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Abstract

DNA methylation is an epigenetic mark that has vital importance in both development and
disease. Single cell bisulfite sequencing technologies enable profiling of the methylome at high
resolution, providing the basis for dissecting the heterogeneity and dynamics of DNA
methylation in complex tissues and over time. Despite the rapid increase in the number of
experimental protocols for methylome sequencing, analytical tools designed specifically for
single-cell data are lacking. We developed a computational tool, SINBAD, for efficient and
standardized pre-processing, quality assessment and analysis of single cell methylation data.
Starting from multiplexed sequencing reads, major analysis modules of SINBAD include
preprocessing, read mapping, methylation quantification, multivariate analysis, and gene
signature profiling. SINBAD provides a flexible platform to implement interoperable and robust

processing of single-cell methylome data.
Background

DNA methylation plays a critical role in development and disease. It has been extensively
studied using bulk samples with microarray and next-generation sequencing technologies (Lister
et al. 2009; Jones 2012; Greenberg and Bourc’his 2019; Michalak et al. 2019). Due to its
simplicity and ability to determine methylation state at single-nucleotide resolution, bisulfite

sequencing (BS-Seq) is the most common experimental method for profiling the DNA
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methylome. Recently, a number of protocols have been developed to map DNA methylome at
genome-wide coverage and single-cell resolution, mostly based on bisulfite sequencing
(Karemaker and Vermeulen 2018; Stuart and Satija 2019; Ahn et al. 2021). Collectively, these
single-cell protocols have revolutionized our ability to determine epigenetic heterogeneity in

complex tissues and over time.

Unlike bulk DNA methylation data, single-cell methylome data poses unique analysis
challenges. First, quality control needs to be performed at both bulk sample and single-cell level
in order to detect and exclude low-quality cells. Second, even with deep sequencing, single-cell
methylome data is inherently sparse for individual cells and only a small fraction of all cytosines
across the genome can be covered by the assay. This presents a formidable challenge for
estimating the methylation levels of the annotated regions for individual cells, and subsequent
clustering to identify cell populations in the samples. Another challenge is the much larger size
of single-cell methylome data compared to bulk methylome data. Unless the analysis procedures
are designed and executed efficiently, the computational overhead can easily become prohibitive.
For these reasons, computational methods designed for bulk methylation data are ill suited for

single-cell data.

The initial processing step of single-cell methylome data includes demultiplexing, read
alignment, cell-level quality control and methylation call. The quality of this initial processing
step has a dramatic effect on downstream analyses such as dimensionality reduction, clustering,
and integration with other types of single-cell omics data. Existing tools for single-cell DNA
methylation data analysis ignore the initial processing step and only perform downstream
processing to a limited extent, where the data is already pre-processed, aligned, quality
controlled, and the methylation matrix is available at the gene level (Wolf, Angerer, and Theis
2018). As aresult, in most single-cell DNA methylation studies, custom scripts are used for data
processing and analysis, hampering standardization and reproducibility. There are a number of
large-scale single-cell atlasing projects, including the Human Tumor Atlas Network (Rozenblatt-
Rosen et al. 2020), the Brain Initiative Cell Census Network (Liu et al. 2021), The Human
BioMolecular Atlas Program (HuBMAP, HuBMAP Consortium 2019) and the Human Cell Atlas
(Rozenblatt-Rosen et al. 2017) in which multiple modalities of single-cell data, including DNA

methylation, are produced. Depositing data processed with standardized and interoperable
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pipelines that are reproducible, is an indispensable component of these atlasing efforts. An

efficient and flexible computational tool is critically needed to address this critical need.
Results

Overview of SINBAD

We addressed the lack of tools for single-cell methylation data QC and analysis by developing a
flexible toolbox named SINBAD (A pipeline for processing SINgle cell Bisulfite sequencing
samples and Analysis of Data). It consists of five analysis modules (Fig. 1). The pre-processing
module performs demultiplexing of barcodes and trimming of adaptor sequences. The mapping
module performs read alignment and filtering of low-quality reads and cells. Using filtered and
aligned reads, the methylation module performs methylation call and quantification of cytosine
sites of pre-specified genomic regions and generates a region-by-cell matrix of methylation
levels. Next, the dimensionality of the methylation matrix is reduced by the multivariate analysis
module and cell populations are detected by clustering analysis. Finally, the gene signature
profiling module identifies methylation signatures of distinct cell populations by marker

activities and differential methylation analyses.

