

1 **Polyamines and eIF5A hypusination facilitate SREBP2 translation and**
2 **cholesterol synthesis to enhance enterovirus attachment and infection**

3
4 Mason R. Firpo¹, Marine J. Petite^{2,3,4}, Natalie J. LoMascolo^{1,5}, Priya S. Shah^{2,3}, Bryan C.
5 Mounce^{1,5*}

6 ¹Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University
7 Chicago, Maywood, IL, United States

8 ²Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA,
9 United States

10 ³Department of Chemical Engineering, University of California, Davis, Davis, CA, United States

11 ⁴Current address: University of Glasgow MRC-Center for virus research, Glasgow UK.

12 ⁵Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola
13 University Chicago, Maywood, IL, United States

14 *Corresponding author:

15 Department of Microbiology and Immunology
16 Loyola University Chicago, Stritch School of Medicine
17 2160 S. First Ave.
18 Maywood, IL 60153
19 708 216 3358, bmounce@luc.edu

20 Short title: Polyamine-dependent cholesterol synthesis facilitates enterovirus infection

21 Keywords: polyamines, cholesterol, enterovirus, hypusination, SREBP2

22

23 **Abstract**

24 Metabolism is key to cellular processes that underlie the ability of a virus to productively infect.
25 Polyamines are small metabolites vital for many host cell processes including proliferation,
26 transcription, and translation. Polyamine depletion also inhibits virus infection via diverse
27 mechanisms, including inhibiting polymerase activity and viral translation. We showed that
28 Coxsackievirus B3 (CVB3) attachment requires polyamines; however, the mechanism was
29 unknown. Here, we report polyamines' involvement in translation, through a process called
30 hypusination, promotes expression of cholesterol synthesis genes by supporting SREBP2
31 translation, the master transcriptional regulator of cholesterol synthesis genes. Measuring bulk
32 transcription, we found polyamines support expression of cholesterol synthesis genes, regulated
33 by SREBP2. Polyamine depletion inhibits CVB3 by depleting cellular cholesterol. Exogenous
34 cholesterol rescues CVB3 attachment, and mutant CVB3 resistant to polyamine depletion exhibits

35 resistance to cholesterol perturbation. This study provides a novel link between polyamine and
36 cholesterol homeostasis, a mechanism through which polyamines impact CVB3 infection.

37

38 **Introduction**

39 Polyamines are small carbon chains with amine groups that have a positive charge at cellular pH.
40 They play a large role within the cell and are involved in multiple cellular processes including
41 nucleotide synthesis, DNA/RNA stability, membrane fluidity, and translation¹. Ornithine, which is
42 a derivative of arginine, is converted to the first polyamine putrescine by the rate limiting enzyme
43 ornithine decarboxylase 1 (ODC1). Putrescine can be converted to spermidine and spermine via
44 their respective synthases. Difluoromethylornithine (DFMO) is an FDA approved drug for
45 trypanosomiasis and is an irreversible, competitive inhibitor of ODC1². One key way polyamines
46 impact cells is through translation, specifically through a process called hypusination³. Spermidine
47 is covalently attached to eukaryotic initiation factor 5A (eIF5A) at lysine 50 by the protein
48 deoxyhypusine synthase (DHPS) to form deoxyhypusine-eIF5A. Deoxyhypusine hydroxylase
49 (DOHH) then adds a hydroxide in the second and final step to make hypusine-eIF5A. Hypusine-
50 eIF5A plays a vital role in mRNA translation, ribosome function, and cell proliferation. The precise
51 mechanisms by which hypusine-eIF5A promotes translation remain to be fully understood.
52 However, certain amino acid motifs cause ribosomal pausing, and hypusine-eIF5A is required for
53 the ribosome to translate through these motifs⁴. Poly-proline tracts have also been shown to
54 require hypusine-eIF5A⁵. When the unhyposinated form of eIF5A is present, it cannot alleviate
55 ribosomal pausing. The requirement for hypusine-eIF5A for cellular proliferation has made it an
56 attractive target for the development of anti-cancer drugs. One such drug is the spermidine analog
57 N1-guanyl-1,7-diaminoheptane (GC7). GC7 inhibits DHPS by directly binding to the active site
58 and prevents spermidine from being attached to eIF5A⁶. Additionally, deferiprone (DEF) is an
59 iron-chelator which has broad effects on the cell and also inhibits DOHH⁷.

60

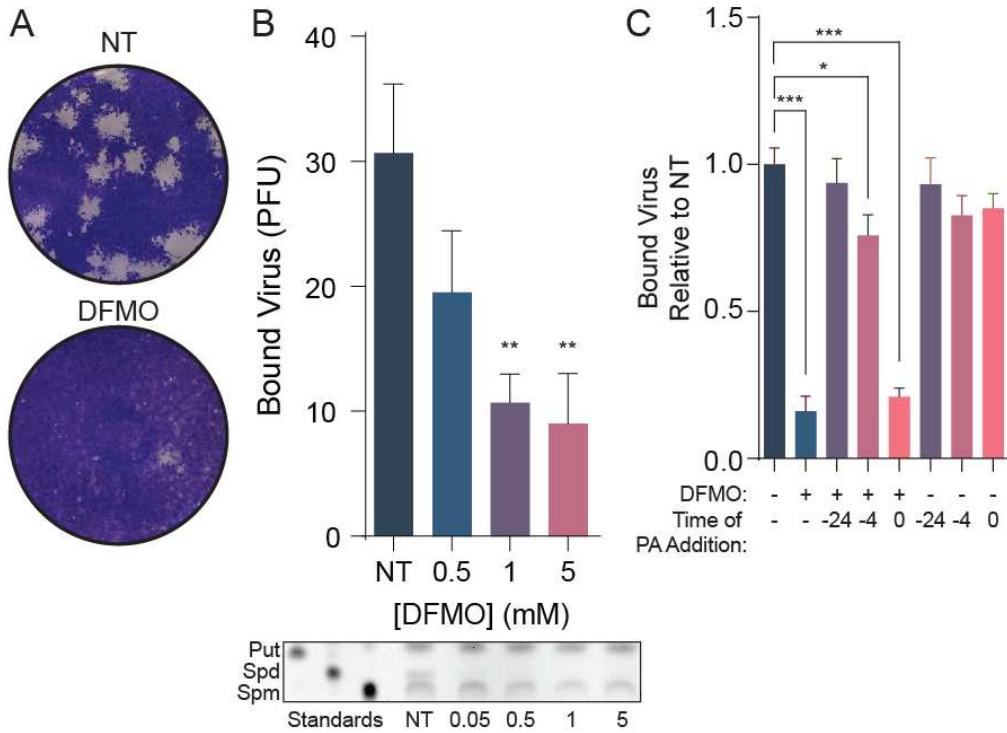
61 Polyamines have been found to be important for multiple RNA viruses through different
62 mechanisms, and diverse RNA viruses are sensitive to DFMO-mediated polyamine depletion⁸⁻¹¹.
63 Interestingly, the enterovirus Coxsackievirus B3 (CVB3) develops mutations within its proteases
64 as well as the capsid protein VP3 when polyamine synthesis is inhibited, suggesting a role for
65 polyamines in protease activity and cellular attachment for enteroviruses¹²⁻¹⁴. Enteroviruses are
66 small, non-enveloped, positive sense single-stranded RNA viruses a part of the picornavirus
67 family that can cause a range of diseases from the mild cold to flaccid paralysis and dilated
68 cardiomyopathy (DCM)^{15,16}. Coxsackievirus B3 (CVB3) is a member of the enterovirus genus and

69 is well known for its ability to infect and persist in the heart and cause DCM^{17,18}. About 50% of
70 DCM patients have CVB3 reactive antibodies and the only cure for DCM is a heart transplant^{16,19}.
71 There are currently no FDA drugs approved to treat CVB3 infection. However, we previously
72 found that inhibiting polyamines is broadly antiviral and inhibits CVB3 infection and binding^{12,13,20}.
73

74 Another key metabolite required for CVB3 infection is cholesterol. Cholesterol is important for
75 maintaining cellular membrane integrity and fluidity as well as lipid raft formation. Removal of
76 cholesterol from the plasma membrane blocks poliovirus entry and EV-11 entry by preventing
77 lipid raft formation^{21,22}. Inhibiting cholesterol homeostasis significantly inhibits CVB3 replication²³.
78 The first step in cholesterol synthesis is the conversion of Acetyl-CoA to HMG-CoA by HMGC-
79 CoA synthase (HMGCS). HMG-CoA is then converted to mevalonic acid by the rate limiting
80 enzyme HMG-CoA reductase (HMGCR). After 27 more reactions, the end product of cholesterol
81 is made²⁴. The majority of these genes, including low-density lipoprotein receptor (LDLR) is under
82 the transcriptional control of sterol regulatory element binding protein 2 (SREBP2), which binds
83 to sterol regulatory elements (SREs) in the promoter of target genes²⁵. Upon depletion of
84 cholesterol, the ER resident, multipass transmembrane protein, SREBP2 is translocated to the
85 Golgi. Within the Golgi it gets cleaved by the proteases S1P and S2P generating the active N-
86 terminal portion of the protein. The active SREBP2 then re-locates to the nucleus where it
87 promotes the transcription of sterol synthesis genes²⁶. To date, no link has been established
88 between cholesterol synthesis and polyamines; however, mice overexpressing the polyamine
89 catabolic enzyme spermidine-spermine acetyltransferase (SAT1) and rats treated with DFMO
90 exhibited lower serum cholesterol levels^{27,28}, suggesting that polyamines may facilitate cholesterol
91 synthesis.

