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ABSTRACT 

 
Competitive interactions between pathogen strains drive infection risk. Vaccines are thought to 

perturb strain diversity through shifts in immune pressures, however, this has rarely been 

measured due to inadequate data and analytical tools. Bordetella pertussis (B. pertussis), 

responsible for 160,000 deaths annually1, provides a rare natural experiment as many countries 

have switched from whole cell vaccines to acellular vaccines, which have very different 

immunogenic properties2,3. Here we use 3,344 sequences from 23 countries and build 

phylogenetic models to reveal that B. pertussis has substantial diversity within communities, 

with the relative fitness of local genotypes changing in response to switches in vaccine policy. 

We demonstrate that the number of transmission chains circulating within subnational regions 

is strongly associated with host population size. It takes 5-10 years for individual lineages to be 

homogeneously distributed throughout Europe or the United States. Increased fitness of 

pertactin-deficient strains following implementation of acellular vaccines, but reduced fitness 

otherwise, can explain long-term genotype dynamics. These findings highlight the role of 

national vaccine policies in shifting local diversity of a pathogen that still poses a large burden 

on global public health.  
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MAIN 

The role of local population immunity in driving ecological interactions between strains from the 

same disease system remains a foundational question of infectious disease dynamics and 

ecology. However, immunity9s role in determining genetic diversity has rarely been explored as 

doing so requires long-term genetic data as well as perturbations in population immunity. We 

also need appropriate analytical tools that can quantify changes in lineage fitness. B. pertussis 

provides a rare natural experiment as many countries have switched from whole cell vaccines 

(WCV) to acellular vaccines (ACV), which have very different immunogenic properties2,3. B. 

pertussis is the causative agent of whooping cough, responsible for an estimated 160,700 

deaths each year1. Despite long-standing immunization programs and high vaccine coverage 

levels, B. pertussis continues to circulate endemically, including with increased transmission in 

recent decades, the reasons for which remain unclear4. As with many bacterial systems, the 

study of B. pertussis is complicated by frequent asymptomatic carriage and long-term endemic 

co-circulation of multiple lineages5–10. Understanding the drivers of strain dynamics has 

important public health implications as different genotypes have been linked to differences in 

virulence, and with the duration and efficacy of vaccine protection11–13.  

 

We established a consortium of national reference laboratories to sequence the whole genome 

of 1,331 isolates from 12 European countries. With publicly available genomes, this generated 

a dataset of 3,344 genomes from 23 countries and 5 continents covering an 85-year period 

(Figure 1A, Table S1-2). Subnational location was recorded for 97% of genomes. We 

characterised the diversity of B. pertussis across different spatial scales (within-district, within-

country, intra-continental and global), estimated its rate of expansion, and assessed the 

importance of the local population size in driving the diversity of circulating lineages. We 

separately developed an analytical framework that estimated the relative fitness of different 

lineages, and characterised fitness changes following switches in the local vaccine being used. 

Our analytical approach allowed us to answer critical questions linked to B. pertussis diversity 

within and between locations, long-term genotype dynamics and a role for national vaccine 

policy in driving genotype changes. 

 

Temporal dynamics of B. pertussis genetic diversity 

To characterise genetic diversity, we built a time-resolved (Figure 1B-E). In addition, we 

identified the genotype of each isolate based on the allele of the promoter region of pertussis 

toxin (PT, with promoter forms ptxP1 or ptxP3) and type 3 fimbrial protein gene (fim3-1 or fim3-

2)11,14. PT is the major toxin produced by B. pertussis and is responsible for most of the systemic 

symptoms associated with pertussis disease15. Isolates with a ptxP3-type promoter have been 

suggested to produce more PT than those with a ptxP1-type promoter11. Fim3 is one of the two 
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fimbriae produced by B. pertussis and is involved in adhesion to host cells16. A polymorphism of 

the fim3 gene has been reported to have occurred mainly for isolates with a ptxP3-type 

promoter17. In addition to these genotypes, we also identified whether each isolate was capable 

of producing the immunogenic surface protein pertactin (PRN-positive or PRN-deficient), a key 

target of vaccine-induced immunity18. We found that in nearly all countries, the proportion of 

ptxP3 isolates increased from 5-20% in the early 1990s to >80% by mid-2000s (Figure 1F). By 

contrast, fim3 allele distribution has been more steady over the years (Figure 1G). Finally, PRN-

deficient strains have displaced PRN-positive strains in most countries (Figure 1H). These 

findings are consistent with previous efforts that identified changing patterns of genotype 

diversity17. 

