

1 Plant structural and nutritional responses to drought differ among common pasture 2 species

3 Karen L. M. Catunda^{*a}, Amber C. Churchill^{a,1}, Sally A. Power^a, Haiyang Zhang^a, Kathryn J.
4 Fuller^a, Ben D. Moore^a

5

6 * Corresponding author. Email address: zootecnistakaren@hotmail.com

7

⁸ ^aHawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797,
⁹ Penrith, NSW, 2751, Australia

10

11 Emails: ACC- achurchi@umn.edu, SAP- s.power@westernsydney.edu.au, HZ-
12 h.zhang3@westernsydney.edu.au, KJF- k.fuller@westernsydney.edu.au, BDM-
13 b.moore@westernsydney.edu.au

14 ABSTRACT

15 In the face of a changing climate, research indicates that more frequent and severe drought
16 conditions are critical problems that will constrain production of high-quality forage and
17 influence the performance of grazing animals in the future. In addition, the duration of drought
18 and potential trade-offs between plant morphology and nutritional composition may influence
19 plant drought adaptation strategies across pasture species, and the consequences for forage
20 quality are not well understood. Here we present the results of a study investigating the effects
21 of drought on biomass productivity, dead material, leaf:stem biomass allocation and nutritional
22 composition (whole-plant and tissue-specific) across nine diverse pasture species. For this, we
23 conducted a field experiment exposing species to a 6-month period of simulated severe drought
24 (60% rainfall reduction during winter and spring) and samples were collected at multiple
25 harvests. We found that drought had different, harvest-specific effects on plant biomass
26 structure and nutritional composition among pasture species. The severity of drought impacts
27 on productivity, but not on nutritional quality, increased with drought duration. In general,
28 drought strongly reduced productivity, increased the percentage of dead material and had
29 mixed effects (increases, decreases and no effect) on leaf:stem ratio and concentrations of crude
30 protein, non-structural carbohydrates, neutral detergent fibre and lignin. Changes in plant-level
31 nutritional quality were driven by simultaneous changes in both leaf and stem tissues for most,
32 but not all, species. Our findings may be especially helpful for selection of adapted
33 species/cultivars that could minimize potential drought risks on forage, thereby optimising
34 pasture performance under future drought scenarios.

35 Keywords: grass, leaf:stem ratio, legume, morphology, productivity.

36 1 INTRODUCTION

37 Grassland ecosystems, which include managed pastures and rangelands, account for
38 approximately 40% of the Earth's land area and play a key role in food security due to their
39 important service in supplying feeding sources for grazing livestock (ABARES, 2016; Gibson,
40 2009; Masters et al., 2019; MLA, 2017). However, efficient feeding of livestock is complicated
41 by seasonal and inter-annual changes in plant growth and production (Chapman et al., 2009;
42 Perera et al., 2020). Regional plant productivity is determined by responses to long-term
43 climate patterns, however, local-scale forage availability can be driven by rainfall and
44 associated soil moisture (Brown et al., 2019; McKeon et al., 2009; Murray-Tortarolo and
45 Jaramillo, 2020). As global warming proceeds, many regions of the world will become unable
46 to fulfill requirements for forage quantity and quality, due to more frequent and intense periods
47 of drought (Perera et al., 2020; Rojas-Downing et al., 2017). This will have important
48 implications for the success of the livestock industry and global food production (Dellar et al.,
49 2018; Dumont et al., 2015; Grant et al., 2014).

50 Drought increases plant water stress and alters plant physiology (Fay, 2009; Heisler-
51 White et al., 2008), which in turn can change plant structural allocation, morphology and
52 nutritional composition. All of these ultimately impact forage nutritional quality and,
53 consequently, animal nutrition and performance (AbdElgawad et al., 2014; Herrero et al., 2015;
54 Howden et al., 2008). Although many studies have addressed the effects of drought on overall
55 biomass production (Churchill et al., 2020; Perera et al., 2019, 2020), a study gap remains in
56 relation to how drought impacts plant structural allocation of biomass and nutritional
57 composition. Furthermore, few studies have imposed longer-term drought under field
58 conditions where plants may have time to acclimatise to stressors. Such acclimation might
59 require trade-offs between structural and nutritional traits, which may not be observed in
60 shorter studies (Deleglise et al., 2015; Grant et al., 2014; McGranahan and Yurkonis, 2018).

61 Drought can affect forage nutritional quality via changes in structure (e.g. proportional
62 allocation to leaves, stems and flowers), and via changes in the nutritional composition and
63 digestibility of plant parts (particularly leaves and stems), with the magnitude of impacts
64 dependent on plant developmental stage and the severity and duration of drought (Gray and
65 Brady, 2016; IPCC, 2014). Moderate drought stress can delay plant maturation and growth,
66 causing mild or moderate senescence and increases in leaf:stem ratio (Buxton, 1996). However,
67 whole-plant nutritional quality responses to moderate drought conditions are inconsistent
68 across studies; these include no change or reductions in fibre concentration and no change or
69 slight improvements in both crude protein concentration and digestibility of forage species
70 (Deleglise et al., 2015; Dumont et al., 2015; Kuchenmeister et al., 2013; Staniak and Harasim,
71 2018). This inconsistency may be explained by differences between plant species, the growing
72 stage of the plant when the drought was imposed, drought duration and by differences in the
73 nature of drought treatments. In contrast, studies of prolonged and/or severe drought stress have
74 reported growth inhibition (lower productivity), accelerated maturation, death of plant tissue
75 and decreased leaf:stem ratios (Bruinenberg et al., 2002; Ren et al., 2016). Accompanying these
76 responses are increases in whole-plant fibre concentrations, especially for the lignin fraction,
77 and increased cell-wall thickness and forage toughness, thus reducing forage nutritional quality
78 (Bruinenberg et al., 2002; Deetz et al., 1996; Dumont et al., 2015; Ren et al., 2016). Some
79 studies have also reported reduced quality through decreased concentrations of crude protein
80 and non-structural carbohydrates due to increased translocation of nitrogen and soluble
81 carbohydrates from leaves to roots as senescence proceeds (Buxton, 1996; Durand et al., 2010).
82 While these changes to plant structure and nutritional composition are generally reported
83 separately (Deleglise et al., 2015; Dumont et al., 2015; Ren et al., 2016), herbivores experience
84 their combined consequences. The net impact of these changes on the nutrition of grazers is,
85 however, relatively unknown.

86 Severe drought generally produces a decrease in forage nutritional quality at the whole-
87 plant level (Buxton, 1996; Deleglise et al., 2015; Durand et al., 2010; Ren et al., 2016), and
88 patterns of resource allocation among plant parts likely underlie many of these changes (Grev
89 et al., 2020). Because some grazers can forage selectively on different plant parts, to various
90 extents, changes to the quality of particular tissues will directly impact herbivores in different
91 ways. There is some evidence that drought differentially affects the nutritional quality of leaves
92 and stems (Pecetti et al., 2017; Wilson et al., 1983). Changes to the relative proportions of plant
93 fractions and to nutritional composition within leaf and stem tissues may reflect diverse
94 adaptation strategies of plants to water stress and strategies to maintain growth (Buxton and
95 Fales, 1994; Le Gall et al., 2015). Understanding these strategies can help to identify plant
96 traits that confer high drought tolerance on plants whilst maintaining structural and nutritional
97 features that ameliorate effects on animal performance under drought conditions (Cavalcante
98 et al., 2014; Tadielo et al., 2017).

99 This study aimed to investigate the effects of severe drought on pasture productivity,
100 nutritional composition at the whole-plant, leaf and stem levels, the percentage of dead plant
101 material and the leaf:stem biomass ratio. To do this, we conducted a field study exposing nine
102 common pasture species to a 6-month period of severe drought (60% rainfall reduction) during
103 winter and spring, with samples collected across multiple harvests. We hypothesised that
104 drought would reduce forage production and nutritional quality, with drought duration and
105 species-specific differences in the magnitude of effects due to trade-offs in resource allocation
106 among plant parts, such as shifts in leaf:stem biomass ratios.

107 **2 MATERIAL AND METHODS**

108 *2.1 Site description*

109 This study was conducted at the Pastures and Climate Extremes (PACE) facility at the
110 Hawkesbury Campus of Western Sydney University, in Richmond, NSW, Australia (S33.610,
111 E150.740, elevation 25 m; Churchill et al., 2020). The mean annual precipitation at this location
112 is 800 mm (Australian Government Bureau of Meteorology, Richmond - UWS Hawkesbury
113 Station 1980-2010); however, there is large inter-annual variability (between 500 mm and over
114 1400 mm over the past 30 years). Winter/spring precipitation accounts for 40% of annual
115 rainfall. The mean annual temperature is 17.2 °C, with the warmest and coolest months
116 occurring in January (mean temperature of 22.9 °C) and July (10.2 °C), respectively. The soil
117 is loamy sand with a volumetric water holding capacity of 15-20%, pH of 5.7, plant available
118 nitrogen of 46 mg kg⁻¹, plant available (Bray) phosphorus of 26 mg kg⁻¹ and 1% soil organic
119 carbon (Churchill et al., 2020). The field facility comprises six replicate polytunnel rainout
120 shelters (48 m x 8 m) with eight treatment plots (4 m x 4 m) per shelter. Individual treatment
121 plots were further subdivided into four subplots, each with a different monoculture or mixed-
122 species sward (total of 192 subplots). This study focuses on all monoculture pasture subplots
123 that were exposed to control and drought treatments, for a total of 108 subplots with nine
124 different pasture species. A detailed overview of the experimental facility descriptions is
125 reported in Churchill et al. (2020).

126

127 *2.2 Selection and establishment of pasture species*

128 Monoculture subplots encompassed a range of functional diversity (C₃/C₄ grasses, legumes,
129 annuals and perennials) and species' origins (native grasses, tropical and temperate pastures;
130 **Table 1**) that are all either commonly used in improved grasslands (pastures) or in rangelands
131 across southern Australia and internationally, with the exception of the native grass

132 *Rytidosperma caespitosum*. All pastures were established prior to winter (*Chloris*, *Digitaria*,
133 *Festuca* and *Themeda*) or spring (remaining species) of 2018 (Churchill et al., 2020) and
134 swards were managed with seasonal fertilizer application to replace nutrients removed from
135 the soil (55 kg/ha; Cal-Gran Aftergraze, Incitec Pivot Fertilisers, Australia) and hand-weeding
136 to maintain target species dominance. The two legume species received appropriate rhizobium
137 inoculant during sward establishment: ALOSCA granular inoculant for *Biserrula* subplots
138 (Group BS; ALOSCA Technologies, Western Australia, Australia) and EasyRhiz™ soluble
139 legume inoculant and protecting agent for *Medicago* subplots (Group AL; New Edge
140 Microbials, New South Wales, Australia).

141 **Table 1.** Information about pasture species included in the study.

Species (cultivar)*	Origin	Growth Form	Photosynthetic pathways	Lifecycle
<i>Biserrula pelecinus</i> (Casbah)	Temperate, introduced	Legume	C ₃	Annual
<i>Chloris gayana</i> (Katambora)	Tropical, introduced	Grass	C ₄	Perennial
<i>Digitaria eriantha</i> (Premier)	Tropical, introduced	Grass	C ₄	Perennial
<i>Festuca arundinacea</i> (Quantum II MaxP)	Temperate, introduced	Grass	C ₃	Perennial
<i>Lolium perenne</i> (Kidman)	Temperate, introduced	Grass	C ₃	Annual [#]
<i>Medicago sativa</i> (SARDI7 series 2)	Temperate, introduced	Legume	C ₃	Perennial
<i>Phalaris aquatic</i> (Holdfast GT)	Temperate, introduced	Grass	C ₃	Perennial
<i>Rytidosperma caespitosum</i>	Temperate, native	Grass	C ₃	Perennial
<i>Themeda triandra</i>	Tropical, native	Grass	C ₄	Perennial

142 *Species referenced by genus name in the text.