92
93 Using a transcriptomic approach, we identified several pathways modulated by polyamines that
94 likely impact enterovirus infection. We found that cholesterol synthesis genes were enriched in
95 this analysis and hypothesized that polyamines may impact cholesterol synthesis and virus
96 attachment. Here we describe a novel link between polyamines and cholesterol synthesis through
97 the polyamine-dependent translation of SREBP2. We find that inhibition of polyamine synthesis
98 or specific inhibition of hyposylation leads to reductions in SREBP2 translation, activity, and
99 downstream gene expression. This culminates in reduced cellular cholesterol and, in turn,
100 reduced viral attachment and replication. These data connect previously unrelated metabolic
101 pathways in the cell and identify cellular cholesterol depletion as an important effect of polyamines

102 on virus replication, with important implications for both virus infection and cellular metabolic
103 status.


104

105 **Results**

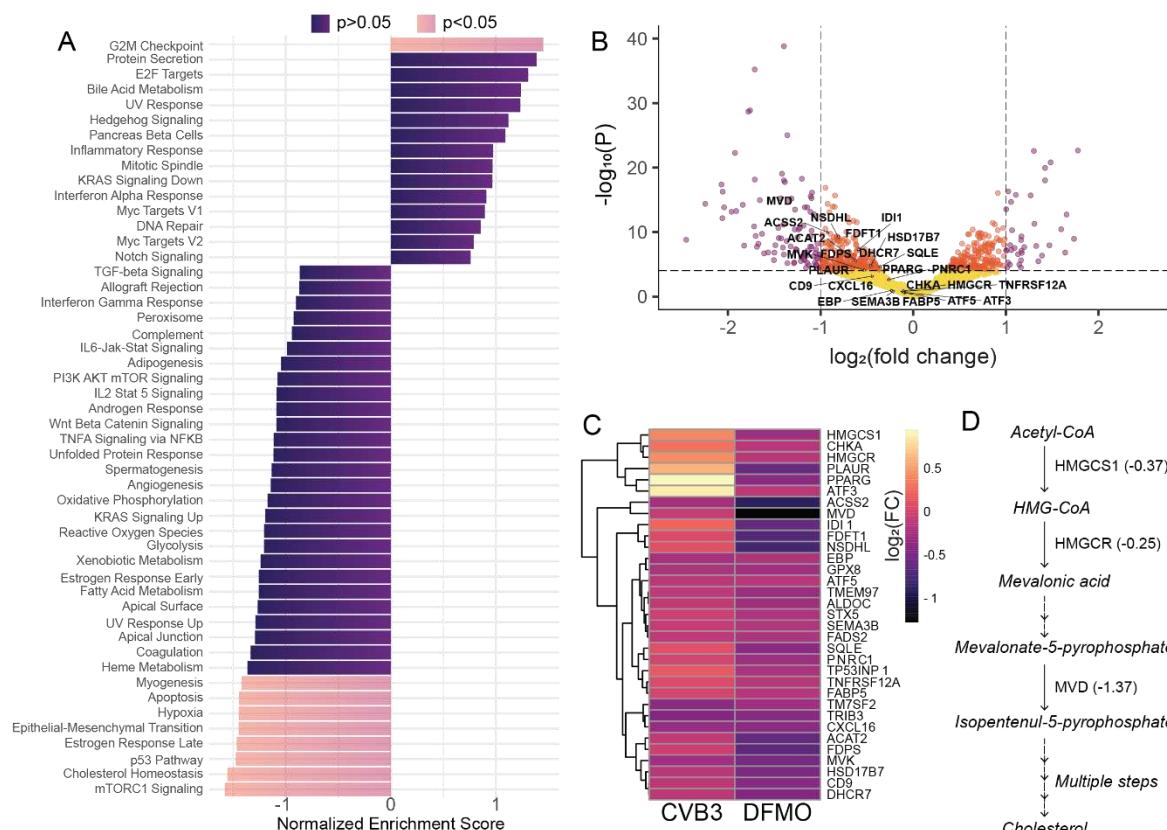
106 **Inhibition of polyamine synthesis inhibits CVB3 binding and is rescued with exogenous
107 polyamines.** We previously found that inhibition of polyamine synthesis by the suicide inhibitor
108 DFMO, significantly decreases CVB3 binding to cells compared to untreated cells¹³. To confirm
109 this phenotype, we treated Vero cells for 4 days with increasing doses of DFMO to deplete cellular
110 polyamines. We then added CVB3 directly to cells on ice for 5 minutes. Virus was then washed
111 off followed by agar overlay, in media containing polyamines. Thus, in these assays, polyamines
112 are depleted only for attachment. Plaques generated from successful attachment and entry were
113 allowed to form and developed two days later, and bound virus was enumerated by counting
114 these plaques (Fig. 1A). We found that DFMO significantly reduced bound virus in a dose-
115 dependent manner (Fig 1B), in agreement with prior work and corresponding to a decrease in
116 cellular polyamines, as measured by thin layer chromatography (Fig. 1C). To determine if this
117 polyamine-dependent attachment phenotype relied on cellular factors, we treated cells with
118 DFMO to deplete polyamines and subsequently replenished the polyamines (putrescine,
119 spermidine, and spermine) in an equimolar concentration. Adding polyamines to the cells at the
120 time of infection did not rescue viral attachment, nor did addition 4h prior to attachment. However,
121 when polyamines were added 16h prior to infection, we observed a full rescue in CVB3
122 attachment. These data suggest that polyamines rescue viral attachment but rely on an extended
123 incubation period, perhaps because cellular synthesis of attachment factors required an extended
124 time.

125

126

127

128 **Figure 1. CVB3 requires polyamines for attachment.** (A) Representative
129 plaques from B. (B) (Top) Quantification of plaques formed from a CVB3 binding
130 assay with DFMO treated Vero cells. (Bottom) Thin layer chromatography of Huh7
131 cells treated with increasing doses of DFMO. (C) Vero cells were treated with
132 DFMO for 96 hours then treated with 10 μ M equimolar ratio of polyamines at the
133 indicated times before infection. * $p < 0.05$, ** $p < 0.01$, and *** $p < 0.001$ by the
134 Student's *t* test. Data from at least three independent experiments.