 

B. pertussis spread across spatial scales 

To track the spatial spread of B. pertussis, we compared the evolutionary distance of pairs of 

sequences with their spatial distance. We found a strong log-linear relationship for up to five 

years, with consistent patterns observed in different countries (Figure 1I, Figure S1). Adjusting 

for uneven sampling by location and year, we estimated that pairs of isolates separated by a 

year of evolutionary time from within the same country were separated by an average of 2.1km 

(95%CI: 1.1-3.8), rising to 41.5km (95%CI: 29.2-60.7) when separated by 5 years (Figure S1), 

with consistent patterns obtained with alternative approaches for the definition of population 

centroids (Figure S2).  

 

Recent findings from household transmission studies have identified frequent subclinical 

transmission of B. pertussis10,19. Consistent with such widespread subclinical transmission 

maintaining strain diversity, we found that despite strong overall patterns of spatial structure in 

sequences, the majority of sequence pairs within any location at any time were only distantly 

related. At both national and subnational levels, fewer than one in twenty sequence pairs coming 

from the same year had a Most Recent Common Ancestor (MRCA) within the prior two years 

(Figure 2A, Figure S3); with the vast majority of pairs separated by more than 20 years of 

evolutionary time.  

 

To further explore lineage diversity at subnational levels, we considered pairs of individuals 

isolated within the same year and having an MRCA of under 2 years to be part of the same 

transmission chain. On average 4.3% of pairs (95%CI: 3.6-5.0) within each region (defined here 

as the smallest subnational administrative unit we have for each country; average population 

size: 6.5 million, average area: 110,000 km2) were from the same transmission chain (Figure 

2B). There were an average of 23.2 discrete chains (95%CI: 20.0-28.0) circulating within a 

region. However, the number of chains depends strongly on population size (Figure 2C); each 
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increase in log-population size was associated with a 0.45 (95%CI: 0.23-0.61) increase in the 

number of circulating chains, with consistent patterns across the different continents (Figure 

S4). Increases in population density were also associated with small increases in the number of 

circulating chains (Figure S5).  

 

To characterise the longer-term spread of lineages, we calculated the probability that pairs from 

the same location were separated by an MRCA of specific time intervals, relative to pairs that 

come from different locations. In France, where we have the greatest spatial resolution, 

sequences from the same district were 2.6 times (95%CI: 1.5-3.9) as likely to have an MRCA 

within the two prior years as sequence pairs from different districts (Figure 2D). We found similar 

spatial clustering in other countries (Figure S6). Further, pairs of sequences coming from the 

same European country were 11.6 times (95%CI: 5.4-19.3) as likely to have an MRCA within 

the prior year than sequence-pairs coming from different European countries. We observed a 

similar level of spatial dependence between different US states as between European countries 

(Figure 2E). Overall, it takes approximately 2-3 years for a lineage to be well mixed within a 

European country (i.e., spatial structure is lost). Similarly, it takes B. pertussis 5-9 years to be 

well mixed across Europe, 4-6 years to be well mixed across the US and 8-12 years to be well 

mixed across different continents (Figure 2D-F, Figure S7). As we considered the relative 

probability of MRCA within and between locations for isolates sampled from the same year, our 

results are not affected by biased sampling between locations or in time20. 

 

Characterisation of the fitness of the different genotype, by vaccination era 

In order to explain the observed changes in genotype in each location, we developed a time-

series model that estimates the annual proportion of isolates that were of each genotype in each 

country. We use a single framework to fit the data from all the countries at the same time. We 

assumed that the relative fitness of the different genotypes were the same across countries but 

allowed for a change in fitness following the switch from WCV to ACV, which occurred at different 

times in different countries (Figure S8). This simple model was able to recover the time-series 

(Figure 3A-D, Figure S9), and the observed number, proportion, and annual relative change in 

genotypes across countries (Figure 3E-G).  

 

We found that the underlying fitness of a genotype was associated with whether WCV or ACV 

was being used in that country at that time. ptxP3/PRN-positive types, irrespective of fim3 allele, 

were the most fit genotypes during the WCV era (relative fitness of 1.11 [95%CI: 1.05-1.17] per 

year compared to other genotypes circulating at that time, equivalent to a relative fitness of 1.01 

[95%CI: 1.00-1.01] per transmission generation). The ptxP3/fim3-1/PRN-deficient genotype was 

the most fit genotype following ACV implementation (relative fitness of 1.30 per year [95%CI: 
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1.16-1.53], equivalent to a relative fitness of 1.02 per transmission generation [95%CI: 1.01-

1.03]) (Figure 4A). We found that the switch from WCV to ACV is associated with an increased 

fitness of PRN-deficient genotypes, but only in isolates with a ptxP3 background, with the effect 

further increased for fim3-1 genotypes (Figure 4B). On average, PRN-deficient isolates were 

1.25 (95%CI: 1.20-1.31) times as fit as PRN-positive isolates following the introduction of ACV 

