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ABSTRACT

It is increasingly recognized that multiple psychiatric conditions are underpinned by shared neural
pathways, affecting similar brain systems. Here, we assessed i) shared dimensions of alterations in
cortical morphology across six major psychiatric conditions (autism spectrum disorder, attention
deficit/hyperactivity disorder, major depression, obsessive-compulsive disorder, bipolar disorder,
schizophrenia) and ii) carried out a multiscale neural contextualization, by cross-referencing shared
anomalies against cortical myeloarchitecture and cytoarchitecture, as well as connectome and
neurotransmitter organization. Pooling disease-related effects on MRI-based cortical thickness
measures across six ENIGMA working groups, including a total of 28,546 participants (12,876
patients and 15,670 controls), we computed a shared disease dimension on cortical morphology using
principal component analysis that described a sensory-fugal pattern with paralimbic regions showing
the most consistent abnormalities across conditions. The shared disease dimension was closely related
to cortical gradients of microstructure and intrinsic connectivity, as well as neurotransmitter systems,
specifically serotonin and dopamine. Our findings embed the shared effects of major psychiatric
conditions on brain structure in multiple scales of brain organization and may provide novel insights
into neural mechanisms into transdiagnostic vulnerability.

KEYWORDS: psychiatric condition; cortical thickness; gradient; cytoarchitecture; neurotransmitter;
multisite; multiscale
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INTRODUCTION

Mental illness refers to a wide range of psychiatric conditions, affecting individuals, families, and
health systems at large [1]. While conventional psychiatric nosology classifies mental illness into
distinct categories mainly based on descriptive symptoms and behaviors [2], high co-occurrence of
symptoms across disorders as well as transdiagnostic risk factors have prompted reconceptualization
of mental illnesses along symptom dimensions [3—8]. The dimensional framework benefits detailed
characterization of individual variations, and may allow for more direct brain-behavior associations
than classic case-control comparisons that capture multiple symptom classes and mask clinical
heterogeneity.

The shared components across major psychiatric diagnosis may be more clearly distinguishable at
the neural level [4, 9], as the behavioral level likely involves complex interactions with society and
the environment [10]. Structural magnetic resonance imaging (MRI), in particular, offers high spatial
precision to help resolve the pattern of shared transdiagnostic effects across the cortical surface [4,
11-16]. A large body of prior case-control studies has reported reproducible patterns of structural
alterations in cohorts with psychiatric diagnoses relative to controls [17-21], often pointing to
widespread changes in cortical morphology in these conditions. More recently, efforts have been
expanded to a transdiagnostic perspective, aiming to identify structural compromise that are shared
across different diagnoses [22-24]. To ensure sensitivity of such efforts and to strengthen
reproducibility, it becomes increasingly relevant to pool these investigations across multiple sites.
One such initiative, spearheaded by the Enhancing Neurolmaging Genetics through Meta-Analysis
(ENIGMA) consortium, has aggregated MRI and phenotypic data in thousands of healthy individuals
and those with a psychiatric diagnosis [25]. Moreover, dedicated ENIGMA working groups have
confirmed neuroanatomical disruptions in major psychiatric indications, including autism spectrum
disorder (ASD) [26], attention deficit hyperactivity disorder (ADHD) [27], major depressive disorder
(MDD) [28], obsessive-compulsive disorder (OCD) [29], bipolar disorder (BD) [30], and
schizophrenia (SZ) [31], pointing to widespread changes in cortical morphology in each of these
different conditions.

In addition to providing robust evidence of neuroanatomical signatures associated with each of these
conditions, an emerging body of studies has pooled data across different indications to identify shared
anomalies of psychiatric conditions [32, 33]. In an effort to identify factors contributing to the
topography of cross-disorder brain changes, a recent study has taken this approach one step further
and examined associations to post mortem gene expression data, searching for spatially co-varying
gene lists that may carry susceptibility to transdiagnostic disease effects. This study identified that
transdiagnostic effects may specifically be present in regions with greater expression of CAl
pyramidal genes that were suggested to play a role in regulating cortical thickness. Beyond these
molecular risk factors, there is a broad range of cellular, metabolic, and functional properties of brain
regions that may contribute to the regional susceptibility of transdiagnostic disease effects. An
influential theory, also referred to as the structural model, posits that the internal microstructural and
connectional markup of different brain regions, in particular their laminar differentiation and cortico-
cortical connectivity patterns, may represent mesoscale features associated with the potential of a
region to show plasticity, and to be susceptible to pathological processes [34]. According to this
framework, paralimbic cortices with low laminar differentiation and higher-order connectivity
profiles may be more susceptible to effects of neurological as well as psychiatric disorders. Here, we
tested this approach, by aligning transdiagnostic effects with maps of microstructural variations
derived from both in vivo imaging and 3D post mortem histology [35-38]. In recent work, the
application of non-linear eigenvector decomposition to these datasets identified a “sensory-fugal”
gradient that radiates from sensory and motor areas with strong laminar differentiation and higher
myelination towards heteromodal association and paralimbic regions with less clear lamination and
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lower myelin content. Of note, similar gradients have also been derived from the analysis of intrinsic
functional connectivity patterns obtained from resting-state functional MRI [37-39]. In line with
foundational neuroanatomical conceptualization [34, 40, 41], an emerging literature has underscored
a correspondence between such data-driven sensory-fugal gradients, and region-to-region variations
in cortical plasticity and genetic control [39, 42—46], suggesting that these likely help understand
susceptibility to disease as well [39, 42, 47-51].

