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ABSTRACT

Competitive interactions between pathogen strains drive infection risk. Vaccines are thought to
perturb strain diversity through shifts in immune pressures, however, this has rarely been
measured due to inadequate data and analytical tools. Bordetella pertussis (B. pertussis),
responsible for 160,000 deaths annually', provides a rare natural experiment as many countries
have switched from whole cell vaccines to acellular vaccines, which have very different
immunogenic properties®3. Here we use 3,344 sequences from 23 countries and build
phylogenetic models to reveal that B. pertussis has substantial diversity within communities,
with the relative fitness of local genotypes changing in response to switches in vaccine policy.
We demonstrate that the number of transmission chains circulating within subnational regions
is strongly associated with host population size. It takes 5-10 years for individual lineages to be
homogeneously distributed throughout Europe or the United States. Increased fitness of
pertactin-deficient strains following implementation of acellular vaccines, but reduced fitness
otherwise, can explain long-term genotype dynamics. These findings highlight the role of
national vaccine policies in shifting local diversity of a pathogen that still poses a large burden
on global public health.
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MAIN

The role of local population immunity in driving ecological interactions between strains from the
same disease system remains a foundational question of infectious disease dynamics and
ecology. However, immunity’s role in determining genetic diversity has rarely been explored as
doing so requires long-term genetic data as well as perturbations in population immunity. We
also need appropriate analytical tools that can quantify changes in lineage fitness. B. pertussis
provides a rare natural experiment as many countries have switched from whole cell vaccines
(WCV) to acellular vaccines (ACV), which have very different immunogenic properties®3. B.
pertussis is the causative agent of whooping cough, responsible for an estimated 160,700
deaths each year'. Despite long-standing immunization programs and high vaccine coverage
levels, B. pertussis continues to circulate endemically, including with increased transmission in
recent decades, the reasons for which remain unclear®. As with many bacterial systems, the
study of B. pertussis is complicated by frequent asymptomatic carriage and long-term endemic
co-circulation of multiple lineages®'°. Understanding the drivers of strain dynamics has
important public health implications as different genotypes have been linked to differences in

virulence, and with the duration and efficacy of vaccine protection’'-'3,

We established a consortium of national reference laboratories to sequence the whole genome
of 1,331 isolates from 12 European countries. With publicly available genomes, this generated
a dataset of 3,344 genomes from 23 countries and 5 continents covering an 85-year period
(Figure 1A, Table S1-2). Subnational location was recorded for 97% of genomes. We
characterised the diversity of B. pertussis across different spatial scales (within-district, within-
country, intra-continental and global), estimated its rate of expansion, and assessed the
importance of the local population size in driving the diversity of circulating lineages. We
separately developed an analytical framework that estimated the relative fitness of different
lineages, and characterised fitness changes following switches in the local vaccine being used.
Our analytical approach allowed us to answer critical questions linked to B. pertussis diversity
within and between locations, long-term genotype dynamics and a role for national vaccine

policy in driving genotype changes.

Temporal dynamics of B. pertussis genetic diversity

To characterise genetic diversity, we built a time-resolved (Figure 1B-E). In addition, we
identified the genotype of each isolate based on the allele of the promoter region of pertussis
toxin (PT, with promoter forms ptxP1 or ptxP3) and type 3 fimbrial protein gene (fim3-1 or fim3-
2)'14 PT is the major toxin produced by B. pertussis and is responsible for most of the systemic
symptoms associated with pertussis disease'®. Isolates with a ptxP3-type promoter have been
suggested to produce more PT than those with a ptxP7-type promoter''. Fim3 is one of the two
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fimbriae produced by B. pertussis and is involved in adhesion to host cells®. A polymorphism of
the fim3 gene has been reported to have occurred mainly for isolates with a ptxP3-type
promoter'’. In addition to these genotypes, we also identified whether each isolate was capable
of producing the immunogenic surface protein pertactin (PRN-positive or PRN-deficient), a key
target of vaccine-induced immunity'®. We found that in nearly all countries, the proportion of
ptxP3 isolates increased from 5-20% in the early 1990s to >80% by mid-2000s (Figure 1F). By
contrast, fim3 allele distribution has been more steady over the years (Figure 1G). Finally, PRN-
deficient strains have displaced PRN-positive strains in most countries (Figure 1H). These
findings are consistent with previous efforts that identified changing patterns of genotype
diversity'”.

