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Abstract

DNA methylation is an epigenetic mark that has vital importance in both development and 

disease. Single cell bisulfite sequencing technologies enable profiling of the methylome at high 

resolution, providing the basis for dissecting the heterogeneity and dynamics of DNA 

methylation in complex tissues and over time. Despite the rapid increase in the number of 

experimental protocols for methylome sequencing, analytical tools designed specifically for 

single-cell data are lacking. We developed a computational tool, SINBAD,  for efficient and 

standardized pre-processing, quality assessment and analysis of single cell methylation data. 

Starting from multiplexed sequencing reads, major analysis modules of SINBAD include 

preprocessing, read mapping, methylation quantification, multivariate analysis, and gene 

signature profiling. SINBAD provides a flexible platform to implement interoperable and robust 

processing of single-cell methylome data. 

Background

DNA methylation plays a critical role in development and disease.  It has been extensively 

studied using bulk samples with microarray and next-generation sequencing technologies (Lister 

et al. 2009; Jones 2012; Greenberg and Bourc’his 2019; Michalak et al. 2019).  Due to its 

simplicity and ability to determine methylation state at single-nucleotide resolution, bisulfite 

sequencing (BS-Seq) is the most common experimental method for profiling the DNA 
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methylome.  Recently, a number of protocols have been developed to map DNA methylome at 

genome-wide coverage and single-cell resolution, mostly based on bisulfite sequencing 

(Karemaker and Vermeulen 2018; Stuart and Satija 2019; Ahn et al. 2021). Collectively, these 

single-cell protocols have revolutionized our ability to determine epigenetic heterogeneity in 

complex tissues and over time. 

Unlike bulk DNA methylation data, single-cell methylome data poses unique analysis 

challenges. First, quality control needs to be performed at both bulk sample and single-cell level 

in order to detect and exclude low-quality cells.  Second, even with deep sequencing, single-cell 

methylome data is inherently sparse for individual cells and only a small fraction of all cytosines 

across the genome can be covered by the assay. This presents a formidable challenge for 

estimating the methylation levels of the annotated regions for individual cells, and subsequent 

clustering to identify cell populations in the samples.  Another challenge is the much larger size 

of single-cell methylome data compared to bulk methylome data. Unless the analysis procedures 

are designed and executed efficiently, the computational overhead can easily become prohibitive.

For these reasons, computational methods designed for bulk methylation data are ill suited for 

single-cell data. 

The initial processing step of single-cell methylome data includes demultiplexing, read 

alignment, cell-level quality control and methylation call. The quality of this initial processing 

step has a dramatic effect on downstream analyses such as dimensionality reduction, clustering, 

and integration with other types of single-cell omics data.  Existing tools for single-cell DNA 

methylation data analysis ignore the initial processing step and only perform downstream 

processing to a limited extent, where the data is already pre-processed, aligned, quality 

controlled, and the methylation matrix is available at the gene level  (Wolf, Angerer, and Theis 

2018).  As a result, in most single-cell DNA methylation studies, custom scripts are used for data

processing and analysis, hampering standardization and reproducibility. There are a number of  

large-scale single-cell atlasing projects, including the Human Tumor Atlas Network (Rozenblatt-

Rosen et al. 2020), the Brain Initiative Cell Census Network (Liu et al. 2021), The Human 

BioMolecular Atlas Program (HuBMAP, HuBMAP Consortium 2019) and the Human Cell Atlas

(Rozenblatt-Rosen et al. 2017) in which multiple modalities of single-cell data, including DNA 

methylation, are produced.  Depositing data processed with standardized and interoperable 
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pipelines that are reproducible, is an indispensable component of these atlasing efforts. An 

efficient and flexible computational tool is critically needed to address this critical need. 

