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Abstract 

Osteoclasts are multinucleated cells that exclusively resorb bone matrix proteins and minerals on the 

bone surface. They differentiate from monocyte/macrophage-lineage cells in the presence of 

osteoclastogenic cytokines such as the receptor activator of nuclear factor-κB ligand (RANKL) and are 

stained positive for tartrate-resistant acid phosphatase (TRAP). In vitro, osteoclast formation assays are 

commonly used to assess the capacity of osteoclast precursor cells for differentiating into osteoclasts 

wherein the number of TRAP-positive multinucleated cells are counted as osteoclasts. Osteoclasts are 

manually identified on cell culture dishes by human eyes, which is a labor-intensive process. Moreover, 

the manual procedure is not objective and result in lack of reproducibility. To accelerate the process and 

reduce the workload for counting the number of osteoclasts, we developed OC_Finder, a fully automated 

system for identifying osteoclasts in microscopic images. OC_Finder consists of segmentation and 

classification steps. OC_Finder detected osteoclasts differentiated from wild-type and Sh3bp2KI/+ 

precursor cells at a 99.4% accuracy for segmentation and at a 98.1% accuracy for classification. The 

number of osteoclasts classified by OC_Finder was at the same accuracy level with manual counting by 

a human expert. Together, successful development of OC_Finder suggests that deep learning is a useful 

tool to perform prompt and accurate unbiased classification and detection of specific cell types in 

microscopic images. 
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Introduction 

Bone homeostasis is maintained with the balance between bone resorption by osteoclasts and bone 

formation by osteoblasts, which are tightly coordinated with each other.1 Osteoclasts are highly 

specialized bone-resorbing cells that are differentiated from monocytes/macrophages lineage cells and 

they play a critical role in various physiological events including bone development, bone repair, and 

regulation of mineral balance.1,2 Excess osteoclast activity will cause bone loss in a variety of 

pathological conditions such as osteoporosis, rheumatoid arthritis, periodontitis, multiple myeloma, and 

metastatic cancer. On the other hand, impaired osteoclast activity results in a pathological condition 

called osteopetrosis characterized by life-threatening bone fragility due to increased bone density.3,4 For 

example, osteoporosis suffers more than 200 million people worldwide, causing a huge socio-economic 

burden. 

Because of the biological importance, osteoclasts have been one of the foci in bone biology. 

In vitro osteoclast differentiation is induced by the stimulation of their progenitor cells with macrophage 

colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-κB ligand (RANKL).1,3 

Differentiated osteoclasts are distinguishable from their progenitor cells by their unique characteristics 

of multinuclearity and positivity for tartrate-resistant acid phosphatase (TRAP).3 Since the 

establishment of osteoclast culture methods5, in vitro osteoclast differentiation assays have been 

extensively used to quantitate and compare the capacity of the progenitor cells for differentiating into 

osteoclasts. In the assay, the number of TRAP-positive multinucleated cells on culture dishes are 

manually counted by eyes as osteoclasts by multiple independent examiners. However, the identification 

of osteoclasts by human eyes does not always secure objectivity and reproducibility. Thus, automated 

methods for counting osteoclasts have been long awaited. 
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Here, we developed OC_Finder, a fully automated osteoclast counting system on microscopic 

images. OC_Finder identifies and segments cells in microscopic images and classifies each cell image 

into TRAP+ multinucleated osteoclasts and non-osteoclasts. Segmentation is performed with the Otsu�s 

binarization method6 combined with morphological opening and the watershed algorithm7,8. The 

classification of cell images is performed via deep learning, specifically using a convolutional neural 

network (CNN). 

Deep learning has been widely adopted in different biological and medical science areas 9-13 

for classifying cells in microscope images. However, existing methods have some limitations. For most 

methods10-13, input images need to be manually processed to contain only one cell, or to have cells 

manually marked to be classified. For other methods 9, multi-modal data needs to be prepared as input 

to help classification. In contrast, in our work we carefully designed the watershed algorithm to segment 

cell images, which enabled a fully automated framework for cell detection and classification. Unlike 

existing segmentation methods14,15 that need pixel-wise labeling for training, our approach only needs 

the position of the center of the cells because we perform segmentation in the initial step of the procedure. 

In CNN, we adopted a teacher-student model 16 and image data augmentation techniques for training, 

which yielded a high accuracy. 

There are two recent related works17,18 that developed software to detect osteoclasts. The 

foremost important difference to note is that these two works did not release the datasets they used and 

their software to the public. Thus, we were unable to compare with their methods and users will not be 

able to use their methods either. In contrast, the code of our OC_Finder and the dataset we collected are 

fully released to the public so that biologists can use the software. The dataset and the code will also 

assist computational biologists to develop new methods. In addition, each of them has notable 

differences from the current work. The work by Cohen-Karlik et al17 used a different neural-network 
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framework to detect cells and classify osteoclasts. Their network outputs bounding boxes of cells while 

OC_Finder segments the cell region boundaries. We can also see that OC_Finder would be easier to 

apply to other types of cells, because cell segmentation is performed with an image processing technique 

that does not need particular training. The second article18 provides a tutorial on how to use a commercial 

software for identifying osteoclasts. Since the software is for general purpose of cell classification, to 

use the software, users need to prepare a dataset by manual annotation and train a neural network by 

themselves using the prepared dataset, which may not be an easy task for biologists. The target of the 

analysis is also different; the pipeline is for cell identification in vivo on histology while OC_Finder is 

for osteoclast counting in vitro. 