143 #Although this species is perennial, the high summer temperatures at the study site meant it functioned as an annual in this study, dying back at
144 the end of spring and requiring re-sowing.

145 2.3 *Experimental treatments and environmental monitoring*

146 All nine pasture species were exposed to the same irrigation regime. The control (C) treatment

147 represented a typical precipitation regime for the local area during years with annual

148 precipitation between 650-750 mm, accounting for long-term patterns in seasonality and in the

149 statistical distribution of event sizes and timing within seasons. In the drought (D) treatment,

150 precipitation event sizes were reduced by 60% throughout the 6-month austral winter/spring

151 period from 1 June to 30 November 2019. This drought treatment represented the drier end of

152 climate model predictions for end-of-century seasonal rainfall change for southeastern

153 Australia, under the Representative Concentration Pathway - RCP8.5 (CSIRO, 2020). A 60%

154 reduction in rainfall falls within the range of observed historical rainfall patterns for key pasture

155 growing regions across southeastern Australia, including the study site, and such extremes are

156 predicted to increase in frequency and duration (BOM, 2019). Target precipitation was applied

157 using an irrigation system installed in each plot (5 irrigation points in each) as described in

158 Churchill et al. (2020). Prior to the start of the winter season, all plots received the same

159 irrigation inputs (1 December 2018 to 31 May 2019; 419.7 mm total amount).

160 Environmental monitoring of treatment plots included continuous recording of soil

161 moisture (0-15 cm; 16 per shelter; Time Domain Reflectometers; CS616, Campbell Scientific)

162 in four different species subplots (*Biserrula*, *Festuca*, *Lolium*, *Medicago*). Air temperature and

163 humidity sensors (Series RHP-2O3B, Dwyer Instruments Inc, USA) mounted in force-

164 ventilated radiation shields were installed inside and outside the rainout shelters at 60 cm

165 height, with records collected every 5 min to determine shelter effects on environmental

166 conditions. The amount of irrigation applied in each treatment, air temperature and soil

167 moisture averaged across the shelters during the 6-month experimental period (1 June to 30

168 November 2019) can be seen in **Supplementary Figure S1**.

169 *2.4 Plant sampling during the experimental period and measurements*

170 All subplots were managed and harvested regularly before and during this study based on
171 grazing system recommendations practiced in the study region (Clements et al., 2003).
172 Harvesting involved the use of hand shears and a sickle mower. Prior to the start of the winter
173 season, all species were harvested at the end of May 2019. During the 6-month winter/spring
174 experimental drought period, aboveground productivity was determined via three harvests, one
175 in mid-August, one in early October and one in mid-November 2019, for all species, except for
176 *Chloris* and *Digitaria* that in the August harvest there was no plant biomass in the plots of these
177 species (**Supplementary Table S1**). In all harvests, plants were cut to 5 cm above the soil
178 surface and weighed (fresh mass), with a representative sub-sample sorted to remove/exclude
179 weeds and to determine the percentage of dead material in the total biomass by weight (fresh
180 mass); thereafter, all plant biomass sub-samples, including live and dead material, were
181 immediately microwaved at 600W for 90 seconds to stop enzymatic activity (Landhäuser et
182 al., 2018) and then oven-dried at 65 °C for at least 48 hours (until constant weight), and weighed
183 to determine total dry matter productivity (kg DM ha⁻¹; live and dead material) per harvest, for
184 each species and treatment.

185

186 *2.5 Plant structural analysis and sample processing*

187 For the nutritional analysis of the whole-plant material, we analysed dry samples from the
188 August, October and November harvests, which were composed of a proportionally
189 representative mixture of live and dead leaves, stems (or culms/tillers) and inflorescences
190 (**Supplementary Table S1**). In addition, for the November harvest, we sorted samples
191 (composed of both live and dead material) into leaves and stems (or culms/tillers), weighed
192 these fractions to calculate the leaf:stem ratio (**Supplementary Table S1**) and analysed the
193 nutritional composition of the fractions separately. Dried samples were ground through a 1-

194 mm screen in a laboratory mill (Foss Cyclotec Mill, Denmark) and stored in airtight plastic
195 containers in the dark at room temperature prior to collection of near-infrared reflectance (NIR)
196 spectra and wet chemical analysis. Plant samples were further homogenized using a ball-mill
197 to produce a fine powder prior to nitrogen determination by elemental analysis (Retsch®
198 MM200; Hann, Germany).

199

200 *2.6 Nutritional analysis*

201 All dried and ground samples were scanned twice and their spectra were averaged using a near-
202 infrared reflectance spectrophotometer (NIRS; FOSS XDS Rapid Content™ Analyzer) with a
203 spectral range of 400 to 2500 nm. Representative samples were selected using the software
204 WinISI 4.8.0 (FOSS Analytical A/S, Denmark) for analysis of nutrient composition by wet
205 chemistry for all parameters, in order to calibrate and validate the NIR.

206 The selected samples were analysed for ash (ASH) according to the standard methods
207 and procedures for animal feed outlined by the Association of Official Analytical Chemists
208 (AOAC, 1990). Nitrogen (N) concentration was determined from ~ 100 mg samples using an
209 automated combustion method on a Leco TruMac CN analyzer (Leco Corporation, USA).
210 Crude protein (CP) concentration was then calculated by applying a 6.25 conversion factor to
211 the N concentration (AOAC, 1990). Ether extract (EE) was determined according to the
212 American Oil Chemists' Society-AOCS high-temperature method using petroleum ether (B.P.
213 40-70 °C) and the Soxhlet method (Buchi 810 Soxhlet Multihead Extract Rack, UK). Fibre
214 fractions were determined with an ANKOM Fibre Analyzer (model 200, ANKOM®
215 Technology, NY, USA) with the use of neutral and acid detergent solutions and corrected for
216 dry matter content (Goering and Van Soest, 1970). Samples were analysed for neutral detergent
217 fibre (NDF), acid detergent fibre and acid detergent lignin (ADL) by the sequential method of
218 Van Soest and Robertson (1980). Sodium sulphite and α -amylase were added to the solution

219 for NDF determination. The values of ASH, EE, CP and NDF were used to calculate non-
220 structural carbohydrates (NSC) according to Sniffen et al. (1992). All nutritional parameters
221 were expressed as a percentage of total DM.

222 Details associated with mathematical treatment of spectra and descriptive statistics for
223 NIRS calibration can be found in Catunda et al. (2021). However, in brief, for the development
224 of NIRS calibration models, modified Partial Least Squares regression with cross-validation
225 was used to develop predictive equations for each nutritional parameter to prevent overfitting
226 of models (Shenk and Westerhaus 1991; Catunda et al., 2021). The NIRS calibration equations
227 were considered to be both suitable and robust to estimate all the nutritional parameters of the
228 samples of all pasture species assessed (Catunda et al., 2021).

229

230 *2.7 Calculations and statistical analysis*

231 We analysed the effects of drought on pasture productivity, percentage of dead material and
232 nutritional composition of the whole-plant separately for each harvest, but only considered
233 changes in leaf:stem ratio and nutritional composition of leaf and stem fractions at the end of
234 the drought period (November). All pasture responses were analysed using linear mixed-effects
235 (LME) models in the ‘lme4’ package in the software R version 4.0.0 (R Core Team, 2020;
236 Bates et al., 2015). Watering regime (Control: C, Drought: D) was included as a fixed effect
237 and the rainout shelter as a random factor; residuals were checked for normality. We calculated
238 the mean effect size due to drought (*Equation 1*; for the figures in the results section) as the
239 ratio of drought to their respective control treatment values, along with 95% confidence
240 intervals (CI).

241 *Equation 1. Effect size = $\frac{\text{Drought}}{\text{Control}} - 1$*

242 In the effect size figures, positive values represent responses that are greater under drought than
243 in control plots, while negative values represent the opposite. We expressed effect sizes as
244 percentages (effect size multiplied by 100) in the text throughout the results section.

245 Finally, to produce a more holistic overview of effects of drought on plant response
246 variables across all pasture species, we performed a principal component analysis (PCA) of the
247 data from the end of the drought period (November harvest). To test for the effects of the
248 watering regime on plant responses, we undertook permutational analysis of variance
249 (PERMANOVA) using the ‘vegan’ package (Oksanen et al., 2020) in R version 4.0.0 (R Core
250 Team, 2020).

251

252 **3 RESULTS**

253 *3.1 Effects of drought on productivity, dead material and nutritional composition of the whole-
254 plant*

255 The effect of drought on dry matter productivity, percentage of dead material and nutritional
256 composition varied among the nine pasture species studied and, in some cases, also differed
257 between individual harvests. These effects included either a significant reduction or no effect
258 on productivity and an increase or no effect on the percentage of dead material. Drought had
259 varied effects on the whole-plant concentrations of CP, NSC, NDF and ADL for different
260 species and harvests (**Table 2**; **Figure 1**).

261 Across species and harvests, productivity ranged from 304 (*Biserrula*, November) to
262 3,685 kg DM ha⁻¹ (*Themeda*, October) under control treatment and the peak productivity varied
263 across species, for example, *Themeda* peaked in October and *Biserrula* in August (**Table 2**).
264 Total productivity under the control treatment across the six-month period was greatest for
265 *Themeda* (8,366 kg DM ha⁻¹) and *Medicago* (6,845 kg DM ha⁻¹) and lowest for *Chloris* (2,822
266 kg DM ha⁻¹) and *Festuca* (2,817 kg DM ha⁻¹). Droughted subplots were significantly less

267 productive, and drought impacts became progressively greater across harvests, with the last
268 two harvests being the most affected (**Figure 1A, Supplementary Table S2**). All pasture
269 species were strongly and significantly affected by the drought, but not all species were
270 significantly affected at all harvests. The greatest reductions in productivity per harvest were
271 seen for *Themeda* (-80% November) and *Digitaria* (-73% November), and the smallest for
272 *Medicago* and *Chloris* (both -48%, November; **Figure 1A**).

273 The mean percentage of dead material ranged from 1% to 31% in control subplots, and
274 from 1% to 68% in droughted plots (**Table 2**). In contrast to productivity responses, the severity
275 of drought impacts on the percentage of dead material was not generally progressive across
276 harvests, and for some species, in fact, was actually reduced in successive harvests. Overall,
277 the percentage of dead material increased under drought for all species, except *Themeda*, which
278 was not affected in any harvest ($p > 0.05$; **Figure 1B; Supplementary Table S2**). The most
279 strongly affected species were *Lolium* (+886%, November), *Phalaris* (+429%, October) and
280 *Festuca* (+429%, November). And the least affected species were *Biserrula* (+153%, October)
281 and *Medicago* (+117%, November; **Figure 1B**).