Results

Overview of SINBAD

We addressed the lack of tools for single-cell methylation data QC and analysis by developing a 

flexible toolbox named SINBAD (A pipeline for processing SINgle cell Bisulfite sequencing 

samples and Analysis of Data).  It consists of five analysis modules (Fig. 1). The pre-processing 

module performs demultiplexing of barcodes and trimming of adaptor sequences.  The mapping 

module performs read alignment and filtering of low-quality reads and cells.  Using filtered and 

aligned reads, the methylation module performs methylation call and quantification of cytosine 

sites of pre-specified genomic regions and generates a region-by-cell matrix of methylation 

levels.  Next, the dimensionality of the methylation matrix is reduced by the multivariate analysis

module and cell populations are detected by clustering analysis. Finally, the gene signature 

profiling module identifies methylation signatures of distinct cell populations by marker 

activities and differential methylation analyses.  

SINBAD generates detailed statistics and graphical plots based on the analyses performed by 

each module. Although the pipeline can be used end-to-end, since it works with a wide range of 

standard data formats (Methods), it can also be used for specific data processing/analysis tasks 

only, such as methylation calling on aligned data or generating methylation matrix using cytosine

calls. In either case, the outputs generated by SINBAD can be used directly by other downstream

computational tools for single-cell genomics (Methods).
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Figure 1. Overview of SINBAD. Left: Input and intermediate data. Middle, data processing and 

analysis modules. Right, Outputs generated by the software. QC, Quality Control. 

Preprocessing 

Unlike existing methods that assume the existence of a gene activity matrix, SINBAD starts with

raw, multiplexed sequencing reads.  SINBAD demultiplexes the raw reads using cell barcode 

sequence information, which is technology dependent. The indexed reads, which are defined as 

those that match the given indices, are generated for each individual cell as the output.  Statistics 

such as the number of total reads and usable reads are summarized and presented as the quality 

metrics for demultiplexing (Fig. 1). The percentage of reads without index is also reported, to 

help identify any potential technical issues related to library preparation or sequencing (Fig. 1). 

Since unmethylated cytosines are converted to thymines as a result of bisulfite treatment in BS-

Seq experiments, they can map to both nucleotides (C and T), thus reducing sequencing 

complexity. This leads to a low alignment rate in methylome data. Untrimmed sequencing 

adapters can cause further reduction in alignment rate for methylation sequencing, which is 

already lower than other single-cell sequencing technologies, such as scRNA-Seq or scATAC-
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Seq.  To address this issue, SINBAD implements the adapter trimming step following the 

demultiplexing steps.  In the case of paired-end sequencing, different trimming settings for the 

left and right reads are supported, adding extra flexibility (Fig. 1).

Figure 2. Example output of read preprocessing module. a) Overall demultiplexing statistics. 

Input count: The number of multiplexed input, which may correspond to lanes and wells in the 

sequencing flowcell. Output count: The number of demultiplexed output. If the sample is 

sequenced by single-ended format, this is the total number of cells. Otherwise, this is twice the 

number of cells. Matching/no matching index: the total number of reads having a valid or invalid

index. b) Distribution of the total number of reads per input (left) and output (right). c) The 

percentage of reads missing a valid index per input, sorted from highest to lowest. d) Overall 

trimming statistics showing the total number of trimmed reads, mean number of trimmed reads 

per demultiplexed input, and mean percentage of reads filtered out per input. e) The distribution 

of the percentage of removed reads per input sorted from lowest to highest. f) The distribution of 

read counts per input before (left) and after (right) trimming. 
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Mapping and Filtering

Read alignment is performed for each cell, and the distribution of alignment rates is plotted as a 

quality metric (Fig. 3). The aligned reads are filtered in multiple steps. First, the alignments with 

a MAPQ quality score below the threshold (an adjustable parameter) are filtered out. Next, 

clonal reads (due to PCR duplicates) and mapped reads that failed bisulfite conversion, which 

can be identified by the existence of consecutive methylated non-CpG sites in the read, are 

removed.  If a spike-in control (such as lambda phage DNA) is used to measure bisulfite 

conversion rate, reads mapped to the target genome are separated from the control reads as the 

final clean reads to be used for the remaining data processing steps for each cell.  The number of 

reads is recorded per cell, and the distributions are displayed for quality control (Fig. 3).  If the 

input data consists of paired-end reads that are processed separately, as in the snmC-Seq 

protocol, left and right reads are merged in this step. 

