dendritic h-
729 currents (Guet-McCreight & Skinner, 2020). Although we have studied the effect of Pyr neuron
730 sag amplitude, it remains unknown whether there are also age-associated changes in interneuron
731 sag amplitude, which would modulate cortical firing rates. SST, PV, and VIP -expressing
732 interneurons have all demonstrated h-currents in electrophysiological recordings (Albertson et
733 al., 2017; Prönneke et al., 2015; Roth & Hu, 2020). When human interneuron electrophysiology
734 data becomes more abundant, a similar approach could be used to estimate age-associated
735 changes and integrate them into the models to better understand the microcircuit changes in
736 aging. We also note that action potential width in our models was narrower than the experimental
737 ranges due to the limitations imposed by the set of ion channel mechanisms used in this study
738 and previously (Druckmann et al., 2007; Hay & Segev, 2015; Mäki-Marttunen et al., 2019;
739 Markram et al., 2015). Thus, though these models were sufficient in capturing neuronal spiking

740 patterns and input-output gain for network simulations, future improvements to the models could
741 expand sodium and potassium channel kinetics to better capture spike width features.

742 Our microcircuit models capture several aspects of biological L5 circuits, including
743 human cell type proportions, human neuronal intrinsic properties, *in vivo* spike rates, and
744 stimulus response rates. The Pyr neuron models in our study were constrained with both
745 morphological and spiking features of intratelencephalic-projecting-like neurons, in line with the
746 higher proportion of these neurons in human MTG relative to extratelencephalic-projecting Pyr
747 neurons (Chameh et al., 2021; Hodge et al., 2019; Kalmbach et al., 2021). We did not have data
748 for the *in vivo* spike rates of different L5 Pyr neuron subtypes (e.g. intratelencephalic-projecting
749 type 1 and type 2, and extratelencephalic-projecting) and the proportions of these neuron types
750 vary across species (Hodge et al., 2019; Kalmbach et al., 2021), therefore we treated L5 Pyr
751 neurons as one population in our models. However we note our model morphologies are
752 intratelencephalic-projecting-like, and the data we fit our models to is likely predominantly
753 recorded from intratelencephalic-projecting Pyr neurons based on their electrophysiology metric
754 values (**Figs. S2 and S3**; Kalmbach et al., 2021). When dendritic properties of human L5
755 intratelencephalic-projecting Pyr neurons become better understood (for examples of works that
756 include dendritic characterization in other types of human Pyr neurons see: Beaulieu-Laroche et
757 al., 2018, 2021; Gidon et al., 2020; Kalmbach et al., 2021), it will be interesting to investigate the
758 possible contribution of intratelencephalic-projecting L5 Pyr neuron dendritic features such as
759 action potential backpropagation and calcium spikes to age changes in dendritic h-currents. For
760 example, these could amplify the effect on network response rates, a feature that has been
761 demonstrated with rodent L5 extratelencephalic-projecting Pyr neuron network models (Hay &
762 Segev, 2015). Whereas we simulated L5 microcircuits of a smaller size than the true size (by a
763 factor of ~3), which decreases the overall recurrent inputs received by each neuron in the
764 network, we confirmed with simulations of larger microcircuits that spiking activity was similar
765 and our results held. This is due to our microcircuit down-sampling involving proportional
766 increases in both excitatory and inhibitory neurons, which maintained the overall excitatory-
767 inhibitory balance of the network. Our circuit models spiking exhibited beta range frequency
768 oscillations, which have been reported in local field potential recordings of L5 (Roopun et al.,
769 2006; Halgren et al., 2018). The origin of this rhythm, which was not a feature that we explicitly
770 tuned our models to exhibit, could be the product of many components, but we expect is

771 primarily governed by the recurrent excitatory and inhibitory connections in the circuit, since the
772 background input is random. Also, the larger proportion of PV interneurons (e.g. compared to
773 L2/3) could further explain the oscillations at these particular frequencies (Cardin et al., 2009).
774 The slowing of the peak frequency and reduced power with age in our models may also bear
775 similar mechanisms to the slowing and decreased power of alpha rhythms with age that have
776 been reported in EEG datasets (Choi et al., 2019; Donoghue et al., 2020). Future models
777 involving also the superficial cortical layers would enable linking the age-dependent changes to
778 the associated EEG signals (Hagen et al., 2018), and relating them to experimental recordings
779 (Choi et al., 2019; Donoghue et al., 2020). All models and simulation code will be available
780 openly online upon publication.

