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Abstract

Background: The majority of high-throughput single-cell molecular profiling methods quantify
RNA expression; however, recent multimodal profiling methods add simultaneous measurement
of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development
of new statistical and computational methods in Bioconductor for such data will be facilitated by
easy availability of landmark datasets using standard data classes.

Results: We collected, processed, and packaged publicly available landmark datasets from
important single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT,
10X Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment
Bioconductor class, document and re-distribute datasets as the SingleCellMultiModal package in
Bioconductor’s Cloud-based ExperimentHub. The result is single-command actualization of
landmark datasets from seven single-cell multimodal data generation technologies, without need
for further data processing or wrangling in order to analyze and develop methods within
Bioconductor’s ecosystem of hundreds of packages for single-cell and multimodal data.
Conclusions: We provide two examples of integrative analyses that are greatly simplified by
SingleCellMultiModal. The package will facilitate development of bioinformatic and statistical
methods in Bioconductor to meet the challenges of integrating molecular layers and analyzing

phenotypic outputs including cell differentiation, activity, and disease.

Keywords: Single cell multimodal, Bioconductor, Data analysis, Genomics, Transcriptomics,

Proteomics, spatial transcriptomics, bioinformatics
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Introduction

Understanding the quantitative relationship between molecules and physiology has
motivated the development of quantitative profiling techniques, especially for single-cell
sequencing [1]. Single-cell multimodal omics technologies (Nature Method of the Year 2019 [2])
couple single-cell RNA sequencing with other molecular profiles such as DNA sequences,
methylation, chromatin accessibility, cell surface proteins, and spatial information, simultaneously
in the same cell. Integrative analysis of multiple molecular measurements from the same cell has
enabled, for example, discovery of rare cell types by defining subpopulations based on surface
markers with CITE-Seq [3] and ECCITE-Seq [4] (Cellular Indexing of Transcriptomes and
Epitopes by sequencing, Expanded CRISPR CITE-Seq), of epigenetic regulation and cell
differentiation lineage with scNMT-seq [5] (single-cell nucleosome, methylation, and
transcriptome sequencing), a high resolution commercial version of single cell chromatin
accessibility with 10X Multiomics [20], understanding of spatial patterns of gene expression with
seqg-FISH [6], and correlation of genotype-phenotype in healthy and disease states with G&T-seq
[7] (parallel Genome and Transcriptome sequencing). Other single-cell multimodal datasets take
measurements from separate cells due to the technical constraints, like mass-spectrometry based
proteomic methods including SCoPE2 [8] (single-cell protein analysis by mass spectrometry).

Capturing and integrating an array of different molecular signals at the single-cell level
poses new analytical challenges. Single-cell multimodal experiments generate multidimensional
and high volume datasets, requiring distinct informatic and statistical methods to store, process
and analyze data. Integrating different molecular layers to provide biologically meaningful insight
is an active area of development in R/Bioconductor due to the availability of data containers and
analysis toolkits for single-cell analysis. R/Bioconductor is an open development and open source

platform for analyzing biomedical and genomic data with dedicated data structures such as the
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SingleCellExperiment class [9] for single-cell data and the MultiAssayExperiment class [10] for
multi-omics data. Both are designed based on the SummarizedExperiment class [11], the central
Bioconductor data structure for storing, manipulating, and analyzing high-throughput quantitative
omics data. Relative to analysis platforms within and outside of the R programming language (e.g.
GATK, Seurat [12], mixOmics [13], MOFA+ [14], CiteFuse package [15], ScanPy for CITE-Seq
[16], Conos for SCoPE2 [17]), Bioconductor provides the broadest range of interoperable data
structures and packages for statistical analysis and visualization of single-cell multimodal data.
Easy availability of publicly available experimental data using standardized data classes
has long played an important role in the development of interoperable software packages for the
analysis of data from new technologies, helping to coalesce development efforts around shared
datasets and commonly used data classes such as ExpressionSet [18] and then
(Ranged)SummarizedExperiment [19] and SingleCellExperiment [9]. We therefore introduce a
suite of single-cell multimodal landmark datasets for benchmarking and testing multimodal
analysis methods via the Bioconductor ExperimentHub package SingleCellMultiModal (Figure
1A). The scope of this package is to provide efficient access to a selection of curated, pre-
integrated, publicly available landmark datasets for methods development and benchmarking
within the Bioconductor ecosystem. Some such methods and code for analysis workflows are
reviewed by Lé Cao et al. [20]. Users can obtain integrative representations of multiple modalities
as a MultiAssayExperiment, a common core Bioconductor data structure relied on by dozens of
multimodal data analysis packages . SingleCellMultiModal uses Bioconductor’'s ExperimentHub
package and service to host, coordinate, and manage the data from the cloud. We plan to update
the package as new datasets and technologies become available and we welcome community
contributions. This manuscript serves as a review of essential aspects of these technologies
suitable for developers of bioinformatic and statistical software, and as a description of the

SingleCellMultiModal data package.
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Summary of landmark datasets in SingleCellMultiModal

To evaluate and design new statistical methods that accompany experimental single-cell
multimodal data, it is important to establish landmark datasets. The goal of this section is to
provide an overview of the landmark datasets currently in SingleCellMultiModal as well as to
introduce the experimental and technological context for each experimental assay (Table 1). For
more information concerning the details of the technologies, consult [21]. We briefly describe each
landmark experiment including context, major findings from the publication, and challenges in its
analysis, then summarize its accompanying dataset in SingleCellMultiModal including number of

cells and features (Figure 1B).
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CELL/
EXPERIMENTAL |PROCESS
MODALITIES |ASSAY TYPE DATATYPE NAME CITATION
RNA + DNA G&T-seq Mouse mouse_embryo_8 cell [7]
epithelial,
human breast
tumor
RNA + Protein |CITE-Seq Cord blood cord_blood [3]
mononuclear
ECCITE-Seq Peripheral blood |peripheral_blood [4]
mononuclear,
human T-cell
lymphoma,
mouse fibroblast
RNA + scNMT-seq Mouse mouse_gastrulation [22]
Epigenetic gastrulation
10X Multiome Peripheral blood [pbmc_10x [23]
ScATAC-seq + mononuclear
Single-cell RNA-
seq
RNA + Spatial |seqFISH Mouse cortical |[mouse_visual_cortex [24], [21]
neuronal
RNA + SCoPE2 Human macrophage_differentiation |[8]
Proteomic monocyte and
PMA-induced
macrophage