One of the challenges for single-cell DNA methylome sequencing is to have sufficient coverage 

of the genome.  Unlike RNA-Seq protocols, where the reads are highly enriched in coding 

regions, and ATAC-Seq protocols, where the fragments are from accessible chromatin regions, 

whole genome bisulfite sequencing data is scattered across the genome.  As a result, even very 

deep sequencing experiments cannot reach >10% genomic coverage (Luo et al. 2017). Therefore,

the coverage rate, if not the most definitive quality metric, is an important measure that can 

reflect the power of downstream analysis.  Hence, SINBAD computes the genomic coverage 

rate, defined as the percentage of the genome that is covered by at least one read per cell (Fig. 

3d).

Cells with low-quality data can cause undesired consequences in downstream analyses, such as 

clustering.  Low mapping rates imply potential contamination, and a low number of aligned 

reads can limit robust analysis.  We use two adjustable metrics, mapping rate and number of 

filtered reads, to exclude low-quality cells in SINBAD (Fig. 3e, 3f).
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Figure 3. Example output of mapping and filtering module. a) Overall alignment statistics 

showing the total number of input reads for the sample, number of reads mapped to the reference

genome, percentage of mapped reads among all input reads, and total number of aligned reads 

after filtering steps. b) Distribution of alignment rates per input. Dashed red line shows the 

median value. c) Distribution of total number of input reads, aligned to the genome, filtered by 

mapping quality, after removing clonal reads, after removing reads with failed bisulfite 

conversions, and after removing spike-in control reads. d) Distribution of the percentage of the 

genome covered by at least one read per cell. e) Scatter plot showing alignment rate (x axis) and 

total number of filtered reads (y axis) for each cell as the quality control (QC) metrics. The 

vertical and horizontal lines combined form the cell filtering cutoff. f) Pie chart showing the 

number of cells that passed QC thresholds and those that are discarded because of low quality.

Methylation calling

Using reads retained after the mapping and QC module, SINBAD calls methylated cytosines for 

cells passed QC. It calls methylated and unmethylated cytosines separately for the target genome

and spike-in control if used in the experiment.  Since the spike-in DNA is unmethylated, all 
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cytosines are expected to be converted to thymines by bisulfite treatment in the ideal case.  In 

this sense, the percentage of unmethylated cytosines to all cytosine calls in the spike-in control 

defines the conversion rate, which is one of the primary metrics used to evaluate the success of 

the experiment.  SINBAD computes the conversion rate for each individual cell, stratified by the 

type of sequence context (CpG, CHG, CHH), and plots the overall statistics (Fig. 4a). 

In addition to the overall bisulfite conversion rate in the data, the dependency of the conversion 

rate on the relative position of the cytosine in a read is another quality metric. Ideally, the 

conversion efficiency is expected to be independent of the relative position, and as a result, the 

methylation rates for both CpG and non-CpG sites are expected to be constant across the 

positions in the sequence.  The position bias is calculated by SINBAD for both types of cytosine 

sites by combining all cells (Fig. 4b).  Fluctuations in this metric indicate potential positional 

bias in the conversion rate.  If fluctuations are located at the ends of the reads additional 

trimming may be needed. 