781

782

783

784 **Acknowledgements**

785 AGM, SJT and EH thank the Krembil Foundation for their generous funding support. MW and
786 EH thank NSERC for funding support. SJT and TAV also thank the generous support from
787 CAMH Discovery Fund and Kavli Foundation. We also thank Dr. Yuxiao Chen for technical
788 assistance in gene-expression analysis. As well, we are immensely grateful to our neurosurgical
789 patients and their families for consenting to the use of their tissue samples for research.

790 References

791 Albertson, A. J., Bohannon, A. S., & Hablitz, J. J. (2017). HCN Channel Modulation of Synaptic
792 Integration in GABAergic Interneurons in Malformed Rat Neocortex. *Frontiers in Cellular*
793 *Neuroscience*, 11. <https://doi.org/10.3389/fncel.2017.00109>

794 Albertson, A. J., Yang, J., & Hablitz, J. J. (2011). Decreased hyperpolarization-activated currents
795 in layer 5 pyramidal neurons enhances excitability in focal cortical dysplasia. *Journal of*
796 *Neurophysiology*, 106(5), 2189–2200. <https://doi.org/10.1152/jn.00164.2011>

797 Arnold, E. C., McMurray, C., Gray, R., & Johnston, D. (2019). Epilepsy-Induced Reduction in HCN
798 Channel Expression Contributes to an Increased Excitability in Dorsal, But Not Ventral,
799 Hippocampal CA1 Neurons. *ENeuro*, 6(2). <https://doi.org/10.1523/ENEURO.0036-19.2019>

800 Barthó, P., Hirase, H., Monconduit, L., Zugaro, M., Harris, K. D., & Buzsáki, G. (2004).
801 Characterization of Neocortical Principal Cells and Interneurons by Network Interactions
802 and Extracellular Features. *Journal of Neurophysiology*, 92(1), 600–608.
803 <https://doi.org/10.1152/jn.01170.2003>

804 Beaulieu-Laroche, L., Brown, N. J., Hansen, M., Toloza, E. H. S., Sharma, J., Williams, Z. M.,
805 Frosch, M. P., Cosgrove, G. R., Cash, S. S., & Harnett, M. T. (2021). Allometric rules for
806 mammalian cortical layer 5 neuron biophysics. *Nature*, 600(7888), 274–278.
807 <https://doi.org/10.1038/s41586-021-04072-3>

808 Beaulieu-Laroche, L., Toloza, E. H. S., Goes, M.-S. van der, Lafourcade, M., Barnagian, D.,
809 Williams, Z. M., Eskandar, E. N., Frosch, M. P., Cash, S. S., & Harnett, M. T. (2018).
810 Enhanced Dendritic Compartmentalization in Human Cortical Neurons. *Cell*, 175(3), 643–
811 651.e14. <https://doi.org/10.1016/j.cell.2018.08.045>

812 Bender, R. A., Soleimani, S. V., Brewster, A. L., Nguyen, S. T., Beck, H., Mathern, G. W., &
813 Baram, T. Z. (2003). Enhanced Expression of a Specific Hyperpolarization-Activated Cyclic
814 Nucleotide-Gated Cation Channel (HCN) in Surviving Dentate Gyrus Granule Cells of
815 Human and Experimental Epileptic Hippocampus. *Journal of Neuroscience*, 23(17),
816 6826–6836. <https://doi.org/10.1523/JNEUROSCI.23-17-06826.2003>

817 Bensmaia, S. J., Denchev, P. V., Dammann, J. F., Craig, J. C., & Hsiao, S. S. (2008). The
818 Representation of Stimulus Orientation in the Early Stages of Somatosensory Processing.
819 *Journal of Neuroscience*, 28(3), 776–786. <https://doi.org/10.1523/JNEUROSCI.4162-07.2008>

820 Bryson, A., Hatch, R. J., Zandt, B.-J., Rossert, C., Berkovic, S. F., Reid, C. A., Grayden, D. B., Hill, S.
821 L., & Petrou, S. (2020). GABA-mediated tonic inhibition differentially modulates gain in
822 functional subtypes of cortical interneurons. *Proceedings of the National Academy of*
823 *Sciences*, 117(6), 3192–3202. <https://doi.org/10.1073/pnas.1906369117>