SINBAD generates detailed statistics and graphical plots based on the analyses performed by
each module. Although the pipeline can be used end-to-end, since it works with a wide range of
standard data formats (Methods), it can also be used for specific data processing/analysis tasks
only, such as methylation calling on aligned data or generating methylation matrix using cytosine
calls. In either case, the outputs generated by SINBAD can be used directly by other downstream

computational tools for single-cell genomics (Methods).
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Figure 1. Overview of SINBAD. Left: Input and intermediate data. Middle, data processing and
analysis modules. Right, Outputs generated by the software. QC, Quality Control.

Preprocessing

Unlike existing methods that assume the existence of a gene activity matrix, SINBAD starts with
raw, multiplexed sequencing reads. SINBAD demultiplexes the raw reads using cell barcode
sequence information, which is technology dependent. The indexed reads, which are defined as
those that match the given indices, are generated for each individual cell as the output. Statistics
such as the number of total reads and usable reads are summarized and presented as the quality
metrics for demultiplexing (Fig. 1). The percentage of reads without index is also reported, to

help identify any potential technical issues related to library preparation or sequencing (Fig. 1).

Since unmethylated cytosines are converted to thymines as a result of bisulfite treatment in BS-
Seq experiments, they can map to both nucleotides (C and T), thus reducing sequencing
complexity. This leads to a low alignment rate in methylome data. Untrimmed sequencing
adapters can cause further reduction in alignment rate for methylation sequencing, which is

already lower than other single-cell sequencing technologies, such as scRNA-Seq or scATAC-
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Seq. To address this issue, SINBAD implements the adapter trimming step following the
demultiplexing steps. In the case of paired-end sequencing, different trimming settings for the

left and right reads are supported, adding extra flexibility (Fig. 1).

Preprocessing Results
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Figure 2. Example output of read preprocessing module. a) Overall demultiplexing statistics.
Input count: The number of multiplexed input, which may correspond to lanes and wells in the
sequencing flowcell. Output count: The number of demultiplexed output. If the sample is
sequenced by single-ended format, this is the total number of cells. Otherwise, this is twice the
number of cells. Matching/no matching index: the total number of reads having a valid or invalid
index. b) Distribution of the total number of reads per input (left) and output (right). ¢) The
percentage of reads missing a valid index per input, sorted from highest to lowest. d) Overall
trimming statistics showing the total number of trimmed reads, mean number of trimmed reads
per demultiplexed input, and mean percentage of reads filtered out per input. e) The distribution
of the percentage of removed reads per input sorted from lowest to highest. f) The distribution of
read counts per input before (left) and after (right) trimming.
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Mapping and Filtering

Read alignment is performed for each cell, and the distribution of alignment rates is plotted as a
quality metric (Fig. 3). The aligned reads are filtered in multiple steps. First, the alignments with
a MAPQ quality score below the threshold (an adjustable parameter) are filtered out. Next,
clonal reads (due to PCR duplicates) and mapped reads that failed bisulfite conversion, which
can be identified by the existence of consecutive methylated non-CpG sites in the read, are
removed. If a spike-in control (such as lambda phage DNA) is used to measure bisulfite
conversion rate, reads mapped to the target genome are separated from the control reads as the
final clean reads to be used for the remaining data processing steps for each cell. The number of
reads is recorded per cell, and the distributions are displayed for quality control (Fig. 3). If the
input data consists of paired-end reads that are processed separately, as in the snmC-Seq

protocol, left and right reads are merged in this step.

One of the challenges for single-cell DNA methylome sequencing is to have sufficient coverage
of the genome. Unlike RNA-Seq protocols, where the reads are highly enriched in coding
regions, and ATAC-Seq protocols, where the fragments are from accessible chromatin regions,
whole genome bisulfite sequencing data is scattered across the genome. As a result, even very
deep sequencing experiments cannot reach >10% genomic coverage (Luo et al. 2017). Therefore,
the coverage rate, if not the most definitive quality metric, is an important measure that can
reflect the power of downstream analysis. Hence, SINBAD computes the genomic coverage
rate, defined as the percentage of the genome that is covered by at least one read per cell (Fig.