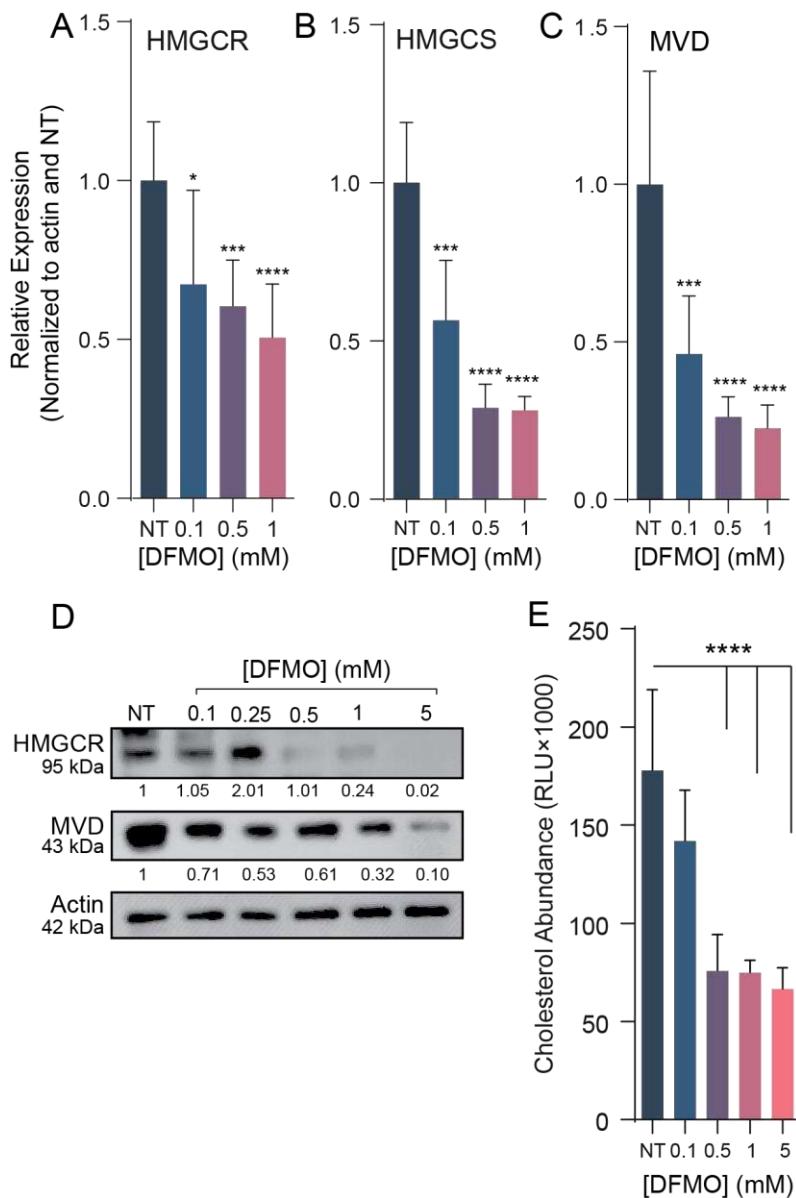

135

136 **Polyamine depletion decreases expression of genes in the cholesterol synthesis pathway.**

137 To better understand the effects polyamine depletion has on cells and if we could identify
138 polyamine-modulated cellular factors involved in viral attachment, we performed RNA-sequencing
139 on untreated and polyamine-depleted cells. Huh7 cells were left untreated or depleted of
140 polyamines with 1 mM DFMO for 96 h, at which time RNA was extracted and analyzed by Illumina
141 paired-end reading. After the alignment of reads against human genome, a differential gene
142 expression analysis was conducted to identify significant changes in expression. To uncover the
143 underlying biological processes that may link these pathways, gene set enrichment analysis
144 (GSEA) was performed. This showed multiple metabolic pathways that were significantly enriched
145 for decreased gene expression by polyamine depletion including alcohol metabolism, cholesterol
146 metabolism, and cellular response to a chemical (Fig 2A). Cholesterol plays a large role in

147 membrane stability and fluidity which could account for the differences seen in the GSEA analysis.
 148 In order to investigate specific cholesterol genes affected by DFMO, cholesterol genes involved
 149 directly in cholesterol synthesis were overlayed in a Volcano plot (Fig 2B). Multiple genes were
 150 down regulated including HMGCS1, HMGCR, MVK, and MVD. Importantly, several polyamine
 151 metabolic genes, including SAT1 and OAZ1 exhibited reduced expression, consistent with their
 152 role in inhibiting polyamine synthesis. We next explored how these changes caused by DFMO
 153 related to changes caused by CVB3 infection. Again, differential gene expression analysis was
 154 performed on CVB3-infected and mock-treated cells. Leading edge genes from the “Cholesterol
 155 Homeostasis” category were visualized by heat map for CVB3-infected and DFMO-treated
 156 samples (Fig 2C). Interestingly, CVB3 infection increased expression of many cholesterol
 157 biosynthesis genes that are downregulated by DFMO, suggesting CVB3 has mechanisms to
 158 promote this pro-viral pathway. Thus, the transcriptomic analysis of polyamine depleted and virus-
 159 infected cells revealed that cellular metabolic processes and, specifically, cholesterol biosynthesis
 160 (Fig 2D) may function in a pro-viral manner.

161



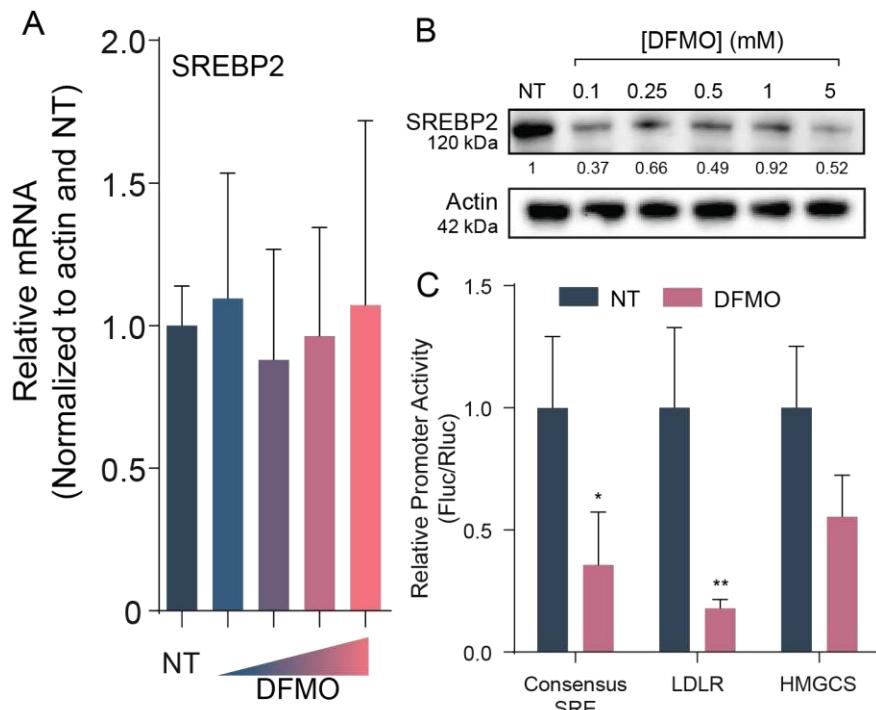
162

163 **Figure 2. Transcriptomic analysis of DFMO treated cells.** Huh7 cells were
 164 treated with 1mM DFMO for 96h and subjected to RNA sequencing. Results are

165 based on duplicates. (A) GSEA was conducted on genes differentially expressed
166 by 1mM DFMO treated Huh7 versus untreated Huh7. The top positively and
167 negatively enriched Hallmark pathways were plotted (p adj < 0.05, purple, p.adj
168 >0.05, blue). (B) Volcano plot indicating log2FoldChange for genes from
169 differential gene expression analysis comparing DFMO treated cells relative to
170 untreated cells. Significant changes in gene expression are plotted in purple for
171 genes : p.adj < 0.05, log2FC > 1, in orange for p_{adj}<0.05, log₂FC<1 and in yellow
172 for p_{adj} >0.05, log₂FC<1. P-values were adjusted for false discovery rate using
173 Benjamini Hochberg method. (C) Genes from the leading edge of cholesterol
174 homeostasis pathway were subjected to hierarchical clustering for both conditions
175 DFMO treated or CVB3 infected cells relative to untreated cells. Log₂ fold change
176 from target genes are displayed as a heat map. (D) Cholesterol synthesis pathway
177 with the representation of down-regulated genes HMGCS1, HMGCR and MVD.
178

179 **Polyamine depletion decreases cholesterol gene expression, protein levels, and**
180 **intracellular cholesterol.** To test polyamines' effect on the transcription of cholesterol synthesis
181 genes and confirm the RNA-seq data, cells were treated for four days with increasing
182 concentrations of DFMO. RNA was then extracted and RT-qPCR was performed using optimized
183 and specific primers. HMGCR, HMGCS, and MVD showed moderate but significant reductions in
184 expression (Fig. 3A-C), aligning with the RNA-sequencing data. To determine if this reduction in
185 transcription affected protein synthesis, we examined total cellular levels of HMGCR and MVD by
186 western blot. Both proteins showed reduced levels with polyamine depletion (Fig. 3D). Finally, to
187 determine if reduction of transcription and translation of cholesterol synthesis proteins affected
188 intracellular cholesterol, cells were treated with DFMO for 96h, and the total amount of cellular
189 cholesterol was measured via a luciferase-based cholesterol assay. We found that total cellular
190 cholesterol was significantly reduced with DFMO treatment, consistent with a decrease in
191 expression of cholesterol synthesis genes (Fig. 3E). Thus, cellular cholesterol synthesis relies on
192 polyamines through the expression of cholesterol synthetic proteins.
193