 OC_Finder achieved 99.4% accuracy in segmentation and 98.1% accuracy for classification. 

The number of osteoclasts classified by OC_Finder was at the same level as counting by eye. Together, 

the successful development of OC_Finder suggests that deep learning is a useful tool for performing 

prompt and accurate identification and classification of cells with characteristic morphological features 

in microscopic images with no bias. This approach may be applied to classify non-cellular objects. 

OC_Finder is available at http://github.com/kiharalab/OC_Finder. The dataset used in this work is also 

made freely available at https://doi.org/10.5281/zenodo.5022015. 

 

Results 

Cell image dataset collection 

Osteoclasts exhibit a variety of morphologies depending on the conditions. In order to train a neural 

network that can recognize a wide range of morphologies of osteoclasts, it is important to include images 

of osteoclasts from many distinct conditions in the training dataset. We obtained osteoclast images from 

cultures with several different cytokine stimuli, including different concentrations of RANKL (25 and 
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50 ng/ml), combinations of RANKL (50 ng/ml) with IL-1β (10 ng/ml) or TNF-α (100 ng/ml), and with 

osteoclast precursors from mice of different genotypes, Sh3bp2+/+ and Sh3bp2KI/+. The osteoclast 

precursors from Sh3bp2KI/+ mice form more and bigger osteoclasts.19 IL-1β and TNF-α are pro-

inflammatory cytokines that are known to support osteoclast differentiation.20 With these variations of 

conditions, we were able to obtain images of a wide variety of osteoclast morphologies (Fig. 1a). 

We obtained 458 microscopic images of osteoclast culture in total. In each image, we 

manually located the osteoclasts and non-osteoclasts in the images (Fig. 1b and 1c). We generated two 

datasets from these images. The first dataset was for testing the segmentation accuracy of OC_Finder 

(the segmentation dataset). The second dataset was to examine the classification accuracy of the method 

(the classification dataset). 

For the segmentation dataset, we selected 10 microscopic images of different culture 

conditions. The culture conditions were as follows: Osteoclast precursors from males or females with 

the genotype of Sh3bp2+/+ or Sh3bp2KI/+ stimulated with 25 or 50 ng/ml of RANKL; and osteoclast 

precursors from male wildtype mice stimulated with the combination of 50 ng/ml of RANKL with IL-

1β (10 ng/ml) or TNF-α (100 ng/ml). In each of the 10 images, we manually counted all the cells. The 

number of manually identified cells in an image ranged from 445 to 1823 with a total of 10221. 

For the classification dataset, from each of the 458 images we manually identified about 60 

cells, only a fraction of cells in an image, so that we could cover a large number of different microscopic 

images. In total, we located and labeled 13,822 osteoclasts and 13,833 non-osteoclasts. A cell was 

considered an osteoclast if it is positive for TRAP staining (pink to purple color in Fig. 1) and has more 

than 3 nuclei and were considered non-osteoclasts otherwise. Among the 458 microscopic images, 373 

images (81.4%) were used for training and validation while the rest (85 images) were used for testing 

OC_Finder. The 373 images were further split into 298 images (79.9%) for training, which included 
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9,276 osteoclasts and 9,278 non-osteoclasts, respectively, and 75 images (20.1%) for validation, which 

included 2,219 osteoclast and 2,226 non-osteoclasts, respectively. The 85 testing images included 2,327 

osteoclasts and 2,329 non-osteoclasts, respectively. 

For evaluating the cell classification task, we manually segmented out cell images of a size of 

50x50 pixels centering at the manually assigned center locations from the microscope images. Since the 

training and the testing sets were taken from different microscope images, there was no overlap between 

the two sets. When a cell image was used for training, augmentation via one of 12 types of image 

transformation listed in Supplementary Table 1, such as translation, rotation, changing contrast, was 

applied with a random magnitude. The augmentation process allows a significantly higher amount of 

trainable data to be derived from the fixed amount of images present in the training dataset. The details 

of augmentation are addressed in the Methods section. 
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Fig. 1. Dataset of cell images of osteoclasts. a, Examples of images of various forms of osteoclasts 

obtained under different conditions. The concentrations of each cytokine in the culture media were as 

following; RANKL: 50 ng/ml, TNF-α: 100 ng/ml, IL-1β: 10 ng/ml. b, an example of captured 

microscopic images of osteoclast culture. C, a magnified image of the boxed area in panel b, showing 

the examples of induced osteoclasts and non-osteoclasts. The cells which are positive for TRAP-staining 

and have more than 3 nuclei were identified as osteoclasts (yellow arrowheads), while all other cells 

which do not satisfy the criteria were regarded as non-osteoclasts (red arrowheads). Black bar = 100 µm. 
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Fig. 2. The diagram of OC_Finder. a. The workflow of OC_Finder. After cells are segmented, small cells with 

less than 500 pixels are removed (green) from further downstream analysis because such cells are never osteoclast. 