The study of micro- and macroscale cortical organization as well as the identification of factors
contributing to disease-related susceptibility for psychiatric conditions can be further complemented
by studying associations to the neurotransmitter architecture of the human brain. Recent work based
on in vitro receptor autoradiography in non-human primates has suggested that neurotransmitter
systems are likely organized along similar gradients as cortical microstructure and connectivity,
enabling on the one hand rapid and reliable information processing in sensory areas on the one hand,
and slow, flexible integration of information in higher cognitive areas. Until similar resources become
available in humans, one can approximate the spatial distributions of different neurotransmitter
systems in vivo, based on the aggregation of positron emission tomography (PET) and single photon
computed emission tomography (SPECT) studies sensitive to different receptor an transporter types
[52—-58]. Such mapping can thus provide a molecular perspective to complement microstructural and
functional connectivity contextualization of transdiagnostic findings, promising new insights into
factors contributing to the susceptibility of the brain to effects of different psychiatric conditions.

Here, we studied the association between multiscale neural organization and transdiagnostic effects
on cortical morphology across six major psychiatric conditions, which represent a broad range of
common and severe neurodevelopmental indications (ASD, ADHD, MDD, OCD, BD, and SZ).
Aggregating data from thousands of patients and healthy controls previously studied across several
ENIGMA working groups [26-31], we defined shared effects using principal component analysis,
adapting a previous framework [32], and then associated the effects across multiple neural scales,
namely (i) in vivo myeloarchitecture and intrinsic functional connectivity, (ii) post mortem 3D
cytoarchitecture, and (ii1) in vivo maps of neurotransmitter distributions.

RESULTS

Study overview and participants

We obtained case-control maps of cortical thickness differences in patients relative to controls,
resulting from several ENIGMA meta-analyses provided by a previous study, aggregating a total of
28,546 participants across 145 independent cohorts (1,821 ASD, 1,815 ADHD, 2,695 MDD, 2,274
OCD, 1,555 BD, 2,716 SZ; 15,670 site-matched controls Table S1) [32]. We then associated
principal dimensions of morphological abnormalities with (i) in vivo myeloarchitecture and
functional connectivity gradients obtained from the Human Connectome Project (HCP) [59], (ii) post
mortem cytoarchitecture, by cross-referencing data to a ultra-high resolution 3D histological
reconstruction of a human brain [60], and (iii) in vivo neurotransmitter topographies provided by
PET/SPECT studies [52-58]. Approaches are openly available and replicable via the ENIGMA
toolbox (https://enigma-toolbox.readthedocs.io) [61]. See Methods for more details.

Shared dimensions of structural alterations across psychiatric conditions

Following standardized ENIGMA protocols (http://enigma.ini.usc.edu/protocols/imaging-protocols/),
gray matter thickness for 68 cortical regions of the Desikan-Killany atlas [62] was calculated, and
meta-analytic between-group differences in cortical thickness were assessed using inverse variance-
weighted random-effects models (Fig. 1A) [32]. Using principal component analysis adopted in a
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recent study [32], we then estimated the shared disease dimensions explaining structural alterations
across six conditions (Fig. 1B). The first dimension/component explained 55.7% of variance, and
differentiated sensory/motor systems having positive scores from transmodal/paralimbic areas with
negative scores (for details, and information on the other dimensions/components, see Fig. S1A).
Stratifying the first dimension according to intrinsic functional communities [63], it indeed
differentiated somatomotor/visual from default/frontoparietal/limbic networks (Fig. 1B). Similar
spatial patterns were observed across the levels of the putative primate cortical hierarchy [40],
differentiating idiotypic/unimodal from heteromodal/paralimbic levels. Notably, scores on the
principal dimension translated into mean effect sizes across case-control analyses, with paralimbic
regions showing strongest atrophy in patients relative to controls, while sensory/motor regions
showed the least gray matter alterations (Fig. S1B). We also directly ran principal component analysis
on previously reported effect size maps (Cohen’s d) concatenated across disorders, sourced from the
ENIGMA toolbox [61] (Fig. S1C). Findings were highly similar, suggesting robustness. The shared
disease effect resembled the effects of each condition, with the strongest spatial similarity to SZ and
BD, followed by MDD, ADHD, ASD, and OCD (spin-test followed by false discovery rate (FDR)
correction, pspin-FDR < 0.001; Fig. S2), indicating that the shared effect captured structural alterations
from each condition. We furthermore re-evaluated the shared dimension using leave-one-condition-
out procedure (see Methods), and observed largely consistent results with the shared effect based on
all conditions (r > 0.9 pspin-rpr < 0.001; Fig. S3), indicating that a single condition with strong meta-
analytic profile did not determine the shared disease effect.
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A. Effect size of cortical thickness for each psychiatric condition
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Fig. 1 | Shared disease effect and associations to connectivity gradients. (A) Meta-analytic profiles of cortical
thickness differences (unit in mm) in patients with each psychiatric condition relative to matched controls.
Positive/negative values indicate increases/decreases in cortical thickness in patients relative to controls. Mean values of
the regions involved in the same cortical lobes with SD are reported with bar plots. (B) The shared effect was identified
through principal component analysis (PCA) applied to the concatenated effect size map. Spider plots stratify the effects
according to functional communities [63] and cortical hierarchy levels [40]. (C) The microstructural and functional
connectivity gradients were generated by applying non-linear dimensionality reduction techniques to the group averaged
connectivity matrix (middle left), and each connectivity matrix was reordered (right) according to the first gradients
(middle right). (D) Spatial correlation of each gradient with the shared effect map are shown in the scatter plots. The
distribution of correlation coefficients across 1,000 spin-tests are reported with histograms, and the actual r-values are
represented with red bars. Abbreviations: ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder;
MDD, major depressive disorder; OCD, obsessive-compulsive disorder; BD, bipolar disorder; SZ, schizophrenia; HC,
healthy controls.
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Associations with cortical myeloarchitecture and functional connectivity gradients