(Figure 4C). Where only WCV was used, PRN-deficient isolates were on average 0.94 times 

(95%CI 0.92-0.96) as fit as their PRN-positive counterparts (Figure 4C). Alternative models that 

did not allow for changes in fitness following vaccine switch or use a common date across 

countries for changes in fitness had lower adequacy as measured by Watanabe–Akaike 

information criterion (Table S3)21. Models that allowed for a delay between ACV implementation 

and fitness change also did not improve model fit (Figure S10, Table S4), suggesting a rapid 

impact of the vaccine switch on genotype fitness at the population level. Our model was able to 

recover true fitness parameters when using simulated data with known parameters, even under 

conditions of biased sampling (Figure S11). Further, our population-level findings are consistent 

with those from experimental studies. For example, PRN-deficient isolates had increased ability 

to colonise the respiratory tract of ACV-vaccinated mice than PRN-positive isolates, whereas in 

unvaccinated control mice, PRN-positive isolates outcompeted PRN-deficient isolates22. Mouse 

models have also shown increased respiratory tract colonization by ptxP3 than ptxP1 

isolates23,24. 

 

The genotype dynamics in Japan represents a key outlier, as the proportion of isolates that were 

PRN-deficient initially increased following ACV implementation, but unlike most other countries 

it subsequently decreased after 2005 (Figure 1H)25. To date, the main hypothesis to explain this 

decrease has been a change in ACV formulations to ones that do not contain PRN, which 

became widely available in 201225. We provide a new explanation for the decrease in PRN-

deficient strains. ptxP1 remained in circulation in Japan after it had largely disappeared 

elsewhere, and unlike PRN-deficient ptxP3 strains, PRN-deficient ptxP1 strains only developed 

a small fitness advantage post ACV implementation (Figure 4B). The reduction in PRN-deficient 

strains may simply have been driven by the rise of PRN-positive ptxP3 strains, which are 

marginally more fit than ptxP1 PRN-deficient strains in the ACV context. We expect that this 

phenomenon can only delay the evolution towards PRN deficiency, as switches to fitter PRN-

deficient forms of ptxP3 B. pertussis appear inevitable. It remains unclear whether the growing 

use of ACV formulations without PRN in Japan can further delay this predictable trend.  

 

Our fitness model was unable to capture the genotype dynamics in China, where ptxP1-positive 

strains remain dominant (Figure S9C). This could be explained by the uniquely high prevalence 
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of erythromycin resistant strains26,27, which might have a large impact on fitness28 but which our 

model does not take into account. 

 

Discussion 

We have used a large geo-referenced dataset to uncover the spatial spread of an important 

bacterial threat to human health. We have also identified how vaccine policy decisions can have 

immediate and far-reaching implications for the fitness of circulating strains, and how small 

fitness differences at each transmission generation can lead to major changes in lineage 

composition. Our findings also support and quantify the driving role of acellular vaccines in 

changing genotype distribution and are consistent with changes in the mutation rate in vaccine 

antigen genes following ACV implementation29. A similar role of vaccine-induced changes in 

lineage composition has been found for the pneumococcus30–32.  

 

As with virtually all phylogenetic studies, the availability of sequences differs substantially by 

country and year. In particular, our inferences are largely based on sequences from high income 

countries. WCV remains broadly used in low- and middle-income countries. As we have also 

quantified genotype fitness when WCV was the dominant vaccine, our findings remain relevant 

to these undersampled locations, and suggest that, given their increased fitness in WCV 

environments, ptxP3/PRN-positive genotypes will dominate. This is indeed the case for the two 

countries in our dataset, which have only ever used WCV (Tunisia and Iran). In the event of 

future switches from WCV to ACV, we could expect PRN-deficient strains to prevail, either 

through the successful introduction of strains circulating elsewhere or through the loss of PRN 

expressions in local strains. While this study assesses the impact of vaccine type (WCV or ACV) 

on strain fitness, increased, sustained sequencing efforts would allow us to tackle more precise 

questions about whether different WCV or ACV vaccines33–35 or vaccination policies and 

schedules36,37 exert distinct pressures. Finally, there may also be other mutations that are linked 

to changes in fitness that we have not considered here17. 