Remaining cell images are trimmed to the size of 50x50 pixels, which are input for the deep learning model that 

classifies it to either non-osteoclast or osteoclast. Finally, OC_Finder will present the microscopic image with 

predicted labels assigned to identified cells. b. The deep learning network architecture for cell classification. The 

architecture is the same as ResNet-1821. Res Block, the residual block, which combines convolution layers, 

batch normalization, and residual connection (Supplementary Fig. 1). The notation of the layers, for 

example, 64@25x25 indicates 64 feature maps of 25x25 size and Conv 7x7 kernel represents the 

convolutional operation with a kernel size of 7x7. Finally, the network outputs the probabilities that the 

input cell is non-osteoclast or osteoclast. 

 

Overall Architecture of OC_Finder 

OC_Finder processes a given microscopic image with two major steps: segmentation and classification 

(Fig. 2a). First, the program identifies cells in the microscopic image and segments them with the 

watershed algorithm. Next, small cells are removed since they are unlikely to be osteoclasts. Then, the 

region of each cell is trimmed into the same square image and three colors in the image, RGB, are 

normalized considering the mean and the variance of the image. Then, the trained deep learning model 

is applied to all the trimmed cell images and assign labels. In Fig. 2, non-osteoclasts are assigned 0 and 

osteoclasts are assigned 1. Finally, OC_Finder visualizes the results with labels assigned to all the 

segmented cells on the original microscopic image. 

 

Segmentation 

An input microscopic image includes many cells. To start the process, we need to identify and segment 

cells before applying the deep learning network for cell classification. A microscope image has color 

values in RGB, which are converted into grayscale values by averaging the three values of Red, Green 
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and Blue. The resultant grayscale microscope images thus depict cellular regions in darker gray than the 

background. To detect cells, the watershed algorithm is applied, which starts from significantly high 

dark points (which we term markers) and lower the watershed line to capture neighboring pixels that 

are included in cells. However, since a naïve application of the watershed algorithm resulted in over-

segmentation of cell regions to smaller pieces, we designed the following procedure to reduce markers: 

First, we applied Otsu�s binarization method6 to an input microscopic image, which automatically finds 

a proper threshold to separate background and the foreground that includes cells to roughly estimate 

potential cell regions. Next, we removed small or irregular foreground regions by applying a 

morphological opening operation22 with a filter of a 3x3 pixel size, which scans the foreground and 

removes pixels in the filter from the foreground if the filter is not entirely filled with foreground pixels. 

This opening operation greatly reduces noise from the foreground. Similarly, we also applied a 

morphological closing operation22 with a 3x3 filter, which scans the input image and converts 

background pixels in the filter to the foreground if the filter is not entirely filled with background pixels. 

This process removes small holes and modifies irregular boundary regions in the foreground. In the 

segmentation process, very large segmented areas can be problematic because they may consist of two 

or more cells, which cause under-segmentation. To address this problem, we identified potential cell 

centers in the foreground, which are pixels that are distant from the background. More precisely, a 

microscopic image, which is now binary labels, foreground and background at each pixel, is re-labeled 

with the distance to the closest background pixel. Then, pixels with larger distance values than a 

threshold are selected as markers for the watershed algorithm. Finally, we applied the watershed 

algorithm using the markers as starting points to segment cells in the input microscopy image. Lowering 

watershed was stopped once it reached a background pixel or two watershed levels from neighboring 

cells met. 
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After segmentation, we removed small segmented regions with less than 500 pixels because 

they are either a part of a large cell or non-osteoclast for 100% of the cases and would not affect the 

results of detecting osteoclasts. Then, each cell region is extracted by a square of 50x50 pixels that are 

placed at the center square of the cell determined by segmentation (Supplementary Fig. 2c). These 

square images are inputs for the cell classification by deep learning. 

 

Network Architecture 

Fig. 2b shows the neural network architecture of the cell classification model. We used the ResNet-18 

architecture21. An input is a color cell image in RGB with a size of 50x50 pixels. 64 convolutional filters 

of 7x7 pixels scan the input with a stride of 2 pixels to capture the local texture pattern of the image. 

This step results in 64 feature maps of a 25x25 size. Subsequently, a max-pooling layer, four residual 

block layers (Supplementary Fig. 1) with 64, 128, 256, and 512 residual blocks, respectively, are applied. 

Then, the output from the last residual block is processed through an average pooling layer to obtain a 

feature vector. Finally, the feature vector is flattened and passed to a Fully Connected (FC) layer with 

512 neurons and activated by a softmax activation function to produce the probability values that the 

input cell is non-osteoclast or osteoclast. 

The network was trained and validated on manually labeled cell images of a 50x50 pixel size 

in the training set, which contains 11,495 and 11,504 non-osteoclast and osteoclast images respectively, 

in the 81.4% (357 microscopy images) of the entire microscopic image dataset. During training, cell 

images were augmented by one of the 12 randomly selected augmentations to increase the number of 

training views of the same instance. Training was performed with a teacher-student model16 where 

weights of a teacher model were updated with an average of the weights from a sequence of student 

models of previous iterations while weights of the student model were updated at each iteration. 
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Due to this weight optimization mechanism, in general, the teacher model is more stable and has higher 

generalizability and effectiveness in supervised training. 