3d).

Cells with low-quality data can cause undesired consequences in downstream analyses, such as
clustering. Low mapping rates imply potential contamination, and a low number of aligned
reads can limit robust analysis. We use two adjustable metrics, mapping rate and number of

filtered reads, to exclude low-quality cells in SINBAD (Fig. 3e, 3f1).
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Alignment & filtering results
a) Alignment Statistics: b) Alignment Rate Distribution C) Read counts
All reads: 1,262,153,140 : 0
. 0.124 S 104
Aligned reads: 740,736,846 | = T
Overall alignment rate: 58.7% 0.107 : % 81
High quality reads: 644,766,676 %’ 0.08+ : § 6 El -
c 2 o T T T T
2 0.064 | w 44 R
o o '
_ ' M=
0.04 [ 3 2 i
1 £ ~ 4 4o
0.02 | 2 0+
1 T T T T T T
i - T > o 5
0.00 T T T T } T % g § [S— g
35 40 45 50 55 60 65 70 F s 7 %
% Alignment rate < DE:
Genomic Coverage CellQC
d) 9 e) f) Cell Filtering
0.30 1
| —~ 12
0.25- ! 2
! 2 10
0.20- \ E
P 0 o 8-
£ 3 .
S 0.154 1 g 6
o ; el '
E I '
0.10 \ S 4- boL Failed
: = b : (19)
0.054 . [ = SRR S S
000- ; T T 0- T T T T : T T
0 5 10 15 0 10 20 30 40 5 60
% Coverage % Alignment

Figure 3. Example output of mapping and filtering module. a) Overall alignment statistics
showing the total number of input reads for the sample, number of reads mapped to the reference
genome, percentage of mapped reads among all input reads, and total number of aligned reads
after filtering steps. b) Distribution of alignment rates per input. Dashed red line shows the
median value. ¢) Distribution of total number of input reads, aligned to the genome, filtered by
mapping quality, after removing clonal reads, after removing reads with failed bisulfite
conversions, and after removing spike-in control reads. d) Distribution of the percentage of the
genome covered by at least one read per cell. e) Scatter plot showing alignment rate (x axis) and
total number of filtered reads (y axis) for each cell as the quality control (QC) metrics. The
vertical and horizontal lines combined form the cell filtering cutoff. f) Pie chart showing the
number of cells that passed QC thresholds and those that are discarded because of low quality.

Methylation calling

Using reads retained after the mapping and QC module, SINBAD calls methylated cytosines for
cells passed QC. It calls methylated and unmethylated cytosines separately for the target genome

and spike-in control if used in the experiment. Since the spike-in DNA is unmethylated, all
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cytosines are expected to be converted to thymines by bisulfite treatment in the ideal case. In
this sense, the percentage of unmethylated cytosines to all cytosine calls in the spike-in control
defines the conversion rate, which is one of the primary metrics used to evaluate the success of
the experiment. SINBAD computes the conversion rate for each individual cell, stratified by the

type of sequence context (CpG, CHG, CHH), and plots the overall statistics (Fig. 4a).

In addition to the overall bisulfite conversion rate in the data, the dependency of the conversion
rate on the relative position of the cytosine in a read is another quality metric. Ideally, the
conversion efficiency is expected to be independent of the relative position, and as a result, the
methylation rates for both CpG and non-CpG sites are expected to be constant across the
positions in the sequence. The position bias is calculated by SINBAD for both types of cytosine
sites by combining all cells (Fig. 4b). Fluctuations in this metric indicate potential positional
bias in the conversion rate. If fluctuations are located at the ends of the reads additional

trimming may be needed.