Since DNA methylation predominantly occurs at CpG sites (Jang et al. 2017), CpG methylation 

rates are much higher than non-CpG methylation rates.  Depending on the tissue or cell type 

under investigation, CpG methylation rate typically ranges between 60% and 80% for animal 

cells (Singer 2019).  However, non-CpG rates are expected to be close to zero in animal cells, 

except for neurons, which can have as much as 5% methylation rate for non-CpG sites (Lee, 

Park, and Nakai 2017).  Hence, non-CpG methylation rates can serve as another quality metric, 

as abnormally high methylation levels at such sites suggest potential technical issues, such as 

failed bisulfite conversion during sample processing.  SINBAD computes the overall methylation

rates on a per-cell basis for all three types of cytosine sites (Fig. 4 d,e,f), providing a preliminary 

technical and biological perspective of bisulfite conversion.  The distribution of the number of 

cytosine calls is uneven throughout the genome due to regions with a high density of this 

nucleotide, such as CpG islands.  Hence, the number of cytosine calls may not necessarily be the 

same as the overall genomic coverage of the aligned reads.  To define the specific power of the 

generated data in terms of the cytosine sites covered, SINBAD computes the total number of 

cytosine calls stratified into three categories of cytosine sites (Fig. 4d, e, f).
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Figure 4. Example output of methylation module. a) Bisulfite conversion rate for CpG and 

non-CpG methylation, calculated using spike-in control DNA. b) Line plot showing positional 

methylation rate bias for cytosine sites in the read. c) Boxplots showing the methylation rate 

distributions for CpG and non-CpG sites. d) Distribution for the number of cytosine calls per cell

for CpG sites e) CHG sites and f) CHH sites.

Quantification of methylation levels

Once the methylation sites are called, SINBAD quantifies the methylation levels for user-defined

genomic regions for each cell.  Due to the nature of DNA methylation, quantification of 

methylation levels requires extra flexibility compared to gene expression and chromatin 

accessibility data. For gene expression data, the genomic regions of interest are coding 

sequences. For chromatin accessibility data, the regions of interest are open chromatin regions 

defined by peaks.

For  DNA methylation data, multiple types of  genomic regions can be of interest, depending on 

the problem at hand and tissue/cell types. These could include the gene body, promoters, 

enhancers, insulators and other functional DNA elements.  Finally, for single-cell data, dividing 
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the genome into fixed-size bins can help to profile the heterogeneity present in the cell 

population. This binning approach can also assist in comparative analysis of methylation patterns

across cells and samples in an unbiased manner.

SINBAD addresses the need for flexibility in methylation quantification by allowing user-

defined genomic regions.  Several sets of annotated genomic regions for human and mouse are 

included by default (Methods).  Additionally, any user-defined set of regions can be processed. 

Given a set of genomic regions, SINBAD can quantify both CpG and non-CpG methylation 

levels for the set, generating a region-by-cell matrix as the output.  These matrices can be used 

with any commonly used single-cell data analysis tool, such as Seurat, Monocle (Qiu et al. 2017)

and SCANPY (Wolf, Angerer, and Theis 2018) for additional downstream analyses.

Before a methylation matrix can be used for downstream analysis, an additional processing step 

is required, which is unique to DNA methylation data.  For gene expression and chromatin 

accessibility data, the number of normalized reads directly reflect gene expression level and 

chromatin accessibility.  For DNA methylation data, the ratio of methylated cytosines to all 

cytosine calls constitutes the signal.  Hence, the lack of cytosine calls for a region simply means 

missing information and does not necessarily mean lack of methylation, which must be handled 

before downstream analysis.  

Due to the low genomic coverage of single-cell bisulfite sequencing data, short genomic regions 

likely lack sufficient numbers of cytosines to make a reliable estimate of the methylation level  

for the region, resulting in many missing values in the methylation matrix.  Many dimensionality

reduction methods commonly used in single-cell genomics are not compatible with missing 

values in the input matrix, hindering their utility for methylome data.  We implemented a simple 

imputation technique in our pipeline (Methods) to support downstream analysis by using the 

population mean to replace missing values.  More sophisticated imputation methods have been 

developed (Kapourani and Sanguinetti 2019; Uzun, Wu, and Tan 2020). The methylation calls 

generated by SINBAD can be used as the input to such tools, if needed.
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Downstream analysis

Two types of downstream analyses are implemented in SINBAD (Fig. 1).  First, it performs 

dimensionality reduction using Principal Component Analysis (PCA) and Uniform Manifold 

Approximation and Projection (UMAP) on the  methylation matrix generated by the 

quantification module.  Next, cell clusters are identified in the low dimensional space.  For cell 

type annotation, a set of marker genes can be provided for plotting their methylation levels, 

either on the UMAP or as a violin plot showing the distribution of methylation levels for the 

cells for each cluster.

