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Abstract— Whole-brain tractograms generated from diffu-
sion MRI digitally represent the white matter structure of the
brain and are composed of millions of streamlines. Such trac-
tograms can have false positive and anatomically implausible
streamlines. To obtain anatomically relevant streamlines and
tracts, supervised and unsupervised methods can be used for
tractogram clustering and tract extraction. Here we propose
FiberNeat, an unsupervised white matter tract filtering method.
FiberNeat takes an input set of streamlines that could either be
unlabeled clusters or labeled tracts. Individual clusters/tracts
are projected into a latent space using nonlinear dimensionality
reduction techniques, t-SNE and UMAP, to find spurious and
outlier streamlines. In addition, outlier streamline clusters are
detected using DBSCAN and then removed from the data
in streamline space. We performed quantitative comparisons
with expertly delineated tracts. We ran FiberNeat on 131
participants’ data from the ADNI3 dataset. We show that
applying FiberNeat as a filtering step after bundle segmentation
improves the quality of extracted tracts and helps improve
tractometry.

I. INTRODUCTION

The structural architecture of the brain can be computa-

tionally reconstructed from a diffusion magnetic resonance

imaging (MRI) [1] dataset using tractography algorithms [2].

Tractography algorithms exploit the direction and paths of

water diffusion in neural connections of the brain to gen-

erate digital neural pathways, otherwise called streamlines.

Streamlines are thus used as a computational approximation

of the brain’s white matter fibers. Tractography algorithms

often generate streamlines that are false positives or anatom-

ically implausible, such as streamlines that loop, that have

sharp curves and angles, that terminate prematurely in white

matter, or that connect anatomically implausible regions of

the brain [3], [4].

In the past two decades, researchers have used both

supervised and unsupervised white matter tract segmentation

methods to reduce the number of false positive streamlines

in the data. The unsupervised category focuses on cluster-

ing methods [5], [6] that divide whole-brain tractograms

into clusters of streamlines that are spatially similar in

shape and size. Resultant clusters often suffer from spu-

rious streamlines or poor alignment with neuroanatomical

definitions of the tracts. Furthermore, clustering methods

do not provide anatomically relevant labels to clusters and

can have sub-clusters within one cluster. The supervised

category consists of white matter tract segmentation methods

1Imaging Genetics Center, University of Southern California, Marina del
Rey, CA, USA

2Department of Intelligent Systems Engineering, Indiana University
Bloomington, IN, USA. Corressponding author: bqchandi@iu.edu

that are trained with pre-labeled datasets. Automatic tract

segmentation methods include ROI-based [7], atlas-based

[8], [9], and deep learning-based methods [10]. Although

such supervised methods result in labeled streamlines that

match their anatomical tract definitions, they can still produce

spurious streamlines due to biases stemming from limitations

of the prior anatomical reference, subject variability, and

tractography reconstruction issues. Moreover, different tract

segmentation methods may rely on different definitions of

the same tracts [11].

In this paper, we propose FiberNeat, a method which uses

dimensionality reduction techniques t-SNE (t-distributed

stochastic neighbor embedding) [12] and UMAP (uniform

manifold approximation and projection) [13] to find and

remove outlier streamlines in latent space 1. The input to

FiberNeat is a set of streamlines that can either be anatom-

ically unlabeled clusters of streamlines or anatomically la-

beled tracts. It populates an N×N square distance matrix by

calculating pair-wise distances among all N streamlines in

the cluster/tract using the streamline based minimum direct-

flip distance (MDF) metric [6]. We chose MDF distance

metric as a solution to the inconsistent streamline orientation

problem. MDF is one of the fastest streamline distance met-

rics [29] which helps in reducing overall computational time

of FiberNeat method. The distance matrix is fed to nonlinear

dimensionality reduction methods, i.e., t-SNE or UMAP, to

project data into 2D space. In 2D space, spatially close

streamlines are placed together and spurious streamlines are

placed far from others. Hence, it becomes easier to visually

and algorithmically filter out outlier clusters in the latent

space. FiberNeat uses the density-based clustering method

DBSCAN [14] to computationally label clusters in 2D space.