B. pertussis spread across spatial scales

To track the spatial spread of B. pertussis, we compared the evolutionary distance of pairs of
sequences with their spatial distance. We found a strong log-linear relationship for up to five
years, with consistent patterns observed in different countries (Figure 11, Figure S1). Adjusting
for uneven sampling by location and year, we estimated that pairs of isolates separated by a
year of evolutionary time from within the same country were separated by an average of 2.1km
(95%Cl: 1.1-3.8), rising to 41.5km (95%CI: 29.2-60.7) when separated by 5 years (Figure S1),
with consistent patterns obtained with alternative approaches for the definition of population
centroids (Figure S2).

Recent findings from household transmission studies have identified frequent subclinical
transmission of B. pertussis’®'®. Consistent with such widespread subclinical transmission
maintaining strain diversity, we found that despite strong overall patterns of spatial structure in
sequences, the majority of sequence pairs within any location at any time were only distantly
related. At both national and subnational levels, fewer than one in twenty sequence pairs coming
from the same year had a Most Recent Common Ancestor (MRCA) within the prior two years
(Figure 2A, Figure S3); with the vast majority of pairs separated by more than 20 years of

evolutionary time.

To further explore lineage diversity at subnational levels, we considered pairs of individuals
isolated within the same year and having an MRCA of under 2 years to be part of the same
transmission chain. On average 4.3% of pairs (95%CI: 3.6-5.0) within each region (defined here
as the smallest subnational administrative unit we have for each country; average population
size: 6.5 million, average area: 110,000 km?) were from the same transmission chain (Figure
2B). There were an average of 23.2 discrete chains (95%CI: 20.0-28.0) circulating within a
region. However, the number of chains depends strongly on population size (Figure 2C); each
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increase in log-population size was associated with a 0.45 (95%CI: 0.23-0.61) increase in the
number of circulating chains, with consistent patterns across the different continents (Figure
S4). Increases in population density were also associated with small increases in the number of
circulating chains (Figure S5).

To characterise the longer-term spread of lineages, we calculated the probability that pairs from
the same location were separated by an MRCA of specific time intervals, relative to pairs that
come from different locations. In France, where we have the greatest spatial resolution,
sequences from the same district were 2.6 times (95%Cl: 1.5-3.9) as likely to have an MRCA
within the two prior years as sequence pairs from different districts (Figure 2D). We found similar
spatial clustering in other countries (Figure S6). Further, pairs of sequences coming from the
same European country were 11.6 times (95%CI: 5.4-19.3) as likely to have an MRCA within
the prior year than sequence-pairs coming from different European countries. We observed a
similar level of spatial dependence between different US states as between European countries
(Figure 2E). Overall, it takes approximately 2-3 years for a lineage to be well mixed within a
European country (i.e., spatial structure is lost). Similarly, it takes B. pertussis 5-9 years to be
well mixed across Europe, 4-6 years to be well mixed across the US and 8-12 years to be well
mixed across different continents (Figure 2D-F, Figure S7). As we considered the relative
probability of MRCA within and between locations for isolates sampled from the same year, our
results are not affected by biased sampling between locations or in time?°.

Characterisation of the fithess of the different genotype, by vaccination era

In order to explain the observed changes in genotype in each location, we developed a time-
series model that estimates the annual proportion of isolates that were of each genotype in each
country. We use a single framework to fit the data from all the countries at the same time. We
assumed that the relative fitness of the different genotypes were the same across countries but
allowed for a change in fitness following the switch from WCV to ACV, which occurred at different
times in different countries (Figure S8). This simple model was able to recover the time-series
(Figure 3A-D, Figure S9), and the observed number, proportion, and annual relative change in
genotypes across countries (Figure 3E-G).