824 Bucur, B., & Madden, D. J. (2010). Effects of Adult Age and Blood Pressure on Executive
825 Function and Speed of Processing. *Experimental Aging Research*, 36(2), 153–168.
826 <https://doi.org/10.1080/03610731003613482>

827 Campagnola, L., Seeman, S. C., Chartrand, T., Kim, L., Hoggarth, A., Gamlin, C., Ito, S., Trinh, J.,
828 Davoudian, P., Radaelli, C., Kim, M.-H., Hage, T., Braun, T., Alfiler, L., Andrade, J., Bohn,
829 P., Dalley, R., Henry, A., Kebede, S., ... Jarsky, T. (2022). Local connectivity and synaptic

832 dynamics in mouse and human neocortex. *Science*, 375(6585), eabj5861.
833 <https://doi.org/10.1126/science.abj5861>

834 Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H., & Moore,
835 C. I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory
836 responses. *Nature*, 459(7247), 663–667. <https://doi.org/10.1038/nature08002>

837 Carnevale, N. T., & Hines, M. L. (2006). *The NEURON Book* (1 edition). Cambridge University
838 Press.

839 Chameh, H. M., Rich, S., Wang, L., Chen, F.-D., Zhang, L., Carlen, P. L., Tripathy, S. J., & Valiante,
840 T. A. (2021). Diversity amongst human cortical pyramidal neurons revealed via their sag
841 currents and frequency preferences. *Nature Communications*, 12(1), 2497.
842 <https://doi.org/10.1038/s41467-021-22741-9>

843 Chen, X., Shu, S., Schwartz, L. C., Sun, C., Kapur, J., & Bayliss, D. A. (2010). Homeostatic
844 Regulation of Synaptic Excitability: Tonic GABA_A Receptor Currents Replace I_h in
845 Cortical Pyramidal Neurons of HCN1 Knock-Out Mice. *Journal of Neuroscience*, 30(7),
846 2611–2622. <https://doi.org/10.1523/JNEUROSCI.3771-09.2010>

847 Choi, J., Ku, B., You, Y. G., Jo, M., Kwon, M., Choi, Y., Jung, S., Ryu, S., Park, E., Go, H., Kim, G.,
848 Cha, W., & Kim, J. U. (2019). Resting-state prefrontal EEG biomarkers in correlation with
849 MMSE scores in elderly individuals. *Scientific Reports*, 9(1), 10468.
850 <https://doi.org/10.1038/s41598-019-46789-2>

851 Davis, H. P., Cohen, A., Gandy, M., Colombo, P., VanDusseldorp, G., Simolke, N., & Romano, J.
852 (1990). Lexical priming deficits as a function of age. *Behavioral Neuroscience*, 104(2),
853 288–297.

854 Destexhe, A., Rudolph, M., Fellous, J.-M., & Sejnowski, T. J. (2001). Fluctuating synaptic
855 conductances recreate in vivo-like activity in neocortical neurons. *Neuroscience*, 107(1),
856 13–24. [https://doi.org/10.1016/S0306-4522\(01\)00344-X](https://doi.org/10.1016/S0306-4522(01)00344-X)

857 Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, A. H.,
858 Wallis, J. D., Knight, R. T., Shestyuk, A., & Voytek, B. (2020). Parameterizing neural power
859 spectra into periodic and aperiodic components. *Nature Neuroscience*, 23(12), 1655–
860 1665. <https://doi.org/10.1038/s41593-020-00744-x>

861 Druckmann, S., Banitt, Y., Gidon, A., Schürmann, F., Markram, H., & Segev, I. (2007). A novel
862 multiple objective optimization framework for constraining conductance-based neuron
863 models by experimental data. *Frontiers in Neuroscience*, 1.
864 <https://www.frontiersin.org/articles/10.3389/neuro.01.1.1.001.2007>

865 Florez, C. M., McGinn, R. J., Lukankin, V., Marwa, I., Sugumar, S., Dian, J., Hazrati, L.-N., Carlen,
866 P. L., Zhang, L., & Valiante, T. A. (2015). In Vitro Recordings of Human Neocortical
867 Oscillations. *Cerebral Cortex*, 25(3), 578–597. <https://doi.org/10.1093/cercor/bht235>

868 Fuhrmann, G., Segev, I., Markram, H., & Tsodyks, M. (2002). Coding of Temporal Information by
869 Activity-Dependent Synapses. *Journal of Neurophysiology*, 87(1), 140–148.
870 <https://doi.org/10.1152/jn.00258.2001>