 

Segmentation results 

First, we discuss the accuracy of the segmentation step. This step corresponds to �Segmenting Cells� in 

Fig. 2a. Examples of segmentation are shown in Fig. 2a, Fig. 3, and Supplementary Fig. 2. The first two 

panels in Fig. 2a and Supplementary Fig. 2a and b show an example of an input image and a 

segmentation result. In the second panel of Fig. 2a and Supplementary Fig. 2b, boundaries of 

segmentations are shown in red, which correspond well to cells in the image. The detailed segmentation 

results on the 10 microscopic images in the segmentation dataset are provided in Supplementary Table 

2. On average, OC_Finder showed a high detection rate of 99.4% of manually detected cells. There were 

80 cells that were missed by OC_Finder in the 10 images. Among them, there was only 1 osteoclast 

included. On the other hand, OC_Finder detected 3 regions that were not included in the manually 

detected cells. These three regions were not cells but debris, and they are all removed in the subsequent 

step of the removal of small regions of less than 500 pixels. The removed debris are shown in Fig. 3a 

(yellow arrowheads). 

The step of removing small regions is illustrated in the third panel in Fig. 2a. In the panel, 

removed segmentations are shown in green, while the remaining large regions are colored in red. Fig. 

3b and 3c are additional examples that illustrate the removal of small regions by applying the 500-pixel 

cutoff. Most of the segmented regions that were removed were non-osteoclasts. Fig. 3b shows a part of 

a microscopic image that includes removed cells (indicated with yellow arrowheads). Fig. 3c is an 

example of a different case, where the removal of small regions helped avoid an overlapped counting 

of large osteoclasts. In this example, a large osteoclast was segmented into 12 pieces but 11 of them 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465786doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465786
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
14

were removed by the filtering, leaving only the largest region, which ultimately allowed it to be correctly 

classified as an osteoclast. 

 

Figure 3. Examples of segmentation and filtering of small regions. Three examples are shown. Left: original 

images. Middle: After segmentation. Right, after filtering. regions that were filtered out are pointed by yellow 

arrowheads. a, examples of removed small debris. b, an example that small regions that correspond to non-

osteoclasts were removed by filtering.  c, an example where a large cell was segmented into multiple regions. A 

cell was segmented to 12 areas. Out of them, 11 small regions were removed, leaving only one area remaining. 

This area was later sufficient to correctly classify this cell as an osteoclast. 
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Cell classification results  

Next, we discuss cell classification accuracy. The classification performance was evaluated on the test 

set of the classification dataset, which includes 2,327 osteoclasts and 2,329 non-osteoclasts, respectively, 

in 85 microscopic images. Results are summarized in Table 1. 

A high classification accuracy, 98.1% (2274 + 2294/4,656), was achieved on all the cells in 

the classification dataset (Table 1A). 97.7% (2274+53/2,327) of osteoclasts and 98.5% (2294+35/2,329) 

of non-osteoclasts were correctly classified. These results were obtained by the teacher model in the 

Teacher-Student network we used. In Supplementary Table 3, we compared the current model with 

other models that used different parameter values (for a smoothing coefficient, . See Methods). 

Particularly, the table shows that the current teacher model performed better than the model that did not 

use the teacher-student architecture. 

 

Table 1. Cell Classification Accuracy. 

A. All classification test set. 

Labels\Prediction Pred. as Osteoclast Pred. as non-Osteoclast Total 

Osteoclast 2274 53 2,327 (100%) 

Non-osteoclast 35 2294 2,329 (100%) 

Total 2309 (98.5%) 2347 (97.7%) 4,656 

B. After segmentation was applied to the classification test set. 

Segmented\Prediction Pred. as Osteoclast Pred. as non-Osteoclast Total 

Osteoclast 2,104 (96.6/90.4%) a) 75 2,179 (100/93.6%) a) 

Non-osteoclast 61 2,247 (97.4/96.5%) 2,308 (100/99.1%) 
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Total 2,165 2,322 4,487 (100/96.4%) 

a) The percentage was computed with two references (denominators). The first percentage was relative to 

the number of cells that were segmented by the segmentation procedure among all the cells in the 

classification data set. Thus, 2,179 and 2,308 were used for osteoclast and non-osteoclasts, respectively. 

The second percentage was computed relative to all the cells in the classification dataset. The percentage 

values computed in this way were smaller than the former as shown, because 3.6% (4,654-4,487) of cells 

were not correctly segmented and identified by the segmentation procedure. 

 

Using the classification dataset, we have also evaluated the entire pipeline of OC_Finder, where the 

segmentation and the classification steps were applied sequentially (Table 1B). On this dataset, 96.4% 

of the cells were segmented correctly. These cells include 93.6% of osteoclasts and 99.1% of non-

osteoclasts. 4,351 (2,104 + 2,247) cells were correctly classified. The classification accuracy was 97.0% 

relative to 4,487 correctly segmented cells. If considering all the 4,656 cells in the classification dataset 

including miss-segmented cells, the accuracy would slightly drop to 93.4%.  