We found that the underlying fitness of a genotype was associated with whether WCV or ACV
was being used in that country at that time. ptxP3/PRN-positive types, irrespective of fim3 allele,
were the most fit genotypes during the WCV era (relative fitness of 1.11 [95%CI: 1.05-1.17] per
year compared to other genotypes circulating at that time, equivalent to a relative fitness of 1.01
[95%CI: 1.00-1.01] per transmission generation). The ptxP3/fim3-1/PRN-deficient genotype was
the most fit genotype following ACV implementation (relative fithess of 1.30 per year [95%CI:
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1.16-1.53], equivalent to a relative fitness of 1.02 per transmission generation [95%Cl: 1.01-
1.03]) (Figure 4A). We found that the switch from WCV to ACV is associated with an increased
fitness of PRN-deficient genotypes, but only in isolates with a ptxP3 background, with the effect
further increased for fim3-1 genotypes (Figure 4B). On average, PRN-deficient isolates were
1.25 (95%CI: 1.20-1.31) times as fit as PRN-positive isolates following the introduction of ACV
(Figure 4C). Where only WCV was used, PRN-deficient isolates were on average 0.94 times
(95%CI 0.92-0.96) as fit as their PRN-positive counterparts (Figure 4C). Alternative models that
did not allow for changes in fitness following vaccine switch or use a common date across
countries for changes in fitness had lower adequacy as measured by Watanabe—Akaike
information criterion (Table S3)2'. Models that allowed for a delay between ACV implementation
and fitness change also did not improve model fit (Figure S10, Table S4), suggesting a rapid
impact of the vaccine switch on genotype fitness at the population level. Our model was able to
recover true fitness parameters when using simulated data with known parameters, even under
conditions of biased sampling (Figure S11). Further, our population-level findings are consistent
with those from experimental studies. For example, PRN-deficient isolates had increased ability
to colonise the respiratory tract of ACV-vaccinated mice than PRN-positive isolates, whereas in
unvaccinated control mice, PRN-positive isolates outcompeted PRN-deficient isolates??. Mouse
models have also shown increased respiratory tract colonization by pixP3 than pitxP1

isolates?324,

The genotype dynamics in Japan represents a key outlier, as the proportion of isolates that were
PRN-deficient initially increased following ACV implementation, but unlike most other countries
it subsequently decreased after 2005 (Figure 1H)?°. To date, the main hypothesis to explain this
decrease has been a change in ACV formulations to ones that do not contain PRN, which
became widely available in 20122°. We provide a new explanation for the decrease in PRN-
deficient strains. ptxP1 remained in circulation in Japan after it had largely disappeared
elsewhere, and unlike PRN-deficient ptxP3 strains, PRN-deficient ptxP1 strains only developed
a small fitness advantage post ACV implementation (Figure 4B). The reduction in PRN-deficient
strains may simply have been driven by the rise of PRN-positive ptxP3 strains, which are
marginally more fit than ptxP1 PRN-deficient strains in the ACV context. We expect that this
phenomenon can only delay the evolution towards PRN deficiency, as switches to fitter PRN-
deficient forms of ptxP3 B. pertussis appear inevitable. It remains unclear whether the growing
use of ACV formulations without PRN in Japan can further delay this predictable trend.

Our fitness model was unable to capture the genotype dynamics in China, where ptxP1-positive
strains remain dominant (Figure S9C). This could be explained by the uniquely high prevalence
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of erythromycin resistant strains®%2’, which might have a large impact on fitness? but which our
model does not take into account.

Discussion

We have used a large geo-referenced dataset to uncover the spatial spread of an important
bacterial threat to human health. We have also identified how vaccine policy decisions can have
immediate and far-reaching implications for the fithess of circulating strains, and how small
fitness differences at each transmission generation can lead to major changes in lineage
composition. Our findings also support and quantify the driving role of acellular vaccines in
changing genotype distribution and are consistent with changes in the mutation rate in vaccine
antigen genes following ACV implementation?®. A similar role of vaccine-induced changes in

lineage composition has been found for the pneumococcus®®-22,

As with virtually all phylogenetic studies, the availability of sequences differs substantially by
country and year. In particular, our inferences are largely based on sequences from high income
countries. WCV remains broadly used in low- and middle-income countries. As we have also
quantified genotype fithess when WCV was the dominant vaccine, our findings remain relevant
to these undersampled locations, and suggest that, given their increased fithess in WCV
environments, ptxP3/PRN-positive genotypes will dominate. This is indeed the case for the two
countries in our dataset, which have only ever used WCV (Tunisia and Iran). In the event of
future switches from WCV to ACV, we could expect PRN-deficient strains to prevail, either
through the successful introduction of strains circulating elsewhere or through the loss of PRN
expressions in local strains. While this study assesses the impact of vaccine type (WCV or ACV)
on strain fitness, increased, sustained sequencing efforts would allow us to tackle more precise
questions about whether different WCV or ACV vaccines®*-3% or vaccination policies and
schedules®?” exert distinct pressures. Finally, there may also be other mutations that are linked
to changes in fitness that we have not considered here'”.