282 Effects of drought on whole-plant nutritional composition were apparent for seven of
283 the nine study species. The exceptions were *Medicago* and *Phalaris*, which, in fact,
284 experienced no significant treatment impacts on nutritional quality at any time throughout the
285 experiment (**Table 2; Supplementary Table S2**). Drought effects on nutritional parameters
286 are summarised in **Figure 1C-F**. Overall, the severity of drought impacts on forage nutritional
287 quality was not generally progressive across harvests. In the August harvest, drought only had
288 impacts on *Festuca* and *Lolium*, which experienced an increase in CP (+15% for both species).
289 In October, the drought increased CP (+10%) in *Biserrula* and NSC (+31%) in *Themeda*, but
290 decreased CP (-17%) and slightly increased NDF (+4%) in *Digitaria*. In November, drought
291 was associated with improved nutritional quality in *Digitaria* (+41% CP and -8% NDF) and

292 *Themeda* (+15% NSC and -20% ADL), but reduced the nutritional quality of *Lolium* through
293 an increase in NDF (+9%) and ADL (+63%).

294 **Table 2.** Mean \pm standard errors (n = 6) for productivity (kg DM ha $^{-1}$), percentage of dead material, and nutritional composition (in percentage of dry matter) of
 295 the whole-plant of pasture species grown under different watering regimes (control, C; drought, D) treatments during the drought period (August, October and
 296 November harvests).

Species	Harvest	Productivity		Dead material		CP		NSC		NDF		ADL	
		C	D	C	D	C	D	C	D	C	D	C	D
<i>Bis</i>	August	1737 \pm 376	812 \pm 189*	2.2 \pm 0.7	3.6 \pm 0.9	19.2 \pm 0.6	18.9 \pm 0.8	29.3 \pm 0.6	29.5 \pm 1.3	38.3 \pm 0.7	38.2 \pm 2.0	7.9 \pm 0.2	8.1 \pm 0.3
	October	882 \pm 177	323 \pm 52.1*	1.7 \pm 0.7	4.3 \pm 0.9*	16.1 \pm 0.3	17.7 \pm 0.6*	30.9 \pm 0.9	29.1 \pm 0.4	42.2 \pm 1.1	41.2 \pm 0.8	7.6 \pm 0.5	7.7 \pm 0.4
	November	304 \pm 83.8	124 \pm 35.7	6.9 \pm 1.1	10.3 \pm 3.1	14.6 \pm 0.3	16.3 \pm 0.3*	30.8 \pm 0.7	28.3 \pm 1.5	44.7 \pm 0.9	45.4 \pm 1.4	7.6 \pm 0.2	8.1 \pm 0.3
<i>Chl</i>	October	1176 \pm 137	702 \pm 96.5	7.2 \pm 1.1	11.2 \pm 2.7	6.3 \pm 0.4	6.6 \pm 0.3	17.5 \pm 0.9	17.0 \pm 0.7	67.3 \pm 0.6	66.5 \pm 0.5	4.3 \pm 0.2	4.0 \pm 0.3
	November	1646 \pm 168	844 \pm 12.7*	6.2 \pm 1.6	31.3 \pm 3.1*	6.7 \pm 0.3	7.2 \pm 0.4	17.3 \pm 0.7	15.3 \pm 0.5	65.6 \pm 0.7	66.5 \pm 1.1	2.9 \pm 0.1	5.9 \pm 0.6*
<i>Dig</i>	October	1128 \pm 109	389 \pm 82.5*	9.6 \pm 1.9	53.3 \pm 17*	11.6 \pm 0.8	9.6 \pm 0.9*	12.9 \pm 0.9	12.6 \pm 0.5	62.6 \pm 0.8	65.2 \pm 0.9*	6.2 \pm 0.3	6.4 \pm 0.4
	November	2535 \pm 217	681 \pm 187*	6.7 \pm 1.5	14.6 \pm 2.7*	7.1 \pm 0.3	10.0 \pm 0.2*	15.0 \pm 0.8	15.9 \pm 0.5	67.1 \pm 0.8	62.0 \pm 0.8*	3.8 \pm 0.3	3.3 \pm 0.2
<i>Fes</i>	August	1204 \pm 133	1076 \pm 52.5	7.1 \pm 0.4	10.1 \pm 2.4	12.1 \pm 0.5	14.0 \pm 0.4*	21.7 \pm 1.1	20.8 \pm 1.2	54.2 \pm 0.5	52.4 \pm 1.2	4.5 \pm 0.1	3.9 \pm 0.4
	October	1001 \pm 117	328 \pm 61.1*	6.5 \pm 1.1	24.6 \pm 3.1*	11.6 \pm 0.5	13.0 \pm 0.5	19.7 \pm 0.5	17.3 \pm 1.1	57.1 \pm 0.8	58.0 \pm 1.0	4.3 \pm 0.3	4.9 \pm 0.3
	November	612 \pm 68.3	513 \pm 67.6	12.6 \pm 3.9	66.6 \pm 3.3*	11.0 \pm 0.4	12.3 \pm 0.3*	17.3 \pm 1.4	16.7 \pm 0.9	56.7 \pm 1.5	58.2 \pm 0.8	6.0 \pm 0.6	7.5 \pm 0.4*
<i>Lol</i>	August	2085 \pm 328	2707 \pm 311	2.5 \pm 0.3	3.0 \pm 0.5	8.4 \pm 0.3	9.7 \pm 0.3*	39.1 \pm 0.5	36.1 \pm 1.3	41.9 \pm 0.7	42.4 \pm 0.9	2.8 \pm 0.1	2.8 \pm 0.2
	October	1110 \pm 163	335 \pm 55.0*	3.0 \pm 0.9	16.6 \pm 4.0*	11.8 \pm 0.6	14.3 \pm 0.4*	25.2 \pm 0.3	21.2 \pm 0.9*	51.2 \pm 0.8	52.0 \pm 1.1	3.5 \pm 0.3	4.2 \pm 0.3
	November	599 \pm 108	192 \pm 26.3*	5.1 \pm 0.8	50.3 \pm 6.3*	11.2 \pm 0.4	11.9 \pm 0.4	20.9 \pm 0.9	19.1 \pm 0.8	53.7 \pm 1.0	58.3 \pm 1.0*	3.2 \pm 0.3	5.2 \pm 0.4*
<i>Med</i>	August	1503 \pm 230	1417 \pm 204	1.6 \pm 0.6	2.1 \pm 1.1	15.3 \pm 0.4	15.2 \pm 0.4	30.7 \pm 0.6	32.5 \pm 0.8	42.6 \pm 0.9	40.6 \pm 0.9	9.4 \pm 0.3	9.6 \pm 0.3
	October	2610 \pm 275	1577 \pm 271*	1.0 \pm 0.4	1.0 \pm 0.1	17.2 \pm 0.9	15.5 \pm 1.0	27.4 \pm 1.5	29.2 \pm 1.1	44.3 \pm 1.1	44.5 \pm 1.9	8.8 \pm 0.2	9.0 \pm 0.4

	November	2732 ± 400	1425 ± 226*	1.0 ± 0.2	1.3 ± 0.7*	15.5 ± 0.7	14.4 ± 0.3	28.7 ± 0.9	30.7 ± 0.6	44.7 ± 1.7	44.4 ± 0.8	8.5 ± 0.2	8.5 ± 0.3
<i>Pha</i>	August	1817 ± 284	1148 ± 135*	1.7 ± 0.4	4.5 ± 0.8*	14.1 ± 0.4	14.1 ± 0.3	26.5 ± 1.2	25.4 ± 0.6	45.9 ± 0.5	46.8 ± 0.5	2.9 ± 0.2	2.4 ± 0.3
	October	1299 ± 130	523 ± 54.2*	1.4 ± 0.4	7.4 ± 3.0*	15.3 ± 0.7	16.5 ± 0.3	18.2 ± 0.9	16.0 ± 0.5	53.1 ± 0.8	53.9 ± 0.3	2.9 ± 0.3	3.3 ± 0.1
	November	621 ± 72.8	236 ± 41.0*	5.9 ± 1.5	29.7 ± 4.5*	9.7 ± 0.4	10.6 ± 0.3	16.2 ± 0.4	15.3 ± 1.1	61.9 ± 0.9	62.2 ± 0.7	4.0 ± 0.3	4.9 ± 0.7
<i>Ryt</i>	August	2081 ± 397	1439 ± 169	2.8 ± 0.4	4.2 ± 0.3	11.0 ± 0.5	11.5 ± 0.3	14.7 ± 1.0	13.1 ± 0.9	63.5 ± 0.8	64.2 ± 0.5	4.0 ± 0.3	3.9 ± 0.2
	October	1932 ± 317	727 ± 98.4*	2.1 ± 0.7	9.0 ± 1.6*	10.8 ± 0.2	12.0 ± 0.3	10.1 ± 0.4	10.8 ± 0.8	69.8 ± 0.3	67.3 ± 0.5*	2.2 ± 0.2	3.4 ± 0.3*
	November	618 ± 123	323 ± 52.8	31.0 ± 5.7	67.7 ± 8.4*	9.9 ± 0.3	10.1 ± 0.2	13.2 ± 0.6	13.9 ± 0.6	68.4 ± 0.9	66.3 ± 0.5	5.3 ± 0.6	6.4 ± 0.3*
<i>The</i>	August	2764 ± 241	1972 ± 213	2.9 ± 0.8	4.0 ± 1.7	9.5 ± 0.3	9.1 ± 0.2	16.0 ± 0.7	16.9 ± 0.5	65.8 ± 0.9	64.8 ± 0.5	4.9 ± 0.2	5.0 ± 0.2
	October	3685 ± 272	1136 ± 214*	1.0 ± 0.1	1.0 ± 0.1	9.1 ± 0.4	8.1 ± 0.3	13.3 ± 0.8	17.4 ± 1.0*	70.2 ± 0.7	67.7 ± 1.3	3.7 ± 0.3	3.2 ± 0.5
	November	1917 ± 130	379 ± 46.9*	3.3 ± 0.4	4.5 ± 0.4	7.2 ± 0.1	7.4 ± 0.2	15.8 ± 0.4	18.2 ± 0.5*	69.7 ± 0.5	67.9 ± 0.4	4.4 ± 0.1	3.5 ± 0.3*

297 Note: Asterisks (*) and **bold** values denote statistical significance at the $p \leq 0.05$ level. During the harvest in August, there was no biomass for *Chloris* and
 298 *Digitaria* under both treatments.

299 Abbreviations: CP: crude protein; NSC: non-structural carbohydrates; NDF: neutral detergent fibre; ADL: acid detergent lignin; Bis: *Biserrula*; Chl: *Chloris*;
 300 Dig: *Digitaria*; Fes: *Festuca*; Lol: *Lolium*; Med: *Medicago*; Pha: *Phalaris*; Ryt: *Rytidosperma*; The: *Themeda*.

301 3.2 Effects of drought on leaf:stem ratio and nutritional composition of leaf and stem tissues
302 At the end of the 6-month period of drought (November harvest), the drought treatment
303 significantly increased the leaf:stem ratio of *Phalaris* by 129%, *Themeda* by 102%, and
304 *Digitaria* by 80%, and decreased that of *Chloris* by 50% (**Table 3**; **Figure 2A**). However,
305 drought had no effect on the leaf:stem ratios of the remaining species ($p > 0.05$;
306 **Supplementary Table S3**).

