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Abstract

Mitochondria and plastids power complex life, and
retain their own organelle DNA (oDNA) genomes,
with highly reduced gene contents compared to their
endosymbiont ancestors. Why some protein-coding
genes are retained in oDNA and some lost remains a
debated question. Here we harness over 15k oDNA
sequences and over 300 whole genome sequences
with tools from structural biology, bioinformatics, ma-
chine learning, and Bayesian model selection to re-
veal the properties of genes, and associated under-
lying mechanisms, that shape oDNA evolution. Strik-
ing symmetry exists between the two organelle types:
gene retention patterns in both are predicted by the
hydrophobicity of a protein product and its energetic
centrality within its protein complex, with additional
influences of nucleic acid and amino acid biochem-
istry. Remarkably, retention principles from one or-
ganelle type successfully and quantitatively predict re-
tention in the other, supporting this universality; these
principles also distinguish gene profiles in indepen-
dent endosymbiotic relationships. The identification
of these features shaping organelle gene retention
both provides quantitative support for several existing
evolutionary hypotheses, and suggests new biochemi-
cal and biophysical mechanisms influencing organelle
genome evolution.

Introduction

Mitochondria and plastids (the broader class of or-
ganelles of which chloroplasts are one type) are
bioenergetic organelles derived from the ancient en-
dosymbiotic acquisition of bacterial precursors [1].
The subsequent co-evolution of mitochondria and
plastids with their host cells has shaped complex life
[2, 3, 4]. Across eukaryotes, the genomes of the origi-
nal endosymbionts (estimated to have contained thou-
sands of genes [5]), have been dramatically reduced
through evolutionary time [6, 7, 1]. Genes have either
been lost completely or transferred to the ‘host’ cell
nucleus, so that modern-day organelle DNA (oDNA)

contains few genes, with profound implications for the
balance of control between the nucleus and endosym-
biont, and the inheritance and maintenance of vital ge-
netic information [8].

Selective pressures favouring organelle gene trans-
fer are largely agreed upon [7]. Nuclear encoding al-
lows recombination to avoid Muller’s ratchet (the irre-
versible buildup of damaging mutations) [9, 6], pro-
tection from chemical mutagens [10, 11] and repli-
cation errors [12, 13], and enhanced fixing of useful
mutations [7, 6]. However, these observations raise
the dual question: why are any genes retained in or-
ganelles at all [14]? This question has been hotly
debated over decades, with many proposed hypothe-
ses. The preferential retention of genes encoding hy-
drophobic products has been suggested, due to the
challenge of correctly targetting and importing such
products to the correct organelle [15, 16, 17]. The
retention of genes playing central roles in controlling
redox activity has also been proposed, to facilitate lo-
cal control of activity [18]. Other hypotheses, including
roles for nucleic acid biochemistry [19], gene expres-
sion levels [20], energetic costs of encoding [21], toxi-
city [22], and others have been proposed, but quanti-
tative testing of these ideas remains limited [19, 23].

Applying tools from model selection to large-scale
genomic data offers unprecedented and powerful op-
portunities to both generate and impartially test evo-
lutionary and mechanistic hypotheses [24] (aligning
with an influential recent commentary on ideas in biol-
ogy [25]). Here, following previous work on mtDNA
evolution [19], we adopt this philosophy to explore
the mechanisms shaping gene loss across organelles.
First, mindful of the dangers of proposing parallels
between different organelles [26], we nonetheless
hypothesised that the same genetic features would
shape retention propensity of genes in mitochondrial
and plastid DNA. Such features would predispose a
gene to be more or less readily retained in oDNA
overall, while the total extent of oDNA retention in a
given species is shaped in parallel by functional and
metabolic features [23, 27] and evolutionary dynam-
ics (characterised statistically in elegant recent work
[28]). We further expect that these genetic features
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would reflect the above evolutionary tension, between
maintaining genetic integrity and retaining the ability
to obtain and control machinery, that applies to both
organelles [29, 7]. With this general hypothesis in
mind, we proceed by taking an impartial, data-driven
approach using large-scale genomic data to investi-
gate which features of genes and their protein prod-
ucts predict oDNA gene retention presence (whether
any eukaryotes retain a given gene in oDNA) and ex-
tent (how commonly an oDNA gene is retained across
eukaryotes).

Results

Quantifying gene-specific oDNA loss pat-
terns across eukaryotes

To quantitatively explore the features predicting oDNA
gene retention, we first define a retention index for a
given oDNA gene, measuring its propensity to be re-
tained in oDNA. To this end, we acquired data on or-
ganelle gene content across eukaryotes, using 10328
whole mtDNA and 5176 whole ptDNA sequences from
NCBI. We curated these data with two different ap-
proaches, resembling supervised and unsupervised
philosophies, to form consistent records of gene pres-
ence/absence by species (see Methods). The su-
pervised approach (manual assignment of ambiguous
gene records to a chosen gene label) and the un-
supervised approach (all-against-all BLAST compar-
ison of every gene record from the organelle genome
database) agreed tightly (Supplementary Fig. S1).
Simply counting observations of each gene across
species is prone to large sampling bias, as some
taxa (notably bilaterians and angiosperms) are much
more densely sampled than others. Instead we recon-
structed gene loss events using oDNA sequences of
modern organisms and an estimated taxonomic rela-
tionship between them (see Methods). Motivated by
hypercubic transition path sampling [19, 30], we then
define the retention index of gene X as the number
of other genes already lost when gene X is lost (re-
sults were robust with alternative definition; see be-
low). This retention index, along with the unique pat-
terns of oDNA gene presence/absence and their tax-
onomic distribution, are illustrated in Fig. 1A (phyloge-
netic embedding in Supplementary Fig. S2).

The retention patterns of genes in mtDNA and
ptDNA across eukaryotes show pronounced structure,
arguing against a null hypothesis of random gene loss.
The several-fold expansion of mtDNA in this study
compared to [19] preserves the same structure, with,
for example, several rpl genes and sdh[2-4] commonly
lost and nad[1-6], cox[1-3] and cytb commonly re-
tained. The ptDNA patterns display pronounced clus-
tering, following previous observations [31], with one
cluster corresponding broadly to Viridiplantae (typi-
cally retaining ndh genes) and the other correspond-
ing broadly to brown and red algae, diatoms, and other
clades (typically lacking ndh genes but retaining more

atp, rps, rpl, psa, and psb). Several ribosomal sub-
units and ndhb are among the most retained in ptDNA,
with a second tier involving many ndh, psa, psb, and
atp genes retained in around half our species. Least
retained ptDNA genes include other members of psa,
psb, rps, and rpl.