194

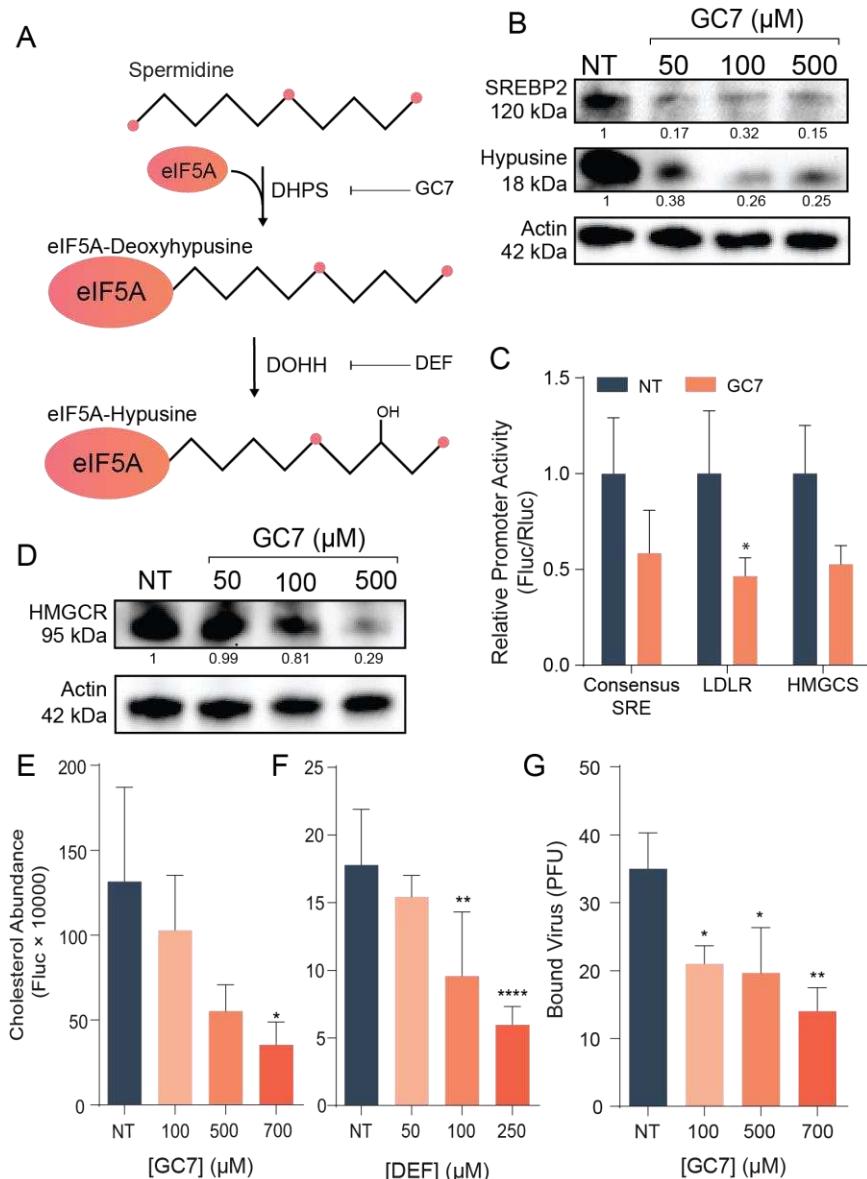

195 **Figure 3. Depletion of polyamines decreases cholesterol synthesis gene**
196 **expression, translation, and intracellular abundance.** (A-C) Normalized qPCR
197 of cholesterol synthesis genes relative to actin expression in Huh7 cells treated
198 with DFMO. (D) Western blot of Huh7 cells treated with increasing doses of DFMO.
199 Actin was used as a loading control. (E) Intracellular cholesterol abundance in
200 DFMO treated Huh7 cells. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, and **** $p < 0.0001$
201 by the Student's *t* test. Data from at least three independent experiments.

202

203 **Polyamine-dependent SREBP2 translation but not transcription facilitates transcriptional**
204 **activity at cholesterol gene promoters.** Having observed that an array of cholesterol synthetic

205 enzymes were reduced in transcription and translation by polyamine depletion, we considered
206 that polyamines may affect a master regulator of their expression, rather than on each gene
207 individually. We hypothesized that polyamines were affecting the transcription factor sterol
208 regulatory binding protein 2 (SREBP2), one such regulator. SREBP2 is a multipass
209 transmembrane protein found within the ER. When cholesterol levels are low within the cell,
210 SREBP2 relocates to the Golgi where it is cleaved by S1P and S2P. The N-terminus of SREBP2
211 then relocates to the nucleus where it binds to sterol regulatory elements (SRE) to increase
212 transcription of cholesterol synthesis genes. To test the impact polyamines have on SREBP2,
213 Huh7 cells were treated with increasing doses of DFMO followed by qPCR (Fig. 4A). Unlike the
214 cholesterol synthetic genes, we observed no significant change in SREBP2 transcripts. However,
215 examining SREBP2 protein levels by western blot revealed that polyamine depletion caused a
216 reduction of SREBP2 protein (Fig. 4B). To determine if this reduction of SREBP2 translation was
217 sufficient to impact the expression of cholesterol synthesis genes, we measured the activity of
218 SREBP2 binding to its promoter, the SRE. We transfected cells with or without polyamines with
219 a construct encoding firefly luciferase driven by distinct cellular SREs. We used the HMGCS SRE,
220 the LDLR SRE, and a generalized SRE created with the SRE consensus sequence. Additionally,
221 we transfected renilla luciferase to control for effects of polyamine depletion on luciferase
222 translation. When we measured SRE activity, we noted a significant reduction in activity in
223 polyamine depleted cells for all SREs tested, suggesting that polyamine depletion impacts SRE
224 promoter activity, likely due to a reduction in SREBP2 translation. Thus, polyamines facilitate
225 translation and activity but not transcription of SREBP2.

226



227
228 **Figure 4. SREBP2 translation is dependent on polyamines.** (A) Normalized
229 qPCR of SREBP2 with increasing doses of DFMO (0.1, 0.5, 1, 5mM) relative to
230 actin expression in Huh7 cells. (B) Western blot of SREBP2 in DFMO treated Huh7
231 cells. Actin was used as a loading control. (C) Huh7 cells were treated with 1mM
232 DFMO for 96h followed by transfection with the promoter luciferase constructs and
233 siCheck. Results are normalized to NT and are relative to renilla activity. * $p < 0.05$
234 and ** $p < 0.01$ by two-way ANOVA. Data from at least three independent
235 experiments.

236
237 **Polyamine-dependent eIF5A hypusination supports SREBP2 translation and cholesterol**
238 **synthesis.** A well-described mechanism by which polyamines support cellular translation is
239 through the post-translational modification of eIF5A, in which spermidine is conjugated and
240 hydroxylated, forming a unique amino acid called hypusine (Fig. 5A). While the precise
241 mechanism(s) by which hypusinated eIF5A facilitates translation remain incompletely understood,
242 it is known that a subset of cellular proteins rely on this enzyme for efficient translation. To
243 determine if SREBP2 is included in this subset, we treated cells with inhibitors of the hypusination
244 pathway. Inhibition of the deoxyhypusine synthase (DHPS) inhibitor GC7 resulted in a dose-
245 dependent reduction in SREBP2 protein levels, concomitant with a reduction in cellular
246 hypusinated eIF5A (Fig 5B). In concurrence with this, treatment with GC7 resulted in significant
247 reduction of SRE promoter activity (Fig. 5C). Additionally, we observed a reduction in HMGCR

248 protein levels with increasing GC7 or deferiprone treatment (Fig. 5D). To confirm that these
249 changes in SREBP2 and cholesterol synthesis gene expression affected cellular cholesterol, we
250 again measured total cellular cholesterol in cells treated with increasing doses of GC7 (Fig. 5E)
251 or the deoxyhypusine hydroxylase (DOHH) inhibitor deferiprone (DEF) (Fig. 5F). Similar to our
252 results with DFMO, we observed a significant, dose-dependent reduction in cellular cholesterol
253 when hypusination was inhibited, suggesting that polyamines facilitate cholesterol synthesis
254 through hypusination. Finally, to confirm that hypusinated eIF5A contributes to viral attachment,
255 as we see with DFMO, we treated cells with increasing doses of GC7, performed an attachment
256 assay, and counted attached viruses (Fig. 5G). We observed a dose-dependent decrease of viral
257 attachment with GC7 treatment, suggesting hypusinated eIF5A facilitates viral attachment.