 

This work provides a first detailed view of the strength of spatial structure and rate of geographic 

spread for a pathogen that is responsible for tens of thousands of deaths each year, highlighting 

how B. pertussis spread is a globally interconnected issue. It further provides a quantitative 

description of strains fitness and highlights the key role of vaccine policy decision-making in 

driving ecological change. Multiple co-circulating lineages are a common feature across 

bacterial disease systems. Our approaches provide an avenue to obtain a much needed 

mechanistic understanding of how perturbations in population immunity can drive local genetic 

diversity.  
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Methods 

 

Selection of isolates 

We compiled a dataset of 3344 B. pertussis whole genome sequences (Table S1 and S2), 

sampled from a 85-year period (1935-2019) which includes 1011 sequenced French isolates 

from the National Reference Center (NRC) for Whooping Cough and Other Bordetella Infections 

in France (Institut Pasteur, Paris, France); 320 newly sequenced European isolates, randomly 

selected among the 2014-2016 isolates from the B. pertussis collections of 12 European 

countries; and 2013 isolates with high-quality publicly available genomes from 14 countries. The 

majority of publicly available isolates were generated by the CDC (Atlanta, CDC), who shared 

medata. Critically, several isolates deposited in NCBI were duplicates from the same isolates; 

these were removed from the analysis.  

 

Metadata 

We collected metadata for each isolate (date of sampling, continent, country) from linked 

publications, or NCBI when no publication was listed. The vaccine status of patients was not 

known. For 3,256 sequences coming from 19 countries, the home district or region of the 

genome was also recorded. Geographic coordinates were extracted for each location. When 

the geographic precision was region or district, the coordinates of the most populated city were 

extracted. We also considered centroids of the whole region as a sensitivity analysis. For each 

country, we extracted information on vaccine coverage as a function of time (1980-2019, when 

available) from the Global Health Observatory data repository38. We also collected years of 

implementation of each type of vaccine in the literature. For the acellular vaccine (ACV), we 

distinguished the year of the first implementation of any ACV (as a booster or a primary 

vaccination), and the date of ACV introduction for primary vaccination series (Table S1, Figure 

S8). To maximize statistical power, we focused the analysis on the type of vaccine (WCV, ACV), 

rather than the specific details of each vaccine (e.g., vaccine provider, vaccine strain used, 

number of antigens present, presence of a pertactin component). We also chose to focus on the 

use (or not) of each vaccine in each country, rather than on the country-specific vaccine 

coverage, assuming that the vaccination coverage is sufficient to exert selective pressure on 

strains.  
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Ethical considerations 

The study was coordinated by the French national reference center for pertussis, whose 

activities are approved by the French supervisory ethics authority (CNIL, n°1474593). Isolates 

sequenced in this study come from the B. pertussis governmental surveillance laboratories of 

Belgium, Czech Republic, Denmark, Spain, Finland, France, Ireland, Italy, Netherlands, 

Norway, Sweden and the UK. These isolates were all collected as part of existing public health 

surveillance approved protocols in each country. No personally identifiable information was used 

as part of this study. 

 
Sequencing of the newly sequenced isolates 

The study Accession Numbers on the European Read Archive are PRJEB21744, PRJEB42353 

and PRJEB45681. Details and accession numbers of the raw sequence data are listed in Table 

S2. Details on the sequencing protocol can be found in supplementary materials. 

 

Genomic analysis of PRN-deficient isolates 

De novo assembly was performed, as previously described39. Briefly, paired-end reads were 

clipped and trimmed (AlienTrimmer40), corrected (Musket41), merged if needed (FLASH42), and 

subjected to a digital normalization procedure with khmer43. For each sample, remaining 

processed reads were assembled and scaffolded (SPAdes44).  

 

We defined the PRN allele of each isolate with BLASTn45 using as query a fasta file containing 

all known PRN alleles. 

 

Next, we defined the pertactin expression (PRN status) of all isolates. As the PRN-deficiency 

has been shown to be caused by mutations in the promoter or coding regions of the PRN gene46, 

we compiled all the events that cause the PRN deficiency based on the literature and on the 

analysis of french isolates and gathered all the genomic events identified in PRN-negative 

isolate in a single fasta file. Then, we assessed the PRN status of all isolates with BLASTn45 

using as query the fasta file (Table S5, File S1). In addition, we used IS_mapper/0.1.5.1 from 

fastq files looking for IS481 from Tohama (BP0080), which is the main insertion element in B. 

pertussis47 that can insert within the prn gene or promoter. We made use of 839 french isolates 

for which we have Western blots available2, and checked the correspondence between 

genomics and experimental results. In our dataset, we identified 1722 (51.5%) PRN-positive 

isolates, 1472 (44.0%) PRN-deficient and 150 (4.5%) isolates with unknown status.  

 

Nucleotide Polymorphism variations (SNP) detection 
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SNP detection was conducted using an in-house pipeline available on GitHub. Briefly, adapters 

and barcodes were stripped from the fastq data and the reads were quality filtered and trimmed 

using a Phred quality threshold score of 30 using Cutadapt48. We checked the quality of each 

fastq file using FastQC49. Reads were mapped against the complete Tohama I reference 

genome (Accession number: NC_002929, using BWA-MEM algorithm50. Extraction of SNP was 

achieved with the GATK HaplotypeCaller, with ERC GVCF settings51. We then built an in-house 

filtering script using R52. We kept variants for which the Phred quality score was higher than 30, 

with a minimum read depth of 5, with at least 2 reads in both the forward and reverse directions. 