307 Tissue-specific responses to drought varied in both magnitude and direction across
308 pasture species (**Table 3**; **Supplementary Table S3**). For instance, drought increased CP in
309 *Biserrula* and *Festuca* leaf tissue, in both leaves and stems in *Digitaria* and in the stems only
310 in *Lolium* (**Figure 2B**). In contrast, drought decreased NSC in *Lolium* stems while increasing
311 it in both plant parts in *Themeda* (**Figure 2C**). Drought also decreased NDF in *Digitaria* stems
312 and leaves, while increasing it in *Lolium* leaf tissue (**Figure 2D**). In both plant parts of *Chloris*,
313 *Festuca* and *Lolium*, as well as in *Rytidosperma* stems, the drought increased ADL, while in
314 *Themeda* stems it decreased. (**Figure 2E**). Interestingly, *Medicago* and *Phalaris* were the only
315 species where drought affected the nutritional composition of individual plant parts but not the
316 whole-plant. Specifically, in *Medicago*, drought increased NSC in the stem tissue, with no other
317 changes detected. For *Phalaris*, drought affected plant parts in opposite directions for NSC
318 (**Figure 2C**) and NDF (**Figure 2D**).

319 **Table 3.** Mean \pm standard errors (n = 6) for leaf:stem ratio and nutritional composition of plant parts (leaves and stems) of pasture species grown
 320 under different watering regimes (control, C; drought, D) treatments at the end of the drought period (November harvest).

Species	Leaf:stem		Plant parts	Parameters (in percentage of dry matter)								
				CP		NSC		NDF		ADL		
	C	D		C	D	C	D	C	D	C	D	
<i>Bis</i>	1.6 \pm 0.1	1.3 \pm 0.1	Leaves	17.1 \pm 0.4	19.7 \pm 0.3*	38.1 \pm 0.5	35.4 \pm 1.4	32.7 \pm 1.0	31.9 \pm 1.4	8.1 \pm 0.3	7.8 \pm 0.3	
			Stems	10.6 \pm 0.7	11.8 \pm 0.7	28.7 \pm 1.3	26.1 \pm 0.9	51.5 \pm 1.2	52.9 \pm 0.7	9.4 \pm 0.4	9.9 \pm 0.5	
<i>Chl</i>	4.1 \pm 0.9	2.0 \pm 0.2*	Leaves	7.3 \pm 0.4	8.1 \pm 0.4	17.1 \pm 0.7	14.9 \pm 1.0	64.1 \pm 0.7	64.2 \pm 1.5	2.5 \pm 0.2	6.0 \pm 0.9*	
			Stems	4.7 \pm 0.5	5.5 \pm 0.5	17.7 \pm 1.3	16.5 \pm 0.9	70.9 \pm 1.1	70.8 \pm 0.6	4.2 \pm 0.4	5.9 \pm 0.4*	
<i>Dig</i>	4.8 \pm 1.1	8.7 \pm 1.8*	Leaves	7.6 \pm 0.4	10.4 \pm 0.2*	14.7 \pm 1.1	16.1 \pm 0.7	65.5 \pm 0.9	60.9 \pm 0.7*	3.9 \pm 0.3	3.2 \pm 0.2	
			Stems	4.9 \pm 0.3	7.6 \pm 0.6*	14.5 \pm 0.9	15.8 \pm 1.1	74.2 \pm 1.2	69.0 \pm 1.5*	3.4 \pm 0.2	4.4 \pm 0.5	
<i>Fes</i>	7.7 \pm 1.3	9.5 \pm 1.7	Leaves	11.5 \pm 0.4	12.6 \pm 0.3*	17.2 \pm 1.5	16.2 \pm 1.0	57.4 \pm 1.6	58.1 \pm 0.9	6.3 \pm 0.7	7.7 \pm 0.4*	
			Stems	8.9 \pm 0.9	9.5 \pm 0.5	20.3 \pm 0.9	20.8 \pm 0.7	61.7 \pm 0.9	58.7 \pm 0.7*	4.8 \pm 0.3	6.4 \pm 0.5*	
<i>Lol</i>	7.9 \pm 0.5	8.1 \pm 2.2	Leaves	11.8 \pm 0.5	12.2 \pm 0.4	20.0 \pm 1.0	18.4 \pm 1.0	53.9 \pm 0.7	58.5 \pm 1.1*	3.3 \pm 0.3	5.3 \pm 0.5*	
			Stems	8.2 \pm 0.5	9.6 \pm 0.2*	28.8 \pm 1.8	24.3 \pm 1.3*	54.5 \pm 1.1	57.4 \pm 1.2	2.5 \pm 0.4	4.3 \pm 0.3*	
<i>Med</i>	0.7 \pm 0.1	0.8 \pm 0.1	Leaves	22.3 \pm 0.1	21.1 \pm 0.2	33.7 \pm 0.6	36.0 \pm 0.9	30.7 \pm 0.5	30.7 \pm 0.6	9.0 \pm 0.2	8.8 \pm 0.5	
			Stems	8.9 \pm 0.3	8.8 \pm 0.3	22.9 \pm 0.9	26.4 \pm 1.1*	60.1 \pm 1.7	57.2 \pm 1.4	8.1 \pm 0.3	8.6 \pm 0.4	

<i>Pha</i>	1.4 ± 0.1	3.1 ± 0.4*	Leaves	12.2 ± 0.3	12.0 ± 0.4	16.7 ± 0.5	13.7 ± 1.3*	56.4 ± 0.5	60.7 ± 1.1*	4.8 ± 0.4	5.3 ± 0.9
			Stems	5.8 ± 0.2	6.5 ± 0.4	16.0 ± 0.8	20.2 ± 1.1*	71.1 ± 0.5	66.0 ± 0.6*	3.1 ± 0.4	3.7 ± 0.3
<i>Ryt</i>	4.1 ± 1.3	4.4 ± 0.6	Leaves	11.0 ± 0.3	11.0 ± 0.3	13.3 ± 1.0	14.5 ± 0.6	65.5 ± 1.4	64.6 ± 0.8	6.5 ± 0.7	6.5 ± 0.3
			Stems	5.9 ± 0.5	6.5 ± 0.4	15.0 ± 1.3	12.9 ± 1.2	73.3 ± 0.9	73.1 ± 0.8	4.9 ± 0.3	6.6 ± 0.4*
<i>The</i>	1.7 ± 0.3	3.4 ± 0.6*	Leaves	9.6 ± 0.1	8.8 ± 0.1	16.4 ± 0.5	18.4 ± 0.5*	64.5 ± 0.4	65.2 ± 0.4	4.1 ± 0.2	3.4 ± 0.4
			Stems	3.3 ± 0.3	3.4 ± 0.4	11.8 ± 1.0	15.0 ± 0.9*	80.5 ± 1.5	78.0 ± 1.3	4.9 ± 0.4	4.0 ± 0.1*

321 *Note: Asterisks (*) and bold values denote statistical significance at the p ≤ 0.05 level.*

322 *Abbreviations: CP: crude protein; NSC: non-structural carbohydrates; NDF: neutral detergent fibre; ADL: acid detergent lignin; Bis: Biserrula;*

323 *Chl: Chloris; Dig: Digitaria; Fes: Festuca; Lol: Lolium; Med: Medicago; Pha: Phalaris; Ryt: Rytidosperma; The: Themeda.*

324

325 *3.3 Assessing plant responses to drought in a multivariate context*

326 The first two principal components explained 73% of the variation in plant responses across
327 treatments (**Figure 3**). We found that drought had a significant effect (PERMANOVA: $p <$
328 0.01) across all pasture species (**Figure 3A**). Differences in multivariate plant responses among
329 individual species were further apparent with clear separation between responses of legumes
330 (*Biserrula* and *Medicago*) and grasses (PC1; **Figure 3B**), and within grasses, with C₃ grasses
331 differing from C₄ grasses along PC2. The first principal component (PC1, 47.9% data variance)
332 was associated with nutritional composition and had positive loadings for CP, ADL and NSC,
333 and negative loadings for NDF (**Figure 3C**). The second component (PC2, 24.7% data
334 variance) was associated with plant structural characteristics, including positive loadings for
335 the percentage of dead material and leaf:stem ratio, and negative loadings for total biomass
336 production. Overall, nutritional parameters explained a greater proportion of the variance of all
337 measured responses than morphological parameters across treatments and all studied pasture
338 species.

339 In general, the percentage of dead material and leaf:stem ratio were negatively
340 associated with total biomass production, while CP, ADL and NSC were negatively associated
341 with NDF (**Figure 3C**). The control treatment was associated with higher biomass and the
342 drought treatment with more dead material and a high leaf:stem ratio. Furthermore, the
343 percentage of dead material and leaf:stem ratio were higher for C₃ grasses; high concentrations
344 of ADL, CP and NSC were associated with legumes, while high values of NDF were associated
345 with C₄ grasses.

346

347 **4 DISCUSSION**

348 Here, we present the effects of a 6-month winter/spring drought on productivity as well as
349 aboveground plant structure and nutritional composition for a diverse range of globally-
350 important pasture species. Consistent with our hypothesis, we found that drought reduced
351 pasture productivity and increased dead material across multiple harvests, although some
352 species were unaffected during individual harvests. In most species, ongoing drought amplified
353 the negative effects on productivity from one harvest to the next, but not on nutritional quality.
354 There were large differences in the magnitude and direction of species' responses to water
355 stress in terms of leaf:stem biomass ratios and nutritional quality. In some cases, these findings
356 were contrary to our expectations of reduced nutritional quality under drought. Significant
357 changes to whole-plant nutritional quality were generally driven by simultaneous changes to
358 both leaf and stem tissues, but in a few species were associated with changes in only one tissue.
359 Across the entire experiment, *Chloris*, *Lolium* and *Rytidosperma* were the species most
360 adversely impacted by drought in terms of productivity, dead material and nutritional quality,
361 while *Biserrula* and *Themeda* were the least affected. *Medicago* and *Phalaris* were the only
362 species with no change in nutritional quality in response to drought. The species-specific nature
363 of morphological and nutritional responses to drought highlights the importance of carrying
364 out studies across multiple plant species, with diverse traits, to better understand climate change
365 impacts on pastures.

366

367 *4.1 Productivity and dead material*

368 Change in aboveground productivity is a fundamental plant response to environmental change
369 (Wang et al., 2007). Studies have highlighted the impacts of drought on biomass reduction
370 across pasture species, however, uncertainty remains in terms of the magnitude of the effects,
371 and the consequences for production systems and/or ecosystem function (Cantarel., et al., 2013;
372 Deleglise et al., 2015; Grant et al., 2014). Declining soil water content reduces plants' ability

373 to acquire sufficient water and nutrients for normal functioning, resulting in lower rates of plant
374 growth and, in severe cases, causing tissue death (Buxton, 1996; Bruinenberg et al., 2002;
375 Durand et al., 2010; Ren et al., 2016). The physiological mechanisms underpinning growth
376 responses are often species-specific and reflect different strategies associated with drought
377 resistance and drought survival (Baruch, 1994; Guenni et al., 2002; Munné-Bosch and Alegre,
378 2004).