It only keeps the streamlines of the largest clusters and

removes small outlier clusters of streamlines. We use labels

of small clusters given by DBSCAN in 2D space to remove

corresponding clusters of streamlines in streamline-space.

FiberNeat is an unsupervised data-driven algorithm that does

not require any anatomical reference atlas or labeled training

data.

II. METHODS

Input to FiberNeat can be individual clusters from a whole-

brain tractogram or extracted white matter tracts, where clus-

ter/tract C is a set of N streamlines. C = {S1, S2, ..., Sn},

Si ∈ C, Si = {s1, s2, ..., sn}, where si is a 3D vector point.

The number of points per streamline may vary.

1Mapping high-dimensional data to a latent space refers to transforming
complex forms of raw data into a simpler, lower-dimensional representation
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Fig. 1. Overview of the FiberNeat method. Panel A shows whole-brain
centroids and one expanded cluster of streamlines in DIPY’s viewer (A.a),
an input cluster of streamlines (A.b), and visualization of their MDF distance
matrix (A.c). Each streamline is mapped to a single 2D point using t-SNE
(B.a) and clustered over the t-SNE embedding (B.b). Outlier streamlines are
filtered out using our proposed approach (B.c).

The FiberNeat method consists of the following steps:

1) Set all streamlines to have k number of points

2) Populate N×N distance matrix D by calculating pair-

wise MDF distances among all streamlines in the set

C.

3) Project streamlines into 2D space using the precom-

puted streamline distance matrix D.

• Use either t-SNE or UMAP for the dimensionality

reduction.

4) Cluster the streamlines in the 2D latent space using

DBSCAN. Smaller clusters of 2D points are considered

outliers. Streamlines belonging to the largest cluster

in 2D space are kept in streamline space; streamlines

belonging to the small clusters are removed.

Fig.1 illustrates steps of the FiberNeat method. A.a is an

input set of streamlines that could either be an unlabeled

cluster or a labeled white matter bundle. We project indi-

vidual clusters/tracts into lower dimensional space using t-

SNE (A, B). We take an individual cluster of streamlines

(A.a, A.b) and calculate pair-wise streamline distances within

that cluster (A.c) using the streamline-based MDF distance

metric [6]. The MDF distance metric takes into account that

streamlines traversing the brain in the same direction can be

saved with opposite orientation. This step calculates a direct

distance between two streamlines with their default orienta-

tion and a distance between a streamline and a streamline

with a flipped orientation and selects the minimum of two.

We provide t-SNE with this pre-calculated distance matrix as

it embeds relevant information on similarities and differences

between pairs of streamlines. As both t-SNE and UMAP are

manifold learning approaches for non-linear dimensionality

reduction, t-SNE could also be replaced by UMAP in this

case. While the former captures and preserves local structure,

the latter aims to preserve both local and global structure

in the data. Streamlines are projected into 2D space by

t-SNE (B.a) and the results are then clustered using the

density-based clustering method, DBSCAN (B.b). This helps

to visually and algorithmically locate outlier streamlines,

as those tend to be placed and clustered together (B.b).

Class 0 and 2 show outlier streamlines and are filtered out

from the initial cluster (A.b) in streamline space (B.c). The

entire process is completely unsupervised with no external

information provided about anatomy. Visually, (B.c) agrees

well with the expected trajectory of the arcuate fasciculus

bundle in the left hemisphere of the brain.

FiberNeat requires two parameters, perplexity for t-SNE

or n neighbors for UMAP, and epsilon for DBSCAN. For

FiberNeat t-SNE, a smaller perplexity value gives attention

to local structure(s) within a bundle, whereas a higher value

of perplexity tries to preserve the global structure of bundles.

It is non-trivial to find one value of perplexity that will work

for different types of bundles with different shapes, sizes, and

lengths. We empirically found an approach to automatically

find perplexity p, and epsilon eps values depending on the

number of streamlines n in the bundle. For small bundles

with n <800, p=0.25 * n and eps=0.015 * p, for medium

density bundles (most bundles belong in this category) with

800< n <4000, p=n * 0.065 and eps=p * 0.006, and for

larger bundles such as the corpus callosum with n >4000,

p=0.02 * n and eps=0.009 * p. For UMAP, n neighbors p is

set to 0.05 * n for all types of bundles. eps=0.0025 * p and

if n <800, eps=1.3. For most bundles, it takes less than 30

seconds to run FiberNeat. In Sec. III, we report individual

timings, based on the type of bundle and the number of

streamlines in a bundle.