Cross-organelle symmetry in the predic-
tion of gene retention by hydrophobicity
and GC content

We next compiled a set of quantitative properties of
genes and their protein products, linked to evolution-
ary hypotheses about the mechanisms shaping oDNA
gene retention [19]. These included gene length and
GC content, statistics of encoding and codon usage,
and protein hydrophobicity, molecular weight, energy
requirements for production, average carboxyl and
amino pKa values for amino acid residues, and oth-
ers (Supplementary Fig. S3). Our quantitative es-
timates for each feature were averages over a taxo-
nomically diverse sampling of eukaryotic records (see
Methods). We used Bayesian model selection to ask
which of these properties were most likely to be in-
cluded in a linear model predicting the retention index
of each gene. Following Ref. [19], this approach iden-
tifies likely predictors with quantified uncertainty, while
acting without prior favouring of any given hypotheses,
and automatically guarding against overfitting and the
appearance of correlated predictors providing redun-
dant information. In both mtDNA and ptDNA datasets,
models where high hydrophobicity and high GC con-
tent predict high gene retention were strongly favoured
(Fig. 1B). It is well-known that oDNA generally has
lower GC content than nuclear DNA, because of the
asymmetric mutational pressure arising from the hy-
drolytic deamination of cytosine to uracil, reducing GC
content in the high mutation system of oDNA [32].
However, our results show that higher GC content is
relatively favoured between oDNA genes – and so at
least partly independently of the general oDNA/nDNA
difference [19].

We then tested the capacity of models involving
these features to predict the retention index of oDNA
genes. We split mtDNA and ptDNA gene sets into
50:50 training and test sets, trained linear models in-
volving hydrophobicity and GC content using the train-
ing data, and examined their performance in predic-
tion retention index in the independent test set. Av-
erage Spearman correlations were ρ = 0.64 and
ρ = 0.62 for training mt and pt sets respectively, and
ρ = 0.63 and ρ = 0.60 for test mt and pt sets respec-
tively (Fig. 1C). Correlations were higher still (ρ > 0.7)
when only subunits of core bioenergetic complexes
were considered (Supplementary Table S1). Follow-
ing our hypothesis that the same features predict re-
tention in the two organelle types, we also performed
cross-organelle experiments. That is, we trained a hy-
drophobicity and GC model using mt genes and ex-
amined its ability to predict pt gene retention, and vice
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Figure 1: Structure and predictors of oDNA gene retention. (A) Each row of coloured/white pixels is a unique gene presence/absence
pattern found in eukaryotic oDNA, where columns are individual oDNA genes. Darker colours correspond to higher values of our assigned
retention index for a given gene. Each pattern may be present in many species: grey bars on the left of each row show the number of
species with that pattern in a number of eukaryotic clades. The pronounced split in ptDNA patterns reflects the evolutionary pathways
represented, for example, by Rhodophyta and Viridiplantae [3]. Sets of genes encoding subunits of notable organelle protein complexes
are labelled with grey bars under the horizontal axis. Full set of taxon abbreviations is in Supplementary Text; notable taxa are [metaz]oa,
[virid]iplantae, [fungi], [apico]mplexa, [jakob]ida, [rhodo]phyta. (B) Posterior probabilities over the set of features in linear models predicting
retention index. Each model structure is given by a set of codes describing its component features. Hydrophobicity (Hyd) or hydrophobicity
index (HydI) and GC content (GC) feature in all model structures with the highest posterior probabilities (for priors see Methods). +/−
give posterior mean signs of associated coefficients in model for retention index. Full feature list: [Hyd]rophobicity, [HydI] hydrophobicity
index, [GC] content, [Len]gth, [pK1] carboxyl pKa, [pk2] amino pKa, [MW] molecular weight, [AG/CW] energies of gene expression (Sup-
plementary Text). (C) Prediction of retention index with linear models involving hydrophobicity and GC content. oDNA gene sets are split
into training and test sets; trained models predict retention indices well in the independent test sets. (D) Cross-organelle prediction. Linear
models trained on mtDNA gene properties predict retention indices of ptDNA genes well, and vice versa.
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versa. Strikingly, both organelle gene sets predicted
well the other’s retention patterns (ρ = 0.65 for pt pre-
dicting mt; ρ = 0.55 for mt predicting pt; Fig. 1D, Sup-
plementary Table S1). In other words, a simple model
trained only using mitochondrial gene data can predict
the retention profile of plastid genes, and vice versa.

To relax the assumptions involved in this analysis,
including linear modelling, we paralleled this analysis
with a range of other regression approaches from data
science, including penalised regression and random
forests, and using different definitions of retention in-
dex (Supplementary Text; Supplementary Fig. S4).
We generally observed hydrophobicity and GC con-
tent being selected as features with good predictive
ability and the capacity to predict one oDNA type’s
behaviour from the other, regardless of statistical ap-
proach taken (Supplementary Table S1); pKa values
were also selected as informative features in some
model types (see below).

Hydrophobicity and protein biochemistry
predicts oDNA gene transfer to the nu-
cleus in both organelles

We next asked which properties predict which or-
ganelle protein-coding genes are universally trans-
ferred to the nucleus across all eukaryotes. To this
end, we compiled sets of annotated nDNA and oDNA
genes encoding subunits of bioenergetic protein com-
plexes in organelles using a custom pattern matching
algorithm and 308 eukaryotic whole genome records
from NCBI (see Methods) (Fig. 2A). As expected, GC
content in organelle-encoded genes was systemati-
cally lower than nuclear-encoded genes. Here, this
signal cannot be regarded as a causal mechanism,
because it is likely due at least in part to the aforemen-
tioned differences in asymmetric mutational pressure
between nDNA and oDNA [32, 19]. More interest-
ingly, the hydrophobicity of organelle-encoded genes
was systematically higher across taxa (agreeing with
recent observations in the mitoribosome [33]), and the
carboxyl pKa values of organelle-encoded genes were
also systematically higher; other features also differed
by encoding compartment (Supplementary Fig. S5).
We used Bayesian model selection with a generalised
linear model (GLM) using gene properties to predict
the encoding compartment (except GC and codon use
statistics, due to the possibility of differences therein
arising simply due to asymmetric mutation). We found
that hydrophobicity and carboxyl pKa consistently ap-
peared in all the model structures with highest pos-
terior probability. Their appearance together in a
Bayesian model selection framework suggests that
they provide independent information on gene encod-
ing, despite a correlation (albeit rather weak) between
the features (Supplementary Fig. S3). GLMs us-
ing hydrophobicity and carboxyl pKa, trained using a
subset of genes from a given species, were able to
to predict the encoding compartment of an indepen-
dent test set from that species with high performance

(True Positive/Negative rates: mt TP 0.90 ± 0.17, TN
0.97 ± 0.10, pt TP 0.75 ± 0.20, TN 0.88 ± 0.18, mean
and s.d. across species). We also verified that these
differences existed within the sets of genes encoding
subunits of different organellar complexes (Fig. 2B).
We employed a range of classification approaches to
quantify these observations, again training on a sub-
set of the observations and testing classification per-
formance on an independent set (Supplementary Fig.
S12). Hydrophobicity and pKa values consistently ap-
peared as strong separating terms, with other features
including production energy and gene length playing a
supporting role (Supplementary Fig. S12). Classifica-
tion accuracy was typically > 0.8 for all complexes us-
ing random forest approaches (Supplementary Table
S4).