To assess in vivo micro- and macroscopic properties of the shared disease dimension on cortical
morphology, we first examined its association with myeloarchitecture and intrinsic functional
connectivity gradients [37, 39] (see Methods; Fig. 1C). The microstructural gradient was derived
from inter-regional similarity matrices of intracortical profiles of myelin-sensitive MRI [37] , and
runs from sensory/motor regions with high laminar differentiation and high intracortical myelin
content towards paralimbic cortices with reduced laminar differentiation and low myelin content [37].
The intrinsic functional gradient was derived from resting-state functional MRI connectivity. While
it also runs from sensory to transmodal areas, it finds its apex in the heteromodal default mode and
frontoparietal networks, and not in paralimbic cortices [39]. Associating the patterns of shared
dimension with these two in vivo gradients, we observed a negative association with the
microstructural gradient (r = -0.400, pspin-rDrR = 0.042) and a negative trend with the functional
connectivity gradient (r = -0.247, pspin-rprR = 0.090; Fig. 1C). In other words, transdiagnostic
morphological alterations follow sensory-fugal gradients of cortical organization, in particular the
microstructural gradient that differentiates sensory/motor areas with high myelination and distinct
lamination from paralimbic areas with low myelin content and reduced laminar differentiation.

Cvytoarchitectonic associations

We furthermore examined associations with cortical cytoarchitecture [36], using a 3D histological
reconstruction of a post mortem human brain, the BigBrain [60, 64]. We calculated cortex-wide
variations in cytoarchitecture using two alternative approaches. First, we obtained intracortical
intensity profiles and calculated their statistical moments, i.e., mean, SD, skewness, and kurtosis (Fig.
2A-B). In both classic cytoarchitecture analysis and more recent work, these features have been
shown to relate to inter-areal microstructural differentiation [38, 65]. For example, the skewness
moment describes spatial transition from areas with low laminar differentiation and negative
skewness to those with high laminar differentiation and positive skewness [65—-67]. Moreover, we
computed externopyramidization [68], describing gradual shift of intensity profiles across cortical
layers that has been suggested to differentiate areas on the lower end of the cortical hierarchy from
those that are higher up due to hierarchical shifts in laminar projection profiles [69] (Fig. 2A-B).
Spatial correlations between these features and the principal disease dimension indicated relations to
both profile skewness (r = 0.400, pspin-FDr = 0.015) and externopyramidization (r = 0.472, pspin-FDR =
0.015; Fig. 2C). In other words, transdiagnostic alteration in cortical morphology was more likely in
paralimbic regions with low skewness and low externopyramidization, independently confirming that
those areas with low laminar differentiation were more likely to show transdiagnostic cortical
alterations.
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A. Schema of cytoarchitectonic features
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Fig. 2 | Cytoarchitectonic associations with the shared disease effect. (A) Cytoarchitectonic moment features of mean,
SD, skewness, and kurtosis, as well as externopyramidization of intracortical intensity profile were calculated from the
post mortem human brain, and (B) plotted on brain surfaces. (C) Spatial correlations between the features and shared
effects are shown on scatter plots. The distributions of correlation coefficients across 1,000 spin-tests are reported with
histograms, and the actual r-values are represented with red bars. Abbreviation: SD, standard deviation.

Associations with distributions of neurotransmitter systems

Neurotransmitter contextualization leveraged JuSpace [52], a toolbox that disseminates in vivo
PET/SPECT data sensitive to ten different transmitters/transporters/receptors from independent
studies in healthy human adults [53-58] (Fig. 3A). Associating the shared dimension with cortex-
wide neurotransmitter maps, we observed positive associations with D2 and 5-HT1b receptor
densities (D2: r = 0.280, pspin-kpr = 0.035; 5-HT1b: r = 0.349, pspin-ror = 0.025), and negative
correlations with dopamine transporter and 5-HT1a receptor density (DAT: r = -0.240, pspin-FDR =
0.041; 5-HT1a: r = -0.307, pspin-rpr = 0.033; Fig. 3B). The results indicate that common cortical
abnormality patterns across psychiatric and neurodevelopmental conditions may be reflected by
serotonergic and dopaminergic systems. More specifically, higher transdiagnostic cortical atrophy
was related to higher 5-HT1a and lower 5-HT1b, as well as higher DAT and lower D2 receptor density.
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A. Schema of neurotransmitter systems
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Fig. 3 | Associations of neurotransmitter systems with shared disease effect. (A) Schema of neurotransmitter systems
of transmitters, transporters, and receptors. (B) Spatial correlations of each neurotransmitter map with shared effect are
shown on scatter plots. The distributions of correlation coefficients across 1,000 spin-tests are reported with histograms,
and actual r-values are reported with red bars. The spider plot shows correlation coefficients. Cortex-wide spatial maps
of the transmitter systems are reported on brain surfaces. Abbreviations: FDOPA, 18F fluorodopa; DAT, dopamine
transporter; NAT, noradrenaline transporter; SERT, serotonin transporter.