III. RESULTS

In Fig.2, we show results on data from a 26-30 year-old

male participant in the HCP (Human Connectome Project)

[15], scanned with 90 diffusion weighting directions and 6

b=0 acquisitions. Diffusion weighting consisted of 3 shells

of b=1000, 2000, and 3000 s/mm2. The tractogram was

generated using deterministic local tracking. In Fig.2A, we

show results on four clusters selected from all clusters in

the whole-brain tractogram given by QuickBundles [6] with

clustering threshold set to 25 mm. The first row shows the

initial four clusters. The second row shows clusters cleaned

manually by a trained neuroanatomist, using visualization

tools in DSI Studio [16] and DIPY [17], [18]. We keep them

as a ground truth to compare performance of FiberNeat t-

SNE and FiberNeat UMAP. The third and fourth rows show

clusters filtered using FiberNeat with t-SNE and UMAP

embedding, respectively. In Fig.2B, a quantitative compar-

ison of FiberNeat t-SNE and FiberNeat UMAP’s filtered

clusters with expert cluster cleaning is shown. Here, SM

stands for shape similarity score [9] among two clusters

and BMD stands for bundle-based minimum distance [19]

between clusters. SM scores range from 0 to 1, where 0

implies least shape similarity between two clusters/tracts and

1 means highest shape similarity. BMD calculates streamline-

based distance between clusters in mm. A lower value

of BMD implies that two clusters are closer and more

similar in shape and streamline count. FiberNeat t-SNE’s
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Fig. 2. Part A, first row shows 4 initial clusters, the second row shows
clusters manually cleaned by an expert. The third and fourth rows show
clusters cleaned by FiberNeat t-SNE and FiberNeat UMAP, respectively.
Part B shows the quantitative comparison of FiberNeat t-SNE and FiberNeat
UMAP clusters with expert’s cleaned clusters. Shape similarity score (SM)
and bundle minimum distance (BMD) are calculated between clusters.

filtered clusters have higher shape similarity and lower BMD

distance relative to the expert’s cleaned clusters, except for

cluster C3. FiberNeat UMAP’s output for C3 has higher

shape similarity and lower BMD distance to an expert’s

cleaned cluster C3. Overall, qualitatively and quantitatively,

FiberNeat t-SNE performs better than FiberNeat UMAP.

To test the algorithms’ performance on a larger dataset,

we analyzed whole-brain tractography computed from multi-

shell diffusion MRI (dMRI) data from 131 Alzheimer’s

Disease Neuroimaging Initiative phase 3 (ADNI3) [20]

participants (age: 55-91 years, 74F, 57M) scanned on 3T

Siemens scanners. dMRI consisted of 127 volumes: 13 b0,

48 b=1,000, 6 b=500 and 60 b=2,000 s/mm2 volumes with

an isometric 2-mm voxel size. Participants included 44 with

mild cognitive impairment (MCI) and 87 cognitively normal

controls (CN). dMRI were preprocessed using the ADNI3

dMRI protocol, correcting for artifacts including noise, Gibbs

ringing, eddy currents, bias field inhomogeneity, and echo-

planar imaging distortions [21]. We applied multi-shell multi-

tissue constrained spherical deconvolution [22] and a proba-

bilistic particle filtering tracking algorithm [23] to generate

whole-brain tractograms. We extracted 30 white matter tracts

from tractograms using auto-calibrated RecoBundles [8], [9].