For a subset of organelle-localised gene products,
solved crystal structures of their protein complexes
allow another property to be quantified: the binding
energy statistics of the protein product in its protein
complex structure. Previous work qualitatively sug-
gested that genes encoding subunits with high to-
tal binding energy (strong binding interactions with
neighbouring subunits) and playing central roles in
complex assembly pathways were most retained in
mtDNA [19, 34, 14]. We used a generalised lin-
ear mixed model to quantify and extend this analy-
sis to complexes in both organelle types. We found
that total binding energy predicted whether a gene
was organelle-encoded in any eukaryotes, with the re-
lationship holding across mitochondria and plastids,
though with varying magnitudes in different complexes
(Fig. 2C; Supplementary Fig. S7). We verified the
absence of pronounced correlation structure between
binding energy statistics and hydrophobicity (Supple-
mentary Fig. S8), suggesting that the two features in-
dependently contribute to gene retention [19]. Hence,
hydrophobicity, amino acid biochemistry, and ener-
getic centrality (linked to colocalisation for redox regu-
lation [14]) predict whether a gene is ever retained in
oDNA; of those that are, hydrophobicity and GC con-
tent predict the extent of this retention across eukary-
otes.

Independent endosymbiotic genomes
show compatible profiles of hydrophobic-
ity and protein biochemistry

Evolutionary history cannot easily be rerun to inde-
pendently examine these principles. However, the di-
versity of eukaryotic life provides some existing oppor-
tunities to test them. In several eukaryotic species,
unicellular endosymbionts that are not directly related
to mitochondria or plastids have co-evolved with their
‘host’ species, in many cases involving gene loss and
in some cases transfer of genes to the host. Class In-

secta are known to have several examples of reduced
bacterial endosymbionts [35]; other notable examples
include the chromatophore, an originally cyanobac-
terial endosymbiont of Paulinella freshwater amoe-
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Figure 2: Features predicting encoding compartment. (A) Mean and s.e.m. of selected gene properties for organelle genes
encoded in nuclear DNA (grey), mtDNA (red), and ptDNA (blue), in different species (organised by the phylogeny on the left, expanded
set in Supplementary Fig. S5). (B) Hydrophobicity and carboxyl pKa of organelle genes encoded in nuclear DNA (red) and oDNA (blue),
organised by the protein complex that the gene product occupies (expanded set in Supplementary Fig. S6). (C) Bayesian model selection
with a generalised linear model (GLM) framework for features predicting the encoding compartment of a given gene. Posterior probabilities
are averaged across independent classifications for individual organisms. Each model structure is given by a set of codes describing its
component features; model labels as in Fig. 1. (D) Performance (True/False Positive/Negative) of GLMs involving hydrophobicity and
carboxyl pKa on predicting encoding compartment of genes outside the training set. Each set of points corresponds to a model for one
organism. (E) Binding energy and encoding compartment. Traces show mean and 95% credible intervals for Bayesian generalised linear
mixed model (GLMM) (see Methods for priors). The associated p-value is a frequentist interpretation from bootstrapping, against the null
hypothesis of no relationship. Crystal structures are coloured according to the number of species in our dataset that retain the gene for
each subunit.
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bae [36], the recently discovered Candidatus Azoam-

icus ciliaticola, a denitrifying gammaproteobacterial
endosymbiont within a Plagiopylea ciliate host [37],
and the Nostoc azollae symbiont of the Azolla water
ferns [38].

Not all of these endosymbiotic relationships have
been shown to involve gene transfer to the host cell
nucleus, although there is evidence for this in the
Paulinella system [39]. All cases do, however, involve
reduction of the endosymbiont genome, as some ma-
chinery in the endosymbiont becomes redundant in
the symbiotic relationship. In a subset of lost genes,
this redundancy arises because host-encoded ma-
chinery can fulfil the required function (other genes will
be lost without such host-encoded compensation, as
their entire function becomes redundant).

For this subset, the same broad principles regard-
ing import of protein machinery may then be expected
to hold as in organelles. Such genes are lost as host-
encoded machinery removes the need for their local
encoding. But such host-encoded machinery must be
physically acquired by the endosymbiont, raising sim-
ilar issues of the mistargeting and import difficulty for
hydrophobic gene products as in the organelle case.
In tandem, any biochemical pressures influencing the
ease of gene expression in the endosymbiont com-
partment may also be expected to shape retention
patterns of this subset of genes. We therefore hypoth-
esised that the principles we find to shape gene reten-
tion in mitochondria and plastids would also show a
detectable signal in these independent endosymbiotic
cases (while expecting a lower magnitude hydropho-
bicity signal, due to loss of some genes without the
requirement for nuclear compensation).

To test this hypothesis, we computed genetic statis-
tics for the genomes of endosymbionts and non-
endosymbiotic close relatives (Methods; Supplemen-
tary Table S2). The hydrophobicity profile of the en-
dosymbionts in 9 of 10 cases was significantly higher
than their non-endosymbiotic relative (Supplementary
Text; Fig. 3). Genes retained in the photosyn-
thetic chromatophore also had lower carboxyl pKa val-
ues than in a free-living relative; for other endosym-
bionts, this relationship was reversed, with endosym-
biont genes having lower carboxyl pKa values. This is
compatible with a possible mechanistic link between
the pH of the compartment and the dynamics of gene
expression therein (see Discussion).

Our analysis approach involves several choices of
parameter and protocol. To assess the robustness
of our findings, we have varied these choices and
checked the corresponding change in outputs, de-
scribed in Supplementary Text and the following fig-
ures. The key choices, with figures illustrating their
effects, are in gene annotation (supervised or unsu-
pervised; Supplementary Fig. S1), initial selection of
features (where we followed existing hypotheses and
particularly their summary in [19]) and how to sum-
marise their quantitative values (Supplementary Fig.
S9), definition of retention index (Supplementary Ta-
ble S1; Supplementary Fig. S10), choice of priors in

Figure 3: Gene feature profiles in other endosymbionts. Hy-
drophobicity and carboxyl pKa across genes in endosymbionts (red)
and a non-endosymbiotic close relative (blue). p-values are from
Wilcoxon rank-sum tests.

Bayesian model selection (Supplementary Fig. S11),
and choice of regression and classification methods:
we additionally tested LASSO and ridge regression,
and decision trees and random forests for regres-
sion and classification (Supplementary Figs. S10 and
S12).