871 Gentet, L. J., Kremer, Y., Taniguchi, H., Huang, Z. J., Staiger, J. F., & Petersen, C. C. H. (2012).
872 Unique functional properties of somatostatin-expressing GABAergic neurons in mouse
873 barrel cortex. *Nature Neuroscience*, 15(4), 607–612. <https://doi.org/10.1038/nn.3051>

874 Gidon, A., Zolnik, T. A., Fidzinski, P., Bolduan, F., Papoutsi, A., Poirazi, P., Holtkamp, M., Vida, I.,
875 & Larkum, M. E. (2020). Dendritic action potentials and computation in human layer 2/3
876 cortical neurons. *Science*, 367(6473), 83–87. <https://doi.org/10.1126/science.aax6239>

877 Goriounova, N. A., Heyer, D. B., Wilbers, R., Verhoog, M. B., Giugliano, M., Verbist, C.,
878 Obermayer, J., Kerkhofs, A., Smeding, H., Verberne, M., Idema, S., Baayen, J. C.,
879 Pieneman, A. W., de Kock, C. P., Klein, M., & Mansvelder, H. D. (2018). Large and fast
880 human pyramidal neurons associate with intelligence. *eLife*, 7, e41714.
881 <https://doi.org/10.7554/eLife.41714>

882 Gouwens, N. W., Berg, J., Feng, D., Sorensen, S. A., Zeng, H., Hawrylycz, M. J., Koch, C., &
883 Arkhipov, A. (2018). Systematic generation of biophysically detailed models for diverse
884 cortical neuron types. *Nature Communications*, 9(1), 710.
885 <https://doi.org/10.1038/s41467-017-02718-3>

886 Guet-McCreight, A., & Skinner, F. K. (2020). Computationally going where experiments cannot:
887 A dynamical assessment of dendritic ion channel currents during in vivo-like states.
888 *F1000Research*, 9, 180. <https://doi.org/10.12688/f1000research.22584.2>

889 Hagen, E., Næss, S., Ness, T. V., & Einevoll, G. T. (2018). Multimodal Modeling of Neural
890 Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0. *Frontiers*
891 in *Neuroinformatics*, 12. <https://doi.org/10.3389/fninf.2018.00092>

892 Halgren, M., Fabó, D., Ulbert, I., Madsen, J. R., Erőss, L., Doyle, W. K., Devinsky, O., Schomer, D.,
893 Cash, S. S., & Halgren, E. (2018). Superficial Slow Rhythms Integrate Cortical Processing
894 in Humans. *Scientific Reports*, 8(1), 2055. <https://doi.org/10.1038/s41598-018-20662-0>

895 Hay, E., Hill, S., Schürmann, F., Markram, H., & Segev, I. (2011). Models of Neocortical Layer 5b
896 Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties.
897 *PLoS Comput Biol*, 7(7), e1002107. <https://doi.org/10.1371/journal.pcbi.1002107>

898 Hay, E., Schürmann, F., Markram, H., & Segev, I. (2013). Preserving axosomatic spiking features
899 despite diverse dendritic morphology. *Journal of Neurophysiology*, 109(12), 2972–2981.
900 <https://doi.org/10.1152/jn.00048.2013>

901 Hay, E., & Segev, I. (2015). Dendritic Excitability and Gain Control in Recurrent Cortical
902 Microcircuits. *Cerebral Cortex*, 25(10), 3561–3571.
903 <https://doi.org/10.1093/cercor/bhu200>

904 Hodge, R. D., Bakken, T. E., Miller, J. A., Smith, K. A., Barkan, E. R., Graybuck, L. T., Close, J. L.,
905 Long, B., Johansen, N., Penn, O., Yao, Z., Eggermont, J., Höllt, T., Levi, B. P., Shehata, S. I.,
906 Avermann, B., Beller, A., Bertagnolli, D., Brouner, K., ... Lein, E. S. (2019). Conserved cell
907 types with divergent features in human versus mouse cortex. *Nature*, 1–8.
908 <https://doi.org/10.1038/s41586-019-1506-7>