We called a position a 8N9 when <40% of the reads were different from the reference, we used 

the IUPAC code for positions with between 40% and 80% of reads not matching the reference, 

and we called variants only for positions with >80% reads not matching the reference. Moreover, 

to improve homogeneity across the dataset across the world, we removed positions in the 

alignment where 25% of the bases were 8N9. Further, we filtered out repeated regions (IS481, 

IS1002 and IS166347), and phage regions using Phaster53. We also checked for recombination 

in our alignment using Gubbins54. As a result, we obtained an alignment of 8,105 SNPs, 

consistent with other publications17. 

 

Genotyping ptxA, ptxP, fim2 and fim3 

We genotyped all isolates for the genes pertussis toxin A (ptxA), pertussis toxin promoter (ptxP), 

type 2 fimbrial protein (fim2) and type 3 fimbrial protein (fim3) using BLAST45. The sequences 

used as references for the alleles ptxA, ptxP, fim2 and fim3 are available in GitHub 

(https://github.com/noemielefrancq/GlobalPhylogeographyPertussis). 

 

Phylogenetic analysis 

B. pertussis strain genotyping has been used to reconstruct the evolutionary and spatial history 

of observed infections, however, previous efforts have relied on pre-genomics markers or 

individual country data27,29,39,55–59. In this project we used whole genome sequences and 

combined data across multiple countries. 

 

We used the SNP-based alignment to reconstruct the phylogenetic relationships of the isolates. 

We built maximum-likelihood trees using IQ-tree60. TempEst was used to check for temporal 

signal in the data (Figure S12)61. Maximum Clade Credibility (MCC) trees were inferred using a 

Markov Chain Monte Carlo (MCMC) Bayesian approach implemented on the program BEAST 

1.10.462, under a GTR substitution model63 accounting for the number of constant sites, a 

relaxed lognormal clock model64 and a skygrid population size model65. Three independent 

Markov chains were run for 300,000,000 generations each, with parameter values sampled 

every 10,000 generations. Runs were optimized using the GPU BEAGLE library66. Chains were 
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manually checked for convergence (ESS values > 200) using the Tracer software67. We 

manually removed a 20% burnin. 

 

Furthermore, we used a discrete model attributing state characters representing the isolation 

country of each strain with the Bayesian Stochastic Search Variable (BSSVS) algorithm68, 

implemented in BEAST. This method estimates the most probable state at each node in the 

MCC trees, allowing us to reconstruct plausible ancestral states (here, country) on these nodes. 

Because of the large nature of our dataset (3344 genomes from 23 countries, with 8925 variable 

positions) running this model would have been computationally challenging. Thus, we ran the 

model on a subset of trees (N=10,000) extracted from the posterior distribution of trees 

generated by the initial BEAST run. We ran three independent Markov chains for 5,000,000 

generations each, with parameter values sampled every 1,000 generations. We manually 

checked for convergence using the Tracer software67 and removed a 10% burnin. We used 

treeannotator to summarize the posterior trees into a Maximum Clade Credibility (MCC) tree. 

The full MCC tree is presented in Figure S13. 

 

Expansion rate of B. pertussis 

We assume that the sequences in our dataset are representative of what is circulating in that 

location and at that time. In spatially structured transmissions, as pathogens spread away from 

each other, we would expect there to be increased spatial distance between cases as they 

become separated by more and more transmission events20. To explore whether this occurs, 

we compared evolutionary time between B. pertussis bacteria with their spatial separation. For 

each location considered, pairs of bacteria are grouped by the evolutionary time that separates 

them based on the time resolved phylogeny. For each group of bacteria pairs, we then compute 

the mean spatial distance that separates them. We reconstruct 95% confidence intervals using 

bootstrap. We resample all the bacteria with replacement, allowing for even sampling by 

location, over 200 resampling events and recalculate the mean distance that separates each 

group of bacteria pairs each time. The 95% confidence intervals are the 2.5% and 97.5% 

quantiles from the resultant distribution. We separately consider pairs coming from the same 

country (France, Japan, US). This list of countries was selected as they represent the locations 

with most sequences available. We separately repeated this analysis using pairs of sequences 

from across Europe.  

 

Estimating the probability that a pair of cases are from the same transmission chain 

We consider a pair of cases that came within the same year to be part of the same transmission 

chain if their most recent common ancestor (MRCA) was within the past two years of the earlier 

of the two cases. We choose this cutoff as two years represents a recent introduction into a 
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population, within which pairs are likely to remain transmission related. We explore the 

sensitivity of this cutoff (Figure S14).  