Table 1: Single-cell multimodal datasets included SingleCellMultiModal package. Modalities
refer to the molecular feature measured in the experimental assay. Cell/process type provides
information on the type of material or development event data was collected. Datatype name
column refers to the dataset name in SingleCellMultiModal
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Figure 1: Representation of modalities included in the SingleCellMultiModal package. (A)
a Venn diagram representation of the modalities collected by each different technology, including:
RNA (center), surface proteins (top left), spatial information (bottom left), methylation and open
chromatin (bottom right), and peptides (top right). (B) The number of features and cells collected
for each data modality by each technology.

RNA and Protein: antibody tagged cell surface markers

Purpose: Traditionally, protein expression in cell populations are measured using flow cytometry.
With the advent of single-cell multimodal methods cell surface proteins are measured with higher
resolution with simultaneous measurements of mMRNA abundance, which enhances the ability to
identify new cell subpopulations in heterogeneous samples. Cellular Indexing of Transcriptomes
and Epitopes by sequencing (CITE-Seq) measures protein cell surface markers and gene
expression in the same cell. An extension of CITE-Seq is ECCITE-Seq, Expanded CRISPR-
compatible CITE-Seq, which allows for the capture of sgRNA from CRISPR mediated screens.
Collectively, these technologies provide a high-throughput method for single-cell
immunophenotyping and transcriptome analysis.

Technology: CITE-Seq relies on antibodies conjugated to DNA barcodes to infer protein levels,
and in tandem count DNA handles from PCR amplification of mMRNA transcripts. Inside the droplet

contains mMRNA transcripts, proteins conjugated with antibody derived tags (ADTs), beads
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decorated with oligo-dT, reverse transcriptase and primers for cONA amplification. The use of
DNA barcodes is a departure from traditional fluorescence labels, which are limited in number
because of the overlaps in spectral detection, excitation and emission frequencies [25].

A variation of CITE-Seq is ECCITE-Seq that can track single-cell CRISPR screens using
sgRNA sequencing capture [4]. The CRISPR-Cas9 system is used to generate targeted gene
knockout/mutants by using two components: sgRNA (single guide RNA for gene of interest) and
Cas9 (endonuclease for cleaving double DNA strand breaks). sgRNA are composed of custom
crBNA 17-22nt with a scaffold tracrRNA, which means the sgRNA are composed of two RNA
pieces: one is customizable and the other is not. The sgRNA targets the gene of interest and
orchestrates the Cas9 enzyme to gene location to insert a variety of mutations or full gene knock-
outs. The CRISPR-Cas9 system introduces targeted gene mutations with greater ease at the
bench, plus itis easier to scale up to many more experimental samples than previous approaches.

Antibody oligo counts are listed in the ADT and HTO (hashtag oligo) tables and sgRNAs
counts in the GDO tables. After cell perturbations via CRISPR screens, cells are collected and
prepared with 10X Genomics V(D)J solution which incorporates Single-cell RNA-seq with
additional profiling of protein surface markers and sgRNAs (when applicable). The molecular
contents, mMRNA and DNA-tagged proteins, will hybridize to the decorated beads. The benefit of
adding barcoding to cells is that it allows for tracking of doublets (two cells in one droplet).
Landmark data: There are several experimental datasets derived from the original CITE-Seq
landmark paper. Among them we selected the cord blood dataset where the cells have been
incubated with CITE-seq antibody conjugates and fluorophore-conjugated antibodies. This
cord_blood dataset has two different assays. The scADT assay is a matrix indicating the 13
proteins surface abundance for each of the 8617 cells, while the scRNA assay is a matrix of 20400
human genes and 15880 mouse genes where each entry contains the expression abundance in

each of the 8617 cells (Table 2).


https://paperpile.com/c/FZKGcV/7nxw
https://paperpile.com/c/FZKGcV/wWuY
https://doi.org/10.1101/2021.10.27.466079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.27.466079; this version posted October 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Dataset Assay Modes Species | Data Version | # features | # cells
Identifier Type Structure

Cord blood | RNA-seq Transcripts | Human matrix 1.0.0 36280 8617

ADT Proteins Human matrix 1.0.0 13 8617

Table 2: CITE-Seq dataset description, with assay types, molecular modes, number of
specimens, number of features and number of cells. ADTs, antibody derived tags

The package also includes an ECCITE-Seq dataset aimed at characterizing immune
subpopulation cell types after an experimental perturbation. The peripheral_blood dataset is
organized in two different conditions: the control (CTRL) and the cutaneous T-cell lymphoma
(CTCL). For both conditions the ECCITE-Seq protocol has been performed to produce transcripts
(RNA-seq), proteins (ADT) and cell tracking (HTO) abundance. All these modalities are collected
as separated assays into the MultiAssayExperiment, where a sparse matrix is used to store the
RNA-seq counts. The modalities are collected from the same cells, but not all the cells are entirely
profiled by the same modalities. Of the total 36248 cells, 4190 cells from the CTCL and 4292 cells
from the CTRL are matched with all modalities (Figure 2). sgRNA data is stored in long format
providing access through the metadata data structure of the MultiAssayExperiment. The CITE-
Seq dataset is accessible via the SingleCellMultiModal package by using the
CITEseq(DataType="cord_blood") function call, while for the ECCITE-Seq data it's sufficient
to change the identifier as follow CITEseq(DataType="peripheral_blood"). Both function calls

return a MultiAssayExperiment object with matrices or sparse matrices as assays (Table 3).
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Dataset Assay Modes Species | Data Condition | # features | # cells
Identifier Type Structure
Peripheral | RNA-seq | Transcripts Human | dgCMatrix | CTCL 33538 5399
blood
CTRL 33538 4849
ADT Proteins Human | dgCMatrix | CTCL 52 6500
CTRL 52 6500
HTO Cell tracking | Human | dgCMatrix | CTCL 7 6500
CTRL 7 6500
sgRNAs stored in long format # rows # cols
sgRNAs CRISPR Human | data.frame | CTCL 9626 18
perturbation TCRab
CTCL 2430 18
TCRgd
CTRL 8359 18
TCRab
CTRL 3099 18
TCRgd

Table 3: ECCITE-Seq dataset description: assay types, molecular modes, number of
specimens, number of features and number of cells. ADTs, antibody derived tags; HTO,
Hashtagged oligos; sgRNAs, CRISPR V(D)J’s.