Fig.4 shows examples from the validation process for cell classification by OC_Finder. Fig. 4a 

shows manually assigned labels to a microscopic image in the classification dataset. Cells marked with 

red and blue are osteoclasts and non-osteoclasts, respectively. In the classification dataset, only a part 

of cells are manually labeled as mentioned earlier. In Fig. 4b, classification results by OC_Finder for 

this microscopic image is shown. As discussed earlier, small regions were not processed as they are not 

osteoclasts. The remaining panels contain examples of cells classified by OC_Finder. Fig. 4c shows 

examples of osteoclasts (four images on the left) and non-osteoclasts (right) that were correctly 

classified by OC_Finder. One can see that identified osteoclasts were stained by TRAP staining and 

have more than 3 nuclei while non-osteoclasts do not have the properties. Fig. 4d shows the opposite, 

where OC_Finder misclassified cells. On the left shown are four osteoclasts that were wrongly classified 
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as non-osteoclasts. Nuclei in these cells seem to have unclear boundaries, which might be a reason for 

the misclassification. The images on the right are non-osteoclasts, which were misclassified as 

osteoclasts. These four images contain overlapped or adjoining cells that resemble multiple nuclei, 

which may have confused OC-Finder. Fig. 4e is an interesting case where OC_Finder performed better 

than the human examiner. This cell has three nuclei but the human examiner thought there were only 

two and thus classified as non-osteoclast since two nuclei are very close to each other and the boundary 

is not clear. Despite this difficulty, OC_Finder was able to classify it as osteoclast. The last panel (Fig. 

4f) are examples where OC_Finder correctly identified osteoclasts from manually unlabeled cells in a 

microscopic image. 

Through this validation process, we confirmed that OC_Finder has a high classification accuracy. 

We also reaffirmed that humans are prone to error and may occasionally misclassify cell images, in 

which case OC_Finder can serve as a counteractive measure to human mistakes. 
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Fig. 4. Example of segmentation and classification by OC_Finder. a. manually labeled osteoclast and non-

osteoclasts in a microscopic image. Red indicates osteoclast and blue indicates non-osteoclast. b. osteoclasts and 

non-osteoclasts detected by OC_Finder for the same image. A red box indicates osteoclast and a blue box 

indicates non-osteoclast. Cells that are segmented are surrounded by a thin red line. Cells are labeled only when 

they have a size of 500 pixels or larger. c. Examples of osteoclasts (left) and non-osteoclasts (right) images 

correctly identified by OC_Finder. d. The examples of osteoclasts (left) and non-osteoclasts (right) images that 

were misclassified by OC_Finder. e. osteoclast image that was misclassified by manual annotation but correctly 

classified by OC_Finder. Right panel is the magnified image of the boxed area in the left panel. f. Examples of 

osteoclasts that were not picked by the human examiner during the classification dataset construction and 

identified as osteoclasts by OC_Finder. 

 

The performance of the system in a practical situation  

Finally, we validated the OC_Finder�s performance in a real-case scenario. Specifically, we examined 

if OC_Finder could detect an increased osteoclast formation caused by the gain-of-function mutation of 

Sh3bp2 (Sh3bp2KI/+). The gain-of-function of SH3BP2 is known to increase osteoclast formation19,23,24. 

In this experiment, we included cell sources of different gender (male and female), which is an important 

factor in fields of biology including bone biology,25 as well as two concentrations of RANKL (25 and 

50 ng/ml) to test whether OC_Finder shows good performance under different experimental designs. 

Manual counting showed a higher number of osteoclasts in Sh3bp2KI/+ culture (Fig. 5a, the lower panel) 

than wildtype control without gain-of-function of SH3BP2 (Sh3bp2+/+) (Fig. 5a, the upper panel) in the 

four conditions tested (Fig. 5b upper panel, in which result of Sh3bp2+/+ and Sh3bp2KI/+ are presented 

in white bars and grey bars respectively). These results are consistent with previous reports19. The 

automated counting by OC_Finder also detected the difference between Sh3bp2+/+ and Sh3bp2KI/+ in all 

the conditions tested (Fig. 5b lower panel) with the same significant p-value to the manual counting 

results.   
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Figure 5. The automatic osteoclast counting compared with manual counting. a, Microscopic images of TRAP-

stained osteoclast culture. Upper panel: Sh3bp2+/+; Lower panel: Sh3bp2KI/+.  b, Validation of the performance 

of automatic osteoclast-counting in the practical situation. Upper panel: The number of osteoclasts measured 

manually as reference data. Lower panel: Number of osteoclasts measured by the automated system. Values on 

the graphs are p values calculated by the Tukey-Kramer test. The Y-axis is the number of osteoclasts per culture 

well, and the X-axis is concentration (25 and 50 ng/ml) of RANKL. c correlation analysis between automatic and 

manual osteoclast-counting. The number of osteoclasts on each image was analyzed manually and automatically. 

36 images were analyzed for each condition. Pearson�s correlation coefficients (r) were shown, except for the 
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analysis for overall samples, which did not show Gaussian distribution and was analyzed with Spearman�s 

analysis.  

 

In Fig. 5c, we also compared the number of osteoclasts measured by a human examiner and 

OC_Finder for each of 36 microscopic images. In all the culture conditions, OC_Finder showed a high 

correlation, between 0.70 to 0.91, with manual counting (Fig. 5c left). The correlation was as high as r 

= 0.9465 when all samples were pooled and analyzed (Fig. 5c right). Thus, we confirmed that the 

automated counting system could generate comparable data to manual counting, and the system 

demonstrated a good sensitivity to detect biological differences in the experiment.  