Discussion

To summarise, we have found that hydrophobicity and
energetic centrality (the latter linked to colocalisation
for redox regulation [14]), with other features of nu-
cleic acid and amino acid biochemistry, predict the
prevalence of gene retention to a strikingly symmetric
extent in mitochondria, chloroplasts, and independent
endosymbionts. It must be underlined that no single
mechanism has sole predictive power over this be-
haviour. As expected in complex biological systems,
a combination of factors is likely at play, a situation
that has perhaps contributed to the ongoing debate
on this topic. Our findings support some previously
proposed mechanisms for how selective pressures on
gene content may be manifest, while not being incom-
patible with others (for example, recent theory on the
energetic costs of encoding and importing genes [21]).
Due to the physical difficulty of importing hydropho-
bic products or their propensity to be mistargeted to
other compartments, hydrophobic gene retention may
be favoured [15, 17] (though these mechanisms are
not free from debate [18]). The binding energy central-
ity of a subunit in its protein complex was suggested
as a proxy for control over complex assembly, and thus
redox processes, aligning with the CoRR (colocalisa-
tion for redox regulation) hypothesis [18]. GC con-
tent and carboxyl pKa have less established mech-
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anistic hypotheses. The increased chemical stability
of GC bonds [40] has been suggested to support the
integrity of oDNA in the damaging chemical environ-
ment of the organelle. pKa, reflecting the ease of de-
protonation of amino acid subgroups for different pH
environments, influences the dynamics of peptide for-
mation in translation [41], resulting in pronounced and
diverse pH dependence of peptide formation for dif-
ferent amino acids [42]. Speculatively, we thus hy-
pothesise that the synthesis of protein products en-
riched for higher-pKa amino acids may involve lower
kinetic hurdles in the more alkaline pH of mitochon-
dria, plastids, and the chromatophore, favouring the
retention of the corresponding genes. The pH within
other endosymbionts, which perform less or no proton
pumping, is expected to be lower, in which case the
opposite pKa trend observed in Fig. 3 follows this pat-
tern. This harnessing of large-scale sequence data
with tools from model selection and machine learning
has thus generated, and tested, new understanding
of the fundamental evolutionary forces shaping bioen-
ergetic organelles, providing quantitative support for
several existing hypotheses and suggesting new con-
tributory mechanisms to this important process.

Materials and Methods

Source data. We used the mitochondrion and plas-
tid sequences available from NCBI RefSeq [43], and
annotated eukaryotic whole genome data also from
NCBI. The accessions and references for the en-
dosymbiont/relative pairs are given in Supplementary
Table S2. For biochemical and biophysical gene prop-
erties, we used the values from [19], described in the
Supplementary Text, using BioPython [44] to assign
these to given gene sequences. We averaged gene
statistics over representative species from a collec-
tion of diverse taxa, both using model species (Homo

sapiens, Arabidopsis thaliana, Saccharomyces cere-

visiae, Reclinomonas americana, Chondrus crispus,
Plasmodium falciparum) and randomly selected mem-
bers of different taxa (Supplementary Text; Supple-
mentary Fig. S9). We used crystal structures and
associated HTML descriptions from the PDB [45] ref-
erences 1oco, 1q90, 2h88, 2wsc, 5iu0, 5mdx, 5mlc,
5o31, 5xte, 6cp3, 6fkf. We used PDBePISA [46] to
estimate subunit binding energies with two different
protocols, both removing ligands and incorporating
them into the overall binding energy value for a sub-
unit (Supplementary Text). We used estimated tax-
onomies from NCBI’s Common Taxonomy Tree tool
[47].

Gene labelling and evolutionary transitions. Gene
annotations are inconsistent across such a diverse
dataset. For organelle genomes, we used two ap-
proaches. In a supervised approach, where the full
set of unique labels found was manually curated and
assigned a ‘correct’ label based on biological knowl-
edge. In an unsupervised approach, we used BLASTn
to perform an all-against-all comparison of all genes in

our dataset. We scored each comparison as the pro-
portional length of the region of identity compared to
the reference sequence, multiplied by the proportion
of identities across that region. Scores over 0.75 were
interpreted as ‘hits’ (e.g. 75% identity over the full se-
quence, or full identity over 75% of the sequence). If
more than 25% of appearance of gene label X in the
BLAST output involved a ‘hit’ with gene labels Y , we
interpreted X and Y as referring to the same gene.
This process built a set of pairwise identities, which
we then resolved interatively into groups of gene la-
bels assumed to refer to the same gene. We then as-
signed the most prevalent gene label to all members of
that group. In each case, we retained only genes that
were present in more than ten species in our dataset.
For annotated whole genome data, we used pattern
matching for gene annotations based on regular ex-
pression identifiers to identify nuclear-encoded sub-
units of organellar protein complexes (expressions in
Supplementary Text).

Using these curated gene sets, we assigned ‘bar-
codes’ of gene presence/absence (binary strings of
length L, with 0 denoting gene absence and 1 denot-
ing gene presence) to each species in our dataset.
Each of these species is a tip on an estimated taxo-
nomic tree describing their putative evolutionary rela-
tionship. Assuming that gene loss is rare and gene
gain is very rare, we iteratively reconstructed parent
barcodes on this tree by assigning a 0 for gene X if
all descendants lack X , and 1 otherwise. We then
identified parent-child pairs where the child barcode
had fewer genes than the parent (the opposite is im-
possible by construction). For each such instance, we
record the transition from parent barcode to child bar-
code as a loss event.

Retention indices. Our simple retention index is de-
fined as follows. Identify the set of transitions that in-
volve the loss of gene X . For each transition in this
set, count the genes retained by the parent and the
genes retained by the child, and take their mean. The
retention index is the mean of this quantity over the set
of transitions where X is lost. The rationale is to char-
acterise the number of genes that have already been
lost when X is lost. If a transition event involves only
the loss of X , the parent-child average will report this
number minus 1/2. If a transition involves the loss of
several other genes in parallel with X , the average of
the before and after counts is used. We also used an
alternative retention index without dependence on an
assumed evolutionary relationship, described in Sup-
plementary Text.

Prediction of retention index. We used Bayesian
model selection with non-local priors to promote sep-
aration of overlapping models [48]; specifically, mo-
ment (MOM) priors parameterised so that a signal-
to-noise ratio of > 0.2 is anticipated, compatible with
previous findings [19]; a beta-binomial(1, 1) prior dis-
tribution on the model space, and a minimally infor-
mative inverse gamma prior for noise. Further prior
information, and the effects of varying them, are given
in Supplementary Text and Supplementary Fig. S11.
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We implemented the selection process in the R pack-
age mombf. We additionally used linear modelling pe-
nalised using ridge and LASSO protocols, tree-based,
and random forest regression, described in the Sup-
plementary Text and implemented using glmnet, tree,
and randomForest packages.