11
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Figure 2: Upset plot [26] of the overlap of modalities on the same cells in the control sample
of the ECCITE-Seq “peripheral blood” dataset. 8482 cells are assayed in all three modes
(ADT, HTO, RNA), 3105 cells are assayed by HTO and ADT only, etc. RNA data are available for
~10248 cells, whereas HTO and ADT data are each individually available for ~13000 cells across
both conditions. This plot is produced by the upsetSamples function of the MultiAssayExperiment

package, and can be applied directly to all datasets produced by SingleCellMultiModal.

RNA and Protein: mass spectrometry-based

Purpose and goals: CITE-Seq offers valuable information about the expression of surface
proteins. However, the acquisition is limited to tens of targets as the identification relies on
antibodies. Furthermore, it cannot provide information on intracellular markers. Mass
spectrometry (MS)-based single-cell proteomics (SCP) provides a means to overcome these

limitations and to perform unbiased single-cell profiling of the soluble proteome. MS-SCP is

12
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emerging thanks to recent advances in sample preparation, liquid chromatography (LC) and MS
acquisition. The technology is in its infancy and protocols still need to be adapted in order to
acquire multiple multimodalities from a single-cell. In this section the multimodality is achieved by
subjecting similar samples to MS-SCP and Single-cell RNA-seq.

Technology: The current state-of-the-art protocol for performing MS-SCP is the SCoPE2 protocol
[8]. Briefly, single-cells are lysed, proteins are extracted and digested into peptides. The peptides
are then labeled using tandem mass tags (TMT) in order to multiplex up to 16 samples per run
(Figure 3A). The pooled peptides are then analysed by LC-MS/MS. LC separates the peptides
based on their mass and affinity for the chromatographic column. The peptides are immediately
ionized as they come out (Figure 3B) and are sent for two rounds of MS (MS/MS, Figure 3C). The
first round isolates the ions based on their mass to charge (m/z) value. The isolated ions are
fragmented and sent to the second round of MS that records the m/z and intensity of each
fragment. The pattern of intensities over m/z value generated by an ion is called an MS2 spectrum.
The MS2 spectra are then computationally matched to a database to identify the original peptide
sequence from which they originated. The spectra that were successfully associated to a peptide
sequence are called peptide to spectrum matches (PSMs, Figure 3D). Next to that, a specific
range of the MS spectrum holds the TMT label information where each label generates a fragment
with an expected m/z value. The intensity of each label peak is proportional to the peptide
expression in the corresponding single-cell and this allows for peptide quantification (Figure 3D).
Finally, the quantified PSM data go through a data processing pipeline that aims to reconstruct

the protein data that can be used for downstream analyses (Figure 3E).
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Figure 3: SCoPE2 workflow. The workflow consists of 4 main steps. (A) Sample preparation
extracts and labels peptides from single-cells. (B) LC separates the peptides based on their mass
and affinity for the column. Note that the TMT tag does not influence those properties. Peptides
that are eluting are ionised thanks to an electrospray. (C) MS/MS performs an m/z scan of the
incoming ions to select the most abundant ones that are then fragmented separately. A second
round of MS acquires the spectrum generated by the ion fragments. (D) Each spectrum is then
computationally processed to obtain the cell-specific expression values and the peptide identity.
(E) The data processing pipeline reconstructs the protein data from the quantified PSMs.
Abbreviations: TMT: tandem mass tags; LC: liquid chromatography; MS: mass spectrometry;
MS/MS: tandem MS; m/z: mass over charge; PSM: peptide to spectrum match.
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The major challenge in MS-SCP is to recover sufficient peptide material for accurate
peptide identification and quantification. SCoPE2 solves this issue by optimizing the sample
preparation step to limit samples loss, by providing analytical tools to optimize the MS/MS
settings, and most importantly by introducing a carrier sample into the pool of multiplexed
samples. The carrier is a sample that contains hundreds of cells instead of a single-cell and allows
to boost the peptide identification rate by increasing the amount of peptide material delivered to
the MS instrument.

Parallel to SCoPE2, other groups have developed a label-free MS-SCP, where each LC-
MS/MS run contains unlabelled peptides from a single cell [27]. Although it allows for more
accurate quantifications, it suffers from low throughput. The current methodological advances in
MS-SCP have extensively been reviewed elsewhere [28].

Landmark data: The SCoPE2 dataset we provide in this work was retrieved from the
supplementary information of the landmark paper [8]. This is a milestone dataset as it is the first
publication where over a thousand cells are measured by MS-SCP. The research question is to
understand whether a homogeneous monocyte population (U-937 cell line) could differentiate
upon PMA treatment into a heterogeneous macrophage population, namely whether M1 and M2
macrophage profiles could be retrieved in the absence of differentiation cytokines. Different
replicates of monocyte and macrophage samples were prepared and analyzed using either MS-
SCP or Single-cell RNA-seq. The MS-SCP data was acquired in 177 batches with on average 9
single-cells per batch. The Single-cell RNA-seq data was acquired in 2 replicates with on average
10,000 single-cells per acquisition using the 10x Genomics Chromium platform. Cell type
annotations are only available for the MS-SCP data. Note also that MS-SCP data provides
expression information at protein level meaning that the peptide data has already been
processed. The processing includes filtering high quality features, filtering high quality cells, log-
transformation, normalization, aggregation from peptides to proteins, imputation and batch
correction (Figure 3E). More details on the protein data processing can be found in the original
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paper or in the paper that reproduced that analysis [29]. Count tables were provided for the Single-
cell RNA-seq dataset with no additional processing.