Prediction of the shared disease effect

As a final analysis, we used supervised machine learning to predict the shared dimension using the
above multiscale features. Specifically, we leveraged least absolute shrinkage and selection operator
(LASSO) regression [70] with five-fold nested cross-validation [71-74] to predict the cross-condition

effect using concatenated multiscale features (see Methods; Fig. 4A). Repeating the analysis for 100
9
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times with different training and test dataset subsplits, we could reliably predict the spatial pattern of
the shared disease dimension (mean £ SD r = 0.518 + 0.044, mean absolute error (MAE) = 0.828 +
0.039, pperm < 0.001; Fig. 4B). Cytoarchitectural skewness and externopyramidization, followed by
D2 and 5-HT1b receptors, as well as the microstructural gradient were frequently selected across
cross-validations and repetitions (Fig. 4A). When considering each psychiatric condition separately,
we could find significant prediction performances, but the features selected diverge across conditions
(Fig. S4).
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Fig. 4 | Association between the shared disease effect and multiscale features using machine learning. (A)
Probability of the selected features across five-fold nested cross-validations and 100 repetitions for predicting the shared
disease effect. The frequently selected features are reported with asterisks. (B) Linear correlation between actual and
predicted values of the effects is shown on a scatter plot. Black line indicates mean correlation and gray lines represent
the 95% confidence interval for 100 iterations with different training/test datasets. Abbreviations: SD, standard deviation;
FDOPA, 18F fluorodopa; DAT, dopamine transporter; NAT, noradrenaline transporter; SERT, serotonin transporter;
MAE, mean absolute error.

DISCUSSION

The current work determined cortex-wide variations in susceptibility to morphological alterations
across six major psychiatric conditions (i.e., ASD, ADHD, MDD, OCD, BD, and SZ), and cross-
referenced these spatial patterns against multiscale cortical organization. Specifically, studying data
aggregated by several multi-site ENIGMA consortia on the above indications [26-32], we identified
a shared morphological dimension that followed a sensory-fugal pattern of increasing susceptibility
to morphological alterations in paralimbic regions. Moreover, we cross-referenced these findings
against neural axes previously described by (i) in vivo MRI measures sensitive to cortical
myeloarchitecture and intrinsic functional connectivity [37, 39], (i1) post mortem histological
measures sensitive to cytoarchitecture, in particular laminar differentiation [36, 38, 60, 65], and (iii)
in vivo PET/SPECT derived measures of cortical neurotransmitter systems [52—58]. Our findings
revealed that the transdiagnostic dimension of morphological anomalies closely aligned with
microstructural gradients differentiating sensory/motor from paralimbic areas on the basis of cortical
cyto- and myeloarchitecture, together as well as the variable distribution of serotonin and dopamine
neurotransmitter systems. By offering new insights into multiscale neural features that align with
cortical structural compromise across several psychiatric conditions, our work outlines micro- and
macroscale determinants of cerebral vulnerability to the effects of common mental illnesses.

Complementing earlier case-control MRI studies performed separately in common neuropsychiatric
conditions [17, 26-31, 75], an emerging literature of both primary observational studies [22-24] as
well as meta-analyses [32, 33] has increasingly investigated sets of disorders to explore
transdiagnostic effects on brain structure. Recently, these studies were complemented by dimensional
data decomposition approaches of cortical morphological data, for example a recent factor analysis
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[33] and principal component analyses [32]. We extended these prior studies by calculating mean
effect size of the previously published condition-specific effects [32], as well as applying principal
component analysis to the effect sizes and those sourced from the ENIGMA toolbox [61], confirming
robust patterns. Specifically, the first shared dimension of cortical morphological alterations
described a gradual axis running from sensory-motor regions at one end towards transmodal and most
specifically paralimbic areas on the other end. In a prior study, the shared dimension was cross-
referenced against gene expression information from the Allen Brain Institute [76-78], a
comprehensive microarray-derived transcriptomics dataset based on four post mortem brains in the
left and two in both left and right hemispheres. Using this resource, the authors found that
transdiagnostic effects were highest in brain regions expressing genes for pyramidal cornu Ammonis
1 (CATl) cells, a finding that may already point towards a potentially increased susceptibility of limbic
allocortices to transdiagnostic effects on brain morphology [32]. Here, we extended these findings by
contextualizing the shared disease effect across multiple scales of neural organization, including
cortex-wide variations in myeloarchitecture, cytoarchitecture, intrinsic functional connectivity, as
well as neurotransmitter distributions.