 

We can derive an expression for the probability �� that a pair of B. pertussis cases are from the 

same transmission chain within a location �Āý20:  ��(�Āý)  =  ∑ ∑ �(�Āýÿ =  �Āý Ā  ∩  ā ÿĀ f  1 �ÿ�ÿ ∩ � ÿĀ  f  2 �ÿ�ÿĀ)ÿĀ≠ÿÿÿ=1 ∑ ∑ �(�Āýÿ =  �Āý Ā  ∩  ā ÿĀ f  1 �ÿ�ÿ)ÿĀ≠ÿÿÿ=1   
[Eq. 1] 

 

where ÿ represents the number of bacteria for which sequence data are available, ā ÿĀ is the 

time between the cases, and � ÿĀ is the time to the MRCA from the earlier of ÿ and Ā. �is an 

indicator function. 

 

Estimation of effective number of transmission chains 

The reciprocal of ��(�Āý) is an estimate of the size of the pool of discrete transmission chains �(�Āý) that infect pairs of individuals separated within a location �Āý. It also represents the lower 

limit of the number of chains circulating within a location �Āý, as previously shown20. 

 

We reconstruct 95% confidence intervals using bootstrap. We resample all the bacteria with 

replacement, allowing for even sampling by location, over 200 resampling events and 

recalculate the statistic each time. The 95% confidence intervals are the 2.5% and 97.5% 

quantiles from the resultant distribution. 

 

Effective number of transmission chains for different population sizes in regions 

We explore whether the effective number of chains circulating within regions depends on the 

size of the population of this region, using Equation 1. We estimate the mean 

probability ��(�Āý, āĀā1, āĀā2) that a pair of B. pertussis cases within the same region, with a 

population size between þýþÿand þýþĀ are from the same transmission chain: ��(�Āý, āĀā1, āĀā2)  =  ∑ ∑ �(�Āýÿ =  �Āý Ā  ∩  ā ÿĀ f  1 �ÿ�ÿ ∩ � ÿĀ  f  2 �ÿ�ÿĀ ∩ ��Ā� > āĀā1 ∩ ��Ā� < āĀā2 )ÿĀ≠ÿÿÿ=1 ∑ ∑ �(�Āýÿ =  �Āý Ā  ∩  ā ÿĀ f  1 �ÿ�ÿ)ÿĀ≠ÿÿÿ=1   
[Eq. 2] 

 

The effective number of transmission chains �(�Āý, āĀā1, āĀā2) is then given by the reciprocal of ��(�Āý, āĀā1, āĀā2). 
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We reconstruct 95% confidence intervals using bootstrap, as detailed above. 

 

In a sensitivity analysis, we considered different MRCA cutoffs (1 and 3 years) to define 

transmission chains, and obtained similar results (Figure S14). 

 

Relative risk that a pair of bacteria have a MRCA within a defined period, when coming 

from the same location, versus different locations. 

To better understand the spread of B. pertussis within districts in France, countries in Europe, 

states in the US and between continents, we characterize the similarity in bacteria within these 

spatial scales relative to that observed between spatial scales. In each case, we estimate ���Ā�(ā1, ā2), the probability that a pair of bacteria within a location �Āý that were isolated within 

the same year of each other had an MRCA within range having an MRCA within ā1-ā2 relative 

to the probability that a pair of bacteria from different locations, that were isolated within the 

same year of each other, had an MRCA within that particular range20. For the range ā1-ā2, we 

used sliding windows of time going from 0 years to 20 years. 

 

���Ā�(ā1, ā2)  =  ∑ ∑ �(�Āýÿ =  �Āý Ā  ∩  ā ÿĀ f  1 �ÿ�ÿ ∩  � ÿĀ  g  ā1 ∩ � ÿĀ <   ā2ÿĀ≠ÿ )ÿÿ=1 ∑ ∑ �(�Āýÿ =  �Āý Ā  ∩  ā ÿĀ f  1 �ÿ�ÿ)ÿĀ≠ÿÿÿ=1∑ ∑ �(�Āýÿ b  �Āý Ā  ∩  ā ÿĀ f  1 �ÿ�ÿ ∩  � ÿĀ  g  ā1 ∩ � ÿĀ <   ā2)ÿĀ≠ÿÿÿ=1 ∑ ∑ �(�Āýÿ b  �Āý Ā  ∩  ā ÿĀ f  1 �ÿ�ÿ)ÿĀ≠ÿÿÿ=1
   

   
[Eq. 3] 

 

By conditioning on spatial and temporal location of sequences, this approach minimizes the 

impact of underlying sampling biases in which cases were sequenced. We reconstruct 95% 

confidence intervals using bootstrap, as detailed above. 