This work provides a first detailed view of the strength of spatial structure and rate of geographic
spread for a pathogen that is responsible for tens of thousands of deaths each year, highlighting
how B. pertussis spread is a globally interconnected issue. It further provides a quantitative
description of strains fithess and highlights the key role of vaccine policy decision-making in
driving ecological change. Multiple co-circulating lineages are a common feature across
bacterial disease systems. Our approaches provide an avenue to obtain a much needed
mechanistic understanding of how perturbations in population immunity can drive local genetic

diversity.
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Methods

Selection of isolates

We compiled a dataset of 3344 B. pertussis whole genome sequences (Table S1 and S2),
sampled from a 85-year period (1935-2019) which includes 1011 sequenced French isolates
from the National Reference Center (NRC) for Whooping Cough and Other Bordetella Infections
in France (Institut Pasteur, Paris, France); 320 newly sequenced European isolates, randomly
selected among the 2014-2016 isolates from the B. pertussis collections of 12 European
countries; and 2013 isolates with high-quality publicly available genomes from 14 countries. The
majority of publicly available isolates were generated by the CDC (Atlanta, CDC), who shared
medata. Critically, several isolates deposited in NCBI were duplicates from the same isolates;

these were removed from the analysis.

Metadata

We collected metadata for each isolate (date of sampling, continent, country) from linked
publications, or NCBI when no publication was listed. The vaccine status of patients was not
known. For 3,256 sequences coming from 19 countries, the home district or region of the
genome was also recorded. Geographic coordinates were extracted for each location. When
the geographic precision was region or district, the coordinates of the most populated city were
extracted. We also considered centroids of the whole region as a sensitivity analysis. For each
country, we extracted information on vaccine coverage as a function of time (1980-2019, when
available) from the Global Health Observatory data repository®. We also collected years of
implementation of each type of vaccine in the literature. For the acellular vaccine (ACV), we
distinguished the year of the first implementation of any ACV (as a booster or a primary
vaccination), and the date of ACV introduction for primary vaccination series (Table S1, Figure
S8). To maximize statistical power, we focused the analysis on the type of vaccine (WCV, ACV),
rather than the specific details of each vaccine (e.g., vaccine provider, vaccine strain used,
number of antigens present, presence of a pertactin component). We also chose to focus on the
use (or not) of each vaccine in each country, rather than on the country-specific vaccine
coverage, assuming that the vaccination coverage is sufficient to exert selective pressure on

strains.
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Ethical considerations

The study was coordinated by the French national reference center for pertussis, whose
activities are approved by the French supervisory ethics authority (CNIL, n°1474593). Isolates
sequenced in this study come from the B. pertussis governmental surveillance laboratories of
Belgium, Czech Republic, Denmark, Spain, Finland, France, Ireland, Italy, Netherlands,
Norway, Sweden and the UK. These isolates were all collected as part of existing public health
surveillance approved protocols in each country. No personally identifiable information was used
as part of this study.

Sequencing of the newly sequenced isolates

The study Accession Numbers on the European Read Archive are PRJEB21744, PRJEB42353
and PRJEB45681. Details and accession numbers of the raw sequence data are listed in Table
S2. Details on the sequencing protocol can be found in supplementary materials.

Genomic analysis of PRN-deficient isolates

De novo assembly was performed, as previously described®. Briefly, paired-end reads were
clipped and trimmed (AlienTrimmer*°), corrected (Musket*'), merged if needed (FLASH*?), and
subjected to a digital normalization procedure with khmer*:. For each sample, remaining
processed reads were assembled and scaffolded (SPAdes*).

We defined the PRN allele of each isolate with BLASTn“*® using as query a fasta file containing
all known PRN alleles.