 

Discussion 

OC_Finder is the first fully automated osteoclast counting system that utilizes a deep-learning neural 

network. OC_Finder performs image segmentation and classification tasks in its pipeline. Overall, 

OC_Finder showed high accuracy in both tasks. When used for a practical scenario of counting 

osteoclasts (i.e. identifying and classifying cells) in microscopic images, OC_Finder showed 

comparable performance with human eyes (Fig. 5). Therefore, the system can provide valuable 

assistance in labor-intensive cell counting and greatly reduce the workload for researchers while 

maintaining acceptable recall and accuracy. 

When the entire pipeline of OC_Finder was applied to microscopic images, the overall 

accuracy was affected by the segmentation step, which had a slightly lower accuracy than classification.  

Thus, improvement in segmentation will further increase the system�s accuracy, which is left as a future 

work. The quality of image segmentation may be controlled by changing parameters, such as the 

threshold, the filter size, and optimal values would be different for different input microscopic images. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465786doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465786
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
22

Users are encouraged to control the parameters for optimizing performance on their own dataset. The 

code for OC_Finder can be expanded for other similar cell classification tasks by re-training networks 

on a specific dataset. Expanding the method to handle other cell images is straightforward. OC_Finder 

will be able to extend to other similar works and be a widely used tool for cell image localization and 

detection. 
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Methods 

In vitro osteoclast differentiation. 

Bone marrow cells were isolated from the tibia, femur, and ilium of 7- to 8-week-old male and female 

Sh3bp2+/+ and Sh3bp2KI/+ mice on the C57BL/6 background. The Sh3bp2KI/+mice that have the 

heterozygous gain-of-function mutation in SH3-domain binding protein 2 (SH3BP2) were previously 

reported.19,23,24 After treating with red blood cell lysis buffer (eBioscience), bone marrow cells were 

cultured in alpha-MEM supplemented with 10% FBS and 1% penicillin/streptomycin on the Petri dish. 

After 3 hours, non-adherent cells were collected and further cultured in alpha-MEM containing 25 ng/ml 

M-CSF (PeproTech) on the Petri dish for three days to selectively grow the bone marrow-derived M-

CSF-dependent macrophages (BMMs). BMMs were harvested, seeded on 48-well plates at the density 

of 2.5 × 104 cells per well, and cultured for 3 days in the presence of four combinations of cytokines: 1) 

25 ng/ml M-CSF and 25 ng/ml RANKL, 2) 25 ng/ml M-CSF and 50 ng/ml RANKL, 3) 25 ng/ml M-

CSF and 50 ng/ml RANKL and 100 ng/ml TNF-α, 4) 25 ng/ml M-CSF and 50 ng/ml RANKL and 10 

ng/ml IL-1β. To train the neural network with a variety of osteoclasts in size or morphology, two 

different BMMs sources (Sh3bp2+/+ and Sh3bp2KI/+ mice) in the presence of four different cytokine 

combinations were used. All cytokines were obtained from PeproTech.  

 

Osteoclast and non-osteoclast image collection 
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Cells were stained by tartrate-resistant acid phosphatase (TRAP) staining (Sigma-Aldrich) and images 

were captured using the BZ-X810 microscopy (Keyence) with the following settings: 10x objective lens, 

1/175 s exposure time, and 50 % transmitted light power. TRAP-positive cells containing more than 3 

nuclei were regarded as osteoclasts. We obtained 458 microscopic images (314 images from Sh3bp2+/+ 

cell culture and 144 images from Sh3bp2KI/+ cell culture) that contain 13822 osteoclast and 13833 non-

osteoclast images for the training, validation, and test of the neural network. The dataset included the 

same microscope images, i.e. 229 images each, from male and female. Osteoclasts and non-osteoclasts 

were identified and distinguished by visual evaluation of two independent individuals. The absolute 

coordinates of each osteoclast and non-osteoclast on the images were provided manually using the 

�Multi-point� function of ImageJ (NIH) and used to locate the osteoclasts and non-osteoclasts.  

 

Counting the number of osteoclasts 

After TRAP staining, nine images were captured (10X objective lens, 1/175 s exposure time, 50 % 

transmitted light power) from each well of the osteoclast culture. Osteoclasts in each of the nine images 

were identified and counted either by visual evaluation or by OC_Finder. To calculate the total number 

of osteoclasts per each culture well (for Fig. 5b), the numbers of osteoclasts per image of nine images 

from the well was averaged and normalized using the size of the area covered by a single image (1.587 

mm2) and the surface area of the well (0.95 x 102 mm2). 

 

Segmentation of cell images 

Cell images are segmented from an input microscopic image using the watershed algorithm7,8. We chose 

this algorithm because it was successful in medical image segmentation tasks26. To improve the 

performance of the watershed algorithm, we applied the following pre-processing before applying 
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watershed. Image were first converted to a grayscale image, then by binarized by Otsu�s method6, which 

roughly estimates the boundaries between foreground (cell regions) and background. Subsequently, we 

further applied morphological opening and closing operations to smoothen the cell regions. Otsu�s 

binarization determines a threshold value to distinguish foreground and background. This algorithm first 

computes the histogram of grayscales of pixels in an input image. Then, the algorithm applies different 

intensity thresholds to split the distribution to two distributions. For each threshold, it computes a 

weighted sum of variance of two distributions and the threshold that yielded the largest sum variance is 

selected to split foreground and background. This process is performed on-the-fly for each image, and 

thus no training process is needed. 