Classification of subcellular encoding. We used
Bayesian model averaging for generalised linear mod-
els (GLMs) predicting encoding compartments with
priors giving probability 1/2 for the inclusion of each
parameter, implemented in BMA. We then trained
GLMs involving hydrophobicity and carboxyl pKa on
a training subset of genes for each species. The train-
ing subset was the union of a random sample of half
the nuclear-encoded genes and half the organelle-
encoded genes in each species, with the test set be-
ing the complement of this set. We also used decision
tree and random forest approaches for the classifica-
tion task, described in the Supplementary Text. For
binding energy values, we used both a Bayesian GLM
treating all complexes independently, with t-distributed
priors with zero mean, implemented in arm; and a
Bayesian generalised linear mixed model with flat pri-
ors over coefficients, residuals, and covariance struc-
ture, implemented in blme. These priors were used to
overcome convergence issues given the perfect sep-
aration of datapoints observed for some protein com-
plexes. Complexes were visualised in PyMOL [49].

Code and dependencies. Code is written in R,
Python, and C, with a wrapper script for bash, and is
freely available at github.com/StochasticBiology/
odna-loss. The list of libraries used and correspond-
ing citations are in the Supplementary Text.
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Supplementary Text

Materials & Methods

Source data. We used the mitochondrion and plastid sequences available from NCBI RefSeq [1], and an-
notated eukaryotic whole genome data also from NCBI. The accessions and references for the endosym-
biont/relative pairs are given in Supplementary Table S2. For biochemical and biophysical gene properties, we
used the values from [2], described in the Supplementary Text, using BioPython [3] to assign these to given
gene sequences. We averaged gene statistics over representative species from a collection of diverse taxa,
both using model species (Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae, Reclinomonas

americana, Chondrus crispus, Plasmodium falciparum) and randomly selected members of different taxa (Sup-
plementary Text; Supplementary Fig. S9). Codes used in the figures are [Hyd]rophobicity, [HydI] hydropho-
bicity index, [GC] content, [Len]gth, [pK1] carboxyl pKa, [pK2] amino pKa, [MW] molecular weight, [AG/CW]
energies of gene expression. We used crystal structures and associated HTML descriptions from the PDB
[4] references 1oco, 1q90, 2h88, 2wsc, 5iu0, 5mdx, 5mlc, 5o31, 5xte, 6cp3, 6fkf. We used PDBePISA [5] to
estimate subunit binding energies with two different protocols, both removing ligands and incorporating them
into the overall binding energy value for a subunit (Supplementary Text). We used estimated taxonomies from
NCBI’s Common Taxonomy Tree tool [6].

Gene labelling and evolutionary transitions. Gene annotations are inconsistent across such a diverse
dataset. For organelle genomes, we used two approaches. In a supervised approach, where the full set
of unique labels found was manually curated and assigned a ‘correct’ label based on biological knowledge.
In an unsupervised approach, we used BLASTn to perform an all-against-all comparison of all genes in our
dataset. We scored each comparison as the proportional length of the region of identity compared to the refer-
ence sequence, multiplied by the proportion of identities across that region. Scores over 0.75 were interpreted
as ‘hits’ (e.g. 75% identity over the full sequence, or full identity over 75% of the sequence). If more than 25%
of appearance of gene label X in the BLAST output involved a ‘hit’ with gene labels Y , we interpreted X and Y

as referring to the same gene. This process built a set of pairwise identities, which we then resolved interatively
into groups of gene labels assumed to refer to the same gene. We then assigned the most prevalent gene
label to all members of that group. In each case, we retained only genes that were present in more than ten
species in our dataset. For annotated whole genome data, we used pattern matching for gene annotations
based on regular expression identifiers to identify nuclear-encoded subunits of organellar protein complexes
(expressions in Supplementary Text).

Using these curated gene sets, we assigned ‘barcodes’ of gene presence/absence (binary strings of length
L, with 0 denoting gene absence and 1 denoting gene presence) to each species in our dataset. Each of these
species is a tip on an estimated taxonomic tree describing their putative evolutionary relationship. Assuming
that gene loss is rare and gene gain is very rare, we iteratively reconstructed parent barcodes on this tree by
assigning a 0 for gene X if all descendants lack X , and 1 otherwise. We then identified parent-child pairs where
the child barcode had fewer genes than the parent (the opposite is impossible by construction). For each such
instance, we record the transition from parent barcode to child barcode as a loss event.

Retention indices. Our simple retention index is defined as follows. Identify the set of transitions that involve
the loss of gene X . For each transition in this set, count the genes retained by the parent and the genes
retained by the child, and take their mean. The retention index is the mean of this quantity over the set of
transitions where X is lost. The rationale is to characterise the number of genes that have already been lost
when X is lost. If a transition event involves only the loss of X , the parent-child average will report this number
minus 1/2. If a transition involves the loss of several other genes in parallel with X , the average of the before
and after counts is used. We also used an alternative retention index without dependence on an assumed
evolutionary relationship, described in Supplementary Text.

Prediction of retention index. We used Bayesian model selection with non-local priors to promote separation
of overlapping models [7]; specifically, moment (MOM) priors parameterised so that a signal-to-noise ratio of
> 0.2 is anticipated, compatible with previous findings [2]; a beta-binomial(1, 1) prior distribution on the model
space, and a minimally informative inverse gamma prior for noise. Further prior information, and the effects of
varying them, are given in Supplementary Text and Supplementary Fig. S11. We implemented the selection
process in the R package mombf. We additionally used linear modelling penalised using ridge and LASSO
protocols, tree-based, and random forest regression, described in the Supplementary Text and implemented
using glmnet, tree, and randomForest packages.

Classification of subcellular encoding. We used Bayesian model averaging for generalised linear models
(GLMs) predicting encoding compartments with priors giving probability 1/2 for the inclusion of each parameter,
implemented in BMA. We then trained GLMs involving hydrophobicity and carboxyl pKa on a training subset
of genes for each species. The training subset was the union of a random sample of half the nuclear-encoded
genes and half the organelle-encoded genes in each species, with the test set being the complement of
this set. We also used decision tree and random forest approaches for the classification task, described in
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Method MT training MT test PT training PT test PT predicting MT MT predicting PT

LM (simple) 0.64 0.63 0.62 0.60 0.65 0.55

LM-pruned (simple) 0.73 0.71 0.72 0.72 0.68 0.50

LM (barcode) 0.71 0.69 0.58 0.56 0.72 0.59

LM-pruned (barcode) 0.71 0.70 0.64 0.64 0.67 0.51

Table S1: Mean linear model regression performance (Spearman’s ρ between predicted and observed indices)
predicting retention index in test sets for different cases. Non-standard genes (msh1/muts, matr, mttb) are
removed from mtDNA sets for these experiments. Labels show simple retention index vs barcode retention
index; ‘pruned’ dataset (retaining only mt genes from families nad, sdh, atp, cox, cytb, rp and pt from psa, psb,

rp, rbc, ndh, atp, pet) vs unpruned. Each LM uses only GC content and hydrophobicity.

the Supplementary Text. For binding energy values, we used both a Bayesian GLM treating all complexes
independently, with t-distributed priors with zero mean, implemented in arm; and a Bayesian generalised linear
mixed model with flat priors over coefficients, residuals, and covariance structure, implemented in blme. These
priors were used to overcome convergence issues given the perfect separation of datapoints observed for
some protein complexes. Complexes were visualised in PyMOL [8].