Next, we defined the pertactin expression (PRN status) of all isolates. As the PRN-deficiency
has been shown to be caused by mutations in the promoter or coding regions of the PRN gene*®,
we compiled all the events that cause the PRN deficiency based on the literature and on the
analysis of french isolates and gathered all the genomic events identified in PRN-negative
isolate in a single fasta file. Then, we assessed the PRN status of all isolates with BLASTn*®
using as query the fasta file (Table S5, File S1). In addition, we used IS_mapper/0.1.5.1 from
fastq files looking for 1IS487 from Tohama (BP0080), which is the main insertion element in B.
pertussis*” that can insert within the prn gene or promoter. We made use of 839 french isolates
for which we have Western blots available?, and checked the correspondence between
genomics and experimental results. In our dataset, we identified 1722 (51.5%) PRN-positive
isolates, 1472 (44.0%) PRN-deficient and 150 (4.5%) isolates with unknown status.

Nucleotide Polymorphism variations (SNP) detection

10
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SNP detection was conducted using an in-house pipeline available on GitHub. Briefly, adapters
and barcodes were stripped from the fastq data and the reads were quality filtered and trimmed
using a Phred quality threshold score of 30 using Cutadapt*®. We checked the quality of each
fastq file using FastQC*. Reads were mapped against the complete Tohama | reference
genome (Accession number: NC_002929, using BWA-MEM algorithm®. Extraction of SNP was
achieved with the GATK HaplotypeCaller, with ERC GVCF settings®'. We then built an in-house
filtering script using R%2. We kept variants for which the Phred quality score was higher than 30,
with a minimum read depth of 5, with at least 2 reads in both the forward and reverse directions.
We called a position a ‘N’ when <40% of the reads were different from the reference, we used
the IUPAC code for positions with between 40% and 80% of reads not matching the reference,
and we called variants only for positions with >80% reads not matching the reference. Moreover,
to improve homogeneity across the dataset across the world, we removed positions in the
alignment where 25% of the bases were ‘N’. Further, we filtered out repeated regions (1S481,
1S1002 and IS1663*7), and phage regions using Phaster®3. We also checked for recombination
in our alignment using Gubbins®. As a result, we obtained an alignment of 8,105 SNPs,
consistent with other publications'”.

Genotyping pixA, ptxP, fim2 and fim3

We genotyped all isolates for the genes pertussis toxin A (ptxA), pertussis toxin promoter (ptxP),
type 2 fimbrial protein (fim2) and type 3 fimbrial protein (fim3) using BLAST*. The sequences
used as references for the alleles ptxA, ptxP, fim2 and fim3 are available in GitHub
(https://github.com/noemielefrancg/GlobalPhylogeographyPertussis).

Phylogenetic analysis

B. pertussis strain genotyping has been used to reconstruct the evolutionary and spatial history
of observed infections, however, previous efforts have relied on pre-genomics markers or
individual country data®’2%3%%5-%° |n this project we used whole genome sequences and

combined data across multiple countries.

We used the SNP-based alignment to reconstruct the phylogenetic relationships of the isolates.
We built maximum-likelihood trees using IQ-tree®®. TempEst was used to check for temporal
signal in the data (Figure S12)8'. Maximum Clade Credibility (MCC) trees were inferred using a
Markov Chain Monte Carlo (MCMC) Bayesian approach implemented on the program BEAST
1.10.4%, under a GTR substitution model® accounting for the number of constant sites, a
relaxed lognormal clock model® and a skygrid population size model®. Three independent
Markov chains were run for 300,000,000 generations each, with parameter values sampled
every 10,000 generations. Runs were optimized using the GPU BEAGLE library®®. Chains were
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manually checked for convergence (ESS values > 200) using the Tracer software®’. We

manually removed a 20% burnin.

Furthermore, we used a discrete model attributing state characters representing the isolation
country of each strain with the Bayesian Stochastic Search Variable (BSSVS) algorithm®s,
implemented in BEAST. This method estimates the most probable state at each node in the
MCC trees, allowing us to reconstruct plausible ancestral states (here, country) on these nodes.
Because of the large nature of our dataset (3344 genomes from 23 countries, with 8925 variable
positions) running this model would have been computationally challenging. Thus, we ran the
model on a subset of trees (N=10,000) extracted from the posterior distribution of trees
generated by the initial BEAST run. We ran three independent Markov chains for 5,000,000
generations each, with parameter values sampled every 1,000 generations. We manually
checked for convergence using the Tracer software®” and removed a 10% burnin. We used
treeannotator to summarize the posterior trees into a Maximum Clade Credibility (MCC) tree.
The full MCC tree is presented in Figure S13.