379 Our observed reductions in productivity of up to 80% and increases in the percentage
380 of dead material of up to 8-fold are aligned with previous studies exposing grassland species
381 to short/long-term or moderate/severe drought conditions, which have reported large declines
382 in biomass production (Cantarel et al., 2013; Deleglise et al., 2015) and increases in dead
383 biomass (Power et al., 2016; Skinner et al., 2004). The great increase in the percentage of dead
384 material in most of the species in this study may be due to both advanced senescence and a
385 more rapid life cycle, as previously reported in severe drought stress scenarios (Bruinenberg et
386 al., 2002; Ren et al., 2016). In our study, *Digitaria* and *Phalaris* showed consistent reductions
387 in production and increases in dead material across the 6-month drought treatment, whereas
388 other species had responses that differed between harvests. There are a number of mechanisms
389 that might drive such differences, including different drought sensitivities at various stages in
390 the plant's life cycle or different degrees of realised water stress—reflecting the actual timing
391 of rain (irrigation) events and temperature differences driving potential evapotranspiration, at
392 different stages in winter and spring. In addition, these temporally variable effects of drought
393 align with research emphasizing plant species' adjustments in growth and resource allocation
394 during exposure to drought conditions (Eziz et al., 2017; Gray and Brady, 2016). For example,
395 some species may accumulate nutrients that were not used for growth during a drought event,
396 but then are available for a rapid increase in leaf growth during any rewetting event that
397 preceded a specific harvest, as reported by Guenni et al. (2002) in a study with forage grass

398 species. Overall, our findings highlight species differences in ability to tolerate and adapt to
399 drought, as well as seasonal/phenology effects on the extent of drought sensitivity (Gray and
400 Brady, 2016; Lee et al., 2013).

401

402 *4.2 Nutritional composition and structural biomass allocation*

403 Reduced growth and increased senescence and/or death of biomass during drought have been
404 reported to significantly affect the nutritional quality of forage species (Deleglise et al., 2015;
405 Dumont et al., 2015; Ren et al., 2016). The proportion of dead material influences forage
406 nutritional quality, as dead herbage is always associated with low forage energy value and
407 digestibility (Hodgson et al., 1990; Shakhane et al., 2013). We found a significant negative
408 correlation between the percentage of dead material and digestibility across all pasture species
409 from both watering regimes throughout the experimental period (**Supplementary Figure**
410 **S2A**). While lower forage nutritional quality and digestibility are often reported in response to
411 severe drought (Buxton, 1996; Deleglise et al., 2015; Durand et al., 2010; Ren et al., 2016), no
412 change or slight improvements in quality are commonly reported in response to moderate
413 drought (Dumont et al., 2015; Kuchenmeister et al., 2013; Staniak and Harasim, 2018).

414 In this study, the drought-related decrease in nutritional quality associated with
415 increased fibre – mainly the lignin fraction – may be explained by plant maturation, leaf
416 senescence and cellular modifications that certain species develop to prevent water losses
417 (Habermann et al., 2021; Le Gall et al., 2015). Previous studies have reported that under severe
418 drought stress, as plant maturation accelerates, stem growth advances, thereby decreasing the
419 leaf:stem ratio and increasing the accumulation of fibrous components, which may result in
420 forage toughness and lower forage quality and digestibility (Bruinenberg et al., 2002; Deetz et
421 al., 1996; Dumont et al., 2015; Ren et al., 2016). The hypothesis that the reduction in nutritional
422 quality due to severe drought would be associated with a decrease in leaf:stem ratio was

423 confirmed only for one species (*Chloris*) in our study. In addition, we did not find a correlation
424 between leaf:stem ratio and digestibility under drought conditions among the pasture species
425 throughout the experimental period, although there was a positive correlation under control
426 conditions (**Supplementary Figure S2B**). Furthermore, increases in fibrous components in
427 some plant species under severe drought, such as accumulation of lignin (an important
428 component of the plant cell wall) can reduce plant cell wall water penetration and transpiration,
429 helping to maintain cell osmotic balance and protect membrane integrity under drought stress
430 (Liu et al., 2018b, Moura et al., 2010). However, this may have important implications for
431 animal nutrition as lignin acts as a barrier to fibre degradation by rumen microbes, making
432 energy from fibre unavailable for ruminants and ultimately decreasing forage digestibility
433 (Amiri et al., 2012; Buxton et al., 1995; Grev et al., 2020; Jung et al., 1997).

434 In our study, although we found that under drought, *Chloris* and *Lolium* significantly
435 increased lignin (up to +103% and +63%, respectively; November harvest), only *Lolium*
436 decreased digestibility when compared to the control treatment (**Supplementary Figure S3**).
437 However, *Lolium* digestibility was still within the digestibility range (60-70%) required for
438 maintaining moderate livestock production (DPI, 2020). These findings indicate that drought-
439 induced changes in nutritional composition may still result in some species being able to
440 provide sufficient nutrients to maintain digestion process and moderate animal production. The
441 only exception to this in our study was for *Chloris*, a C₄ grass, in which CP (~ 6.5%) was
442 insufficient, even under control conditions, to ensure adequate fermentation and thus might
443 reduce nutrient utilization efficiency by the ruminal microbiota and negatively affect animal
444 production (NRC, 2001; Van Soest, 1994). If *Chloris* were to be used as pasture, it would need
445 to be used in conjunction with high-protein food, such as legume species or urea
446 supplementation, to optimize nutrient use efficiency and production goals (e.g. liveweight
447 gains or milk production), even when grown under higher rainfall conditions.

448 Importantly, for a subset of our species, we found an increase in nutritional quality
449 under drought through an increase in CP and NSC, and a decrease in NDF and ADL. Previous
450 studies have reported that moderate drought stress can induce a delay in plant maturation and
451 growth, resulting in plants with fewer, shorter stems and flowering parts, and increases in
452 leaf:stem ratio, which explains much of the improved crude protein concentrations and
453 digestibility (Buxton, 1996; Dumont et al., 2015; Kuchenmeister et al., 2013; Staniak and
454 Harasim, 2018). In this context, the choice of species and varieties of pastures with delayed
455 onset of flowering may allow for improved digestibility in drought conditions by increasing
456 the leaf:stem ratios (Power et al., 2020). In our study, *Digitaria* and *Themeda* (both C4 grasses)
457 increased allocation to leaves relative to stems under drought, and whole-plant digestibility
458 subsequently increased when compared to the control treatment (November harvest;
459 **Supplementary Figure S3**). Furthermore, the increase in CP concentrations of some species
460 under drought may be explained by trade-offs between nutrient accumulation and growth
461 dilution, such that lower biomass production increased the tissue nitrogen concentration, as has
462 also been reported in previous studies (Dumont et al., 2015; Grant et al., 2014).

463 In relation to the observed increases in non-structural carbohydrates, earlier studies with
464 grasses suggest that this may alter the leaf osmotic potential, helping to maintain the uptake of
465 soil water and thus resulting in increased drought tolerance and survival (DaCosta and Huang
466 2006; Fariaszewska et al., 2020; Volaire and Leliévre 1998). In our study, the reduced fibre
467 and lignin concentrations found in some species (e.g. *Themeda*) can be explained by delayed
468 stem elongation associated with slower rates of maturation and growth under water stress, as
469 reported in previous studies (Buxton, 1996; Küchenmeister et al., 2013; Wilson et al., 1983).
470 Such reduced stem elongation of some species under drought may result in higher leaf:stem
471 biomass ratios, improving forage digestibility and sward structure for ease of grazing and
472 forage intake (Buxton, 1996; Wilson et al., 1983).

473 In general, we found that while the direction and magnitude of drought impacts on
474 forage nutritional quality varied across species and harvests, most of the pasture species were
475 still able to provide nutrients to support ungulate digestion and, subsequently, maintain
476 moderate animal production. However, a significant reduction in biomass production was
477 common for all of the study species. This suggests that even with adequate forage nutritional
478 quality, the amount of available forage may be insufficient to support the high performance of
479 grazing ruminants in drought scenarios. In this case, reduced stocking densities may be an
480 appropriate management strategy, although this would need species-level evaluation in future
481 research studies.

482

483 **5 CONCLUSIONS**

484 The 6-month period of severe drought resulted in divergent responses in forage production,
485 structural traits and nutritional composition among the nine pasture species examined. In
486 general, productivity and percentage of dead material were more strongly and adversely
487 impacted by drought than nutritional quality across all species. The changes in nutritional
488 composition appeared to be related to either shifts in plant morphology (leaf:stem biomass
489 ratios) or reduced growth, both of which were species-dependent, reflecting diverse drought
490 adaptation strategies among species. Identification of the factors that drive changes in forage
491 nutritional quality across different pasture species in response to various drought scenarios is
492 essential to generating information about potential risks for farmers and industries in the face
493 of climate change. This knowledge can inform management strategies in relation to the timing
494 of grazing or cutting, selection of drought-tolerant species/cultivars, and optimization of forage
495 resources to support animal performance. Future research is needed with animal trials to
496 determine the extent to which observed changes in the nutritional quality of pasture species
497 affect forage intake and animal production (e.g. milk and meat), as well as the incidental

498 environmental impacts of consuming forage produced under drought conditions, such as
499 altered ruminant methane emissions – a key industry consideration.

500 **ACKNOWLEDGEMENTS**

501 We are grateful to all the team members in Pastures and Climate Extremes (PACE) project
502 specially Chioma Igwenagu, Gil Won Kim, Manjunatha Chandregowda and Vinod Jacob, as
503 well as the following WSU summer scholars: Alexandra Boyd, Minh Doan, Samantha Weller,
504 Shania Therese Didier Serre and Ben Capel. This work was supported by funding from the
505 Meat & Livestock Australia Donor Company (P.PSH.0793), Dairy Australia (C100002357)
506 and Western Sydney University. The authors would like to thank the technical team (Burhan
507 and Craig B) at Western Sydney University for technical support. The authors declare that they
508 have no conflicts of interest regarding the publication of this article.

509

510 **AUTHOR CONTRIBUTIONS**

511 KLMC, ACC, HZ and KJF performed the experiment. KLMC processed, analysed the samples,
512 conducted statistical analyses (with input from ACC) and drafted the manuscript. All the co-
513 authors designed the experiment and provided input on subsequent drafts.

514

515 **DATA AVAILABILITY**

516 The data that support the findings of this study are available from the authors upon reasonable
517 request.

518

519 **REFERENCES**

520 ABARES- Australian Bureau of Agricultural and Resource Economics and Sciences, 2016.
521 Land use in Australia-at a glance. Australian Bureau of Agricultural and Resource
522 Economics and Sciences, Department of Agriculture and Water Resources, Canberra,
523 ACT.<https://www.agriculture.gov.au/sites/default/files/abares/aclump/documents/Lan>
524 d%20use%20in%20Australia%20at%20a%20glance%202016.pdf (accessed 9
525 December 2020).

526 Abdelgawad, H., Peshev, D., Zinta, G., Van Den Ende, W., Janssens, I.A., Asard, H., 2014.
527 Climate extreme effects on the chemical composition of temperate grassland species
528 under ambient and elevated CO₂: a comparison of fructan and non-fructan
529 accumulators. Plos One, 9, 13. <https://doi.org/10.1371/journal.pone.0092044>

530 Amiri, F., Rashid, A., Shariff, M., 2012. Comparison of nutritive values of grasses and legume
531 species using forage quality index. Songklanakarin J. Sci. Technol. 34, 577-586.
532 <http://rdo.psu.ac.th/sjst/journal/34-5/0475-3395-34-5-577-586>

533 AOAC- Association of Official Analytical Chemists, 1990. Official methods of analysis,
534 Association of Official Analytical Chemists, Arlington, VA, USA.