909 Kalmbach, B. E., Buchin, A., Long, B., Close, J., Nandi, A., Miller, J. A., Bakken, T. E., Hodge, R. D.,
910 Chong, P., de Frates, R., Dai, K., Maltzer, Z., Nicovich, P. R., Keene, C. D., Silbergeld, D. L.,
911 Gwinn, R. P., Cobbs, C., Ko, A. L., Ojemann, J. G., ... Ting, J. T. (2018). H-Channels
912 Contribute to Divergent Intrinsic Membrane Properties of Supragranular Pyramidal
913 Neurons in Human versus Mouse Cerebral Cortex. *Neuron*, 100(5), 1194-1208.e5.
914 <https://doi.org/10.1016/j.neuron.2018.10.012>

915 Kalmbach, B. E., Hodge, R. D., Jorstad, N. L., Owen, S., Frates, R. de, Yanny, A. M., Dalley, R.,
916 Mallory, M., Graybuck, L. T., Radaelli, C., Keene, C. D., Gwinn, R. P., Silbergeld, D. L.,
917 Cobbs, C., Ojemann, J. G., Ko, A. L., Patel, A. P., Ellenbogen, R. G., Bakken, T. E., ... Ting, J.

918 T. (2021). Signature morpho-electric, transcriptomic, and dendritic properties of human
919 layer 5 neocortical pyramidal neurons. *Neuron*, 109(18), 2914-2927.e5.
920 <https://doi.org/10.1016/j.neuron.2021.08.030>

921 Kole, M. H. P., Hallermann, S., & Stuart, G. J. (2006). Single I_h Channels in Pyramidal Neuron
922 Dendrites: Properties, Distribution, and Impact on Action Potential Output. *Journal of*
923 *Neuroscience*, 26(6), 1677–1687. <https://doi.org/10.1523/JNEUROSCI.3664-05.2006>

924 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in
925 Linear Mixed Effects Models. *Journal of Statistical Software*, 82, 1–26.
926 <https://doi.org/10.18637/jss.v082.i13>

927 Legge, G. E., Granquist, C., Lubet, A., Gage, R., & Xiong, Y.-Z. (2019). Preserved tactile acuity in
928 older pianists. *Attention, Perception, & Psychophysics*, 81(8), 2619–2625.
929 <https://doi.org/10.3758/s13414-019-01844-y>

930 Legge, G. E., Madison, C., Vaughn, B. N., Cheong, A. M. Y., & Miller, J. C. (2008). Retention of
931 high tactile acuity throughout the life span in blindness. *Perception & Psychophysics*,
932 70(8), 1471–1488. <https://doi.org/10.3758/PP.70.8.1471>

933 Loken, C., Gruner, D., Groer, L., Peltier, R., Bunn, N., Craig, M., Henriques, T., Dempsey, J., Yu,
934 C.-H., Chen, J., Dursi, L. J., Chong, J., Northrup, S., Pinto, J., Knecht, N., & Zon, R. V.
935 (2010). SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data
936 Centre. *Journal of Physics: Conference Series*, 256, 012026.
937 <https://doi.org/10.1088/1742-6596/256/1/012026>

938 Mäki-Marttunen, T., Krull, F., Bettella, F., Hagen, E., Næss, S., Ness, T. V., Moberget, T.,
939 Elvsåshagen, T., Metzner, C., Devor, A., Edwards, A. G., Fyhn, M., Djurovic, S., Dale, A.
940 M., Andreassen, O. A., & Einevoll, G. T. (2019). Alterations in Schizophrenia-Associated
941 Genes Can Lead to Increased Power in Delta Oscillations. *Cerebral Cortex*, 29(2), 875–
942 891. <https://doi.org/10.1093/cercor/bhy291>

943 Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M., Sanchez, C. A.,
944 Ailamaki, A., Alonso-Nanclares, L., Antille, N., Arsever, S., Kahou, G. A. A., Berger, T. K.,
945 Bilgili, A., Buncic, N., Chalimourda, A., Chindemi, G., Courcol, J.-D., Delalondre, F.,
946 Delattre, V., ... Schürmann, F. (2015). Reconstruction and Simulation of Neocortical
947 Microcircuitry. *Cell*, 163(2), 456–492. <https://doi.org/10.1016/j.cell.2015.09.029>

948 McIntosh, A. R., Vakorin, V., Kovacevic, N., Wang, H., Diaconescu, A., & Protzner, A. B. (2014).
949 Spatiotemporal Dependency of Age-Related Changes in Brain Signal Variability. *Cerebral*
950 *Cortex*, 24(7), 1806–1817. <https://doi.org/10.1093/cercor/bht030>