In Fig.3, we show a use case of FiberNeat as a spuri-

Fig. 3. Four columns representing four different bundles. The first row
shows a model bundle used in RecoBundles. The second row shows the
RecoBundles output. The third row shows the FiberNeat output, with the
RecoBundles output used as input. The fourth row shows outliers in red,
that were removed by FiberNeat from RecoBundles’ output.

ous streamline filtering method deployed after the bundle

extraction method. In this experiment, we used RecoBundles

(RB) [8] to extract white matter tracts and used FiberNeat

on its output to eliminate any spurious streamlines. RB takes

a model bundle as a reference and tries to extract similar

looking streamlines from the input tractogram. We visually

illustrate the results on one of the ADNI3 subjects. The

first row shows model bundles for four tracts: the arcuate

fasciculus (AF L), middle longitudinal fasciculus (MdLF L),

Uncinate Fasciculus (UF L), and Optic Radiation (OR L)

in the left hemisphere of the brain. The second row shows

the output bundles from RB. RB output bundles were given

as input to FiberNeat. The third row shows the output of

FiberNeat. The fourth row visualizes the overlap between

RB output and FiberNeat output. Red streamlines are the

ones filtered out by FiberNeat from the RB bundles. As

compared to the experiment in Fig.2, Fig.3’s experiment

starts with cleaner input tracts and only removes outlier

streamlines as seen in AF L, and UF L tracts. FiberNeat does

not remove streamlines unnecessarily, as can be seen in the

case of OR L. It only removes a few spurious streamlines

from OR L. From the MdLF L bundle, it removes a cluster

that is crossing the actual bundle fibers and might have

been mistakenly labeled as part of the bundle by the tract

extraction method. FiberNeat MdLF L matches the model

bundle.

FiberNeat is a fast method and takes around 30 seconds to

run for most bundles. Since bundles have different lengths

and sizes, the time it takes to run FiberNeat depends on

the number of streamlines in the bundle. Referring to bun-

dles in Fig.3, for smaller bundles such as UF L with 220

streamlines, it took 1.10 seconds to run FiberNeat. Most

bundles have streamlines in the range of 800-4000 - such

as OR L with 987, AF L with 1331, and MdLF L with

1934 streamlines. On these, it took 11.36, 18.00, and 37.55

seconds respectively to run FiberNeat. However, for larger
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Fig. 4. A) Bundle shape similarity among RecoBundles bundles and model bundles. B) Shape similarity among FiberNeat bundles and model bundles.
In both 30x131 matrices, the x-axis has subject numbers and the y-axis has bundle numbers labeled on it. Each pixel is a bundle shape similarity score
between model bundle and RecoBundles output bundle (A) and score between model bundle and FiberNeat output bundle (B). C) Negative logarithm of
p-values from a paired t-test to test FiberNeat improves shape similarity scores (top), mean bundle shape similarity score per bundle from two experiments
(bottom). On the right panel, we provide the names of the 30 bundles used here.

bundles such as Corpus Callosum (CC) with more than 4000

streamlines, runtime is longer as it has to calculate distances

among all the streamlines.

We performed bundle shape similarity analysis on tracts

extracted from 131 subjects. We calculated shape similarity

among 30 model bundles and 30 RB extracted tracts per

subject and separately among 30 model bundles and 30

FiberNeat cleaned RB tracts. In Fig.4, we visualize results

from two experiments. A) and B) plots both show a 30x131

shape similarity plot where rows have a shape similarity

score between model bundles used as a reference in RB and

extracted bundles of the same type by RB (A) and FiberNeat

cleaned RB bundles (B). Columns of the plots represent

the 131 subjects. Each pixel is a bundle shape similarity

score between the model bundle and extracted bundle from

a subject. B) plot is darker than the top plot indicating

higher shape similarity among model bundles and FiberNeat

bundles. In some subjects and bundles, we see less shape

similarity after FiberNeat. This could be due to FiberNeat

cleaning and making some bundles very thin. Overall, we

observe that bundle shape similarity tends to improve after

deploying the FiberNeat step after RB. We ran paired t-test

on shape similarity scores from 131 subjects per bundle to

test the hypothesis that FiberNeat improves shape similarity

among bundles. We ran false discovery rate (FDR) on p-

values and report results in C). In the top plot in C), we

observe significant improvement in bundle shape similarity

after using FiberNeat for all bundles except the frontopontine

tract in both left and right hemispheres (FPT L, and FPT R).

The bottom plot in C) shows average RB and FiberNeat

shape similarity scores per bundle. On the right end of the

figure, 30 bundle names are listed.