535 Baruch, Z., 1994. Responses to drought and flooding in tropical forage grasses. I. Biomass
536 allocation, leaf growth and mineral nutrients. Plant Soil 164, 87-96.
537 <https://doi.org/10.1007/BF00010114>

538 Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., 2015. Fitting linear mixed-effects models
539 using lme4. J. Stat. Softw. 67, 1-48. <https://doi.org/10.18637/jss.v067.i01>

540 [dataset] BOM- Australian Government Bureau of Meteorology, 2019. Daily Rainfall
541 Richmond - Western Sydney University Hawkesbury. Clim. Data Online.
542 <http://www.bom.gov.au/climate/data/index.shtml?bookmark=136>

543 Brown, J.N., Ash, A., MacLeod, N., McIntosh, P., 2019. Diagnosing the weather and climate
544 features that influence pasture growth in Northern Australia. *Clim. Risk Manag.* 24, 1-
545 12. <https://doi.org/10.1016/j.crm.2019.01.003>

546 Bruinenberg, M.H., Valk, H., Korevaar, H., Struik, P.C., 2002. Factors affecting digestibility
547 of temperate forages from seminatural grasslands: a review. *Grass Forage Sci.* 57, 292-
548 301. <https://doi.org/10.1046/j.1365-2494.2002.00327.x>

549 Buxton, D.R., 1996. Quality-related characteristics of forages as influenced by plant
550 environment and agronomic factors. *Anim. Feed Sci. Technol.* 59, 37-49.
551 <https://doi.org/10.1016/0377-84019500885-3>

552 Buxton, D.R., Fales, S.L., 1994. Plant environment and quality, in: Fahey, G.C. (Ed.), *Forage*
553 *quality, evaluation, and utilization*. American Society of Agronomy, Inc. Crop Science
554 Society of America, Inc. Soil Science Society of America, Inc., Madison, WI, USA, pp.
555 155-199. <https://doi.org/10.2134/1994.foragequality.c4>

556 Buxton, D.R., Mertens, D.R., Moore, K.J., Boyd, L.J., Oldfield, J.E., 1995. Forage quality for
557 ruminants: plant and animal considerations. *Pro. Anim. Sci.* 11, 121-131.
558 <https://doi.org/10.15232/S1080-74461532575-4>

559 Cantarel, A.A.M., Bloor, J.M.G., Soussana, J.F., 2013. Four years of simulated climate change
560 reduces above-ground productivity and alters functional diversity in a grassland
561 ecosystem. *J. Veg. Sci.* 24, 113-126. <https://doi.org/10.1111/j.1654-1103.2012.01>

562 Catunda, K.L.M., Churchill, A.C., Power, S.A., Moore, B.D., 2021. Near-infrared
563 spectroscopy calibration strategies to predict multiple nutritional parameters of pasture
564 species from different functional groups. *BioRxiv* (preprint).
565 <https://www.biorxiv.org/content/10.1101/2021.07.31.454175v1>

566 Cavalcante, A.C.R., Araújo, J.F., Do Socorro Carneiro, M., Souza, H.A., Tonucci, R.G.,
567 Rogerio, M.C.P., Vasconcelos, E.C.G., 2014. Potential Use of Tropical Grass for

568 Deferment in Semi-Arid Region. Am. J. Plant Sci. 5, 907-914.

569 <http://dx.doi.org/10.4236/ajps.2014.57103>

570 Chapman, D.F., Cullen, B.R., Johnson, I.R., Beca, D., 2009. Interannual variation in pasture
571 growth rate in Australian and New Zealand dairy regions and its consequences for
572 system management. Anim. Prod. Sci. 49, 1071-1079.

573 <https://doi.org/10.1071/AN09054>

574 Churchill, A.C., Zhang, H., Fuller, K.J., Amiji, B., Anderson, I.C., Barton, C.V.M., Carrillo,
575 Y., Catunda, K.L.M., Chandregowda, M.H., Igwenagu, C., Jacob, V., Kim, G.W.,
576 Macdonald, C.A., Medlyn, B.E., Moore, B.D., Pendall, E., Plett, J.M., Post, A.K.,
577 Powell, J.R., Tissue, D.T., Tjoelker, M.G., Power, S.A., 2020. Pastures and Climate
578 Extremes: Impacts of warming and drought on the productivity and resilience of key
579 pasture species in a field experiment. BioRxiv (preprint).
580 <https://doi.org/10.1101/2020.12.21.423155>

581 Clements, B., Ayres, L., Langford, C., McGarva, L., Simpson, P., Hennessy, G., Keys, M.,
582 Upjohn, B., Leech, F., 2003. The grazier's guide to pastures: sowing and managing
583 profitable pastures in the central and southern Tablelands, Monaro and Upper South
584 West Slopes of New South Wales. NSW.

585 https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0006/87270/graziers-guide-pastures-full-version.pdf (accessed 14 April 2018).

587 CSIRO- Commonwealth Scientific and Industrial Research Organisation, 2020. State of the
588 Climate, Technical Report. <https://www.csiro.au/en/research/environmental-impacts/climate-change/state-of-the-climate> (accessed 15 March 2021).

590 DaCosta, M., Huang, B., 2006. Osmotic adjustment associated with variation in bentgrass
591 tolerance to drought stress. J. Am. Soc. Hortic. Sci. 131, 338-344.
592 <https://doi.org/10.21273/JASHS.131.3.338>

593 Deetz, D.A., Jung, H.G., Buxton, D.R., 1996. Water-deficit effects on cell-wall composition
594 and in vitro degradability of structural polysaccharides from alfalfa stems. *Crop Sci.*
595 36, 383-388. <https://doi.org/10.2135/cropsci1996.0011183X003600020028x>

596 Deleglise, C., Meisser, M., Mosimann, E., Spiegelberger, T., Signarbieux, C., Jeangros, B.,
597 Buttler, A., 2015. Drought-induced shifts in plants traits, yields and nutritive value
598 under realistic grazing and mowing managements in a mountain grassland. *Agric.*
599 *Ecosyst. Environ.* 213, 94-104. <https://doi.org/10.1016/j.agee.2015.07.020>

600 Dellar, M., Topp, C.F.E., Banos, G., Wall, E., 2018. A meta-analysis on the effects of climate
601 change on the yield and quality of European pastures. *Agric. Ecosyst. Environ.* 265,
602 413-420. <https://doi.org/10.1016/j.agee.2018.06.029>

603 DPI- Department of Primary Industries, 2020. Nutritional Value of Native Grasses. The
604 Government of New South Wales. <https://www.dpi.nsw.gov.au/agriculture/pastures->
605 [and-rangelands/native-pastures/nutritional-value-of-native-grasses](https://www.dpi.nsw.gov.au/agriculture/pastures-and-rangelands/native-pastures/nutritional-value-of-native-grasses) (accessed 11
606 March 2021).

607 Dumont, B., Andueza, D., Niderkorn, V., Luscher, A., Porqueddu, C., Picon-Cochard, C.,
608 2015. A meta-analysis of climate change effects on forage quality in grasslands:
609 specificities of mountain and Mediterranean areas. *Grass Forage Sci.* 70, 239-254.
610 <https://doi.org/10.1111/gfs.12169>

611 Durand, J.L., Gonzalez-Dugo, V., Gastal, F., 2009. How much do water deficits alter the
612 nitrogen nutrition status of forage crops?. *Nutr. Cycling Agroecosyst.* 88, 231-243.
613 <https://doi.org/10.1007/s10705-009-9330-3>

614 Eziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., Fang, J., 2017. Drought effect on plant biomass
615 allocation: A meta-analysis. *Ecol. Evol.* 7, 11002-
616 11010. <https://doi.org/10.1002/ece3.3630>

617 Fariaszewska, A., Aper, J., Van Huylenbroeck, J., De Swaef . T., Baert, J., Pecio, Ł., 2020.

618 Physiological and biochemical responses of forage grass varieties to mild drought stress

619 under field conditions. Int. J. Plant Prod. 14, 335-353.

620 <https://doi.org/10.1007/s42106-020-00088-3>

621 Fay, P.A., 2009. Precipitation variability and primary productivity in water-limited

622 ecosystems: how plants 'leverage' precipitation to 'finance' growth. New Phytol. 181, 5-

623 8. <http://www.jstor.org/stable/30225813>

624 Gibson, D.J., 2009. Grasses and grassland ecology. Oxford University Press; Illustrated

625 edition, Oxford, UK.

626 Goering, H.K., Van Soest, P.J., 1970. Forage Fibre Analyses Apparatus, Reagents, Procedures,

627 and Some Applications, United States Departament of Agriculture, Washington DC,

628 USA.

629 Grant, K., Kreyling, J., Dienstbach, L.F.H., Beierkuhnlein, C., Jentsch, A., 2014. Water stress

630 due to increased intra-annual precipitation variability reduced forage yield but raised

631 forage quality of a temperate grassland. Agric. Ecosyst. Environ. 186, 11-22.

632 <https://doi.org/10.1016/j.agee.2014.01.013>

633 Gray, S.B., Brady, S.M., 2016. Plant developmental responses to climate change.

634 Dev. Biol. 419, 64-77. <https://doi.org/10.1016/j.ydbio.2016.07.023>

635 Grev, A.M., Wells, M.S., Catalano, D.N., Martinson, K.L., Jungers, J.M., Sheaffer, C.C.,

636 2020. Stem and leaf forage nutritive value and morphology of reduced lignin alfalfa.

637 J. Agron. 112, 406- 417. <https://doi.org/10.1002/agj2.20011>

638 Guenni, O., Marín, D., Baruch, Z., 2002. Responses to drought of five Brachiaria species. I.

639 Biomass production, leaf growth, root distribution, water use and forage quality. Plant

640 and Soil 243, 229-241. <https://doi.org/10.1023/A:1019956719475>

641 Habermann, E., Dias de Oliveira, E.A., Delvecchio, G., Belisário, R., Barreto, R.F., Vicedo,
642 D.O., Rossingnoli, N.O., de Pinho Costa, K.A., de Mello Prado, R., Gonzalez-Meler,
643 M., Martinez, C.A., 2021. How does leaf physiological acclimation impact forage
644 production and quality of a warmed managed pasture of *Stylosanthes capitata* under
645 different conditions of soil water availability?. *Sci. Total Environ.* 759, 143505.
646 <https://doi.org/10.1016/j.scitotenv.2020.143505>

647 Heisler-White, J.L., Knapp, A.K., Kelly, E.F., 2008. Increasing precipitation event size
648 increases aboveground net primary productivity in a semi-arid grassland. *Oecologia*
649 158, 129-140. <https://doi.org/10.1007/s00442-008-1116-9>

650 Herrero, M., Wirsénus, S., Henderson, B., Rigolot, C., Thornton, P., Havlík, P., De Boer, I.J.
651 Gerber, P.J., 2015. Livestock and the environment: what have we learned in the past
652 decade? *Annu. Rev. Environ. Resour.* 40, 177-202.
653 <https://doi.org/10.1146/annurev-environ-031113-093503>

654 Hodgson, J., 1990. Grazing management - science into practice. Longman Scientific
655 Technical, London.

656 Howden, S.M., Crimp, S.J., Stokes, C.J., 2008. Climate change and Australian livestock
657 systems: impacts, research and policy issues. *Aust. J. Exp. Agric.* 48, 780-788.
658 <https://doi.org/10.1071/EA08033>

659 IPCC- Intergovernmental Panel on Climate Change, 2014. *Climate Change 2014: Synthesis
660 Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of
661 the Intergovernmental Panel on Climate Change* [Core Writing Team, R. K. Pachauri
662 and L. A. Meyer eds.]. Intergovernmental Panel on Climate Change, Geneva,
663 Switzerland.