The in vivo microstructural cortical gradient was defined using a recently-introduced procedure [37],
which identified axes of cortico-cortical differentiation based on the similarity of myelin-sensitive
MRI profiles sampled across cortical depths. In healthy adults and adolescents [37, 65], this approach
has revealed a robust sensory-fugal cortical gradient running from sensory/motor areas with marked
laminar differentiation and high myelin content towards paralimbic cortices with low overall
myelination and rather agranular cortical profiles. By showing an association between the shared
dimension and this microstructural gradient, we confirm an overall heightened susceptibility of
paralimbic cortices to disease-related cortical thickness changes. Several architectonic features of the
paralimbic cortices may underscore their increased susceptibility to disease-related effects. On the
one hand, these regions have an architecture that may permit an increased potential for brain plasticity.
This includes an overall reduced neuronal density in paralimbic regions compared to eulaminate
cortices that may be more permissive for dendritic arborization and synaptogenesis [34]. Paralimbic
areas also express several developmental markers into adulthood that cease to be expressed in other
areas after ontogeny, such as growth associated protein GAP-43 [79]. On the other hand, limbic areas
are known to have a relatively late myelination compared to sensory/motor areas and lower overall
myelin content in adults. The role of intracortical myelination in plasticity is likely to be complex,
but several streams of evidence point to a role of myelin acting as a buffer against plasticity. In
addition to acting as an insulator for electrical transmission, myelin associated growth inhibitors limit
activity and experience-induced axon sprouting, with downstream effects of synaptic plasticity [80].
The reduced myelin content, together with increased complexity of dendritic arborization in
transmodal and paralimbic regions may render cortical microstructure in these regions more
susceptible to pathological alterations, which would echo observations in other neurological
conditions. For example, the core pathological substrates of drug-resistant temporal epilepsy is
thought to be localized in limbic/paralimbic regions [81-83], and prior work has suggested rather
specific changes in myelin and microstructural proxies in these areas [84, 85]. Similar findings have
been observed in degenerative conditions such as Alzheimer’s disease [44, 86, 87] as well as
depression [88] and autism [89, 90], where pathology spreads from disease epicenters in paralimbic
allocortices to invade more widespread cortical/subcortical networks. These findings collectively
show that cellular and molecular features of paralimbic cortices and their cortico-cortical pathways
promote brain plasticity as well as higher metabolic activity, and are thus likely more vulnerable to
both developmental as well as acquired disruptions than other regions, supporting the hypothesis that
their cortical type predisposes to a heightened vulnerability for an impact of neuropsychiatric
conditions on alterations in brain morphology [34].
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Studying the post mortem 3D BigBrain [60], we obtained supporting confirmation for the above
association between cortical microstructure and disease related susceptibility. In particular, we
discovered similarly marked associations between the shared disease dimension and laminar profile
skewness as well as externopyramidization, both features assessing depth-dependent shifts in the
distribution in cell densities [38, 68]. In prior work, we reported that the profile skewness feature
discriminates unimodal granular cortices from agranular/dysgranular paralimbic regions at a cortex-
wide level [65], and also helped to delineate the iso-to-allocortical axis in the mesiotemporal lobe
system [66]. Studying typical adolescent development, changes in profile skewness of myelin-
sensitive MRI contrasts have furthermore been reported to spatially co-localize with expression
patterns of genes enriched in oligodendrocytes [65]. As a complementary feature of laminar
organization, externopyramidization classically contextualizes the ratio of neuronal densities between
supragranular and infragranular cortical layers. It increases when the cortex is cytoarchitectonically
more differentiated, which happens in primary areas with a marked layer 4 [68]. Thus, the association
of these cortical depth-dependent cytoarchitectural features with the shared disease effect confirms
the in vivo findings with ultrahigh resolution cytoarchitecture data suggesting that paralimbic areas,
sensitive to transdiagnostic cortical alterations, are less laminarly differentiated. Furthermore, prior
cellular and transcriptomic studies indicate regional susceptibility of synaptic elements as well as
mutated genes in schizophrenia [91, 92] and bipolar disorder [93]. Indeed, major depression may
cause atrophy of neurons in limbic regions [94], pointing histopathological susceptibility of
paralimbic areas in psychiatric conditions.

We also observed a marginal association between the transdiagnostic effect on brain structure and the
principal functional connectivity gradient, but findings were overall weaker than for the above in vivo
and post mortem derived microstructural gradients. Motifs of macroscale intrinsic functional
connectivity also show an overall sensory-fugal pattern [40, 95-97], but the associated gradients
generally run from sensory/motor towards more heteromodal association cortices such as the default
mode and frontoparietal networks, and not the paralimbic regions. These findings may indirectly
support the conclusion that transdiagnostic disease effects on brain morphology may more closely
align with spatial trends in microstructure rather than with macroscale functional differentiation. As
brain organization show functional heterogeneity and multiplicity, investigation of associations
between the transdiagnostic effects and multiple functional gradients is required for further studies.
Notably, however, the cortical morphological data from the ENIGMA dataset were only available in
the Desikan-Killany parcellation [62], a relatively macroscopic scheme mainly based on sulco-gyral
features. In addition to not offering a high granularity on cortical arealization, the reliance on folding
alone may only provide rather limited sensitivity to contextualize our findings with respect to
functional topographies. It would thus be relevant to re-evaluate functional gradient association based
on functionally-defined parcellations [98, 99] or at a vertex-level.