We ran along the length tract group analysis of fractional

anisotropy (FA), a commonly used white matter microstruc-

tural measure, between groups of 44 MCI and 87 CN

participants using BUndle ANalytics (BUAN) [9]. We ran

BUAN twice, once with RB bundles and the FA metric as

input and another time by applying FiberNeat on RB bundles

and using filtered bundles and the same FA metric as input

to BUAN. In Fig.5, we show results for the MdLF L bundle.

BUAN creates 100 horizontal segments along the length of

the bundles and analyzes points on the streamlines belonging

to each segment from all subjects. It then applies Linear

Mixed Models (LMMs) where group means are modeled as

a fixed effects term and the subject-specific mean is modeled

as a random effects term with FA as a response of the LMMs.

BUAN plots in Fig.5 have segment number on the x-axis and

a negative logarithm of p-values on the y-axis. P-values that

lie between or above two horizontal lines on the plot imply

significant group differences at that location along the tract.

We find that by deploying FiberNeat on the output of RB,

we are able to improve the tractometry by removing spurious

streamlines that can cause artifacts in the group analysis.

Areas on the bundles that FiberNeat cleaned are indicated by

arrows in the Fig.5. Red arrows indicate segments between

20-40 on the bundles. Those areas show significant p-values

when BUAN is run on RB output and significance reduces

slightly after removing outlier streamlines using FiberNeat

(last plot). Blue arrows indicate segments around 80-100. By

removing outliers from that area on the bundle, we observe

stronger significant group differences in FA (lower p-values).

By removing streamlines of different shapes, we focus on

the same type of streamlines and are able to better find the

effects of MCI on the MdLF L tract.

IV. DISCUSSION

Tractography data is unstructured complex data, and sub-

dividing it into bundles is a highly nonlinear problem. It
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Fig. 5. Improved tractometry with FiberNeat. On the left, BUAN tractometry results on MdLF L tract using RecoBundles output. On the right, BUAN
tractometry results on RecoBundles’ MdLF L tracts cleaned by FiberNeat. FiberNeat removes spurious streamlines that might cause artifacts in the group
analysis of FA microstructural differences along the length of the tracts in MCI and CN groups (indicated by arrows).

is also difficult to perfectly separate outliers from good

clusters corresponding to known anatomical tracts. t-SNE

and UMAP are both manifold learning approaches for non-

linear dimensionality reduction. Clustering based on t-SNE

and UMAP embedding of tractography makes it easier to

separate streamline clusters and outliers. Some researchers

caution against clustering the t-SNE embedding space, at

least for some applications, due to metric distortions. t-SNE

is a stochastic method and can generate different embeddings

in different runs for the same data and parameters. It does

not preserve the global metric structure and favors the

preservation of the local structure only. t-SNE can sometimes

disconnect/split parts of the data by putting them in separate

clusters. This repelling effect of t-SNE is advantageous in

our application as we want to untangle streamlines that are

otherwise very closely knitted together in the original space,

as seen in Fig.1C.a. The stochastic nature of t-SNE does not

affect our approach as we do not use the embedding map

again, for further data analytics. It is used once per input

dataset and the method is invariant to where clusters are

placed and to the global distance among clusters. t-SNE does

extreme dimensionality reduction by going directly to 2D

space as opposed to other dimensionality reduction methods

that provide options to project data into n>2 dimensions. But

in our case, every streamline has k points and each point is

a 3D vector making it k × 3 D, and going to 2D is not an

extreme dimensionality reduction. We also provide an option

to use UMAP embedding instead of t-SNE. Theoretically,

UMAP should give superior performance relative to t-SNE.

UMAP tries to preserve both local and most of the global

structure in the data. UMAP can map data to latent spaces

with any number of dimensions and does not need the pre-

dimensionality reduction step such as PCA or an autoen-

coder. Hence, UMAP can project data on n components

and is not limited to 3D or 2D embeddings (as required

by t-SNE). UMAP is computationally faster than t-SNE.

However, in our experiments, we find t-SNE to outperform

UMAP. This could be because the nature of the problem

we are solving takes advantage of the data splitting/repelling

property of t-SNE to find outlier streamlines in streamline

sets that hard to distinguish in the original brain’s 3D space.