The data can be accessed in the SingleCellMultiModal package by calling
SCoPE2("macrophage_differentiation") (Table 4). Relevant cell metadata is provided
within the MultiAssayExperiment object. The MS-SCP dataset contains expression values for
3,042 proteins in 1,490 cells. The Single-cell RNA-seq contains expression values for 32,738

genes (out of which 10,149 are zero) for 20,274 cells.

Dataset Assay Modes Species | Data Version | # # cells
Identifier Type Structure features

macrophage LC-MS/MS | Proteins Human | matrix 1.0.0 3,042 1,490
_differentiation

RNA-seq Transcripts | Human HDF5 1.0.0 32,738" | 20,274

Table 4: SCoPE2 dataset descriptions, with assay types, molecular modes, specimens, dataset
version provided, number of features and number of cells

Single-cell nucleosome, methylation and transcription sequencing (scNMT-seq)

Purpose: The profiling of the epigenome at single-cell resolution has received increasing interest,
as it provides valuable insights into the regulatory landscape of the genome [30,31]. Although the
term epigenome comprises multiple molecular layers, the profiling of chromatin accessibility and
DNA methylation have received the most attention to date.

Technology: DNA methylation is generally measured using single-cell bisulfite sequencing
(scBS-seq) [32]. The underlying principle of scBS-seq is the treatment of the DNA with sodium

bisulfite before DNA sequencing, which converts unmethylated cytosine (C) residues to uracil

(and after retro-PCR amplification, to thymine (T)), leaving 5-methylcytosine residues intact. The

resulting C-T transitions can then be detected by DNA sequencing. Further methodological

110,149 out of the 32,738 features are zero
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innovations enabled DNA methylation and RNA expression to be profiled from the same cell,
demonstrated by the scM&T-seq assay [33].

Chromatin accessibility was traditionally profiled in bulk samples using DNase sequencing
(DNase-seq) [34]. However, in recent years, transposase-accessible chromatin followed by
sequencing (ATAC-seq) has displaced DNase-seq as the de facto method for profiling chromatin
accessibility due to its fast and sensitive protocol, most notably in single-cell genomics [35].
Briefly, in ATAC-seq, cells are incubated with a hyperactive mutant Tn5 transposase, an enzyme
that inserts artificial sequencing adapters into nucleosome-free regions. Subsequently, the
adaptors are purified, PCR-amplified and sequenced. Notably, single-cell ATAC-seq has also
been combined with Single-cell RNA-seq to simultaneously survey RNA expression and
chromatin accessibility from the same cell, as demonstrated by SNARE-seq [36], SHARE-seq
[37] and the recently commercialised Multiome Kit from 10x Genomics [23]. Finally, some assays
have been devised to capture at least three molecular layers from the same cell, albeit at a lower
throughput than SNARE-seq or SHARE-seq. An example is scNMT-seq (single-cell nucleosome
methylation and transcriptome sequencing) [5]. sScNMT captures a snapshot of RNA expression,
DNA methylation and chromatin accessibility in single-cells by combining two previous multi-
modal protocols: scM&T-seq [33] and Nucleosome Occupancy and Methylation sequencing
(NOMe-seq) [38]

In the first step (the NOMe-seq step), cells are sorted into individual wells and incubated
with a GpC methyltransferase. This enzyme labels accessible (or nucleosome depleted) GpC
sites via DNA methylation. In mammalian genomes, cytosine residues in GpC dinucleotides are
methylated at a very low rate. Hence, after the GpC methyltransferase treatment, GpC
methylation marks can be interpreted as direct readouts for chromatin accessibility, as opposed
to the CpG methylation readouts, which can be interpreted as endogenous DNA methylation. In

a second step (the scM&T-seq step), the DNA molecules are separated from the mRNA using
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oligo-dT probes pre-annealed to magnetic beads. Subsequently, the DNA fraction undergoes
scBS, whereas the RNA fraction undergoes Single-cell RNA-seq.
Landmark data: The scNMT landmark paper reported simultaneous measurements of chromatin
accessibility, DNA methylation, and RNA expression at single-cell resolution during early
embryonic development, spanning exit from pluripotency to primary germ layer specification [22].
This dataset represents the first multi-omics roadmap of mouse gastrulation at single-cell
resolution. Using multi-omic integration methods, the authors detected genomic associations
between distal regulatory regions and transcription activity, revealing novel insights into the role
of the epigenome in regulating this key developmental process.

One of the challenges of this dataset is the complex missing value structure. Whereas
RNA expression is profiled for most cells (N=2480), DNA methylation and chromatin accessibility
is only profiled for subsets of cells (N=986 and N=1105, respectively). This poses important
challenges to some of the conventional statistical methods that do not handle missing information.

The output of the epigenetic layers from scNMT-seq is a binary methylation state for each
observed CpG (endogenous DNA methylation) and GpC (a proxy for chromatin accessibility).
However, instead of working at the single nucleotide level, epigenetic measurements are typically
quantified over genomic features (i.e. promoters, enhancers, etc.). This is done assuming a
binomial model for each cell and feature, where the number of successes is the number of
methylated CpGs (or GpCs) and the number of trials is the total number of CpGs (or GpCs) that
are observed. Here we provide DNA methylation and chromatin accessibility estimates quantified
over CpG islands, gene promoters, gene bodies and DNAse hypersensitive sites (defined in
Embryonic Stem Cells).