664 Jung, H.G., Mertens, D.R., Payne, A.J., 1997. Correlation of acid detergent lignin and klason
665 lignin with digestibility of forage dry matter and neutral detergent fibre. Int. J.
666 Dairy Sci. 80, 1622-1628. <https://doi.org/10.3168/jds.S0022-03029776093-4>.

667 Kuchenmeister, K., Kuchenmeister, F., Kayser, M., Wrage-Monnig, N., Isselstein, J., 2013.
668 Influence of drought stress on nutritive value of perennial forage legumes Int. J. Plant
669 Prod. 7, 693-710. <https://doi.org/10.22069/IJPP.2013.1265>

670 Landhäusser, S.M., Chow, P.S., Dickman, L.T., Furze, M.E., Kuhlman, I., Schmid, S.,
671 Wiesenbauer, J., Wild, B., Gleixner, G., Hartmann, H., Hoch, G., McDowell, N.G.,
672 Richardson, A.D., Richter, A., Adams, H.D., 2018. Standardized protocols and
673 procedures can precisely and accurately quantify non-structural carbohydrates.
674 Tree Physiol. 38, 1764-1778. <https://doi.org/10.1093/treephys/tpy118>

675 Le Gall, H., Philippe, F., Domon, J.M., Gillet, F., Pelloux, J., Rayon, C., 2015. Cell wall
676 metabolism in response to abiotic stress. Plants 4, 112-166.
677 <https://doi.org/10.3390/plants4010112>

678 Lee, J.M., Clark, A.J., Roche, J.R., 2013. Climate-change effects and adaptation options for
679 temperate pasture-based dairy farming systems: a review. Grass Forage Sci. 68, 485-
680 503. <https://doi.org/10.1111/gfs.12039>

681 Liu, Q., Luo, L., Zheng, L., 2018. Lignins: Biosynthesis and Biological Functions in Plants.
682 Int. J. Mol. Sci. 19, 335. <https://doi.org/10.3390/ijms19020335>

683 Masters, D.G., Norman, H.C., Thomas, D.T., 2019. Minerals in pastures-are we meeting the
684 needs of livestock?. Crop and Pasture Sci. 70, 1184-1195.
685 <https://doi.org/10.1071/CP18546>

686 Mcgranahan, D.A., Yurkonis, K.A., 2018. Variability in grass forage quality and quantity in
687 response to elevated CO₂ and water limitation. Grass and Forage Sci. 73, 517-521.
688 <https://doi.org/10.1111/gfs.12338>

689 McKeon, G.M., Stone, G.S., Syktus, J.I., Carter, J.O., Flood, N.R., Ahrens, D.G., Bruget, D.N.,
690 Chilcott, C.R., Cobon, D.H., Cowley, R.A., Crimp, S.J., Fraser, G.W., Howden, S.M.,
691 Johnston, P.W., Ryan, J.G., Stokes, C.J., Day, K.A., 2009. Climate change impacts on
692 northern Australian rangeland livestock carrying capacity: A review of issues. *Rangel.*
693 31, 1-29. <https://doi.org/10.1071/RJ08068>

694 MLA- Meat & Livestock Australia, 2017. State of the industry report: the Australian red meat
695 and livestock industry. Final Report Version 1.2. Meat & Livestock Australia, North
696 Sydney. <https://www.mla.com.au/globalassets/mla-corporate/research-and->
697 [development/documents/industry-issues/state-of-the-industry-v-1.2-final.pdf](https://www.mla.com.au/globalassets/mla-corporate/research-and-development/documents/industry-issues/state-of-the-industry-v-1.2-final.pdf)
698 (accessed 3 December 2020).

699 Moura, J.C.M.S., Bonine, C.A.V., Viana, J.D.O.F., Dornelas, M.C., Mazzafera, P., 2010.
700 Abiotic and biotic stresses and changes in the lignin content and composition in plants.
701 *J. Integr. Plant Biol.* 52, 360-376. <https://doi.org/10.1111/j.1744-7909.2010.00892.x>.

703 Munné-Bosch, S., Alegre, L., 2004. Die and let live: leaf senescence contributes to plant
704 survival under drought stress. *Funct. Plant Biol.* 31, 203-216.
705 <https://doi.org/10.1071/FP03236>

706 Murray-Tortarolo, G.N., Jaramillo, V.J., 2020. Precipitation extremes in recent decades impact
707 cattle populations at the global and national scales. *Sci. Total Environ.* 736, 139557.
708 <https://doi.org/10.1016/j.scitotenv.2020.139557>

709 NRC - National Research Council, 2001. Nutrient requirements of dairy cattle, 7th rev. edn.
710 Natl. Acad. Press, Washington, DC, USA.

711 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R.,
712 O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs E., Wagner H.,

713 2020. vegan: Community Ecology Package. R package version 2.5-7. <https://CRAN.R-project.org/package=vegan>

714

715 Pecetti, L., Annicchiarico, P., Scotti, C., Paolini, M., Nanni, V., Palmonari, A., 2017. Effects
716 of plant architecture and drought stress level on lucerne forage quality. *Grass and*
717 *Forage Sci.* 72, 714-722. <https://doi.org/10.1111/gfs.12272>

718 Perera, R.S., Cullen, B.R., Eckard, R.J., 2019. Growth and Physiological Responses of
719 Temperate Pasture Species to Consecutive Heat and Drought Stresses. *Plants* 8, 227.
720 <https://doi.org/10.3390/plants8070227>

721 Perera, R.S., Cullen, B.R., Eckard, R.J., 2020. Changing patterns of pasture production in
722 south-eastern Australia from 1960 to 2015. *Crop and Pasture Sci.* 71, 70-81.
723 <https://doi.org/10.1071/CP19112>

724 Power, S.A., Barnett, K.L., Ochoa-Hueso, R., Facey, S.L., Gibson-Forty, E.V.J., Hartley, S.E.,
725 Nielsen, U.N., Tissue, D.T., Johnson, S.N., 2016. DRI-Grass: A new experimental
726 platform for addressing grassland ecosystem responses to future precipitation scenarios
727 in south-east Australia. *Front. Plant Sci.* 7, 1-14.
728 <https://doi.org/10.3389/fpls.2016.01373>

729 Power, S.A., Churchill, A.C., Zhang, H., Catunda, K.L.M., Jacob, V., Chandregowda, M.H.,
730 Kim, G.W., Igwenagu, C., Tissue, D.T., Moore, B.D., Powell, J.R., Plett, J.M.,
731 Macdonald, C.A., Pendall, E., Carrillo, Y., Tjoelker, M.G., Medlyn, B.E., & Anderson,
732 I.C., 2020. Sustainable pasture systems under climate extremes. (Industry Report).
733 Published by Meat and Livestock Australia Limited, North Sydney, NSW, Australia.
734 <https://www.mla.com.au/research-and-development/reports/2020/sustainable-pasture-systems-under-climate-extremes/#> (accessed 9 November 2020).

735

736 R Core Team, 2020. R: A language and environment for statistical computing. R Foundation
737 for Statistical Computing, Vienna, Austria. (Version 4.0.0). [http://www.r-
738 project.org/index.html](http://www.r-project.org/index.html)

739 Ren, H.Y., Han, G.D., Lan, Z.C., Wan, H.W., Schonbach, P., Gierus, M., Taube, F., 2016.
740 Grazing effects on herbage nutritive values depend on precipitation and growing season
741 in Inner Mongolian grassland. Plant Ecol. 9, 712-723.
742 <https://doi.org/10.1093/jpe/rtw011>

743 Rojas-Downing, M.M., Nejadhashemi, A.P., Harrigan, T., Woznicki, S.A., 2017. Climate
744 change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 16,
745 145-163. <https://doi.org/10.1016/j.crm.2017.02.001>

746 Shakhane, L.M., Mulcahy, C., Scott, J.M., Hinch, G.N., Donald, G.E., Mackay, D.F., 2013.
747 Pasture herbage mass, quality and growth in response to three whole-farmlet
748 management systems. Anim. Prod. Sci. 53, 685-698.
749 <https://doi.org/10.1071/AN12262>

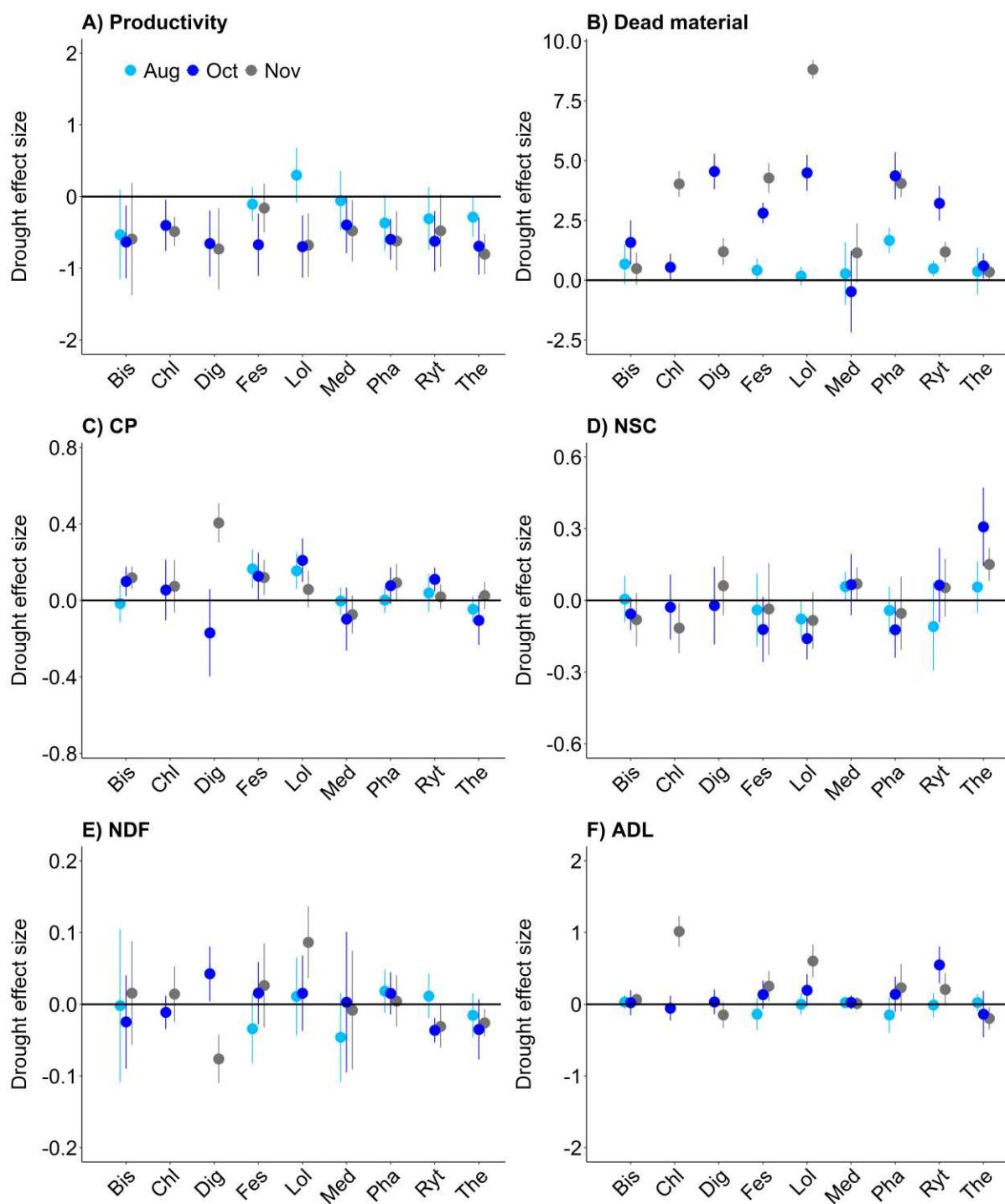
750 Shenk, J.S., Westerhaus, M.O., 1991. Population definition, sample selection and calibration
751 procedures for near infrared reflectance spectroscopy. Crop Sci. 31, 469-474.
752 <https://doi.org/10.2135/cropsci1991.0011183X003100020049x>