258

259

260

261

262

263

264

265

266

267

268

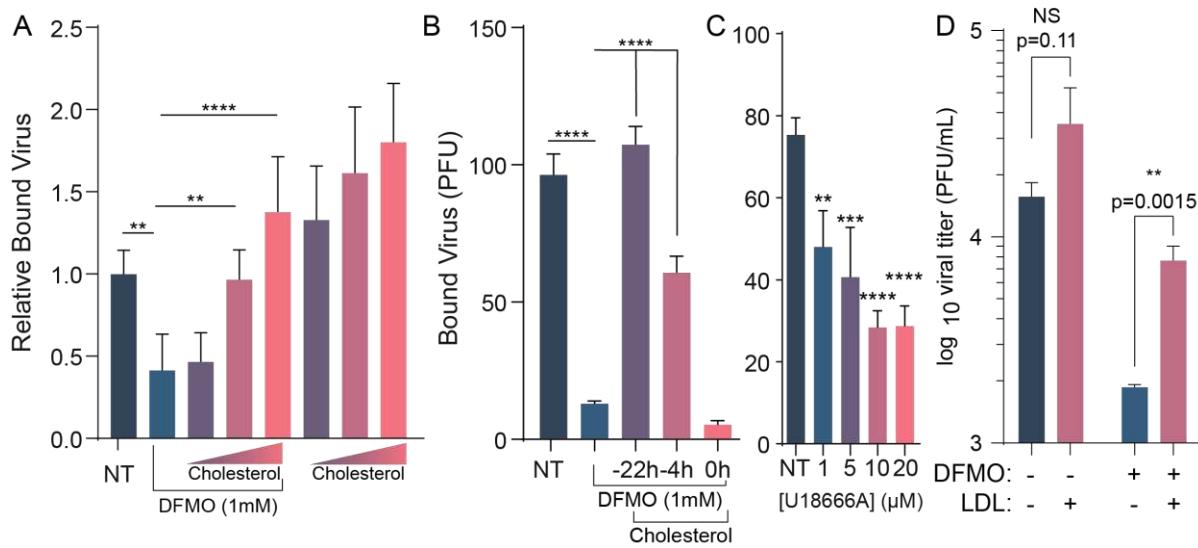
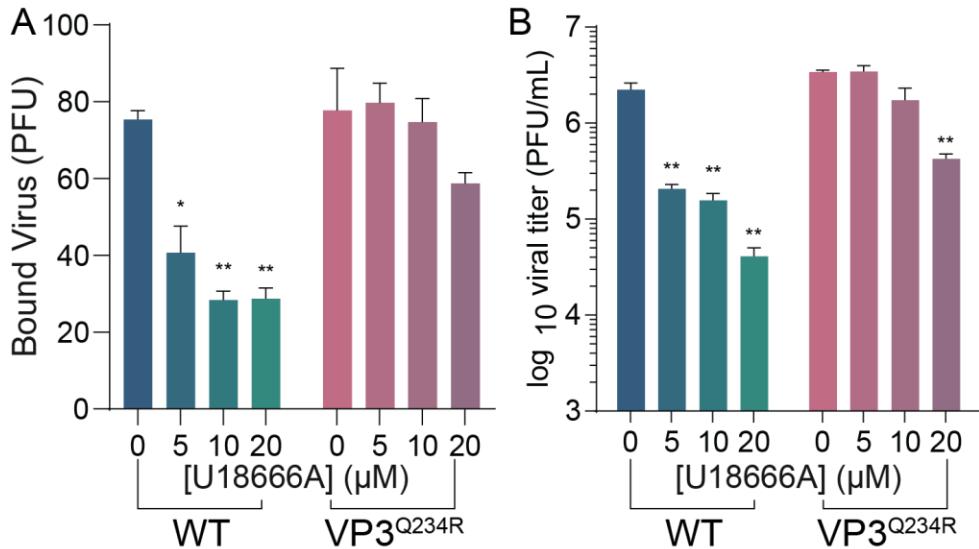

269

Figure 5. Hypusination supports cholesterol synthesis. (A) Pathway of eIF5A hypusination and its inhibition. (B) Western blot of Huh7 cells treated with increasing doses of GC7 probed for SREBP2 and hypusine-eIF5a. Actin was used as a loading control. (C) Huh7 cells treated with 500 μM GC7 for 24h followed by transfection with the promoter luciferase constructs and siCheck as a transfection control. Results were normalized to NT and are relative to renilla activity from siCheck. Two-way ANOVA was used to analyze statistical significance. (D) Western blot of Huh7 cells treated with increasing doses of GC7 and probed for HMGCR and actin was used as the loading control. (E-F) Intracellular cholesterol abundance of GC7 (E) and DEF (F) treated Huh7 cells. Y-axis is Fluc value

270 x10000. (G) Number of CVB3 plaque forming units bound to GC7 treated Vero
271 cells. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, and **** $p < 0.0001$ by the Student's *t* test.
272 Data from at least three independent experiments.
273

274 **Exogenous cholesterol rescues CVB3 attachment to polyamine depleted cells and**
275 **replication.** Viruses require diverse cellular factors to mediate attachment and entry, including
276 cholesterol. To determine if cholesterol is a key polyamine-modulated molecule in this process,
277 we attempted to rescue viral attachment and replication by adding cholesterol to cells
278 exogenously. Cells depleted of polyamines were treated with increasing doses of cholesterol
279 overnight, followed by washing away excess cholesterol and performing a binding assay as
280 before. When plaques were revealed, we found that cholesterol significantly rescued CVB3
281 binding in a dose dependent manner (Fig. 6A). To test if this rescue was due to a direct interaction
282 of CVB3 and cholesterol or if cholesterol had to be incorporated into cellular membranes,
283 cholesterol was added to cells at 22 h, 4 h, and 0 h before CVB3 binding. Only cholesterol added
284 22 h and 4 h before binding was able to significantly rescue CVB3 binding to polyamine depleted
285 cells (Fig. 6B), suggesting that viral attachment requires cellular cholesterol incorporation. Finally,
286 to determine if cholesterol could rescue virus replication in polyamine-depleted cells, we
287 measured viral titers in DFMO- and cholesterol-treated cells. DFMO significantly reduced viral
288 titers, and treatment with exogenous cholesterol significantly increased these titers, though not to
289 untreated levels, highlighting that polyamines affect cholesterol to support viral replication but also
290 that polyamines play multiple roles in infection.

291

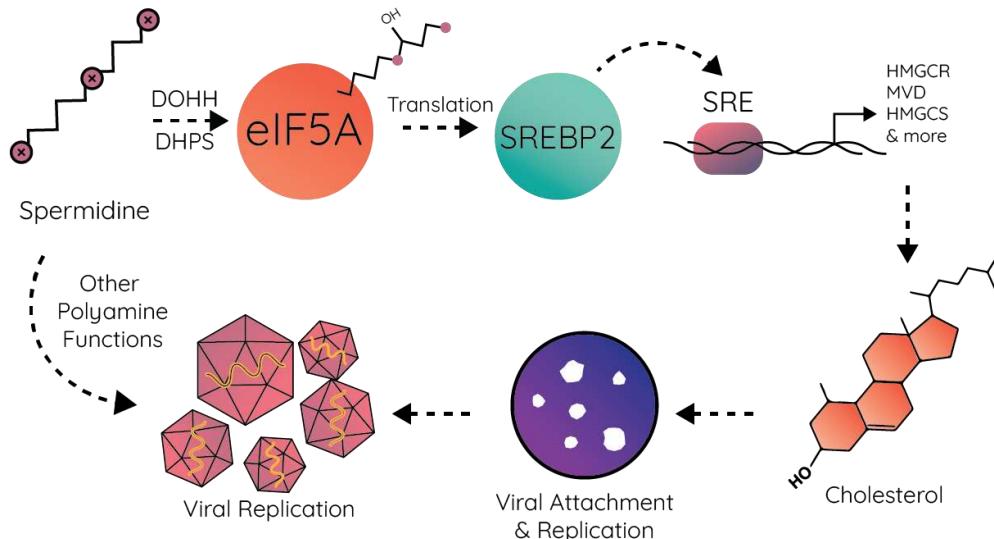

292

293 **Figure 6. Addition of cholesterol rescues CVB3 attachment and replication**
294 **in polyamine depleted cells.** (A) Binding assay of Vero cells were left untreated
295 or treated with DFMO for 96 h. After 72 h, cells were treated with 100, 250, or 500
296 $\mu\text{g/mL}$ for 16-24h. (B) Binding assay of DFMO treated Vero cells treated with 500
297 $\mu\text{g/mL}$ cholesterol for the indicated times. (C) Binding assay of Vero cells treated
298 with increasing concentrations of U1866A. (D) Huh7 cells were left untreated or
299 treated with DFMO for 96 h. After 72 h, the cells were treated with 100 $\mu\text{g/mL}$ LDL
300 for 24 h followed by infection with CVB3 at an MOI of 0.1. Virus was collected after
301 24 h and the PFU/mL was quantified via titration. * $p < 0.05$, ** $p < 0.01$, *** $p <$
302 0.001, and **** $p < 0.0001$ by the Student's *t* test. Data from at least three
303 independent experiments.