The pre-integrated scNMT dataset is accessed from the SingleCellMultiModal package by
calling e.g. scNMT("mouse_gastrulation”, version = "1.0.0") (Table 5). Relevant cell

metadata is provided within the MultiAssayExperiment object. The overall dataset is 277MB.
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Dataset Assay type Modes Data # features # cells
Identifier structure
Mouse RNA-seq Transcripts Matrix 18345 2480
Gastrulation
DNA CpG islands Matrix 14080 986
Methylation
promoters Matrix 17179 986
Gene bodies Matrix 17559 986
DHS Matrix 6673 986
Chromatin CpG islands Matrix 14824 1101
accessibility
promoters Matrix 18037 1103
Gene bodies Matrix 17924 1105
DHS Matrix 20082 1094

Table 5: scNMT-seq dataset description, with of assay types, molecular modes, number of
specimens, number of features and number of cells

Chromium Single-cell Multiome ATAC and gene expression

Purpose: A new commercial platform introduced in late 2020 by 10X Genomics, the Chromium
Single Cell Multiome ATAC and gene expression (10x Multiome), provides simultaneous gene
expression and open chromatin measurements from the same cell at high throughput. This
technology is well suited to identify gene regulatory networks by linking open chromatin regions
with changes in gene expression, a task which is harder to perform when the two modalities are
derived from separate groups of cells. However, very few datasets have been published to date
using the 10x Multiome technology, and so how much information can be obtained by

simultaneously profiling both modalities in the same cell remains an open question.
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Technology: First, cells are purified and single nuclei are isolated, chromosomes are
transpositioned. Next, ATAC and mRNA sequencing libraries are prepared with 10X Genomics
Chromium microfluidic controller device where nuclei are partitioned and embedded in a droplet
with a decorated gel bead with DNA 16nt 10X barcode that allows for pairing ATAC and mRNA
signals to the same nuclei. mRNA is tagged with an 12nt Unique Molecular Identifier sequence
(UMI), and a poly(dT)VN for poly-adenylated 3'ends. ATAC fragments are tagged with a lllumina
primer sequence and an 8nt space sequence. All barcoded products are amplified in two rounds
of PCR and then processed for sequencing. According to the Chromium Single-Cell Multiome
ATAC and gene expression assay product information, it has a flexible throughput of 500 - 10,000
nuclei per channel and up to 80,000 per run with a 65% recovery rate and low multiplet rate of
<1% per 1000 cells (10Xgenomics.com).

Landmark data: 10X genomics has released a dataset of ~10k peripheral blood mononuclear
cells (PBMCs) from a human healthy donor. Here we provide the RNA expression matrix and the
binary matrix of ATAC fragments for each cell, quantified over a set of pre-computed peaks (Table
6). To access data in the SingleCellMultiModal package, call the scMultiome ("pbmc_10x")
command. Relevant cell metadata is provided within the MultiAssayExperiment object. The

overall dataset is 1.1 GB.

Dataset Assay type Modes Data structure # features | # cells
Identifier

Human RNA-seq Gene SingleCellExperiment | 36,549 10,032
PBMCs expression

Chromatin Fragments SingleCellExperiment | 108,344 10,032
accessibility over peaks

Table 6: 10X Multiome dataset descriptions, with assay types, molecular modes, number of
features and number of cells
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RNA and Spatial sequencing assays

Purpose and goals: The power of microscopy to resolve spatial information has been paired
with single-cell sequencing to measure transcriptomic activity. These microscopy-based
sequencing technologies capture a cell population’s heterogeneous gene expression typically lost
in bulk assays. Technologies like seqFISH(+) (sequential Fluorescence In Situ Hybridization),
fluorescence in situ hybridization sequencing [6], Multiplexed error-robust fluorescence in situ
hybridization (MERFISH) [39], Slide-seq [40,41] combine sequential barcoding with in situ
molecular fluorescence probing, allowing the identification from tens to thousands of mRNAs
transcripts while preserving spatial coordinates at micrometer resolution. We refer to this family
of technologies as molecular-based spatial transcriptomics. Another family of spatial omics
technologies can be described as spot-based; it includes the 10x Visium Spatial Gene Expression
and Slide-seq [40]. In this family, the spatial coordinates are typically associated with barcoded
spot-like identities, where the transcripts are amplified and sequenced. Currently, our package
does not include any spot-based spatial transcriptomics dataset. The TENxVisiumData package
[42] (available at https://github.com/HelenaLC/TENxVisiumData) contains several such datasets.
See [43] for a comprehensive review of spatial transcriptomics technologies.

Technology: The seqFISH technology makes use of temporal barcodes to be read in multiple
rounds of hybridization where mRNAs are labeled with fluorescent probes. During the
hybridization rounds, the fluorescent probes are hybridized with the transcripts to be imaged with
microscopy. Then they are stripped to be re-used and coupled with different fluorophores, during
further rounds. In this case, the transcript abundance is given by the number of colocalizing spots
per each transcript. The main differences between the technologies are due to the barcoding of
RNAs. In seqFISH they are detected as a color sequence while in MERFISH the barcodes are
identified as binary strings allowing error handling but requiring longer transcripts and more

rounds of hybridizations [44].
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Landmark data: The provided seqFISH dataset is designed on a mouse visual cortex tissue and
can be retrieved in two different versions. Both versions include Single-cell RNA-seq and seqFISH
data. Single-cell RNA-seq data in version 1.0.0 are part of the original paper [24] of 24057 genes
in 1809 cells, while version 2.0.0 is a pre-processed adaptation of version 1.0.0 [21] where the
authors analyzed it in order to provide the 113 genes in common with seqFISH data in 1723 cells.
The provided seqFISH data are the same for both versions as part of their original paper [45,46]
made of 1597 cells and 113 genes. The dataset is accessible via the SingleCellMultiModal
Bioconductor package by using the seqFISH(DataType="mouse_visual_cortex", version =
"1.0.0") function call, which returns a MultiAssayExperiment object with a SpatialExperiment

object for the seqFISH data and a SingleCellExperiment object for the Single-cell RNA-seq data

(Table 7).
Dataset Assay Modes Species | Data Structure | Versio | # # cells
Identifier | Type n features

Mouse Single-cell | Transcripts | Mouse SingleCellExpe | 1.0.0 | 24057 1809

visual RNA-seq riment
cortex 200 |113 1723
seqFISH Spatial Mouse SpatialExperim | 1.0.0/ | 113 1597
Transcripto ent 2.0.0
mics

Table 7: seqFISH dataset descriptions, with assay types, molecular modes, specimens, dataset
version provided, number of features and number of cells

RNA and DNA sequencing assays

Purpose and goals: Parallel genome and transcriptome sequencing (G&T-seq) of single-cells [7]
opens new avenues for measuring transcriptional responses to genetic and genomic variation
resulting from different allele frequencies, genetic mosaicism [47], single nucleotide variants
(SNVs), DNA copy-number variants (CNVs), and structural variants (SVs). Although current

experimental protocols are low-throughput with respect to the number of cells, simultaneous DNA
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and RNA sequencing of single-cells resolves the problem of how to associate cells across each
modality from independently sampled single-cell measurements [48].