 Next, we removed noise in foreground regions by applying morphological opening and 

closing operations22 with a filter of a 3x3 pixel size. Opening operation in general removes irregular 

regions at the boundary and closing operation removes holes in foreground regions.  

Subsequently, we applied a distance transform27 to all foreground regions, which tries to 

separate individual cells from large foreground regions that include multiple cells. In the distance 

transform, the label of each pixel, which is binary, 0 or 1, at this step due to the Otsu�s binarization, was 

updated to the distance to the closest background pixel. Thus, pixels that are deep inside a cell tend to 

have a large value. We used 0.7 of the maximum distance in the entire image as the threshold to select 

pixels as possible cell centers (called markers), which were used as starting points by the watershed 

algorithm. This procedure was implemented with the OpenCV28 package. 

 

Data Augmentation for network training 

During training the network, we augmented input cell images by randomly applying one of 12 image 

transformations29,30. A magnitude of a transformation was also randomly chosen from a pre-defined 
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range. We followed AutoAugment30 to decide the types and the magnitude range of transformations to 

apply. The 12 types of transformations and the magnitude range are listed in Supplementary Table 1. 

Examples of the 12 augmentation types are shown in Supplementary Fig. 3. 

 

Training the deep neural network 

We used ResNet1821 in this work. We also tried to use deeper ResNet networks but did not observe 

clear improvement (data not shown). Out of 458 microscopic images, 81.4% (373) were used for training 

and the rest of 18.6% (85) of them were used for testing. The training set was further split into two parts, 

80% (298) used for training and 20% (75) for validation. Thus, the data split was performed with 

microscopic images but the classification was performed at the individual extracted cell image level. 

The number of non-osteoclasts and osteoclasts included in the training, validation, and testing are 

9276/9278, 2219/2226, and 2327/2329 respectively for non-osteoclast/osteoclasts. These cells were 

manually labeled and the numbers do not include small cell regions with less than 500 pixels. 

RGB values of a pixel in an image in the training set were normalized by computing the Z-

score: ý௜ ൌ ௫೔ିఓ೔ఙ೔                                 (Eq. 1) 

where ý௜ is the ÿth channel (R, G, or B) of a pixel ý,  ÿ௜ and ÿ௜ are the mean and the variance of 

channel ÿ  in the training set, ÿ௜ . In the validation and testing stages, we used the same mean and 

variance values that were taken from the training set. In training, each input cell image was subject to 

an augmentation. The type and the magnitude of augmentation were randomly selected. 

We used a teacher-student architecture, Mean-Teacher16 for training the model because it is 

in general effective in avoiding overfitting. The Mean-Teacher model16 updates weights of a teacher 

model with a moving average of the weights from a sequence of student models as 
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 θ௧ ൌ ÿθ௧ିଵ ൅ ሺ1െ ÿሻθ௧ᇱ , (Eq. 2) 

where θ௧ሺθ௧ᇱ ሻ is the parameters of the Teacher (Student) Model at update step t. ÿ  is a 

smoothing coefficient. We tried different ÿ as shown in Supplementary Table 3 and set it to 0.999 as it 

gave the highest accuracy in the validation. We used the teacher model in the evaluation. 

Two parameters, regularization parameters of L2 regularization we used and the learning rate 

were optimized with the Adam Optimizer31 for minimizing a cross entropy loss. The regularization 

parameter values tested were [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1] and the learning rate values tested 

were [2e-5, 2e-4, 2e-3, 2e-2, 2e-1, 2]. Based on the performance on the validation set, a regularization 

parameter of 1e-5 and a learning rate of 0.002 performed the best. Under a hyperparameter combination, 

we generated 100 trained models trained on the training set, which were kept at each epoch. Among 

them, we selected the model with the above-mentioned best hyperparameter combination, which 

performed the best on the validation set and applied it to the test set. The batch size was set to 256 

images and the models were trained for 500 epochs. 

 

Statistical analysis 

One-way ANOVA with Tukey-Kramer post hoc test was used for the comparison between groups. For 

correlation analysis, Pearson's correlation analysis was used for the samples with Gaussian distribution. 

For the samples that did not show Gaussian distribution, Spearman's analysis was used. GraphPad Prism 

(ver.7; GraphPad Software, La Jolla, CA) was used for all statistical analyses. 

 

Reporting summary 

Further information on research design is available in the Nature Research Reporting Summary linked 

to this article. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465786doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465786
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
28

 

Data availability 

The labeled data for training and verifying our methods can be downloaded from 

https://doi.org/10.5281/zenodo.5022015. More data that support the findings of this study are available 

from the corresponding author upon request. 

 

Code availability 

The OC_Finder program is freely available for academic users at  

http://github.com/kiharalab/OC_Finder. 
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Supplementary Table 1.  Transformation details for training  
 

Transformation Name Description Range 

TranslateX(Y) Translate the image in the horizontal (vertical) direction by 

magnitude number of pixels. 

[-0.3,0.3] 

Rotate Rotate the image magnitude degrees. [-30,30] 

AutoContrast Maximize the image contrast, by making the darkest pixel black 

and lightest pixel white. 