304

305 We previously described a viral mutant that exhibits enhanced viral attachment in polyamine
306 depleted cells via mutation of VP3 at position 234. This mutant was found when we passaged
307 virus in DFMO-treated cells, suggesting that CVB3 harboring this mutation may be resistant to
308 polyamine depletion by overcoming a block in attachment. To determine if this block was
309 cholesterol, we considered viral attachment in cells where cholesterol transport is impaired. The
310 inhibitor U18666a, an NPC1 inhibitor, impacts cellular transport of cholesterol and reduces
311 plasma membrane levels. We found that treatment of cells with U18666a reduced CVB3
312 replication in a dose-dependent manner, as well as attachment. We next considered that CVB3
313 VP3^{Q234R} may be resistant to this inhibitor. When we performed an attachment assay on U18666a
314 treated cells using CVB3 VP3^{Q234R}, we observed a modest reduction in viral attachment compared
315 to WT CVB3, suggesting that the mutant may overcome polyamine depletion via bypassing the
316 need for cholesterol. Additionally, we measured viral titers in U18666a-treated cells infected with
317 CVB3 VP3^{Q234R} and observed titers significantly higher than WT CVB3. Together, these data
318 suggest that polyamines support cholesterol synthesis to promote viral attachment and that CVB3
319 is able to overcome polyamine depletion by mutation of VP3, which bypasses the need for
320 cholesterol in viral attachment.

321


322
323 **Figure 7. CVB3 VP3^{Q234R} mutant is resistant to reduction of cytoplasmic**
324 **cholesterol.** (A) Huh7 cells were treated with increasing doses of U18666A for
325 16h prior to binding WT and VP3^{Q234R} mutant CVB3. Bound virus was enumerated
326 by counting plaques indicative of attached virus. (B) Cells were treated as in (A)
327 and infected at MOI 0.1 with WT and VP3^{Q234R} mutant CVB3. Viral titers were
328 determined at 24 hpi. *p<0.05, **p<0.01 via Student's *t* test from three independent
329 experiments.

330

331 **Discussion**

332 Polyamines function in diverse ways within the cell, and their connections to distinct metabolic
333 pathways are still being discovered. Here, we establish a novel connection between polyamines
334 and cholesterol synthesis. Prior work has described how animal models treated with DFMO
335 exhibited altered serum lipid profiles, though the molecular mechanisms remained unexplored.
336 We found that polyamines support intracellular cholesterol levels through the hypusination of
337 eIF5A, which is required for translation of SREBP2, a key regulator in cholesterol homeostasis.
338 This results in reduced SREBP2 protein levels when cells are treated with DFMO or when
339 hypusination is specifically inhibited. The reduction of SREBP2 causes a significant reduction of
340 sterol synthesis gene expression, culminating in reduced cellular cholesterol. This polyamine-
341 mediated cholesterol depletion also effects CVB3's ability to attach to cells, and this binding is
342 rescued when cholesterol is added to cells.

343

344

345 **Figure 8. Working model.** Polyamines facilitate hypusination of eIF5A, which
346 promotes SREBP2 translation. SREBP2 binds to SREs on the promoters of
347 cholesterol synthesis genes, leading to their expression and cholesterol synthesis.
348 Cellular cholesterol synthesis enhances CVB3 attachment and, subsequently viral
349 replication.

350

351 The process of hypusination has been well studied and defined, though the precise mechanisms
352 by which hypusination of eIF5A supports translation remains to be fully elucidated. Hypusine-
353 eIF5A is required for cellular proliferation and translation of “hard-to-read” sequences, such as
354 poly-proline motifs. However, the specific genes that require hypusine-eIF5A are not well known.
355 Here we have found that SREBP2 requires hypusine-eIF5A to be translated. While HMGCR does
356 not have any poly-prolines, it does have a 3 amino acid motif, GGT, at position 807, that has been
357 shown to be require hypusine-eIF5A⁴. SREBP2 on the other hand has multiple poly-proline
358 repeats as well as other 3 amino acid motifs shown to require hypusine-eIF5A. Furthermore, a
359 study found hypusine-eIF5A is involved in cotranslation translocation of proteins into the ER,
360 where SREBP2 is found²⁹. Our findings demonstrate another level of regulation of the cholesterol
361 synthesis pathway, translational regulation of SREBP2. Since polyamines are also vital for cellular
362 proliferation, a lack of polyamines will prevent crucial proliferation genes from being translated.

363

364 The roles of polyamines in viral infection are diverse and appear to be distinct for different viral
365 families. In the case of enteroviruses, like CVB3, prior work showed that polyamines facilitate
366 cellular attachment and protease activity. However, the mechanism(s) by which polyamines
367 promote these activities was unclear. Cholesterol is a key molecule in enterovirus attachment,

368 and its association with lipid rafts has been demonstrated to facilitate CVB3 engagement with its
369 receptor (Coxsackie- and adenovirus receptor, CAR). For many viruses, cholesterol and lipids
370 promote not only entry, but also viral replication, either through the formation of viral replication
371 compartments on specific cellular members or through the hydrolysis of lipids to release energy
372 for replication. While polyamines have previously been described to facilitate viral genome
373 replication for both chikungunya virus and Ebolavirus, it remains to be determined if this
374 phenotype could be through the synthesis of cellular cholesterol. Prior work highlighted effects of
375 polyamines on viral proteins, such as the polymerase, but our work highlights an indirect effect
376 on virus infection, specifically through cholesterol synthesis.

377

378 Although we show that SREBP2 relies on polyamines for translation through hypusinated eIF5A,
379 regulation of SREBP2 and its activity is complex. Polyamines play a wide variety of roles within
380 the cell, one of which is stabilizing DNA and promoting transcription factor engagement. Another
381 potential area of involvement for polyamines within the cholesterol pathway is the stabilization of
382 SREBP2 binding of SRE. It has previously been shown that polyamines maintain the estrogen
383 receptor elements (ERE) in the correct motif to allow for estrogen receptor (ER) to bind, and a
384 lack of polyamines decreased the ability of ER to bind to EREs. Polyamines also play a role in
385 protease function. Our lab previously demonstrated that both of CVB3's proteases develop
386 mutations in response to polyamine depletion, making them resistant to the lack of polyamines,
387 suggesting a role for polyamines in protease activity. SREBP2 processing requires two proteases,
388 S1P and S2P, for its maturation. It is unclear whether SREBP2 cleavage or S1P/S2P protease
389 activity relies on polyamines. It is unlikely that hypusine-eIF5A is affecting another protein
390 upstream of SREBP2 as its expression levels do not significantly change with DFMO treatment.

391

392 eIF5A is the only enzyme within the eukaryotic cell to be hypusinated, and it supports the
393 translation of diverse cellular proteins. Prior work showed that Ebolavirus relies on hypusination
394 specifically for the translation of VP35, a viral transactivator that facilitates viral gene expression.
395 Other work showed that inhibitors of hypusination reduce translation of retroviruses, including
396 HIV-1. The direct roles of eIF5A hypusination in viral protein synthesis remain to be fully explored
397 for many viruses, including CVB3. However, hypusinated eIF5A's roles in cellular translation also
398 affect viral replication, as seen here. Thus, hypusinated eIF5A is an important drug target due to
399 its potential direct and indirect effects on virus replication. Additional exploration of mechanisms
400 connecting hypusinated eIF5A to viral and cellular factors involved in infection will further
401 illuminate how this molecule and polyamines support the replication of diverse viruses.