Technology: Following cell isolation and lysis, G&T-seq measures DNA and RNA levels of the
same cell by physically separating polyadenylated RNA from genomic DNA using a biotinylated
oligo-dT primer [49]. This is followed by separate whole-genome and whole-transcriptome
amplification. Whole-genome amplification is carried out via multiple displacement amplification
(MDA) or displacement pre-amplification and PCR (DA-PCR) for DNA sequencing, providing
targeted sequencing reads or genome-wide copy number estimates. Parallel Smart-seq2 whole-
transcriptome amplification is used for lllumina or PacBio cDNA sequencing, providing gene
expression levels based on standard computational RNA-seq quantification pipelines. While
pioneering technologies such as G&T-seq [7] and DR-seq [50] sequence both the DNA and RNA
from single-cells, they currently measure only few cells (50-200 cells [51]) compared to assays
that sequence DNA or RNA alone (1,000 - 10,000 cells [51]) such as Direct Library Preparation
[52] or 10x Genomics Single-cell RNA-seq [53].

Landmark data: G&T-seq has been applied by Macaulay et al. [7] for parallel analysis of genomes
and transcriptomes of (i) 130 individual cells from breast cancer line HCC38 and B lymphoblastoid
line HCC38-BL, and (ii) 112 single cells from a mouse embryo at the eight-cell stage. Publicly
available and included in the SingleCellMultiModal package is the mouse embryo dataset,
assaying blastomeres of seven eight-cell cleavage-stage mouse embryos, five of which were
treated with reversine at the four-cell stage of in vitro culture to induce chromosome mis-
segregation. The dataset is stored as a MultiAssayExperiment [10] consisting of (i) a
SingleCellExperiment [9] storing the single-cell RNA-seq read counts, and (i) a
RaggedExperiment [54] storing integer copy numbers as previously described [55] (Table 8).

Although assaying only a relatively small number of cells, the dataset can serve as a prototype

for benchmarking single-cell eQTL integration of DNA copy number and gene expression levels,
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given that Macaulay et al. [7] reported copy gains or losses with concomitant increases and

decreases in gene expression levels.

Dataset Assay Mode Species | Data Version | # features | # cells
Identifier Type Structure
E-ERAD-381 | RNA-seq [ mRNA Mouse | SingleCell [ 1.0.0 23363 112
expression Experime
nt
DNA-seq | Copy number | Mouse | RaggedEx | 1.0.0 2366 112
periment

Table 8: G&T-seq dataset description, with assay types, molecular modes, number of
specimens, number of features and number of cells

Integrative analysis across modalities using data from SingleCellMultiModal

Existing methods of integrative analysis of single-cell multimodal data have been recently
reviewed [20]. Very briefly, some of the most popular current implementations are 1) the Seurat
V4 R package which aims at vertical integration across several modal data types [56], 2)
mixOmics [13] provides an extensive framework for data integration at molecular (P-integration,
MINT [57]) and sample levels (N-integration, DIABLO [58]), and 3) Multi-Omics Factor Analysis,
MOFA+ [14], a generalisation of Principal Components Analysis for inferring low-dimensional
representation of multimodal data. Datasets provided by SingleCellMultiModal can be readily
reshaped as input to any of these packages. We provide novel examples of such integrative
analysis for exploratory visualization using SingleCellMultiModal datasets, produced within
package documentation: MOFA+ [14] on the 10X Multiome dataset (Figure 4). For more
information, see Data Integration Methods. In addition, we provide a sample analysis on the

SCoPE2 dataset, which can be found in SingleCellMultimodal's package vignette.
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Figure 4: Summary of example integration using the 10X Genomic Multiome data from
the SingleCellMultiModal package. (A): (left) from the 10X Genomic Multiome data resource,
a sparse matrix and FASTA datasets provided, (right) pre-processing steps of source date
required to work with of Multiome dataset provided in SingleCellMultiModal (C):
MultiAssayExperiment (MAE) objects returned when called (D), (E) data integration of
10x Genomic Multiome dataset, combining the chromatin accessibility data with the
transcriptome data using MOFA+. (D): RNA-seq and ATAC-seq matrices used for weight
factored analysis, (E): UMAP cluster of cell types based on factor analysis. For more detail on
the analysis, see the Methods and the SingleCellMultiModal package vignette. Other datasets
can be represented similarly: raw data processing and integration of data modes occur
upstream of the SingleCellMultiModal package, users invoke a single command that creates a
MultiAssayExperiment integrating appropriate memory-efficient objects, which are applied
directly to downstream R/Bioconductor analyses.

Methods

SingleCellMultiModal data package

All datasets are distributed through the SingleCellMultiModal experimental data package in
Bioconductor. This package employs ExperimentHub [59] for robust Cloud-based data download
from AWS S3 buckets, with automatic local caching to avoid repetitive downloads. These methods
are described in detail elsewhere for application to The Cancer Genome Atlas and cBioPortal
[60]. Briefly, metadata and individual omics datasets are stored in ExperimentHub as simple core
Bioconductor objects such as matrix, SparseMatrix, SingleCellExperiment, and
RaggedExperiment. A simple user-facing convenience function is provided for each dataset that
retrieves all necessary individual components, assembles a MultiAssayExperiment object [10],
and returns this to the user. For very large matrices we employ HDF5 on-disk representation.
Methods for users to access these datasets are documented in the SingleCellMultiModal package

vignette and functions manual.

CITE-Seq and ECCITE-Seq dataset

The CITE-Seq contains two modalities of cord blood mononuclear cells, the transcripts (scRNA)
and the cell surface proteins (scADT) measured and preprocessed as described in the CITE-Seq
landmark paper [3]. The PBMC UMI counts were retrieved from the GEO repository with

accession number GSE100866 and then loaded in R to be transformed in matrix format and
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then be loaded as separate assays of a MultiAssayExperiment object. This latter object can be
retieved from the  SingleCellMultiModal package with the  function call:
CITEseq(DataType="cord_blood", dry.run=FALSE).