Further work is needed to evaluate the method on more

tracts, and diverse datasets (in terms of age, diagnosis, and

scanning protocol). We keep t-SNE as the default dimen-

sionality reduction method in FiberNeat, however, users can

select UMAP as well. The main advantage of the Fiberneat

approach is that it is fully data-driven and unsupervised. It

does not depend on training data or an atlas as compared to

recently proposed methods for tractography filtering using

deep learning [24], [25].

We show two use cases of FiberNeat, one applied to the

output of unsupervised clustering-based bundle segmentation

method, QuickBundles (QB), and the other applied to the

output of supervised bundle segmentation method, RecoBun-

dles (RB). For QB, the clustering threshold set was 25 mm.

Decreasing the threshold may result in more cluters with less

spurious streamlines in them. However, in out experiments,

we show even with densely populated clusters, FiberNeat is

able to perform well, comparing results with expert delin-

eated clusters. For RB, we used an auto-calibrated version

with a pruning threshold of 12 mm and a refine-pruning

threshold of 9 mm. We used moderate threshold values for

auto-calibrated RB in our experiments, reducing thresholds

could result in thin bundles and less spurious streamlines

but we might also risk losing some parts of bundles. RB

uses prior anatomical information from the model bundle,

whereas FiberNeat only uses the input bundle to clean it,

without using any external or prior information. RB performs

well extracting bundles, especially for larger or medium

sized bundles. It sometimes extracts spurious streamlines for

smaller bundles with average bundle length of 50 mm such

as the uncinate fasciculus. This could happen due to some

streamlines having very small length in those bundles and it

becomes difficult to distinguish which streamlines match and

which do not match with a model bundle as the distance be-

tween streamlines is small, even if they have different shapes.

Diffusion MRI and tractography provide crucial information

about the brain connectivity and microstructural changes in

it due to any underlying condition such as Alzheimer’s,

Parkinson’s, Schizophrenia, etc. Tractometry tools to study
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microstructural changes along the length of white matter

tracts have been gaining popularity in the past decade.

Several tractometry methods have been proposed and used to

study brain diseases and to find group differences in patients

and healthy controls [26], [27], [28], [9]. These methods

rely on bundle segmentation methods and false-positive

streamlines extracted in the output bundles could propagate

artifacts in statistical analysis of microstructural measures

along the length of the tracts. In this paper, we used BUAN

to find group differences in FA measure along the length of

MdLF L tracts of 87 CNs and 44 participants with MCI from

the ADNI3 dataset. We find that having spurious streamlines

in input data can overestimate or underestimate the effects

of the disease. We show deploying FiberNeat into BUAN

tractometry pipeline improves the robustness of statistical

analysis by removing spurious and false-positive streamlines

that could create artifacts in the analysis. We show adding

FiberNeat as a cleaning step into BUAN tractometry pipeline

improves the robustness of statistical analysis by removing

any artifacts introduced by outlier streamlines as shown

in Fig.5. FiberNeat code and tutorial are available here:

https://github.com/BramshQamar/FiberNeat. It will also be

made available through DIPY [17].

V. CONCLUSION

In this paper, we introduce FiberNeat, a method to clean

streamline clusters and tracts. It takes a set of streamlines as

input, calculates a distance matrix of all the pairwise stream-

line distances, and projects it into a reduced low-dimensional

space using dimensionality reduction techniques such as t-

SNE and UMAP. FiberNeat applies DBSCAN clustering in

2D space. Smaller clusters containing spurious streamlines

are removed from the original data in the streamline space

resulting in cleaner tracts. We tried FiberNeat with t-SNE and

UMAP on several same clusters of streamlines and found

FiberNeat t-SNE to perform better than FiberNeat UMAP,

both qualitatively and quantitatively. We used FiberNeat on

the output of the unsupervised clustering method, QuickBun-

dles, and on the output of the supervised bundle segmenta-

tion method, RecoBundles. In both experiments, FiberNeat

removes spurious and outlier streamlines and improves the

quality of final clusters/tracts. We propose FiberNeat to be

used as a post-processing step in tract segmentation methods

to aid better tractometry. We show on 131 ADNI3 participant

data (Fig.5) that deploying FiberNeat after tract segmentation

reduces false-positive streamline artifacts that could propa-

gate in statistical analysis of microstructural measures along

the length of the white matter tracts.
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