In addition to our findings showing overall associations between the transdiagnostic effect and
sensory-fugal microstructural gradients, we observed associations to the spatial distribution of
different neurotransmitter systems derived from in vivo neuroimaging. Notably, associations were
seen both to serotonin (5-HT1a and 5-HT1b) and dopamine receptors and transporters (DAT/D1 and
D2), two important markers of mental health and targets for pharmacological treatments [100-108].
In both cases (i.e. 5-HT1a vs 5-HT1b, DAT/D1 vs D2), associations to the disease effect were of
opposite polarity, confirming prior work in rodents [109-113] and humans [114-117]. Associations
with in vivo neurotransmitter topographies provide a novel way of indirectly assessing the relationship
between shared abnormalities on cortical morphology and neurotransmitter systems so that we can
understand putative mechanisms of shared morphological abnormalities, extending prior work from
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rodents and humans. As an integrative analysis, we opted for supervised machine learning to predict
the shared disease effect. This analysis revealed that not a single feature, but rather combinations of
both microstructure and dopamine/serotonin transmitter systems have highest utility in predicting the
spatial pattern of the transdiagnostic morphological dimensions. Overall, our findings add new
evidence for a principal organizational dimension that differentiates sensory-motor networks from
transmodal cortices in typical human brain organization [37, 39, 118], and furthermore describes the
main axis of cortex-wide susceptibility to transdiagnostic effects of common mental health conditions.
Altogether, the observed associations between multiscale neural mechanisms and transdiagnostic
anomalies of cortical morphology provide a potentially integrative framework for understanding
neuropathology in psychiatry and the development of treatment that cut across traditional disease
boundaries.
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METHODS

Study dataset
a) ENIGMA data: We analyzed T1-weighted data from people with a diagnosis of (n = 12,876) ASD

(n =1,821), ADHD (n = 1,815), MDD (n = 2,695), OCD (n = 2,274), BD (n = 1,555), and SZ (n =
2,716) and site matched healthy controls (n = 15,670) from 145 independent cohorts participating in
prior ENIGMA consortium studies [26—31]. Demographic information is summarized in Table S1
and available in a recent cross-condition study [32]. Data from each center were processed using the
standard ENIGMA workflow (http://enigma.ini.usc.edu/protocols/imaging-protocols/). Processing
was conducted using FreeSurfer [119-121] that involves magnetic field inhomogeneity correction,
non-brain tissue removal, intensity normalization, and tissue segmentation. Estimated white and pial
surfaces were inflated to spheres and registered to the fsaverage template. Based on the Desikan-
Killiany atlas [62], cortical thickness was measured for 68 gray matter brain regions. For each
psychiatric condition, the ENIGMA groups performed multiple linear regression analyses to fit
cortical thickness measures with age, age squared, sex, and site information. The meta-analytic
profiles of between-group differences between patients and controls were estimated via an inverse
variance-weighted random-effects model, which can be obtained from the previous study [32] (Fig.
1A). If the studies provided multiple effect sizes across children/adolescents/adults, only the effects
from the adult sample were used, in order to match the age range across conditions. The
positive/negative effects indicate increases/decreases in cortical thickness in patients relative to
controls. Individual cohort investigators obtained approval from local institutional ethics boards, and
informed consent was obtained from study participants or their guardians.

b) HCP data: To generate microstructural and functional connectivity gradients, we also studied 207
unrelated healthy young adults (60% females, mean age + SD = 28.73 + 3.73 years) from the HCP
dataset [59]. In the HCP, multimodal imaging data comprising T1- and T2-weighted as well as rs-
fMRI were acquired on a Siemens Skyra 3T at Washington University. The cohort selection is
identical to our prior work [61, 122]. T1-weighted images were acquired using a magnetization-
prepared rapid gradient echo (MPRAGE) sequence (repetition time (TR) = 2,400 ms; echo time (TE)
= 2.14 ms; inversion time (T1) = 1,000 ms; flip angle = 8°; field of view (FOV) = 224 x 224 mm?;
voxel size = 0.7 mm isotropic; 256 slices). T2-weighted data were obtained using a T2-SPACE
sequence, with the same acquisition parameters as for the T1-weighted data except for TR (3,200 ms),
TE (565 ms), and flip angle (variable). The rs-fMRI data were collected using a gradient-echo echo-
planar imaging sequence (TR = 720 ms; TE = 33.1 ms; flip angle = 52° FOV = 208 x 180 mm?;
voxel size = 2 mm isotropic; number of slices = 72; and 1,200 volumes per time series), where
participants were instructed to keep their eyes open looking at a fixation cross during the scan. Two
sessions (left-to-right and right-to-left phase-encoded directions) of rs-fMRI data were acquired,
providing up to four time series per participant.

Images underwent minimal preprocessing pipelines using FSL, FreeSurfer, and Workbench as
follows [123-125]:

i) T1- and T2-weighted data: Data were corrected for gradient nonlinearity and b0 distortions, and
then T1- and T2-weighted data were co-registered using a rigid-body transformation. Bias field was
adjusted based on the inverse intensities from the T1- and T2-weighting. The white and pial surfaces
were generated [119-121], and the mid-thickness surface was generated by averaging them. The mid-
thickness surface was inflated and the spherical surface was registered to the Conte69 template with
164k vertices [126] using MSMALII [99] and downsampled to a 32k vertex mesh.