951 Mohan, A., Thalamuthu, A., Mather, K. A., Zhang, Y., Catts, V. S., Weickert, C. S., & Sachdev, P. S.
952 (2018). Differential expression of synaptic and interneuron genes in the aging human
953 prefrontal cortex. *Neurobiology of Aging*, 70, 194–202.
954 <https://doi.org/10.1016/j.neurobiolaging.2018.06.011>

955 Mohan, H., Verhoog, M. B., Doreswamy, K. K., Eyal, G., Aardse, R., Lodder, B. N., Goriounova, N.
956 A., Asamoah, B., Brakspear, A. B. C., Groot, C., van der Sluis, S., Testa-Silva, G.,
957 Obermayer, J., Boudewijns, Z. S. R. M., Narayanan, R. T., Baayen, J. C., Segev, I.,
958 Mansvelder, H. D., & de Kock, C. P. J. (2015). Dendritic and Axonal Architecture of
959 Individual Pyramidal Neurons across Layers of Adult Human Neocortex. *Cerebral Cortex*,
960 25(12), 4839–4853. <https://doi.org/10.1093/cercor/bhv188>

961 Muñoz, W., Tremblay, R., Levenstein, D., & Rudy, B. (2017). Layer-specific modulation of
962 neocortical dendritic inhibition during active wakefulness. *Science*, 355(6328), 954–959.
963 <https://doi.org/10.1126/science.aag2599>

964 Pegasiou, C. M., Zolnourian, A., Gomez-Nicola, D., Deinhardt, K., Nicoll, J. A. R., Ahmed, A. I.,
965 Vajramani, G., Grundy, P., Verhoog, M. B., Mansvelder, H. D., Perry, V. H., Bulters, D., &
966 Vargas-Caballero, M. (2020). Age-Dependent Changes in Synaptic NMDA Receptor
967 Composition in Adult Human Cortical Neurons. *Cerebral Cortex*, 30(7), 4246–4256.
968 <https://doi.org/10.1093/cercor/bhaa052>

969 Peters, R. (2006). Ageing and the brain. *Postgraduate Medical Journal*, 82(964), 84–88.
970 <https://doi.org/10.1136/pgmj.2005.036665>

971 Ponce, M., van Zon, R., Northrup, S., Gruner, D., Chen, J., Ertinaz, F., Fedoseev, A., Groer, L.,
972 Mao, F., Mundim, B. C., Nolta, M., Pinto, J., Saldarriaga, M., Slavnic, V., Spence, E., Yu,
973 C.-H., & Peltier, W. R. (2019). Deploying a Top-100 Supercomputer for Large Parallel
974 Workloads: The Niagara Supercomputer. *Proceedings of the Practice and Experience in
975 Advanced Research Computing on Rise of the Machines (Learning)*, 1–8.
976 <https://doi.org/10.1145/3332186.3332195>

977 Prevot, T. D., Sumitomo, A., Tomoda, T., Knutson, D. E., Li, G., Mondal, P., Banasr, M., Cook, J.
978 M., & Sibille, E. (2021). Reversal of Age-Related Neuronal Atrophy by α 5-GABAA
979 Receptor Positive Allosteric Modulation. *Cerebral Cortex*, 31(2), 1395–1408.
980 <https://doi.org/10.1093/cercor/bhaa310>

981 Prönneke, A., Scheuer, B., Wagener, R. J., Möck, M., Witte, M., & Staiger, J. F. (2015).
982 Characterizing VIP Neurons in the Barrel Cortex of VIPcre/tdTomato Mice Reveals Layer-
983 Specific Differences. *Cerebral Cortex*, 25(12), 4854–4868.
984 <https://doi.org/10.1093/cercor/bhv202>

985 Ramaswamy, S., Courcol, J.-D., Abdellah, M., Adaszewski, S. R., Antille, N., Arsever, S.,
986 Atenekeng, G., Bilgili, A., Brukau, Y., Chalimourda, A., Chindemi, G., Delalondre, F.,
987 Dumusc, R., Eilemann, S., Gevaert, M. E., Gleeson, P., Graham, J. W., Hernando, J. B.,
988 Kanari, L., ... Markram, H. (2015). The neocortical microcircuit collaboration portal: A
989 resource for rat somatosensory cortex. *Frontiers in Neural Circuits*, 44.
990 <https://doi.org/10.3389/fncir.2015.00044>