Expansion rate of B. pertussis

We assume that the sequences in our dataset are representative of what is circulating in that
location and at that time. In spatially structured transmissions, as pathogens spread away from
each other, we would expect there to be increased spatial distance between cases as they
become separated by more and more transmission events?’. To explore whether this occurs,
we compared evolutionary time between B. pertussis bacteria with their spatial separation. For
each location considered, pairs of bacteria are grouped by the evolutionary time that separates
them based on the time resolved phylogeny. For each group of bacteria pairs, we then compute
the mean spatial distance that separates them. We reconstruct 95% confidence intervals using
bootstrap. We resample all the bacteria with replacement, allowing for even sampling by
location, over 200 resampling events and recalculate the mean distance that separates each
group of bacteria pairs each time. The 95% confidence intervals are the 2.5% and 97.5%
quantiles from the resultant distribution. We separately consider pairs coming from the same
country (France, Japan, US). This list of countries was selected as they represent the locations
with most sequences available. We separately repeated this analysis using pairs of sequences

from across Europe.

Estimating the probability that a pair of cases are from the same transmission chain

We consider a pair of cases that came within the same year to be part of the same transmission
chain if their most recent common ancestor (MRCA) was within the past two years of the earlier
of the two cases. We choose this cutoff as two years represents a recent introduction into a
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population, within which pairs are likely to remain transmission related. We explore the
sensitivity of this cutoff (Figure S14).

We can derive an expression for the probability P, that a pair of B. pertussis cases are from the
same transmission chain within a location loc?°:
=1 Xjzil(loc; = locj N t;; < 1year N G;j < 2Yyears)

t=q Xjzil(locg = locj Nty < 1year)

P.(loc) =

[Eq. 1]

where 1 represents the number of bacteria for which sequence data are available, € ;; is the

time between the cases, and G ;; is the time to the MRCA from the earlier of { and j. [is an

indicator function.

Estimation of effective number of transmission chains
The reciprocal of P.(loc) is an estimate of the size of the pool of discrete transmission chains
n(loc) that infect pairs of individuals separated within a location loc. It also represents the lower

limit of the number of chains circulating within a location loc, as previously shown?°.

We reconstruct 95% confidence intervals using bootstrap. We resample all the bacteria with
replacement, allowing for even sampling by location, over 200 resampling events and
recalculate the statistic each time. The 95% confidence intervals are the 2.5% and 97.5%
quantiles from the resultant distribution.

Effective number of transmission chains for different population sizes in regions

We explore whether the effective number of chains circulating within regions depends on the

size of the population of this region, using Equation 1. We estimate the mean

probability P, (loc, pop;, pop,) that a pair of B. pertussis cases within the same region, with a

population size between pop,and pop, are from the same transmission chain:

Pc(loc, popy, pop,)

3 =1 2jzil(loc; = locj N t;; < 1year N Gy < 2years N Py > popy N Pye < popy)
=1 Xjzil(loc; = locj Nty < 1year)

[Eq. 2]

The effective number of transmission chains n(loc, pop,, pop,) is then given by the reciprocal of

Pc(loc,popy, popz).
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We reconstruct 95% confidence intervals using bootstrap, as detailed above.

In a sensitivity analysis, we considered different MRCA cutoffs (1 and 3 years) to define
transmission chains, and obtained similar results (Figure S14).

Relative risk that a pair of bacteria have a MRCA within a defined period, when coming
from the same location, versus different locations.

To better understand the spread of B. pertussis within districts in France, countries in Europe,
states in the US and between continents, we characterize the similarity in bacteria within these
spatial scales relative to that observed between spatial scales. In each case, we estimate
RR,,:.(g1,92), the probability that a pair of bacteria within a location loc that were isolated within
the same year of each other had an MRCA within range having an MRCA within g,-g, relative
to the probability that a pair of bacteria from different locations, that were isolated within the
same year of each other, had an MRCA within that particular range®. For the range g;-g,, we
used sliding windows of time going from 0 years to 20 years.

=1 Xjzil(oc; = locj Nty < 1year N Gy; = g1 N G < gp)
iz Xjzil(locg = locj Nty < 1year)

I(lOCi * lOCj N tij < 1year N GU = g4 N GU < 92)
=g XjeiI(locg # locj Nty < 1year)

RRloc(gl'gz) = n Zn
i=1

J#i

[Eq. 3]

By conditioning on spatial and temporal location of sequences, this approach minimizes the
impact of underlying sampling biases in which cases were sequenced. We reconstruct 95%

confidence intervals using bootstrap, as detailed above.