402

403 **Acknowledgments**

404 We thank The University of Chicago Genomics Facility (RRID:SCR_019196) especially Dr. Pieter
405 Faber, for assistance with transcriptomic analyses. This work was supported by R35GM138199
406 from NIGMS (BCM), T32 AI007508 (MRF), and the W.M. Keck Foundation (PSS). We thank Dr.
407 Susan Uprichard for Huh7 cells.

408

409 **Materials and methods**

410 **Cell Culture and Virus Enumeration**

411 Cells were maintained in Dulbecco's modified Eagle's medium (DMEM; Life Technologies) with
412 bovine serum (FBS; Thermo-Fischer) and penicillin-streptomycin at 37°C and 5% CO₂. Huh7 cells
413 were supplemented with 10% fetal bovine serum (FBS; Thermo-Fischer). Vero cells were
414 obtained through BEI Resources. Vero cells were supplemented with 10% new-born calf serum
415 (NCBS; Thermo-Fischer). CVB3 (Nancy strain) was derived from the first passage of virus in Vero
416 cells after rescue from an infectious clone. Viral stocks were maintained at -80°C. Viral titers were
417 enumerated as previously described¹³.

418

419 **Drug Treatments**

420 Difluoromethylornithine (DFMO; TargetMol) was diluted to a 100mM solution in sterile water. For
421 DFMO treatments, cells were trypsinized (Zymo Research) and reseeded with fresh medium
422 supplemented with 2% FBS (Huh7) or 2% NCBS (Vero). Cells were treated with 1mM DFMO
423 unless otherwise indicated. Cells were incubated with DFMO for 96h to allow for depletion of
424 polyamines. GC7 was diluted to a 100mM solution in sterile water. Freshly seeded cells were
425 treated with GC7 along with 500µM aminoguanidine for 16-24h. Cholesterol was diluted to 10
426 mg/mL in ethanol then added to adherent cells for 16-24h.

427

428 **RNA Purification and cDNA Synthesis**

429 Media were cleared from cells, and Trizol reagent (Zymo Research) was added directly. Lysate
430 was then collected, and RNA was purified through a Zymo RNA extraction kit. Purified RNA was
431 subsequently used for cDNA synthesis using High Capacity cDNA Reverse Transcription Kits
432 (Thermo-Fischer), according to the manufacturer's protocol, with 10–100 ng of RNA and random
433 hexamer primers.

434

435 **RNA Sequencing**

436 RNA was purified and prepared as described from Huh7 cells treated for 96h with DFMO or
437 infected for 24h with CVB3. Libraries were prepared by the University of Chicago Genomics
438 Facility and analyzed by Illumina NovaSeq 6000. Read quality was evaluated using FastQC
439 (v0.11.5). Adapters were trimmed in parallel to a quality trimming (bbduk,
440 sourceforge.net/projects/bbmap/). All remaining sequences were mapped against the human
441 reference genome build 38 with STAR (v2.5.2b)³⁰. HTseq (v0.6.1) was used to count all reads for
442 each gene and set up a read count table³¹. Differential gene expression analyses were performed
443 using the DESeq2 Bioconductor package (v1.30.1)³². The default “ashr” shrinkage (v2.2-47)³³ set
444 up was used for our analysis. Gene set enrichment analysis (GSEA) was performed with the fgsea
445 Bioconductor package³⁴, using Hallmark gene sets downloaded from the Molecular Signatures
446 Database³⁵.

447

448 **Plaque Formation Attachment Assay**

449 Vero cells were seeded in 6-well plates and grown to 100% confluence in DMEM with 2% NCBS
450 and treated for 96h with the indicated concentrations of DFMO. After 96 h of DFMO treatment,
451 cells were placed on ice and the media aspirated from the cells. 500 uL of serum free media
452 containing 1000 PFU CVB3 was added to cells on ice for 5 min. Cells were washed 3x with PBS
453 and then overlaid with 0.8% agarose containing DMEM with 2% NCBS. The plates were incubated
454 at 37°C for 2 days for plaques to develop. The cells were fixed with 4% formalin, and the plaques
455 were visualized with crystal violet staining. For the cholesterol rescue, cells were washed 3x with
456 PBS before infecting with CVB3.

457

458 **qPCR Gene Expression Assay**

459 Huh7 cells were seeded at 4 x 10⁴ cells per well in 24-well plates in DMEM with 2% FBS. Cells
460 were treated with varying concentrations of DFMO for 96 h. After 96 h, the media was aspirated
461 off cells, washed 1x with PBS, and then, 200 uL of Trizol was added to the cells. The RNA was
462 extracted with the Zymo RNA extraction kit, converted to cDNA, and quantified by real-time PCR
463 with SYBR Green (DotScientific) using the one-step protocol QuantStudio 3 (ThermoFisher
464 Scientific). Relative expression was calculated using the $\Delta\Delta C^T$ method, normalized to the β -actin
465 qRT-PCR control, and calculated as the fraction of the untreated samples. Primers were verified
466 for linearity using 8-fold serial diluted cDNA and checked for specificity via melt curve analysis.
467 The primer sequences are as follows: HMGCR, (F) 5'-GAG ACA GGG ATA AAC CGA GAA AG-
468 3' and (R): 5'-GGA GGA GTT ACC AAC CAC AAA-3'; HMGCS, (F): 5'-CCT GCC AAG AAA GTA
469 CCA AGA-3' and (R): 5'-GTC TTG CAC CTC ACA GAG TAT C-3'; MVD (F): 5'-TGG TTC TGC

470 CCA TCA ACT C-3' and (R): 5'-GGT GAA GTC CTT GCT GAT GA-3'; SREBP2 (F): 5'-CTG TAG
471 CGT CTT GAT TCT CTC C-3' and (R): 5'-CCT GGC TGT CCT GTG TAA TAA-3'.

472

473 **Western Blot**

474 Samples were collected with Bolt LDS Buffer and Bolt Reducing Agent (Invitrogen, Waltham, MA,
475 USA) and run on polyacrylamide gels. Gels were transferred using the iBlot 2 Gel Transfer Device
476 (Invitrogen). Membranes were blocked with 5% BSA in TBST then probed with primary antibodies
477 for HMGCR (Ms mAb, 1:1000, abcam), MVD (1:1000, Santa Cruz), SREBP2 (Gt pAb, 1:1000, R&D
478 Systems), Hypusine (Rb pAb, 1:2000, EMD Millipore) or β -actin (Ms mAb, 1:1000, proteintech)
479 overnight at 4°C. Membranes were then washed 3x in TBST followed by 1h incubation of in
480 secondary antibody (Gt α Ms/Gt α Rb/Donkey α Gt HRP, 1:15000, Jackson Labs). After 3 additional
481 washes in TBST, membranes were treated with SuperSignal West Pico PLUS Chemiluminescent
482 Substrate (ThermoFisher Scientific) and visualized on Fluorchem E imager (Protein Simple, San
483 Jose, CA, USA). Quantification of western blots were done by using ImageJ and normalizing to
484 NT and relative to actin density.

485

486 **Intracellular Cholesterol Abundance Assay**

487 Huh7 cells were plated at a density of 5000 cells/well in a 96 well plate in DMEM with 2% FBS.
488 Cells were treated with DFMO for 96h or after 72h, treated with DEF or GC7 for 24h. The following
489 day, the media was removed from cells followed by a PBS wash. To measure total intracellular
490 cholesterol abundance, we used the Cholesterol/Cholesterol Ester-Glo Assay™ (Promega) in
491 accordance to manufacturer's protocol.

492

493 **SRE promoter luciferase**

494 Complimentary primers were made containing SRE consensus sequence were ordered flanked
495 by Sfil cut site overhangs (FWD: 5'-CGGCC ATCACCCAC GCCCTCGG-3'; REV 3'-
496 GCCGCCGG TAGTGGGGTG CCGGA-5'). Primers were phosphorylated and annealed at 37°C
497 for 30 minutes then 95°C for 5 minutes and were allowed to cool to 25°C. pGL4.10 (Promega)
498 was digested with Sfil in Fast Digest buffer for 15 min at 50°C. The cut plasmid was ran through
499 DNA clean up kit. The annealed primers were then ligated into the cut plasmid using T4 ligase
500 followed by transformation into chemical competent E. Coli. Colonies were picked and grown up
501 followed by sequencing to confirm the SRE sequence was present.