The ECCITE-Seq has three modalities of the of peripheral blood mononuclear cells, (scRNA), the
cell surface proteins (scADT) and the Hashtagged Oligo (scHTO) measured and preprocessed as
described in the ECCITE-Seq landmark paper [4].

The PBMC modalities for the cutaneous T-cell lymphoma (CTCL) and controls (CTRL) were
retrieved in TXT format from the GEO repository with accession number GSE126310 and then
loaded in R to be transformed in matrix and data.frame format and then be loaded as separate
assays of a MultiAssayExperiment object. The CRISPR perturbed scRNAs data are stored
as data.frame in the object metadata to keep their original long format. This latter object can
be retrieved from the SingleCellMultiModal with the function call:

CITEseq(DataType="peripheral_blood", dry.run=FALSE).

Visual Cortex seqFISH dataset

The segFISH dataset has two different modalities, the spatial transcriptomics (seqFISH) and the
single-cell RNA-seq, in two different versions. The main difference between the two versions are
in the Single-cell RNA-seq counts data which in version 1.0.0 are provided as downloaded in
CSV format from the GEO repository with accession number GSE71585, while the version 2.0.0
is a processed dataset [46] where only the genes with correspondence in the seqFISH dataset

have been preserved. Methods of pre-processing are described at

https://github.com/BIRSBiointegration/Hackathon. In both versions the seqFISH dataset is the
processed version [46] as downloaded from

https://cloudstor.aarnet.edu.au/plus/s/ZuBIXuzuvc9JM|3. Processed version of the seqFISH

data were downloaded as TXT format for the coordinates (fcortex.coordinates.txt), as TSV format
for the cell annotated labels (seqfish_labels.tsv) and TXT format for the counts
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(seqfish_cortex_b2_testing.txt). The data constitute a SpatialExperiment object with the
counts as assay, the cell labels as colData and the coordinates stored as spatialData.

In the same way, the processed Single-cell RNA-seq data were downloaded as TXT format for
the counts (tasic_training_b2.txt), as TSV format for the cell annotated labels (tasic_labels.tsv)

to build a SingleCellExperiment object with the counts as assay and the cell labels as colData.
Finally, the SingleCellExperiment and the SpatialExperiment have been loaded into a
MultiAssayExperiment object as two different assays. The MultiAssayExperiment object
can be retrieved with the function call, for example:

seqFISH(DataType="visual_cortex”, dry.run=FALSE, version="2.0.0")

Mouse Gastrulation scNMT dataset

Preprocessing methods are described in full by Argelaguet et al. [22]. Briefly, RNA-seq libraries
were aligned to the GRCm38 mouse genome build using HiSat235 (v.2.1.0). Gene expression
counts were quantified from the mapped reads using featureCounts [61] with the Ensembl 87
gene annotation [62]. The read counts were log-transformed and size-factor adjusted using
scran normalisation [63]. Bisulfite-seq libraries were aligned to the bisulfite converted GRCm38
mouse genome using Bismark [64]. Endogenous CpG methylation was quantified over ACG
and TCG trinucleotides and GpC chromatin accessibility over GCA, GCC and GCT
trinucleotides. Note that for GCG trinucleotides it is not possible to distinguish endogenous CpG
methylation from induced GpC methylation. In addition, CGC positions were discarded because
of off-target effects of the GpC methyltransferase enzyme [65].

For each CpG site in each cell we obtained binary methylation calls and for each GpC
site in each cell we obtained binary accessibility calls. Notice that binary readouts is an
exclusive property of single-cell bisulfite sequencing data, as for the vast majority of sites only
one allele is observed per cell. This contrasts with bulk bisulfite sequencing data, where each

dinucleotide typically contains multiple reads originating from different cells.
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Finally, we quantified DNA methylation and chromatin accessibility over genomic
features by assuming a binomial model is assumed for each cell and feature, where the number
of successes is the number of methylated CpGs (or GpCs) and the number of trials is the total
number of CpGs (or GpCs) that are observed within the specific cell and genomic feature. Here,
We quantified DNA methylation and chromatin accessibility rates over CpG islands, gene
promoters, gene bodies and DNAse hypersensitive sites. All these data modalities were

compiled together with the RNA expression into a MultiAssayExperiment object. The
dataset can be loaded from within the SingleCellMultiModal package by the function call
scNMT ("mouse_gastrulation", dry.run = FALSE). Code with the data processing

pipeline is available in hitps://github.com/rargelaguet/scnmt gastrulation.

10X Multiome dataset

PBMCs were extracted from a healthy donor after removing granulocytes through cell
sorting.The dataset was downloaded as a CellRanger ARC output from

https://support.10xgenomics.com/single-cell-multiome-atac-

gex/datasets/1.0.0/pbmc_granulocyte sorted 10k, which includes the gene expression matrix

and the chromatin accessibility matrix quantified over ATAC peaks. The dataset included 11,909
cells with a median of 13,486 high-quality ATAC fragments per cell and a median of 1,826
genes expressed per cell. Data processing details, including the peak calling algorithm, can be

found in https://support.10xgenomics.com/single-cell-multiome-atac-

gex/software/pipelines/latest/what-is-cell-ranger-arc. The dataset is provided as a

MultiAssayExperiment [10] consisting of two SingleCellExperiment [9], one containing
the single-cell RNA-seq read counts, and the other containing the binary ATAC peak matrix.

The dataset can be loaded from within the SingleCellMultiModal package by the function

call scMultiome("pbmc_10x", dry.run = FALSE).
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Macrophage differentiation SCoPE2 dataset

The macrophage differentiation project contains two datasets: single-cell RNA-seq data and
MS-SCP data. Upstream processing is described in detail in the SCoPE2 landmark paper [8].
Briefly, for the Single-cell RNA-seq dataset, the authors used CellRanger to align the reads and
to build the UMI count matrices. Based on cell QC and manual inspection, they discarded cells
containing less than 10* UMI barcodes. The resulting tables for two technical replicates were
deposited in a GEO repository with accession GSE142392. For the MS-SCP dataset, the
authors followed the workflow described in Figure 3, with identification and quantification steps
performed using the MaxQuant software and additional protein quantification using a custom R

script available on GitHub (https:/github.com/SlavovLab/SCoPE?2).