991 Ramos, B. P., Stark, D., Verduzco, L., Dyck, C. H. van, & Arnsten, A. F. T. (2006). A2A-
992 adrenoceptor stimulation improves prefrontal cortical regulation of behavior through
993 inhibition of cAMP signaling in aging animals. *Learning & Memory*, 13(6), 770–776.
994 <https://doi.org/10.1101/lm.298006>

995 Rich, S., Moradi Chameh, H., Sekulic, V., Valiante, T. A., & Skinner, F. K. (2021). Modeling
996 Reveals Human–Rodent Differences in H-Current Kinetics Influencing Resonance in
997 Cortical Layer 5 Neurons. *Cerebral Cortex*, 31(2), 845–872.
998 <https://doi.org/10.1093/cercor/bhaa261>

999 Roopun, A. K., Middleton, S. J., Cunningham, M. O., LeBeau, F. E. N., Bibbig, A., Whittington, M.
1000 A., & Traub, R. D. (2006). A beta2-frequency (20–30 Hz) oscillation in nonsynaptic
1001 networks of somatosensory cortex. *Proceedings of the National Academy of Sciences*,
1002 103(42), 15646–15650. <https://doi.org/10.1073/pnas.0607443103>

1003 Roth, F. C., & Hu, H. (2020). An axon-specific expression of HCN channels catalyzes fast action
1004 potential signaling in GABAergic interneurons. *Nature Communications*, 11(1), 2248.
1005 <https://doi.org/10.1038/s41467-020-15791-y>

1006 Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student's t-test
1007 and the Mann-Whitney U test. *Behavioral Ecology*, 17(4), 688-690.
1008 <https://doi.org/10.1093/beheco/ark016>

1009 Scimemi, A., Andersson, A., Heeroma, J. H., Strandberg, J., Rydenhag, B., McEvoy, A. W., Thom,
1010 M., Asztely, F., & Walker, M. C. (2006). Tonic GABA_A receptor-mediated currents in
1011 human brain. *European Journal of Neuroscience*, 24(4), 1157-1160.
1012 <https://doi.org/10.1111/j.1460-9568.2006.04989.x>

1013 Seeman, S. C., Campagnola, L., Davoudian, P. A., Hoggarth, A., Hage, T. A., Bosma-Moody, A.,
1014 Baker, C. A., Lee, J. H., Mihalas, S., Teeter, C., Ko, A. L., Ojemann, J. G., Gwinn, R. P.,
1015 Silbergeld, D. L., Cobbs, C., Phillips, J., Lein, E., Murphy, G., Koch, C., ... Jarsky, T. (2018).
1016 Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and
1017 human cortex. *eLife*, 7, e37349. <https://doi.org/10.7554/eLife.37349>

1018 Sermet, B. S., Truschow, P., Feyerabend, M., Mayrhofer, J. M., Oram, T. B., Yizhar, O., Staiger, J.,
1019 F., & Petersen, C. C. (2019). Pathway-, layer- and cell-type-specific thalamic input to
1020 mouse barrel cortex. *eLife*, 8, e52665. <https://doi.org/10.7554/eLife.52665>

1021 Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., B, A., Martone, M., & Carnevale, N.,
1022 T. (2013). *Introducing The Neuroscience Gateway: Vol. 993 of CEUR Workshop
Proceedings*. <http://ceur-ws.org/Vol-993/paper10.pdf>

1023 Skovlund, E., & Fenstad, G. U. (2001). Should we always choose a nonparametric test when
1024 comparing two apparently nonnormal distributions? *Journal of Clinical Epidemiology*,
1025 54(1), 86-92. [https://doi.org/10.1016/S0895-4356\(00\)00264-X](https://doi.org/10.1016/S0895-4356(00)00264-X)

1026 Song, C., & Moyer, J. R. (2017). Layer- and subregion-specific differences in the
1027 neurophysiological properties of rat medial prefrontal cortex pyramidal neurons. *Journal
of Neurophysiology*, 119(1), 177-191. <https://doi.org/10.1152/jn.00146.2017>

1028 Song, W., & Semework, M. (2015). Tactile representation in somatosensory thalamus (VPL) and
1029 cortex (S1) of awake primate and the plasticity induced by VPL neuroprosthetic
1030 stimulation. *Brain Research*, 1625, 301-313.
1031 <https://doi.org/10.1016/j.brainres.2015.08.046>