 

Estimating the fitness of B. pertussis strains 

To quantify the fitness of B. pertussis strains, we develop a model that makes use of the isolates 

from 20 countries with more than 10 sequences in our dataset (fewer sequences than this 

threshold did not allow for sufficient data points to provide a robust estimate of genotype 

distributions over time). First, we assign all tips and nodes in the tree a strain type from one of 

six possible types based on PRN, ptxP and fim3 status. We consider only isolates for which the 

ptxP3 allele was 1 or 3, the fim3 allele was 1 or 2, and the PRN expression was known. While 

there exists other genotypes, these are rare and most of the other types, for example the ptxA 

alleles, almost completely overlap with the ptxP alleles. Assigning the genotypes ptxP1 versus 
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ptxP3, and fim3-1 versus fim3-2 is straightforward as they are all monophyletic17. However, the 

PRN-deficiency is a highly homoplasic trait, so assigning a PRN expression to each node is 

more complicated. Briefly, we know ancestral B. pertussis sequences all produce PRN, and that 

the deficiency appears by mutations in the promoter or coding regions of the PRN gene46. 

Moreover, because of the complexity of the mutations, reversions are highly unlikely, and have 

to our knowledge never been reported. Thus, the PRN expression of each node can be easily 

reconstructed by finding all the monophyletic clades for which isolates are PRN-deficient. To do 

this, we use an in-house algorithm (script available in the GitHub). 

 

We separately assign a country to each node and tip. Country information for the nodes was 

extracted from the BEAST discrete reconstruction presented previously. In order to maximize 

the correct country assignment for nodes, we only consider nodes for which the country's 

posterior probability was >0.9. In addition, we excluded nodes that were distant by more than 5 

years from any tip. 

 

Next, we compute Āÿ,�ÿĀ, the relative abundance of each strain ÿ with respect to a chosen ÿÿĀ 

strain. We chose the ptxP3/fim3-1/PRN-positive genotype as the reference strain. In a sensitivity 

analysis, we found that the choice of the reference strain did not affect the results, providing that 

the chosen genotype was present in all countries, for most of the years. We then use a simple 

logistic model to capture the evolution of this abundance, at each time t:  þ  Āÿ,�ÿĀþā = ÿÿ,�ÿĀ ⋅  Āÿ,�ÿĀ (1 − Āÿ,�ÿĀ),�ÿā/ ÿ ∈ {Āāÿ�ÿÿĀ} \ ÿÿĀ, �ÿþ Āÿ,�ÿĀ (ā = 0)  =  Āÿ,�ÿĀ,0  
[Eq. 4] 

where ÿ ÿ,�ÿĀ is the growth rate of that abundance, shared across all countries and  Āÿ,�ÿĀ,0 is the 

initial relative abundance of the strain ÿ with respect to a chosen ÿÿĀ. To control for the varying 

presence of all circulating strains through time, we present fitness as the average relative growth 

rate ÿÿ for each strain ÿ with respect to randomly selected strain in the population:  

ÿÿ  =  ∑  ĀĀ (ÿÿ,ÿÿĀ − ÿĀ,ÿÿĀ)ÿ
Ābÿ  

[Eq. 5] 

where n in the number of strains, and ĀĀ is the average frequency of strain Āon the period of time 

considered. 
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This average relative growth rate ÿÿ can be identified as the selection rate coefficient Ā of the 

strain ÿ in the population considered69–71.  

 

We can further multiply the selection rate by the mean generation time � to obtain the 

dimensionless selection coefficient Ā�, the relative fitness advantage per transmission 

generation70: Ā� =  Ā ⋅ � = ÿÿ ⋅ � 

[Eq. 6] 

We use a mean generation interval of 22.8 days (95%CI: 22.1-23.5) to compute Ā�72. 

 

The selection coefficients Ā and Ā� represent one of the most possible direct measures of the 

fitness advantage of any new variant, and are the best possible predictors of whether or not it is 

expected to increase in frequency during an outbreak71,73. 

 

We fit this model to all countries-specific time series in our dataset with the Rstan package74, 

using a Negative Binomial likelihood with an overdispersion parameter �. We fit the frequencies 

as simplex vectors for each country, with the oldest strain frequency, Ā1,0 , having a normal(1, 

0.1) prior, based on a previous global study17. We use cauchy(0, 0.15) for the relative growth 

rate parameters ÿ ÿ,�ÿĀ. We ran this model on 3 independent chains with 2,000 iterations and 

50% burn-in. We use 2.5 and 97.5 quantiles from the resulting posterior distributions for 95% 

credible intervals of the parameters.  