Code and dependencies. Code is written in R, Python, and C, with a wrapper script for bash, and is freely
available at github.com/StochasticBiology/odna-loss. The list of libraries used and corresponding citations
are in the Supplementary Text.

Taxon abbreviations

Eukaryotic clades in the mitochondrial dataset in Fig. 1 are [apico]mplexa, [bacill]ariophyta, [bi-
gyr]a, [cerco]zoa, [chatto]nellaceae, [crypto]phyceae, [disco]sea, [eumyc]etozoa, [eusti]gmatophyceae,
[fungi], [glauco]cystophyceae, [hapto]phyta, [heter]olobosea, [jakob]ida, [malaw]imonas, [metaz]oa,
[oligo]hymenophorea, [oomyc]ota, [phaeo]phyceae, [rhodo]phyta, [virid]iplantae. Clades in the plastid
dataset are [apico]mplexa, [bacill]ariophyta, [chlora]rachniophyceae, [crypto]phyceae, [dicty]ochophyceae,
[dinop]hyceae, [eugle]nida, [eusti]gmatophyceae, [glauc]ocystophyceae, [hapto]phyta, [mallo]monadaceae,
[pelag]omonadales, [phaeo]phyceae, [rhodo]phyta, [virid]iplantae.

Alternative retention index definitions

In addition to our simple retention index, which relies on an estimated phylogeny linking observations in our
dataset, we considered another assumption-free index. Here, we construct the set of unique oDNA pres-
ence/absence patterns in our dataset (as in Fig. 1A), and simply count the occurrences ci of each gene i in
this dataset. The index is given by log ci/maxj log cj . This index relies on no evolutionary assumptions, and
thus cannot account for the evolutionary relationship between sampled species. Considering only the set of
unique barcodes goes some way towards accounting for the sampling bias in the dataset (for example, almost
all metazoans have the same presence/absence profile, but this profile will only occur once in the unique set).
The distribution of this index had substantial structure (as visible in Fig. 1A, and clear, particularly for plastids,
in Supplementary Fig. S10), but we do not consider further transformations or more tailored analysis here,
instead focusing on the similarity of results with those from the other index.

Biochemical and biophysical properties of genes and products

Our assignment of biochemical and biophysical properties of genes and their products follows that in
Ref. [2]. The length* (in number of amino acids of gene product) and GC content (trivially counted)
of genes are taken straightforwardly from a sequence. Chemical properties of amino acids were taken
from the compilation at http://www.sigmaaldrich.com/life-science/metabolomics/learning-center/

amino-acid-reference-chart.html. The hydrophobicity and hydrophobicity index of a gene product was
computed using this compilation (original data from Ref. [9]). Amine group pKa, carboxyl group pKa, and
molecular weight* values were calculated using this compilation (original data from [10]).

Glucose energy costs* were computed using the Aglucose metric, based on the absolute nutrient cost re-
quired for amino acid biosynthesis, from Ref. [11]. Craig-Weber energy costs*, estimating the number of
high-energy phosphate bonds and reducing hydrogen atoms required from the cellular energy pool to produce
an amino acid, were taken from Ref. [12]. These biochemical properties are summarised in Supplementary
Table S5.
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Figure S1: Correlation between gene counts across species derived using manual and BLAST labelling ap-
proaches. r = 0.9999 for mitochondrial and r = 0.9849 for plastid data; discrepancies are largely down to a
small number of outliers.

Asterisks denote properties that are not averaged over gene length; it was deemed more appropriate to
average other properties over genome length to gain a representative measure. To check for artefacts from
this interpretation, we performed a (much more computationally demanding) model selection process including
both the normalised and un-normalised values for each property; although coverage of individual models was
unavoidably low in this procedure, the same consistent observation of GC content and hydrophobicity as
important features was observed throughout.

To compute a single value for each statistic of interest, a protocol is required to summarise the many differ-
ent values seen for a given gene across the species in our dataset. For robustness, we considered several
different averaging protocols. First, we averaged gene statistics over a set of model species taken from diverse
eukaryotic groups (Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae, Reclinomonas ameri-

cana, Chondrus crispus, Plasmodium falciparum). Second, we randomly selected a member of each clade
branching from the eukaryotic group (see clade names above) and averaged over the set containing these
random samples. Most statistics were very strongly correlated for these different choices (Fig. S9A). The
exception was GC content, which is well known to evolve differently in different clades. To assess the effect
of this difference, we ran the model selection process in the text with randomly-sampled averaging protocols.
We found that despite differences in GC statistics, the selected models, and the presence of GC within them,
remained robust to averaging choice (Fig. S9B).

Regression for retention index

In addition to the Bayesian linear model approach described in the text, we used a variety of different ap-
proaches for retention index regression. These included decision linear modelling with ridge and LASSO
penalisation, decision tree regression, and random forest regression. The training, test, and cross-organelle
performance of these approaches is given in Table S3.

Pattern matching for nuclear-encoded organelle genes

We used a combination of positive and negative pattern matching with regular expressions to identify annota-
tions for genes encoding subunits of different organelle complexes. The positive matches required were:

CI /NADH dehydrogenase|[Uu]biquinone oxidoreductase/

CII /[Ss]uccinate dehydrogenase|[cC]o[qQ] reductase/

CIII /[Cc]ytochrome [Bb]|[Cc]ytochrome [Cc] reductase/

CIV /[Cc]ytochrome [cC] oxidase/

CV /[Aa][Tt][Pp] synthase|ATPase sub/

MitoRibo /[Rr]ibosomal.*[Mm]itochondri/

PSI /[Pp]hotosystem I /

PSII /[Pp]hotosystem II /

Cytb6f /[Cc]ytochrome [Bb]6|[Cc]ytochrome f|[Pp]lastocyanin reductase/

Rubisco /bi.phosphate [Cc]arboxylase/

PlastRibo /[Rr]ibosomal.*[cC]hloroplast/
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Figure S2: Taxonomic trees for the mt and pt datasets. Blue diamonds give truncation points; associated taxa
are expanded in the next rightward tree. Truncated taxa are broadly chosen to reflect those with less diversity
in oDNA. Bars illustrate number of retained organelle genes in each species (scale differs in each subtree).