As an unbiased analysis, SINBAD supports differential methylation analysis to identify the 

genes or functional DNA elements that have significantly higher or lower methylation levels 

among the clusters. The feature types to be investigated can be the same as the one that is used 

for the dimensionality reduction or any other feature types quantified earlier.  The results can be 

used to assist cell type identification as well as discovery of novel genes and functional DNA 

elements associated with differential methylation.

Case study 

As a case study for demonstrating the utility of SINBAD, we obtained single-cell DNA 

methylation data for human frontal cortex generated using the snmC-Seq protocol (Luo et al. 

2017).  In this study, the authors processed the methylation data using in-house scripts and 

identified two main cell clusters that correspond to excitatory and inhibitory neuron subtypes, 

based on non-CpG methylation of known marker genes. Using SINBAD, we computed the CpG 

methylation levels across the genome using 100 kb genomic bins and performed dimensionality 

reduction.  We were able to identify two cell clusters in the sample.  The cluster separation was 

clearly observed when methylation levels of the genomic bins or gene bodies were used as the 

input.  However, the cluster separation was poor when promoter methylation levels were used as 

the input, highlighting the need for flexible choice of genomic regions to be analyzed  (Fig. 5a, 

Supp. Fig. 1). 

Profiling the methylation levels along the gene bodies and performing differentially methylated 

region (DMR) analysis between the two clusters revealed a consistent pattern of differential 

11

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.23.465577doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.23.465577
http://creativecommons.org/licenses/by-nd/4.0/


methylation of excitatory and inhibitory neuron marker genes between the clusters.  Consistent 

with the results based on analyzing non-CpG methylation in the original study, the inhibitory 

neuron marker genes, including SLC6A1, PROX1, and ADARB2, were demethylated in one 

cluster (Fig. 5b, e), whereas the excitatory neuron marker genes, such as ARPP21, BAIAP2, and 

CAMK2A, were demethylated in the other cluster (Fig 5c, d, e) (Luo et al. 2017; Kang, Park, and 

Kim 2016). 

In addition to known marker genes of the two neuronal subtypes, DMR analysis revealed many 

additional differentially methylated genes that have a role in neuronal development and function,

including RASD2, SLC17A6, and LINGO1.  Gene ontology analysis for the significantly 

demethylated genes in the cell clusters revealed terms that are associated with subtypes of 

neurons.  The top enriched term for the demethylated genes in the inhibitory cluster was the life 

cycle of Gamma-aminobutyric acid (GABA), which is the primary inhibitory neurotransmitter 

(Jewett and Sharma 2018).  The enriched terms for the significantly demethylated genes in the 

other cluster included those related to excitatory neurons, such as development of dendrites, 

which excitatory neurons typically have hundreds to thousands of (Miles et al. 1996; Kennedy 

2016).
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Figure 5. Case study of human frontal cortex methylome dataset. a) UMAP dimensionality 

reduction and clustering of cell populations. b) Violin plots showing the CpG methylation level  

of the gene body for the excitatory neuron marker ARPP21 and the inhibitory neuron marker 

SLC6A1. c) UMAP showing the methylation levels of the gene body for the inhibitory neuron 

marker gene PROX1 and d) the excitatory neuron marker gene CAMK2A. e) Heatmap for the 

differentially methylated genes between the two clusters. f) Enriched GO terms in the 

significantly demethylated genes in cluster 1 and  g) cluster 2.