Estimating the fitness of B. pertussis strains

To quantify the fitness of B. pertussis strains, we develop a model that makes use of the isolates
from 20 countries with more than 10 sequences in our dataset (fewer sequences than this
threshold did not allow for sufficient data points to provide a robust estimate of genotype
distributions over time). First, we assign all tips and nodes in the tree a strain type from one of
six possible types based on PRN, ptxP and fim3 status. We consider only isolates for which the
ptxP3 allele was 1 or 3, the fim3 allele was 1 or 2, and the PRN expression was known. While
there exists other genotypes, these are rare and most of the other types, for example the ptxA
alleles, almost completely overlap with the ptxP alleles. Assigning the genotypes ptxP1 versus
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ptxP3, and fim3-1 versus fim3-2 is straightforward as they are all monophyletic'’. However, the
PRN-deficiency is a highly homoplasic trait, so assigning a PRN expression to each node is
more complicated. Briefly, we know ancestral B. pertussis sequences all produce PRN, and that
the deficiency appears by mutations in the promoter or coding regions of the PRN gene?*.
Moreover, because of the complexity of the mutations, reversions are highly unlikely, and have
to our knowledge never been reported. Thus, the PRN expression of each node can be easily
reconstructed by finding all the monophyletic clades for which isolates are PRN-deficient. To do
this, we use an in-house algorithm (script available in the GitHub).

We separately assign a country to each node and tip. Country information for the nodes was
extracted from the BEAST discrete reconstruction presented previously. In order to maximize
the correct country assignment for nodes, we only consider nodes for which the country's
posterior probability was >0.9. In addition, we excluded nodes that were distant by more than 5
years from any tip.

Next, we compute f; s, the relative abundance of each strain i with respect to a chosen ref
strain. We chose the ptxP3/fim3-1/PRN-positive genotype as the reference strain. In a sensitivity
analysis, we found that the choice of the reference strain did not affect the results, providing that
the chosen genotype was present in all countries, for most of the years. We then use a simple
logistic model to capture the evolution of this abundance, at each time t:

d fi,ref
dt

=Tirer - fi,ref a1 - fi,ref)r

with i € {strains}\ ref,and fi,r (t = 0) = firefo
[Eq. 4]
where ;¢ is the growth rate of that abundance, shared across all countries and f; ¢ is the

initial relative abundance of the strain i with respect to a chosen ref. To control for the varying
presence of all circulating strains through time, we present fitness as the average relative growth

rate r; for each strain i with respect to randomly selected strain in the population:

n
ﬁ = Z fj (Ti,ref - rj,ref)

T
[Eq. 5]

where nin the number of strains, and f; is the average frequency of strain jon the period of time

considered.
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This average relative growth rate r; can be identified as the selection rate coefficient s of the

strain i in the population considered®®-"".

We can further multiply the selection rate by the mean generation time T to obtain the
dimensionless selection coefficient sy, the relative fitness advantage per transmission
generation’®:
sp=s-T=r-T
[Eq. 6]
We use a mean generation interval of 22.8 days (95%Cl: 22.1-23.5) to compute s;’2.

The selection coefficients s and s; represent one of the most possible direct measures of the
fitness advantage of any new variant, and are the best possible predictors of whether or not it is
expected to increase in frequency during an outbreak’"73.

We fit this model to all countries-specific time series in our dataset with the Rstan package’,
using a Negative Binomial likelihood with an overdispersion parameter §. We fit the frequencies
as simplex vectors for each country, with the oldest strain frequency, f;,, having a normal(1,
0.1) prior, based on a previous global study'’. We use cauchy(0, 0.15) for the relative growth
rate parameters r; ... We ran this model on 3 independent chains with 2,000 iterations and
50% burn-in. We use 2.5 and 97.5 quantiles from the resulting posterior distributions for 95%
credible intervals of the parameters.