Since DNA methylation predominantly occurs at CpG sites (Jang et al. 2017), CpG methylation
rates are much higher than non-CpG methylation rates. Depending on the tissue or cell type
under investigation, CpG methylation rate typically ranges between 60% and 80% for animal
cells (Singer 2019). However, non-CpG rates are expected to be close to zero in animal cells,
except for neurons, which can have as much as 5% methylation rate for non-CpG sites (Lee,
Park, and Nakai 2017). Hence, non-CpG methylation rates can serve as another quality metric,
as abnormally high methylation levels at such sites suggest potential technical issues, such as
failed bisulfite conversion during sample processing. SINBAD computes the overall methylation
rates on a per-cell basis for all three types of cytosine sites (Fig. 4 d,e,f), providing a preliminary
technical and biological perspective of bisulfite conversion. The distribution of the number of
cytosine calls is uneven throughout the genome due to regions with a high density of this
nucleotide, such as CpG islands. Hence, the number of cytosine calls may not necessarily be the
same as the overall genomic coverage of the aligned reads. To define the specific power of the
generated data in terms of the cytosine sites covered, SINBAD computes the total number of

cytosine calls stratified into three categories of cytosine sites (Fig. 4d, e, f).
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Methylation calling results
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Figure 4. Example output of methylation module. a) Bisulfite conversion rate for CpG and
non-CpG methylation, calculated using spike-in control DNA. b) Line plot showing positional
methylation rate bias for cytosine sites in the read. ¢) Boxplots showing the methylation rate
distributions for CpG and non-CpG sites. d) Distribution for the number of cytosine calls per cell
for CpG sites e) CHG sites and f) CHH sites.

Quantification of methylation levels

Once the methylation sites are called, SINBAD quantifies the methylation levels for user-defined
genomic regions for each cell. Due to the nature of DNA methylation, quantification of
methylation levels requires extra flexibility compared to gene expression and chromatin
accessibility data. For gene expression data, the genomic regions of interest are coding
sequences. For chromatin accessibility data, the regions of interest are open chromatin regions

defined by peaks.

For DNA methylation data, multiple types of genomic regions can be of interest, depending on
the problem at hand and tissue/cell types. These could include the gene body, promoters,

enhancers, insulators and other functional DNA elements. Finally, for single-cell data, dividing
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the genome into fixed-size bins can help to profile the heterogeneity present in the cell
population. This binning approach can also assist in comparative analysis of methylation patterns

across cells and samples in an unbiased manner.

SINBAD addresses the need for flexibility in methylation quantification by allowing user-
defined genomic regions. Several sets of annotated genomic regions for human and mouse are
included by default (Methods). Additionally, any user-defined set of regions can be processed.
Given a set of genomic regions, SINBAD can quantify both CpG and non-CpG methylation
levels for the set, generating a region-by-cell matrix as the output. These matrices can be used
with any commonly used single-cell data analysis tool, such as Seurat, Monocle (Qiu et al. 2017)

and SCANPY (Wolf, Angerer, and Theis 2018) for additional downstream analyses.

Before a methylation matrix can be used for downstream analysis, an additional processing step
is required, which is unique to DNA methylation data. For gene expression and chromatin
accessibility data, the number of normalized reads directly reflect gene expression level and
chromatin accessibility. For DNA methylation data, the ratio of methylated cytosines to all
cytosine calls constitutes the signal. Hence, the lack of cytosine calls for a region simply means
missing information and does not necessarily mean lack of methylation, which must be handled

before downstream analysis.

Due to the low genomic coverage of single-cell bisulfite sequencing data, short genomic regions
likely lack sufficient numbers of cytosines to make a reliable estimate of the methylation level
for the region, resulting in many missing values in the methylation matrix. Many dimensionality
reduction methods commonly used in single-cell genomics are not compatible with missing
values in the input matrix, hindering their utility for methylome data. We implemented a simple
imputation technique in our pipeline (Methods) to support downstream analysis by using the
population mean to replace missing values. More sophisticated imputation methods have been
developed (Kapourani and Sanguinetti 2019; Uzun, Wu, and Tan 2020). The methylation calls
generated by SINBAD can be used as the input to such tools, if needed.

10
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Downstream analysis

Two types of downstream analyses are implemented in SINBAD (Fig. 1). First, it performs
dimensionality reduction using Principal Component Analysis (PCA) and Uniform Manifold
Approximation and Projection (UMAP) on the methylation matrix generated by the
quantification module. Next, cell clusters are identified in the low dimensional space. For cell
type annotation, a set of marker genes can be provided for plotting their methylation levels,
either on the UMAP or as a violin plot showing the distribution of methylation levels for the

cells for each cluster.