502

503 **Promoter Luciferase Assay**

504 Huh7 cells were plated in a 96 well plate with 2% FBS DMEM then treated with 1 mM DFMO for
505 96 h or after 96 h, treated with 500 uM GC7. Cells were transfected with SRE-pGL4.10, 5'
506 HMGCS-Fluc (addgene #60444), or pLDLR-Luc (addgene #14940) after cells had been plated
507 for 96 h. All cells were transfected with the renilla control plasmid siCheck (Promega). 100 ng of
508 plasmid were transfected with LipoD293 according to manufacturer's protocol. 24 h after
509 transfection, media was removed followed by one wash with PBS. Cells were then lysed with
510 gentle lysis buffer for 15 min.

511

512 **Statistical analysis**

513 Prism 6 (GraphPad) was used to generate graphs and perform statistical analysis. For all
514 analyses, a two-tailed Student's *t* test was used to compare groups, unless otherwise noted.

515

516 **References**

- 517 1. Mounce, B. C., Olsen, M. E., Vignuzzi, M. & Connor, J. H. Polyamines and Their Role in
518 Virus Infection. *Microbiol. Mol. Biol. Rev. MMBR* **81**, (2017).
- 519 2. Burri, C. & Brun, R. Eflornithine for the treatment of human African trypanosomiasis.
520 *Parasitol. Res.* **90 Supp 1**, S49-52 (2003).
- 521 3. Park, M. H., Cooper, H. L. & Folk, J. E. Identification of hypusine, an unusual amino
522 acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor.
523 *Proc. Natl. Acad. Sci. U. S. A.* **78**, 2869–2873 (1981).
- 524 4. Schuller, A. P., Wu, C. C.-C., Dever, T. E., Buskirk, A. R. & Green, R. eIF5A Functions
525 Globally in Translation Elongation and Termination. *Mol. Cell* **66**, 194-205.e5 (2017).
- 526 5. Gutierrez, E. *et al.* eIF5A Promotes Translation of Polyproline Motifs. *Mol. Cell* **51**, 35–45
527 (2013).
- 528 6. D'Agostino, M. *et al.* Insights Into the Binding Mechanism of GC7 to Deoxyhypusine
529 Synthase in *Sulfolobus solfataricus*: A Thermophilic Model for the Design of New Hypusination
530 Inhibitors. *Front. Chem.* **8**, 1170 (2020).
- 531 7. Park, M. H., Joe, Y. A., Kang, K. R., Lee, Y. B. & Wolff, E. C. The polyamine-derived
532 amino acid hypusine: its post-translational formation in eIF-5A and its role in cell proliferation.
533 *Amino Acids* **10**, 109–121 (1996).
- 534 8. Mounce, B. C. *et al.* Chikungunya Virus Overcomes Polyamine Depletion by Mutation of
535 nsP1 and the Opal Stop Codon To Confer Enhanced Replication and Fitness. *J. Virol.* **91**,
536 (2017).
- 537 9. Olsen, M. E., Cressey, T. N., Mühlberger, E. & Connor, J. H. Differential Mechanisms for
538 the Involvement of Polyamines and Hypusinated eIF5A in Ebola Virus Gene Expression. *J.*
539 *Virol.* **92**, (2018).

540 10. Mastrodomenico, V. *et al.* Polyamine depletion inhibits bunyavirus infection via
541 generation of noninfectious interfering virions. *J. Virol.* **JVI.00530-19** (2019)
542 doi:10.1128/JVI.00530-19.

543 11. Firpo, M. R. *et al.* Targeting Polyamines Inhibits Coronavirus Infection by Reducing
544 Cellular Attachment and Entry. *ACS Infect. Dis.* **acsinfecdis.0c00491** (2020)
545 doi:10.1021/acsinfecdis.0c00491.

546 12. Dial, C. N., Tate, P. M., Kicmal, T. M. & Mounce, B. C. Coxsackievirus B3 Responds to
547 Polyamine Depletion via Enhancement of 2A and 3C Protease Activity. *Viruses* **11**, 403 (2019).

548 13. Kicmal, T. M., Tate, P. M., Dial, C. N., Esin, J. J. & Mounce, B. C. Polyamine depletion
549 abrogates enterovirus cellular attachment. *J. Virol.* **JVI.01054-19** (2019) doi:10.1128/JVI.01054-
550 19.

551 14. Hulsebosch, B. M. & Mounce, B. C. Polyamine Analog Diethylnorspermidine Restricts
552 Coxsackievirus B3 and Is Overcome by 2A Protease Mutation In Vitro. *Viruses* **13**, 310 (2021).

553 15. Pons-Salort, M., Parker, E. P. K. & Grassly, N. C. The epidemiology of non-polio
554 enteroviruses: recent advances and outstanding questions. *Curr. Opin. Infect. Dis.* **28**, 479–487
555 (2015).

556 16. Massilamany, C., Gangaplara, A. & Reddy, J. Intricacies of cardiac damage in
557 coxsackievirus B3 infection: Implications for therapy. *Int. J. Cardiol.* **177**, 330–339 (2014).

558 17. Chapman, N. M. & Kim, K.-S. Persistent Coxsackievirus Infection: Enterovirus
559 Persistence in Chronic Myocarditis and Dilated Cardiomyopathy. in *Group B Coxsackieviruses*
560 275–292 (Springer, Berlin, Heidelberg, 2008). doi:10.1007/978-3-540-75546-3_13.

561 18. Coxsackievirus B3 replication and pathogenesis | Future Microbiology.
562 <https://www.futuremedicine.com/doi/full/10.2217/fmb.15.5>.

563 19. Archard, L. C. *et al.* Molecular probes for detection of persisting enterovirus infection of
564 human heart and their prognostic value. *Eur. Heart J.* **12**, 56–59 (1991).

565 20. Mounce, B. C. *et al.* Inhibition of Polyamine Biosynthesis Is a Broad-Spectrum Strategy
566 against RNA Viruses. *J. Virol.* **90**, 9683–9692 (2016).

567 21. Danthi, P. & Chow, M. Cholesterol Removal by Methyl- β -Cyclodextrin Inhibits Poliovirus
568 Entry. *J. Virol.* **78**, 33–41 (2004).

569 22. Stuart, A. D., Eustace, H. E., McKee, T. A. & Brown, T. D. K. A Novel Cell Entry Pathway
570 for a DAF-Using Human Enterovirus Is Dependent on Lipid Rafts. *J. Virol.* **76**, 9307–9322
571 (2002).

572 23. Ilnytska, O. *et al.* Enteroviruses harness the cellular endocytic machinery to remodel the
573 host cell cholesterol landscape for effective viral replication. *Cell Host Microbe* **14**, 281–293
574 (2013).

575 24. 6.35 Cholesterol Synthesis | Nutrition Flexbook.
576 <https://courses.lumenlearning.com/suny-nutrition/chapter/6-35-cholesterol-synthesis/>.

577 25. Hua, X. *et al.* SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that
578 stimulates transcription by binding to a sterol regulatory element. *Proc. Natl. Acad. Sci.* **90**,
579 11603–11607 (1993).

580 26. Luo, J., Yang, H. & Song, B.-L. Mechanisms and regulation of cholesterol homeostasis.
581 *Nat. Rev. Mol. Cell Biol.* **21**, 225–245 (2020).

582 27. Pirinen, E. *et al.* Activated polyamine catabolism leads to low cholesterol levels by
583 enhancing bile acid synthesis. *Amino Acids* **38**, 549–560 (2010).

584 28. Brown, A. P., Morrissey, R. L., Crowell, J. A. & Levine, B. S. Difluoromethylornithine in
585 combination with tamoxifen in female rats: 13-week oral toxicity study. *Cancer Chemother.*
586 *Pharmacol.* **44**, 475–483 (1999).

587 29. Rossi, D. *et al.* eIF5A has a function in the cotranslational translocation of proteins into
588 the ER. *Amino Acids* **46**, 645–653 (2014).

589 30. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
590 (2013).

591 31. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-
592 throughput sequencing data. *Bioinformatics* **31**, 166–169 (2015).

593 32. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
594 for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

595 33. Stephens, M. False discovery rates: a new deal. *Biostatistics* **18**, 275–294 (2017).

596 34. Korotkevich, G. *et al.* Fast gene set enrichment analysis. 060012
597 <https://www.biorxiv.org/content/10.1101/060012v3> (2021) doi:10.1101/060012.

598 35. Liberzon, A. *et al.* Molecular signatures database (MSigDB) 3.0. *Bioinformatics* **27**,
599 1739–1740 (2011).

600