Conclusion

SINBAD addresses a critical need for interoperable and efficient tools for single-cell DNA 

methylome data analysis.  It provides a flexible framework for implementing various analysis 

tasks of single-cell DNA methylome data including preprocessing, quality control, methylation 

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.23.465577doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.23.465577
http://creativecommons.org/licenses/by-nd/4.0/


calling and quantification and additional downstream analyses.  It generates both graphical and 

text reports on QC metrics and analysis results.  By providing a standardized analysis 

framework, SINBAD facilitates the reproducibility of single-cell DNA methylation data analysis.

Application of SINBAD on human frontal cortex  dataset demonstrated its effectiveness in cell 

type annotation and identification of differentially methylated genes/regions. 

Although the current version of SINBAD already provides a comprehensive set of analysis tools,

additional tools and analyses can be incorporated in the future.  For example, several alternative 

dimensionality reduction methods can be added, including tSNE (van der Maaten 2008), PHATE

(Moon et al. 2019) or densMAP (Narayan, Berger, and Cho 2021).  In addition, more 

sophisticated imputation methods  such as  Melissa ((Kapourani and Sanguinetti 2019) and 

CaMelia (Tang et al. 2021) can be added.

Software availability

SINBAD is implemented as an open source software in R programming language and is publicly

available at github (https://github.com/tanlabcode/SINBAD.1.0) under the MIT License.
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Methods

Read Preprocessing

The first step of the data processing pipeline is demultiplexing the sequencing reads in fastq 

format.  To reduce storage needs, SINBAD can handle the data in compressed format. The 

demultiplexing script demultiplex_fastq.pl can be called in R.  The index length, which is 

sequencing protocol dependent, can be set by the user with the demux_index_length parameter 

and is used to demarcate the index sequence to demultiplex the data into multiple cells.

For some protocols, such as snmC-Seq and snmC-Seq2, the index is only present in the left reads

in paired-end data.  Our pipeline supports such protocols by generating intermediate right reads 

with an index prior to demultiplexing, which are removed after demultiplexing. SINBAD uses 

Cutadapt (Martin 2011) or Trimmomatic (Bolger, Lohse, and Usadel 2014) for trimming 

sequencing adapters. 

Read alignment

Trimmed reads are mapped to the reference genome using Bismark (Krueger and Andrews 2011)

and alignment files in bam format are generated as the output.  If spike-in control such as lambda

phage DNA is used to measure the bisulfite conversion rate, the phage genomic sequence should 

be added to the reference genome sequence file as a separate chromosome.  By default, we 

provide the hg38 and mm10 reference genome sequence (including lambda phage) with 

SINBAD. 

Low quality alignments are filtered out based on the mapq_threshold parameter set by the user 

and clonal reads are removed using the samtools rmdup utility (Li et al. 2009; Li 2011).  The 

aligned reads with failed bisulfite conversion, which is indicated by the presence of three 

consecutive non-CpG methylation events, are also removed.  If a spike-in control is used, the 

reads mapped to the control sequence are separated from the target genome for downstream 

analyses, and the remaining reads are sorted and indexed using the samtools.  The number of 

aligned reads is calculated using the countBam function, and the coverage rates of the mapped 

reads per cell are calculated using the pileup function of the Rsamtools package (Morgan et al. 

2016).
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Following the alignment step, low quality cells, which are defined as having alignment rate 

below the minimum alignment rate (set by the alignment_rate_threshold parameter) and aligned 

filtered reads below the threshold (set by the total_minimum_filtered_read_count parameter), are

marked in the data.  Only high quality cells passing these filters are used in downstream 

analyses.

Methylation calling

SINBAD uses Bismark Methylation Extractor  (Krueger and Andrews 2011) to call methylated 

cytosines, using the aligned and filtered reads as the input. This step is executed separately for 

the spike-in control (if used) which in turn is used to compute the bisulfite conversion rate 

distribution for the cells.  Methylation calling results are generated for both CpG and non-CpG 

sites and all are converted into bed format to facilitate its usage by various external tools. 

Methylation calls in bed format are generated as output as a result of this step.

Quantification of methylation level

We designed SINBAD to accept any set of genomic regions in bed format, such as gene bodies, 

promoters, or genomic bins of fixed sizes.  By default, we provide several sets of predefined 

genomic regions with the software, including gene bodies, promoters and genomic bins of 10Kb 

and 100Kb size. 