Figure S3: Linear correlations between genetic features and retention index, for mt and pt genes.
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Endosymbiont NCBI accession Free-living relative NCBI accession References

Nasuia deltocephalinicola CP013211.1 Herbaspirillum seropedicae CP002039.1 [14]

Ca. Sulcia muelleri CP001981.1 Porphyromonas gingivalis1 AE015924.1 [15]

Ca. Tremblaya phenacola CP003982.1 Sodalis praecaptivus CP006569.1 [16]

Rhopalodia gibberula SB AP018341.1 Cyanothece sp. PCC 8801 CP001287.1 [17]

Ca. Hodgkinia cicadicola CP008699 Rhizobium etli CP007641.1 [18]

Ca. Pinguicoccus supinus CP039370.1 Coraliomargarita akajimensis2 CP001998.1 [19]

Ca. Fokinia solitaria CP025989.1 Pelagibacter ubique3 CP000084.1 [20]

Paulinella chromatophore CP000815.1 Synechococcus PCC 7002 CP000951 [21]

Ca. Azoamicus ciliaticola NZ LR794158.1 Legionella clemsonensis4 NZ CP016397 [22]

Nostoc azollae CP002059.1 Raphidiopsis brookii ACYB01000001.1 [23]

Table S2: Independent endosymbionts and close free-living relatives. SB, spherical body. 1 Relative does
invade cells but can survive in oral cavity. 2 Partner is not closest sequence found, but is closest annotated
sequence in putative phylogeny. 3 All closest relatives are intracellular Rickettsiales – relative taken from a
sister group. 4 Most relatives, including Legionella, are largely intracellular.

With the following patterns (split for formatting) required to be absent:

/assembly|alternative|containing|dependent|chaperone|kinase|NADH-cytochrome|coupling|maturase/

/vacuolar|biogenesis|repair|LOW QUALITY PROTEIN|synthetase|activator|reticulum|activase/

/synthesis|lyase|like| non|transporting|lipid|autoinhibited|membrane|type|required/

/QUALITY|precursor|inhibitor|proteasomal|proteasome|E1|various|regulatory|Clp/

/calcium|vesicle|b-245|b5|WRNIP|AAA|Cation|family|remodelling/

The outputs of this approach were manually verified to include genes encoding subunits physically present in
their corresponding complex, while excluding assembly factors, regulatory factors, synthesis factors, unrelated
enzymes, and other false positives.

Classification for compartment

We also considered decision tree and random forest approaches for the organelle/nuclear encoding compart-
ment classification problem; performance is shown in Table S4, with illustrations in Fig. S12.

Binding energy calculations

We used PDBePISA [5] to calculate interaction energies between different protein subunits and ligands in
crystal structures. We summed the interaction energies over all interfaces between a given subunit and its
partners to compute a total energetic centrality statistic for each subunit. Several choices of representation are
possible for these calculations. Ligands can be ignored, so that only interaction energies of interfaces directly
linking protein subunits are considered. Alternatively, bonds to ligands can be included as contributing to a
given subunit’s total binding energy. We primarily considered the mean energy per interface, including ligands,
for each subunit, but also verified that our detected relationship existed for different choices including total
energy over interfaces.

Endosymbionts and relatives

We considered a range of endosymbionts highlighted in a comprehensive recent review [13]. For each we
sought to identify a close free-living relative. In some cases all closest relatives of an endosymbiont themselves
adopted a largely or obligate intracellular lifestyle; in these cases we tried to identify the closest relative that
was at least capable of free-living (Table S2).

Packages and libraries

Our pipeline uses the following R packages: ape [24], arm [25], blme [26], BMA [27], caper [28], cowplot [29],
e1071 [30], geiger [31], GGally [32], ggnewscale [33], ggplot2 [34], ggpubr [35], ggpval [36], ggrepel [37],
ggtree [38], ggtreeExtra [39], glmnet [40], gridExtra [41], hexbin [42], igraph [43], lme4 [44], logistf [45], mombf
[46], nlme [47], phangorn [48], phytools [49], randomForest [50], stringdist [51], stringr [52], and tree [53].

We also use BioPython [3] for parsing sequences and computing gene statistics, PyMOL [8] for visualisation,
and BLAST [54] for sequence comparisons.
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Method MT training MT test PT training PT test PT predicting MT MT predicting PT

Tree 0.79 0.40 0.82 0.45 0.54 0.33

LM 0.70 0.43 0.71 0.66 0.52 0.25

Tree-reduced 0.73 0.48 0.75 0.45 0.55 0.39

LM-Reduced 0.58 0.52 0.61 0.61 0.54 0.48

Ridge 0.68 0.39 0.66 0.71 0.57 0.41

LASSO 0.63 0.44 0.66 0.71 0.57 0.37

SVR 0.81 0.46 0.77 0.62 0.62 0.34

RF 0.92 0.48 0.95 0.62 0.62 0.45

RF-Reduced 0.88 0.50 0.92 0.51 0.57 0.50

RF-Cross 0.94 N/A 0.96 N/A 0.62 0.56

RF-Cross-Reduced 0.90 N/A 0.92 N/A 0.55 0.59

Table S3: Mean regression performance (Spearman’s ρ between predicted and observed indices) predicting
retention index with different approaches. Non-standard genes (msh1/muts, matr, mttb) are not removed for
these experiments. Tree, decision tree regression; LM, linear model; Ridge, ridge regression; LASSO, LASSO
regression; RF, random forest regression. All genetic features included by default; ‘reduced’ corresponds to
models involving only GC content and hydrophobicity. ‘Cross’ refers to cross-organelle experiments where mt
training is used to predict pt test and vice versa (N/A, not applicable: no test set within training organelle).

Complex Model type Training Test Balance Complex Model type Training Test Balance