Investigating changes in B. pertussis fithess across vaccine eras
To investigate whether B. pertussis strain fithess changed across vaccine eras, we compiled
dates of vaccination changes (Table S1) and used our fitness model and estimate r; on:

- WQCV era, defined as the period from the WCV implementation in each country,

to the first ACV implementation (as a booster or primary vaccine);

- the ACV era, defined as the period from the first ACV implementation to now.
In a sensitivity analysis, we consider a range of different definitions for these eras, including the
mean implementation year of the WCV and ACV across countries, and start at different vaccine
coverages (Table S3). We also considered models without a vaccine switch. Model comparison
was done using the Watanabe—Akaike information criterion (WAIC) implemented in the /oo
package?®':”®. Estimated from this sensitivity analysis are presented in Figure S15.
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Additionally, to test the predictive power of our model, a held out analysis was performed. We
held out 10% of the country-year data from the model fitting process, and compared the
prediction with the actual observed values (Figure S16).

We developed a simulation framework where the true growth rates parameters were known,

and assessed the performance of our model to estimate the fitness of different strains in a
population (see Supplementary materials).
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Figure 1: Origin of sequences and genetic diversity of Bordetella pertussis. (A) Number of

sequences by continent, as a function of time (see Table S1 for further details). (B) Schematic of the

evolutionary relationship of the ptxP and fim3 alleles. (C-E) Maximum clade credibility trees for the different
genotypes: ptxP1/fim3-1 (C), ptxP3/fim3-1 (D) and ptxP3/fim3-2 (E). Branch tips are colored by the
continent of collection. Horizontal bars denote pertactin (PRN) expression (black: deficient expression,

grey: wild type expression, white not known) (F-H) The full tree is available on the MicroReact platform

[URL to be provided on acceptance]. Temporal trends in strain frequencies, computed on rolling 7-year

windows, for the ptxP3 (F) and fim3-2 (G) alleles, and PRN-deficiency (H). (I) Median spatial distance

between B. pertussis pairs from different locations (EU: Europe; FR: France; JP: Japan) separated by

different evolutionary times. Global average over the first 5 years is presented in Figure S1. The shaded

area represents 95% Cls.
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Figure 2: Bordetella pertussis diversity within and between locations. (A) Breakdown of the MRCA
separating pairs of B. pertussis isolates from within the same year, for different locations: within districts
(12 European countries, Iran and Japan), within European countries, within US states and within
continents. (B) Proportion of pairs within a region that belong to the same transmission chain (defined as
MRCA<2y), as a function of population size (average from 19 countries). Proportions are computed for
rolling windows of population sizes. Dots represent the data and the dashed line represents model fit
assuming an exponential relationship between the two and the grey shaded region 95% confidence
intervals. (C) Number of transmission chains within regions, as a function of the population size. Numbers
are computed for rolling windows of population sizes. Dots represent the estimates from the data and the
dashed line represents model fit and the grey shaded region 95% confidence intervals. (D-F) Relative risk
that a pair of bacteria have a MRCA within a defined period, when coming from the same versus different
district in France (D), same versus different country in Europe (E, blue), the same versus different state in
the US (E, red) or the same versus different continent (F). The shaded regions in (D-F) represent 95%

confidence intervals.
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Figure 3: Changing genotype distributions of Bordetella pertussis by country. (A-D) Fits of the
proportion of each genotype for 4 example countries: Australia (A), France (B), USA (C) and Japan (D)
(other countries’ fits can be found in Figure S9). Grey triangles represent data, grey bars denote binomial
95% confidence intervals. Blue lines and shaded areas represent the median and 95% credible interval of
the posterior. Vertical dotted line denotes the year of the first ACV introduction, for each country. (E-G)
Predicted versus observed counts (E), proportions (F), and Wrightian fitness (G), respectively. The
Wrightian fitness of a strain is defined as the ratio of its proportions at time t+1 and time t. Colours represent
the continents (brown: Africa; red: Americas; yellow: Asia; green: Australia; blue: Europe). The dotted line
denotes the identity line.
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Figure 4: Estimates of fitness of each genotype. (A) Estimated fitness of each genotype as a function
of the vaccine era. The dots and lines represent 2.5, 50 and 97.5 percentiles of the posterior
distributions. PRN-deficient strains (PRN-) are shown in red, PRN-positive strains (PRN+) are shown in
blue. (B) Effect of vaccine switch (whole-cell vaccine [WCV] to acellular vaccine [ACV]) for the different
genotypes and PRN expressions. (C) Effect of PRN-deficiency on the different underlying genotypes.
Horizontal lines and shaded areas represent the overall mean across all genotypes. The boxplots
represent the 2.5, 25, 50, 75, and 97.5 percentiles of the posterior distributions.
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