We determine the number of methylated and unmethylated cytosines in a given genomic region 

using GenomicRanges  (Lawrence et al. 2013) and then calculate the average methylation rate 

per cell and per region by dividing the total number of methylated cytosines by all cytosine 

called.  Due to the sparse nature of DNA methylation data, many cells are expected to have an 

insufficient number of cytosine calls, set by the min_call_count_threshold_for_region parameter,

to estimate the methylation level for the cells.  We impute the methylation level for a given 

region and a cell by using  the mean rate of the same region based on cells with a sufficient 

number of cytosine calls.  The generated methylation matrices are saved in serialized R data 

object (RDS) format, which can be used as the input to  commonly used single-cell analysis tools

such as Seurat (Hao et al. 2021) and Monocle (Qiu et al. 2017). 

16

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.10.23.465577doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.23.465577
http://creativecommons.org/licenses/by-nd/4.0/


Downstream analysis

SINBAD performs dimensionality reduction on the methylation matrix generated by the 

quantification module.  First, using the top 2,000 regions with largest variance in the data as the 

input, principal components of the methylation matrix are identified with the prcomp function. 

Next, low-dimensional representation of the data is generated using UMAP (McInnes et al. 

2018) and the top principal components explaining the largest variance in the data.  In the low-

dimensional feature space, density clustering is employed to identify cell populations in the 

sample (Rodriguez and Laio 2014).  Methylation rates for the user defined marker genes or 

regions can be visualized on the UMAP and violin plots. 

Differential methylation analysis is performed for each genomic region between two cell clusters

using t-test or Wilcoxon rank sum test.  Only cells having sufficient number of cytosine calls to 

estimate the methylation level for that region are used.  P-values are corrected for multiple 

testing with the Benjamini-Hochberg method.  A heatmap showing the expression levels of 

significantly differentially methylated regions is generated using the pheatmap package (Kolde 

and Others 2012).  

Processing of frontal cortex dataset

We processed the snmC-Seq dataset of human frontal cortex (McInnes et al. 2018; Luo et al. 

2017) as follows. Bismark cov files for the methylation calls were obtained from GEO 

(accession GSE97179).  We quantified CpG methylation calls for each cell across gene bodies 

(from transcription start sites (TSS) to  the end of 3'  UTR), promoters (upstream and 

downstream 2Kb of TSS) and genomic bins (100Kb and 10Kb) for 200 cells.  UMAP 

dimensionality reduction was applied for each of the feature matrices above on the top 10 PCA 

components responsible for the largest variance in the data.  For the regions without sufficient 

number of CpG calls for methylation level estimate, we used the mean methylation rate of the 

entire population for that region.  Density clustering was employed to identify cell clusters, and 

t-test was used to identify the differentially methylated genes.  We then inspected methylation 

levels of excitatory and inhibitory neuron marker genes and performed differential methylation 

analysis with SINBAD.  GO terms enriched in differentially methylated genes across the clusters

(adjusted p < 0.01)  were computed using metascape (Zhou et al. 2019) . 
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Parallelization

SINBAD is implemented with the R statistical programming language (Wirtschaftsuniversität 

Wien Department of Statistics and Mathematics 2008).  To increase processing speed, we 

implemented parallel processing with multiple threads by using R doSNOW package  (Analytics 

and Weston 2014) in SINBAD.  For the demultiplexing step, the multiplexed inputs can be 

demultiplexed individually by a separate thread.  In the same manner, all the remaining steps can

be parallelized for the individual cells using isolated processes with user-specified number of 

threads, until dimensionality reduction.  This flexibility allows the user to adjust the balance 

between memory and CPU allocation and running time.  We noticed that Bismark alignment can 

terminate prematurely when the allocated memory becomes insufficient.  This is remedied in 

SINBAD by additional alignment attempts for the cells for which the mapping thread fails.
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