nad[0-9] tree 0.99 0.99 0.10 nad[0-9] RF 1.00 1.00 0.10

sdh[0-9] tree 0.97 0.91 0.66 sdh[0-9] RF 1.00 0.95 0.68

cytb tree 0.99 0.99 0.18 cytb RF 1.00 0.99 0.18

cox[0-9] tree 1.00 0.99 0.09 cox[0-9] RF 1.00 0.99 0.09

atp[0-9] tree 0.98 0.96 0.16 atp[0-9] RF 1.00 0.98 0.16

(MT) rp[sl] tree 0.88 0.85 0.69 (MT) rp[sl] RF 1.00 0.92 0.69

psa[a-x] tree 0.99 0.99 0.03 psa[a-x] RF 1.00 0.99 0.03

psb[a-z] tree 1.00 0.99 0.01 psb[a-z] RF 1.00 1.00 0.01

atp[a-z] tree 0.98 0.97 0.12 atp[a-z] RF 1.00 0.99 0.12

pet[a-z] tree 1.00 0.99 0.01 pet[a-z] RF 1.00 0.99 0.01

rbc tree 0.99 0.97 0.07 rbc RF 1.00 0.98 0.07

(PT) rp[sl] tree 0.99 0.99 0.02 (PT) rp[sl] RF 1.00 0.99 0.02

nad[0-9] tree-reduced 0.99 0.99 0.10 nad[0-9] RF-reduced 1.00 0.99 0.10

sdh[0-9] tree-reduced 0.97 0.92 0.66 sdh[0-9] RF-reduced 1.00 0.93 0.66

cytb tree-reduced 0.98 0.97 0.18 cytb RF-reduced 1.00 0.98 0.19

cox[0-9] tree-reduced 0.98 0.98 0.09 cox[0-9] RF-reduced 1.00 0.98 0.09

atp[0-9] tree-reduced 0.92 0.91 0.16 atp[0-9] RF-reduced 1.00 0.92 0.16

(MT) rp[sl] tree-reduced 0.79 0.76 0.69 (MT) rp[sl] RF-reduced 1.00 0.77 0.69

psa[a-x] tree-reduced 0.98 0.97 0.03 psa[a-x] RF-reduced 1.00 0.97 0.03

psb[a-z] tree-reduced 0.99 0.99 0.01 psb[a-z] RF-reduced 1.00 0.99 0.01

atp[a-z] tree-reduced 0.91 0.90 0.12 atp[a-z] RF-reduced 1.00 0.91 0.12

pet[a-z] tree-reduced 0.99 0.99 0.01 pet[a-z] RF-reduced 1.00 0.99 0.01

rbc tree-reduced 0.96 0.93 0.06 rbc RF-reduced 1.00 0.94 0.07

(PT) rp[sl] tree-reduced 0.98 0.98 0.02 (PT) rp[sl] RF-reduced 1.00 0.98 0.02

All PT tree-cross 0.94 0.80 N/A All PT RF-cross 1.00 0.60 N/A

All MT tree-cross 0.98 0.82 N/A All MT RF-cross 1.00 0.79 N/A

All PT tree-cross-reduced 0.94 0.56 N/A All PT RF-cross-reduced 1.00 0.47 N/A

All MT tree-cross-reduced 0.97 0.81 N/A All MT RF-cross-reduced 1.00 0.82 N/A

Table S4: Nuclear-organelle classification performance (proportion of test set assigned to correct compart-
ment), by organelle complex, with different approaches (tree, decision tree; RF, random forest). Complexes
are labelled with regular expressions describing their gene labels. All genetic features included by default; ‘re-
duced’ corresponds to models involving only GC content and hydrophobicity. ‘Cross’ refers to cross-organelle
experiments where mt training is used to predict pt test and vice versa. Balance gives the proportion of genes
encoded in one compartment (may fluctuate slightly due to different subsamples being used in model con-
struction): N/A, not applied to cross-organelle classification.
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Figure S4: Decision tree and random forest regression for retention index. (top) a set of trees learned to
predict retention for different training-test splits, showing the dominant role of GC content and hydrophobicity
as predictive features. (bottom) variance improvement plots for random forest regression of the same task,
illustrating the importance of each feature in the predictive outcome.
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Figure S5: Statistics of genes encoded in the nucleus (red), mitochondrion (blue), or plastid (green) compart-
ments. Bars give mean and s.e.m. for each species; phylogeny shows the relationship between species. Spe-
cific model species labelled by initials: Danio rerio, Homo sapiens, Drosophila melanogaster, Caenorhabditis

elegans, Glycine max, Arabidopsis thaliana, Physcomitrella patens, Schizosaccharomyces pombe, Plasmod-

ium falciparum, Dictyostelium discoideum.

Hydro Hydro I Mol weight / Da pKa1 pKa2 Aglucose CWEnergy

Ala A 41 3 89.1 2.34 9.69 0.5 12.5

Arg R -14 1 174.2 2.17 9.04 1.39 18.5

Asn N -28 1 132.12 2.02 8.8 0.79 4

Asp D -55 1 133.11 1.88 9.6 0.61 1

Cys C 49 3 121.16 1.96 10.28 0.75 24.5

Gln Q -10 2 146.15 2.17 9.13 0.92 9.5

Glu E -31 1 147.13 2.19 9.67 0.86 8.5

Gly G 0 2 75.07 2.34 9.6 0.31 14.5

His H 8 2 155.16 1.82 9.17 1.46 33

Ile I 99 4 131.18 2.36 9.6 1.21 20

Leu L 97 4 131.18 2.36 9.6 1.21 33

Lys K -23 1 146.19 2.18 8.95 1.31 18.5

Met M 74 4 149.21 2.28 9.21 1.25 18.5

Phe F 100 4 165.19 1.83 9.13 1.84 63

Pro P -46 1 115.13 1.99 10.6 0.99 12.5

Ser S -5 2 105.09 2.21 9.15 0.49 15

Stop X - - - - - - -

Thr T 13 2 119.12 2.09 9.1 0.69 6

Trp W 97 4 204.23 2.83 9.39 2.39 78.5

Tyr Y 63 3 181.19 2.2 9.11 1.77 56.5

Val V 76 4 117.15 2.32 9.62 0.96 25

Table S5: Amino acid properties used in model selection. Numerical values of the properties described in
the text. Qauantities are unitless unless specific. See text for sources.
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Figure S6: Hydrophobicity and carboxyl pKa for nuclear- and organelle-encoded complex subunits.

Figure S7: Comparison of Bayesian generalised linear model (GLM) and generalised linear mixed model
(GLMM) for binding energy-retention relationship. The GLM approach (red) treats each complex independently;
the GLMM (blue) describes complex-specific changes to an overall trend. Frequentist p-values against the null
hypothesis of no relationship are 0.00047 (GLM) and 0.0038 (GLMM).
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Figure S8: Little correlation between hydrophobicity and energetic centrality across gene products involved in
the complexes studied.
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Figure S11: Bayesian model selection for linear models predicting retention index, with different priors from the
default choices in the main text. Left, mitochondrial; right, plastid data. Top, inverse moment (iMOM) prior with
τ = 0.133 and beta-binomial(1,1) prior over models. Centre, moment (MOM) prior with τ = 0.348 and uniform
prior over models. Bottom, IMOM prior with τ = 0.133 and uniform prior over models. MOM vs iMOM changes
structure of non-local priors; model priors assign different prior weights to overall model structures. Features
appearing in models are: 1 (intercept); 2 (length); 3 (hydrophobicity); 4 (hydrophobicity index); 5 (molecular
weight); 6 (amino pKa); 7 (carboxyl pKa); 8 (glucose assembly energy); 9 (alternate assembly energy); 10 (GC
content).
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Figure S12: Decision tree and random forest classification for encoding compartment. (top) a set of trees
learned to predict encoding compartment for genes in different protein complexes, showing roles for hydropho-
bicity, pKa, and production energy (CW) as predictive features. (bottom) variance improvement plots for random
forest regression for compartment classification across all genes, illustrating the importance of each feature in
the predictive outcome. Complexes are labelled with regular expressions describing their gene labels.
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