We retrieved the single-cell RNA-seq dataset from the GSE142392 repository. The MS-
SCP data and annotations were retrieved from CSV files available at the authors’ website

(https://scope2.slavovlab.net/docs/data). We formatted the Single-cell RNA-seq and the MS-

SCP data as two separate SingleCellExperiment objects without further processing. Because
the Single-cell RNA-seq data is relatively large, it is stored as a sparse matrix using the HDF5
data format. We combined the two data objects in a single MultiAssayExperiment object.
This latter object can be queried from the SingleCellMultimodal package with the function

call SCoPE2("macrophage_differentiation", dry.run = FALSE).

G&T-seq dataset
Raw sequencing data was obtained from the European Nucleotide Archive (ENA [66],

accession PRJEB9051). The data was downloaded in fastq files for whole-genome and whole-
transcriptome paired-end sequencing data for 112 mouse embryo cells. The data was
processed as described in the step-by-step protocol of Macaulay et al. [49]. Preprocessing and
mapping of genome sequencing data was carried out following steps 78-84 of the protocol of

Macaulay et al. [49], using Rsubread [67] for read trimming, alignment to the mm10 mouse
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reference genome, and removal of PCR-duplicate reads. DNA copy-number profiling was
carried out following steps 85-87, using bedtools [68] to convert BAM to BED files, and
subsequently applying Ginkgo [69] for copy number determination. Preprocessing and
mapping of transcriptome sequencing data was carried out following steps 94-96, using
Rsubread [67] for read trimming and alignment to the mm10 mouse reference genome. Read
counts for each gene were obtained using the featureCounts [61] function of the
Rsubread package. The dataset is provided as a MultiAssayExperiment [10] consisting of
(i) a SingleCellExperiment [9] storing the single-cell RNA-seq read counts, and (ii) a
RaggedExperiment [54] storing integer copy numbers as previously described [55]. The
dataset can be loaded from within the SingleCellMultiModal package by the function call

GTseq(dry.run = FALSE).

Data integration of the 10x Multiome data set

For the integration of the 10x Multiome dataset we used MOFA+ [14] to obtain a latent
embedding with contributom from both data modalities. The RNA expression was normalised
using scran [63], followed by feature selection of the top 2000 most variable genes. The
chromatin accessibility was normalised using TFIDF, followed by feature selection of the top
10,000 peaks with the highest mean accessibility. The MOFA model was trained with K=15
factors using default options. To obtain a non-linear embedding we applied UMAP [70] on the

MOFA factors.

Discussion

Experimental data packages providing landmark datasets have historically played an important
role in the development of new statistical methods in Bioconductor, from the classic acute

lymphocytic leukemia (ALL) microarray dataset [71] to the HSMMSingleCell single-cell RNA-seq
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dataset [72], as well as packages providing more extensive curated selections of standardized
datasets in a specific realm [73]. Such packages greatly lower the barrier of access to relevant
data for developers of scientific software, and provide a common testing ground for
development and benchmarking. We present the SingleCellMultiModal Bioconductor
experimental data package, to distribute landmark single-cell multimodal datasets in pre-
integrated immediately usable forms, utilizing standard Bioconductor data structures. Multimodal
datasets are serialized as a MultiAssayExperiment object by a single command, without
requiring users to perform data wrangling to link multiple ‘omics profiles or to manage cells with
incomplete data. We provide curated landmark datasets for a selection of key single-cell
multimodal assays that will serve as benchmarks for the development and assessment of
appropriate analysis methods in R/Bioconductor. We provide a brief review of the assays
provided for the purpose of providing essential background to developers of statistical and
bioinformatic methods, a summary of the data contained in each dataset, and examples of
minimal code needed to access each dataset in an R/Bioconductor session. Methods of
statistical analysis are reviewed in a recent complimentary paper [21].

Single-cell RNA-seq analysis methods in Bioconductor are well developed and widely
used [9], setting the stage for new development in single-cell multimodal data analysis that will
be facilitated by the SingleCellMultiModal experimental data package. Areas of active research
include integrative systems biology across data modes, spatial statistics on high-dimensional
data, dimension reduction and clustering [13], cell identification, multimodal batch correction,
and new data structures for representation and analysis of large and spatially resolved single-
cell multimodal data. These areas of research and their software products will be facilitated and
made more interoperable by the easily accessible and uniformly represented data provided by

this work.
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Abbreviation Definition

10X Multiome 10x Chromium Single Cell Multiome ATAC + Gene Expression
ADT Antibody derived tag

CITE-Seq Cellular Indexing of Transcriptomes and Epitopes by sequencing
ECCITE-Seq Expanded CRISPR CITE-Seq

G&T-seq Genome and Transcriptome sequencing

HDF5 Hierarchical data format V5

HTO Hashtag oligonucleotide

LC liquid chromatography

m/z mass over charge

MOFA+ Multi-Omics Factor Analysis V2

MS mass spectrometry

MS/MS tandem MS

PSM peptide to spectrum match

scNMT single-cell Nucleosome, Methylation, and Transcriptome sequencing
SCoPE2 Single Cell ProtEomics by Mass Spectrometry V2

Single-cell RNA-seq Single-cell RNA sequencing

seqFISH sequential Fluorescence In Situ Hybridization

T™MT tandem mass tag

UMI unique molecular identifier sequence
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Data Availability Statement

The data reviewed and curated in this review are publicly available under the Artistic 2.0 license
as the SingleCellMultiModal Bioconductor package
(https://doi.org/doi:10.18129/B9.bioc.SingleCellMultiModal), with open development and issue
tracking on Github (https://github.com/waldronlab/SingleCellMultiModal). The original 10X

Genomics Multiome data are available from https://support.10xgenomics.com/single-cell-

multiome-atac-gex/datasets
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