[0 or 1] 

Invert Invert the pixels of the image [0 or 1] 

Equalize Equalize the image histogram [0 or 1] 

Solarize Invert all pixels above a threshold value of magnitude. [0, 256] 

Posterize Reduce the number of bits for each pixel to magnitude bits [4,8] 

Contrast Control the contrast of the image. A magnitude=0 gives a gray 

image, whereas magnitude=1 gives the original image. 

[0.1,1.9] 

Color Adjust the color balance of the image, in a manner similar to the 

controls on a color TV set. A magnitude=0 gives a black & 

white image, whereas magnitude=1 gives the original image. 

[0.1,1.9] 

Brightness Adjust the brightness of the image. A magnitude=0 gives a 

black image, whereas magnitude=1 gives the original image. 

[0.1,1.9] 

Sharpeness Adjust the sharpness of the image. A magnitude=0 gives a 

blurred image, whereas magnitude=1 gives the original image 

[0.1,1.9] 
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Supplementary Fig. 1. 
 

 
The architecture of the residual block (ResBlock). For a given input image patch, a convolutional filer with 

size of 3*3, batch normalization, and a ReLU activation are sequentially applied. To further aggregate the 

spatial information, another convolutional filter and batch normalization are applied for the first output. To 

avoid the information loss of initial input, a downsample module with a convolutional filter with a size of 

1x1 is applied to the initial input to reduce the size of feature map. The network we used has 4 residual layers 

with 64, 128, 256, and 512 residual blocks, respectively (Fig. 1b). Among them, down-sampling is adopted for 

the last 3 residual layers. If no down-sampling is applied, an identity mapping will apply to the input to output. 

These two outputs, residual output and the first input, were added and passed to a ReLU activation. 
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Supplementary Table 2. Cell segmentation results on the 10 microscopic images. 

 

Image Total 

Not 

Identified Detection Rate (%) 

Additional Detections 

by OC-Finder  

Female Sh3bp2+/+ 

stimulated with 

RANKL (25 ng/ml) 1723 22 98.7 0 

Female Sh3bp2+/+ 

stimulated with 

RANKL (50 ng/ml) 1823 17 99.1 0 

Female Sh3bp2KI/+ 

stimulated with 

RANKL (25 ng/ml) 1014 5 99.5 0 

Female Sh3bp2KI/+ 

stimulated with 

RANKL (50 ng/ml) 883 6 99.3 0 

Male Sh3bp2+/+ 

stimulated with 

RANKL (25 ng/ml) 1053 18 98.3 0 

Male Sh3bp2+/+ 

stimulated with 

RANKL (50 ng/ml) 1204 7 99.4 0 

Male Sh3bp2KI/+ 

stimulated with 

RANKL (25 ng/ml) 445 0 100.0 3 

Male Sh3bp2KI/+ 

stimulated with 

RANKL (50 ng/ml) 664 2 99.7 0 

Male Sh3bp2+/+ 

stimulated with 

RANKL (50 ng/ml) 

and TNF-α 635 3 99.5 0 

Male Sh3bp2+/+ 

stimulated with 

RANKL (50 ng/ml) 

and IL-1β 777 0 100.0 0 

Average 1022.1 8 99.4 0.3 

 

 

Cell segmentation by OC_Finder was compared with manually identified cells in 10 microscopic 

images. The image column lists specification of each images. Total, the total number of cells that 

were manually identified in each image data. Not identified, the number of cells that were not 

detected by OC_Finder. Detection rate was computed by (Total � Not_Identified)/Total * 100(%). 

Additional detection by OC_Finder, the number of additional segments OC_Finder identified that 

did not correspond to manual identification. 
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Supplementary Table 3. Accuracy of the Mean-Teacher model with different smoothing 

coefficient values (). 

 

EMA ÿ Training  Validation Testing 

0.0* 99.7 98.3 97.8 

0.001 99.7 98.2 97.8 

0.005 99.7 98.1 97.8 

0.01 99.6 98.0 97.8 

0.05 99.6 97.8 97.7 

0.1 99.3 97.5 97.5 

0.4 99.2 97.3 97.3 

0.5 99.4 97.6 97.6 

0.8 99.5 97.8 97.6 

0.9 99.5 97.9 97.6 

0.99 99.6 98.0 97.8 

0.999 99.7 98.5 98.1 

 

The classification dataset with 4,654 cells in total was used. The percentage (%) of cells that were 

correctly classified are reported.  is the parameter in the smoothing coefficient in the Mean-

Teacher model, which appears in Eq. 2 in the Method section. is equivalent with simply 

using the student model.  
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Supplementary Fig. 2. 

 
  

Example of segmentation. a. The input image from BZ-X810 microscopy. b. Segmented areas by 

the Watershed algorithm. The boundary is shown in red. c. Center locations (shown with C) of the 

filtered segmented areas, which are cropped with 50x50 pixel size squares. These cropped squares 

are input images for the deep learning model for cell classification. 
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Supplementary Fig. 3 

 

 

Examples of 12 different augmentations. From the top to bottom rows, left to right: the original 

image, image with translate-X, translate-Y, rotate, auto-contrast, invert, equalize, solarize, 

posturize, contrast, color, brightness, and sharpness. 
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