1032 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalex, E., Mauck, W. M., Hao, Y.,
1033 Stoeckius, M., Smibert, P., & Satija, R. (2019). Comprehensive Integration of Single-Cell
1034 Data. *Cell*, 177(7), 1888-1902.e21. <https://doi.org/10.1016/j.cell.2019.05.031>

1035 Thakur, P. H., Fitzgerald, P. J., Lane, J. W., & Hsiao, S. S. (2006). Receptive Field Properties of the
1036 Macaque Second Somatosensory Cortex: Nonlinear Mechanisms Underlying the
1037 Representation of Orientation Within a Finger Pad. *Journal of Neuroscience*, 26(52),
1038 13567-13575. <https://doi.org/10.1523/JNEUROSCI.3990-06.2006>

1039 Thuault, S. J., Malleret, G., Constantinople, C. M., Nicholls, R., Chen, I., Zhu, J., Panteleyev, A.,
1040 Vronskaya, S., Nolan, M. F., Bruno, R., Siegelbaum, S. A., & Kandel, E. R. (2013).
1041 Prefrontal Cortex HCN1 Channels Enable Intrinsic Persistent Neural Firing and Executive
1042 Memory Function. *Journal of Neuroscience*, 33(34), 13583-13599.
1043 <https://doi.org/10.1523/JNEUROSCI.2427-12.2013>

1046 Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D., Muller, E. B., Schürmann, F.,
1047 Segev, I., & Markram, H. (2016). BluePyOpt: Leveraging Open Source Software and
1048 Cloud Infrastructure to Optimise Model Parameters in Neuroscience. *Frontiers in*
1049 *Neuroinformatics*, 10. <https://doi.org/10.3389/fninf.2016.00017>

1050 Wang, M., Gamo, N. J., Yang, Y., Jin, L. E., Wang, X.-J., Laubach, M., Mazer, J. A., Lee, D., &
1051 Arnsten, A. F. T. (2011). Neuronal basis of age-related working memory decline. *Nature*,
1052 476(7359), 210–213. <https://doi.org/10.1038/nature10243>

1053 Wang, M., Ramos, B. P., Paspalas, C. D., Shu, Y., Simen, A., Duque, A., Vijayraghavan, S.,
1054 Brennan, A., Dudley, A., Nou, E., Mazer, J. A., McCormick, D. A., & Arnsten, A. F. T.
1055 (2007). A2A-Adrenoceptors Strengthen Working Memory Networks by Inhibiting cAMP-
1056 HCN Channel Signaling in Prefrontal Cortex. *Cell*, 129(2), 397–410.
1057 <https://doi.org/10.1016/j.cell.2007.03.015>

1058 Wang, X.-J., Tegnér, J., Constantinidis, C., & Goldman-Rakic, P. S. (2004). Division of labor
1059 among distinct subtypes of inhibitory neurons in a cortical microcircuit of working
1060 memory. *Proceedings of the National Academy of Sciences*, 101(5), 1368–1373.
1061 <https://doi.org/10.1073/pnas.0305337101>

1062 Williams, S. R., & Stuart, G. J. (2000). Site Independence of EPSP Time Course Is Mediated by
1063 Dendritic h in Neocortical Pyramidal Neurons. *Journal of Neurophysiology*, 83(5), 3177–
1064 3182. <https://doi.org/10.1152/jn.2000.83.5.3177>

1065 Yao, H. K., Guet-McCreight, A., Mazza, F., Chameh, H. M., Prevot, T. D., Griffiths, J. D., Tripathy,
1066 S. J., Valiante, T. A., Sibille, E., & Hay, E. (2022). Reduced inhibition in depression impairs
1067 stimulus processing in human cortical microcircuits. *Cell Reports*, 38(2).
1068 <https://doi.org/10.1016/j.celrep.2021.110232>

1069 Yu, J., Hu, H., Agmon, A., & Svoboda, K. (2019). Recruitment of GABAergic Interneurons in the
1070 Barrel Cortex during Active Tactile Behavior. *Neuron*, 104(2), 412–427.e4.
1071 <https://doi.org/10.1016/j.neuron.2019.07.027>

1072 Zurita, H., Feyen, P. L. C., & Apicella, A. J. (2018). Layer 5 Callosal Parvalbumin-Expressing
1073 Neurons: A Distinct Functional Group of GABAergic Neurons. *Frontiers in Cellular*
1074 *Neuroscience*, 12. <https://doi.org/10.3389/fncel.2018.00053>

1075