ii) Microstructure data: Myelin-sensitive proxy was estimated based on the ratio of the T1- and T2-
weighted contrast [127, 128]. We generated 14 equivolumetric surfaces within the cortex and sampled
T1w/T2w intensity along these surfaces [37]. A microstructural similarity matrix was constructed by
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calculating linear correlation of cortical depth-dependent T1w/T2w intensity profiles between
different cortical regions based on the Desikan-Killiany atlas [62], controlling for the average whole-
cortex intensity profile [37]. The matrix was thresholded at zero and log-transformed [37]. A group
matrix was constructed by averaging matrices across participants.

iii) rs-fMRI data: Data were corrected for distortions and head motion, and registered to the T1-
weighted data and subsequently to MNI152 standard space. Magnetic field bias correction, skull
removal, and intensity normalization were performed. Noise components attributed to head
movement, white matter, cardiac pulsation, arterial, and large vein related contributions were
removed using FMRIB’s ICA-based X-noiseifier (ICA-FIX) [129]. Preprocessed time series were
mapped to the standard ‘grayordinate’ space using a cortical ribbon-constrained volume-to-surface
mapping algorithm. The total mean of the time series of each left-to-right/right-to-left phase-encoded
data was subtracted to adjust the discontinuity between the two datasets and then concatenated to
form a single time series. A functional connectivity matrix was constructed by calculating the linear
time series correlations between Desikan-Killiany parcels [62], followed by Fisher’s r-to-z
transformation [130]. Individual connectivity matrices were averaged to construct a group level
connectome.

Shared effects of cortical thickness differences across conditions

To assess transdiagnostic effects of cortical thickness differences in patients relative to controls, we
applied principal component analysis to the concatenated effect size maps across six conditions [131]
(Fig. 1B and Fig. S1A). The first principal dimension was determined as the shared disease effect.
We summarized the effects according to seven intrinsic functional communities [63], as well as four
cortical hierarchical levels [40]. We additionally calculated mean effect size across the conditions to
intuitively interpret shared disease effect (Fig. S1B), and also estimated principal dimension based
on the data sourced from the ENIGMA toolbox (i.e., Cohen’s d; Fig. S1C). We compared the shared
dimension and the effect size of each condition via linear correlations to assess the degree of
contribution of each condition (Fig. S2). The significance of the correlation was determined using
1,000 non-parametric spin-tests, to account for spatial autocorrelation [132], and corrected for
multiple comparisons using a FDR procedure [133]. To assess robustness, we performed leave-one-
condition-out cross-validation. Specifically, we estimated the shared dimension using five conditions
by excepting for a single condition, and assessed similarity with the shared disease effect estimated
based on the whole six conditions (Fig. S3). We calculated significance of the correlation using 1,000
spin-tests, and multiple comparisons were corrected using FDR [132, 133].

Associations to microstructural and functional connectivity gradients

We evaluated the underlying connectome organizations of the shared disease effects. Based on
T1w/T2w and rs-fMRI data obtained from the HCP database [59], we estimated microstructural and
functional gradients, the low dimensional representation of connectome organizations explaining
spatial variation in the connectome data [37, 39], using BrainSpace (https://github.com/MICA-
MNI/BrainSpace) [97] (Fig. 1C). An affinity matrix was constructed with a normalized angle kernel
from the group averaged connectivity matrix with the top 10% entries for each parcel. The
connectome gradients were estimated using diffusion map embedding [134], which is robust to noise
and computationally efficient compared to other non-linear manifold learning techniques [71, 135].
It is controlled by two parameters a and t, where a controls the influence of the density of sampling
points on the manifold (o = 0, maximal influence; o= 1, no influence) and t scales eigenvalues of the
diffusion operator. The parameters were set as o = 0.5 and t = 0 to retain the global relations between
data points in the embedded space, following prior applications [37, 39, 47, 97, 136]. We associated
the shared effect with these gradients using linear correlation (Fig. 1D), where the significance was
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assessed using 1,000 spin-tests followed by FDR [132, 133].

Cytoarchitectonic associations with shared disease effects

We aimed to associate the shared dimensions with histology-driven cytoarchitectonic features derived
from BigBrain surfaces with 62 cortical areas (https://bigbrain.loris.ca/main.php) [60]. Specifically,
BigBrain is a ultra-high resolution, 3D volumetric reconstruction of a post mortem Merker-stained
and sliced human brain from a 65-year-old male, with specialized pial and white matter surface
reconstructions [60]. The post mortem brain was paraffin-embedded, coronally sliced into 7400 20-
um sections, silver-stained for cell bodies [137], and digitized. A 3D reconstruction was implemented
with a successive coarse-to-fine hierarchical procedure, resulting in a full brain volume. Among 68
regions defined by the Desikan-Killiany atlas [62], three regions per hemisphere, including banks of
superior temporal sulcus, frontal pole, and temporal pole, were excluded as the BigBrain did not
provide data for these regions. We generated 18 equivolumetric cortical surfaces within the cortex
(https://github.com/caseypaquola/BigBrainWarp) and sampled the intensity values along these
surfaces. Based on the intensity values, we calculated four moment features, including mean, SD,
skewness, and kurtosis, as well as externopyramidization (Fig. 2A-B). The mean and SD represent
the overall intensity distribution of cytoarchitecture across layers, skewness indicates shifts in
intensity values towards supragranular layers (i.e., positive skewness) or flat distribution (i.e.,
negative skewness), and kurtosis identifies whether the tails of the intensity distribution contain
extreme values. Externopyramidization reflects gradual shifts of intensity values from infragranular
to supragranular layers defined as follows [69]:

(intensity) 1-thicknesssupra

Externopyramidization =

ey

To assess associations with shared disease effects, we calculated linear correlations between
cytoarchitectonic features and shared effects (Fig. 2C). The significance of the correlations was
assessed using 1,000 spin-tests followed by FDR across different cytoarchitectonic features [132,
133].

mean(intensity) thicknesstotal

Associations between transmitter systems and shared effects

To provide underlying molecular properties of the shared effects in neuroanatomical disruptions
across different psychiatric conditions, we associated the shared dimensions with ten different
neurotransmitter maps of healthy controls provided by prior independent PET/SPECT studies [53—
58], which contain neurotransmitters of FDOPA, GABAa, transporters of DAT, NAT, SERT, and
receptors of D1, D2, 5-HT1a, 5-HT1b, and 5-HT2a (https://github.com/juryxy/JuSpace) [52] (Fig.
3A). All PET maps were linearly rescaled to have intensity values between 0 and 100 [52]. After
mapping the neurotransmitter maps onto the Desikan-Killiany atlas [62], we calculated linear
correlations between the shared effects and each neurotransmitter map (Fig. 3B), and assessed the
significance using 1,000 spin tests followed by FDR to adjust for multiple comparisons across ten
different maps [132, 133].

Prediction of shared effects using multiscale features

We associated multiscale features and shared effects using supervised machine learning to
incorporate our findings (Fig. 4). Specifically, we aimed to predict the shared disease effects using
concatenated multiscale features of microstructural and functional gradients, cytoarchitectonic (i.e.,
mean, SD, skewness, kurtosis, externopyramidization), and transmitter maps (i.e., D1, D2, 5-HT1a,
5-HT1b, 5-HT2a, FDOPA, GABAa, DAT, NAT, SERT). We used five-fold nested cross-validation
[72-74] with LASSO regression [70]. Nested cross-validation split the dataset into training (4/5) and
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test (1/5) partitions, and each training partition was further split into inner training and testing folds
using another five-fold cross-validation. The model with the best performance (lowest MAE) across
the inner folds was applied to the test partition of the outer fold. Among the multiscale features, we
selected performant features using LASSO regularization, and the effect size was predicted using
linear regression with the selected features. The procedure was repeated 100 times with different
training and test partitions. Prediction accuracy was evaluated with linear correlations between the
actual and predicted effect size and the MAE, with their 95% confidence interval. Permutation-based
correlations across 1,000 tests were conducted by randomly shuffling cortical regions to verify
whether the prediction performance exceeded chance levels. We also performed the prediction
analysis using the effect size of each condition (Fig. S4).
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Supporting Information
Table S1 | Demographic information of studied participants.
Condition Number* Mean (SD; range) age (years) Sex (male:female)
ASD/controls 1821/1823 15.6 (6.7; 2—64) 2941:703 (19% female)
ADHD/controls 1815/1602 21.1(5.4;4-74) 2244:1172 (34% female)
MDD/controls 2695/3627 40.9 (10.9; 8-89) 2665:3657 (58% female)
OCD/controls 2274/2013 27.2 (8.0; 5-65) 2166:2121 (49% female)
BD/controls 1555/3423 35.1 (12.0; 8-86) 2142:2836 (57% female)
SZ/controls 2716/3272 33.9 (10.7; 7-87) 3479:2509 (42% female)

Detailed information available in eTable 1 and eTable 2 of Patel et al., 2021. Abbreviations: SD,
standard deviation; ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder;
MDD, major depressive disorder; OCD, obsessive-compulsive disorder; BD, bipolar disorder; SZ,
schizophrenia.
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Fig. S1 | Shared disease effect. (A) The second and third dimensions of shared disease effect. (B)
Mean effect size of cortical thickness alterations across conditions. (C) Principal dimension based on
the effect size maps (Cohen’s d) sourced from the ENIGMA toolbox. The effects were stratified

according to functional communities and cortical hierarchy levels.
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Fig. S2 | Linear correlations between the shared disease effect and cortical thickness alterations
of each condition. Abbreviations: ASD, autism spectrum disorder; ADHD, attention deficit
hyperactivity disorder; MDD, major depressive disorder; OCD, obsessive-compulsive disorder; BD,
bipolar disorder; SZ, schizophrenia; HC, healthy controls.
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Fig. S3 | Shared disease effects with leave-one-condition-out cross-validation. The shared
dimensions estimated based on all conditions without a single condition are reported on brain surfaces.
Linear correlations between the shared effect based on all conditions (see Fig. /B) and that based on
five conditions are shown in the scatter plots. Abbreviations: ASD, autism spectrum disorder; ADHD,
attention deficit hyperactivity disorder; MDD, major depressive disorder; OCD, obsessive-
compulsive disorder; BD, bipolar disorder; SZ, schizophrenia; HC, healthy controls.
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Fig. S4 | Association between the effect size of each psychiatric condition and multiscale features.
(A) Probability of the selected features for each psychiatric condition. (B) Linear correlations between
actual and predicted values of the effects are shown using scatter plots. For details, see Fig. 4.
Abbreviations: SD, standard deviation; FDOPA, 18F fluorodopa; DAT, dopamine transporter; NAT,
noradrenaline transporter; SERT, serotonin transporter; MAE, mean absolute error.
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