753 Skinner, R.H., Gustine, D.L., Sanderson, M.A., 2004. Growth, water relations, and nutritive
754 value of pasture species mixtures under moisture stress. Crop Sci. 44, 1361-1369.
755 <https://doi.org/10.2135/cropsci2004.1361>

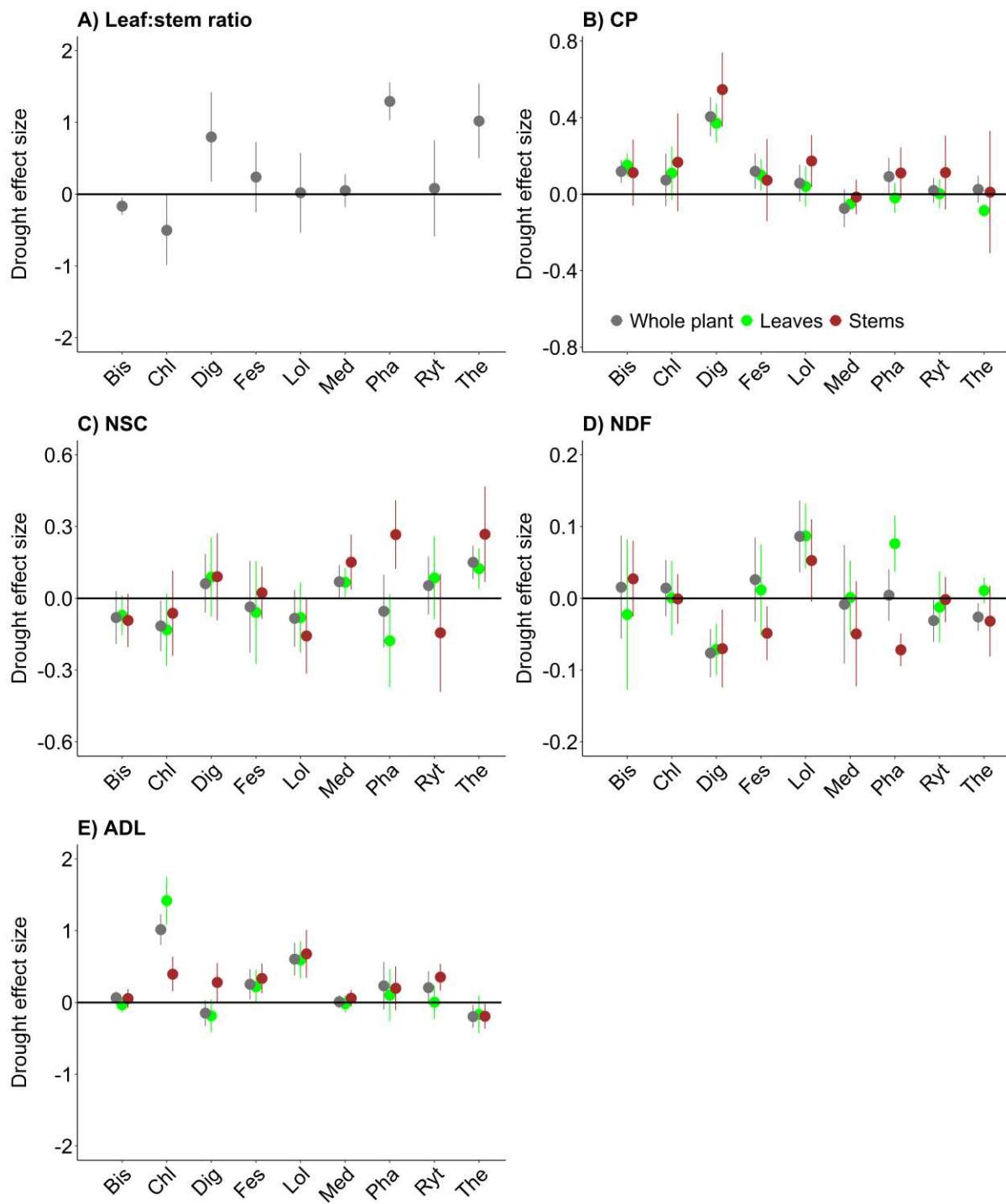
756 Sniffen, C.J., OConnor, J.D., Vansoest, P.J., Fox, D.G., Russell, J.B., 1992. A Net Carbohydrate
757 and Protein System for Evaluating Cattle Diets. 2. Carbohydrate and Protein
758 Availability. J. Anim. Sci. 70, 3562-3577. <https://doi.org/10.2527/1992.70113562x>

759 Staniak, M., Harasim, E., 2018. Changes in nutritive value of alfalfa *Medicago × varia* T.
760 *Martyn and Festulolium Festulolium braunii K. Richt* A. Camus under drought stress.
761 J Agron Crop Sci .2 04, 456-466. <https://doi.org/10.1111/jac.12271>

762 Tadielo, L.E., Carraro, P.C., Bremm, T., Santos, N.L.T., Corazza, D., Macelai, M., Catagnara,
763 D.D., HolzKrolow, R., 2017. Forage supply, litter deposition and leaf/stem ratio in
764 ryegrass pasture managed at different heights. Int. J. Curr. Res. 9, 52324-52328.
765 <https://www.journalcra.com/sites/default/files/issue-pdf/23521.pdf>


766 Van Soest, P.J., Robertson, J.B., 1980. Systems of analysis for evaluating fibrous feeds, in:
767 Pigden, W.J., Balch, C.C., Graham, M. (Eds.). Standardization of Analytical
768 Methodology in Feeds. International Research Development Center, Ottawa, Canada,
769 pp. 49-60.

770 Van Soest, P.J., 1994. Nutritional ecology of the ruminant. Cornell University Press, Ithaca,
771 NY, USA.


772 Volaire, F., Thomas, H., Leliévre, F., 1998. Survival and recovery of perennial forage grasses
773 under prolonged Mediterranean drought: I. Growth, death, water relations and solute
774 content in herbage and stubble. New Phytol. 140, 439-449.
775 <https://doi.org/10.1111/j.1469-8137.1998.00288.x>

776 Wang, Y., Yu, S., Wang, J., 2007. Biomass-dependent susceptibility to drought in experimental
777 grassland communities. Ecol. Lett. 10, 401-410. <https://doi.org/10.1111/j.1461-0248.2007.01031.x>

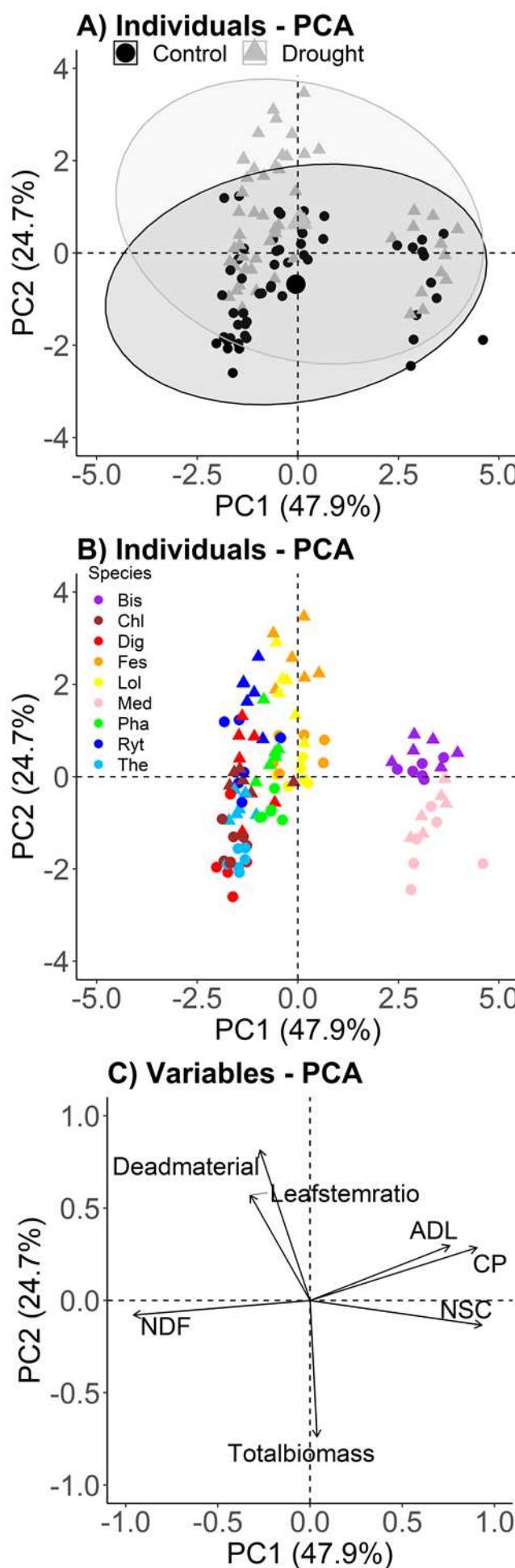

779 Wilson, J.R., 1983. Effects of water stress on in vitro dry matter digestibility and chemical
780 composition of herbage of tropical pasture species. Aust. J. Agric. Res. 34, 377-390.
781 <https://doi.org/10.1071/AR9830377>

Figure 1. Drought effect sizes on A) productivity, B) percentage of dead material, and whole-plant nutritional composition [C) crude protein, D) non-structural carbohydrates, E) neutral detergent fibre, F) acid detergent lignin] of pasture species during the drought period (August, October and November harvests separately). Values shown are means with vertical bars representing 95% confidence intervals ($n = 6$). Species abbreviations are as follows: *Biserrula* (Bis), *Chloris* (Chl), *Digitaria* (Dig), *Festuca* (Fes), *Lolium* (Lol), *Medicago* (Med), *Phalaris* (Pha), *Rytidosperma* (Ryt), *Themeda* (The). Note: during the harvest in August, there was no biomass for *Chloris* and *Digitaria*.

Figure 2. Drought effect sizes on leaf:stem ratio and nutritional composition [A) crude protein, B) non-structural carbohydrates, C) neutral detergent fibre, D) acid detergent lignin] of whole-plant (grey circle), leaves (green circle) and stems (brown circle) of pasture species at the end of the drought period (November harvest). Values shown are means with vertical bars representing 95% confidence intervals ($n = 6$). Species abbreviations follow Figure 1.

Figure 3. Principal component biplots illustrating variation in total biomass production, structural and nutritional traits across pasture species: A) scores for plant individuals grouped by treatment (control = circles and drought = triangles) with 95% confidence ellipses, B) scores for individuals, by species (colours; species abbreviations follow Figure 1); and C) variables loadings. Nutritional parameters abbreviations are as follows: crude protein (CP), non-structural carbohydrates (NSC), neutral detergent fibre (NDF), acid detergent lignin (ADL).