 

Investigating changes in B. pertussis fitness across vaccine eras 

To investigate whether B. pertussis strain fitness changed across vaccine eras, we compiled 

dates of vaccination changes (Table S1) and used our fitness model and estimate ÿ ÿ on:  

- WCV era, defined as the period from the WCV implementation in each country, 

to the first ACV implementation (as a booster or primary vaccine); 

- the ACV era, defined as the period from the first ACV implementation to now. 

In a sensitivity analysis, we consider a range of different definitions for these eras, including the 

mean implementation year of the WCV and ACV across countries, and start at different vaccine 

coverages (Table S3). We also considered models without a vaccine switch. Model comparison 

was done using the Watanabe–Akaike information criterion (WAIC) implemented in the loo 

package21,75. Estimated from this sensitivity analysis are presented in Figure S15. 
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Additionally, to test the predictive power of our model, a held out analysis was performed. We 

held out 10% of the country-year data from the model fitting process, and compared the 

prediction with the actual observed values (Figure S16). 

 

We developed a simulation framework where the true growth rates parameters were known, 

and assessed the performance of our model to estimate the fitness of different strains in a 

population (see Supplementary materials).  
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Figure 1: Origin of sequences and genetic diversity of Bordetella pertussis. (A) Number of 

sequences by continent, as a function of time (see Table S1 for further details). (B) Schematic of the 

evolutionary relationship of the ptxP and fim3 alleles. (C-E) Maximum clade credibility trees for the different 

genotypes: ptxP1/fim3-1 (C), ptxP3/fim3-1 (D) and ptxP3/fim3-2 (E). Branch tips are colored by the 

continent of collection. Horizontal bars denote pertactin (PRN) expression (black: deficient expression, 

grey: wild type expression, white not known) (F-H) The full tree is available on the MicroReact platform 

[URL to be provided on acceptance]. Temporal trends in strain frequencies, computed on rolling 7-year 

windows, for the ptxP3 (F) and fim3-2 (G) alleles, and PRN-deficiency (H). (I) Median spatial distance 

between B. pertussis pairs from different locations (EU: Europe; FR: France; JP: Japan) separated by 

different evolutionary times. Global average over the first 5 years is presented in Figure S1. The shaded 

area represents 95% CIs. 
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Figure 2: Bordetella pertussis diversity within and between locations. (A) Breakdown of the MRCA 

separating pairs of B. pertussis isolates from within the same year, for different locations: within districts 

(12 European countries, Iran and Japan), within European countries, within US states and within 

continents. (B) Proportion of pairs within a region that belong to the same transmission chain (defined as 

MRCA<2y), as a function of population size (average from 19 countries). Proportions are computed for 

rolling windows of population sizes. Dots represent the data and the dashed line represents model fit 

assuming an exponential relationship between the two and the grey shaded region 95% confidence 

intervals. (C) Number of transmission chains within regions, as a function of the population size. Numbers 

are computed for rolling windows of population sizes. Dots represent the estimates from the data and the 

dashed line represents model fit and the grey shaded region 95% confidence intervals. (D-F) Relative risk 

that a pair of bacteria have a MRCA within a defined period, when coming from the same versus different 

district in France (D), same versus different country in Europe (E, blue), the same versus different state in 

the US (E, red) or the same versus different continent (F). The shaded regions in (D-F) represent 95% 

confidence intervals. 
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Figure 3: Changing genotype distributions of Bordetella pertussis by country.  (A-D) Fits of the 

proportion of each genotype for 4 example countries: Australia (A), France (B), USA (C) and Japan (D) 

(other countries9 fits can be found in Figure S9). Grey triangles represent data, grey bars denote binomial 

95% confidence intervals. Blue lines and shaded areas represent the median and 95% credible interval of 

the posterior. Vertical dotted line denotes the year of the first ACV introduction, for each country. (E-G) 

Predicted versus observed counts (E), proportions (F), and Wrightian fitness (G), respectively. The 

Wrightian fitness of a strain is defined as the ratio of its proportions at time t+1 and time t. Colours represent 

the continents (brown: Africa; red: Americas; yellow: Asia; green: Australia; blue: Europe). The dotted line 

denotes the identity line.  
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Figure 4: Estimates of fitness of each genotype. (A) Estimated fitness of each genotype as a function 

of the vaccine era. The dots and lines represent 2.5, 50 and 97.5 percentiles of the posterior 

distributions. PRN-deficient strains (PRN-) are shown in red, PRN-positive strains (PRN+) are shown in 

blue. (B) Effect of vaccine switch (whole-cell vaccine [WCV] to acellular vaccine [ACV]) for the different 

genotypes and PRN expressions. (C) Effect of PRN-deficiency on the different underlying genotypes. 

Horizontal lines and shaded areas represent the overall mean across all genotypes. The boxplots 

represent the 2.5, 25, 50, 75, and 97.5 percentiles of the posterior distributions.  
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