As an unbiased analysis, SINBAD supports differential methylation analysis to identify the
genes or functional DNA elements that have significantly higher or lower methylation levels
among the clusters. The feature types to be investigated can be the same as the one that is used
for the dimensionality reduction or any other feature types quantified earlier. The results can be
used to assist cell type identification as well as discovery of novel genes and functional DNA

elements associated with differential methylation.
Case study

As a case study for demonstrating the utility of SINBAD, we obtained single-cell DNA
methylation data for human frontal cortex generated using the snmC-Seq protocol (Luo et al.
2017). In this study, the authors processed the methylation data using in-house scripts and
identified two main cell clusters that correspond to excitatory and inhibitory neuron subtypes,
based on non-CpG methylation of known marker genes. Using SINBAD, we computed the CpG
methylation levels across the genome using 100 kb genomic bins and performed dimensionality
reduction. We were able to identify two cell clusters in the sample. The cluster separation was
clearly observed when methylation levels of the genomic bins or gene bodies were used as the
input. However, the cluster separation was poor when promoter methylation levels were used as

the input, highlighting the need for flexible choice of genomic regions to be analyzed (Fig. 5a,
Supp. Fig. 1).

Profiling the methylation levels along the gene bodies and performing differentially methylated

region (DMR) analysis between the two clusters revealed a consistent pattern of differential

11
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methylation of excitatory and inhibitory neuron marker genes between the clusters. Consistent
with the results based on analyzing non-CpG methylation in the original study, the inhibitory
neuron marker genes, including SLC641, PROXI, and ADARB2, were demethylated in one
cluster (Fig. 5b, e), whereas the excitatory neuron marker genes, such as ARPP21, BAIAP2, and
CAMK?2A, were demethylated in the other cluster (Fig 5c, d, e) (Luo et al. 2017; Kang, Park, and
Kim 2016).

In addition to known marker genes of the two neuronal subtypes, DMR analysis revealed many
additional differentially methylated genes that have a role in neuronal development and function,
including RASD2, SLC17A46, and LINGOI1. Gene ontology analysis for the significantly
demethylated genes in the cell clusters revealed terms that are associated with subtypes of
neurons. The top enriched term for the demethylated genes in the inhibitory cluster was the life
cycle of Gamma-aminobutyric acid (GABA), which is the primary inhibitory neurotransmitter
(Jewett and Sharma 2018). The enriched terms for the significantly demethylated genes in the
other cluster included those related to excitatory neurons, such as development of dendrites,
which excitatory neurons typically have hundreds to thousands of (Miles et al. 1996; Kennedy
2016).

12
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Figure 5. Case study of human frontal cortex methylome dataset. a) UMAP dimensionality
reduction and clustering of cell populations. b) Violin plots showing the CpG methylation level
of the gene body for the excitatory neuron marker ARPP21 and the inhibitory neuron marker
SLC6A1. ¢) UMAP showing the methylation levels of the gene body for the inhibitory neuron
marker gene PROXI and d) the excitatory neuron marker gene CAMK2A. e) Heatmap for the
differentially methylated genes between the two clusters. f) Enriched GO terms in the
significantly demethylated genes in cluster 1 and g) cluster 2.

Conclusion

SINBAD addresses a critical need for interoperable and efficient tools for single-cell DNA

methylome data analysis. It provides a flexible framework for implementing various analysis

tasks of single-cell DNA methylome data including preprocessing, quality control, methylation
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calling and quantification and additional downstream analyses. It generates both graphical and
text reports on QC metrics and analysis results. By providing a standardized analysis
framework, SINBAD facilitates the reproducibility of single-cell DNA methylation data analysis.
Application of SINBAD on human frontal cortex dataset demonstrated its effectiveness in cell

type annotation and identification of differentially methylated genes/regions.

Although the current version of SINBAD already provides a comprehensive set of analysis tools,
additional tools and analyses can be incorporated in the future. For example, several alternative
dimensionality reduction methods can be added, including tSNE (van der Maaten 2008), PHATE
(Moon et al. 2019) or densMAP (Narayan, Berger, and Cho 2021). In addition, more
sophisticated imputation methods such as Melissa ((Kapourani and Sanguinetti 2019) and

CaMelia (Tang et al. 2021) can be added.
Software availability

SINBAD is implemented as an open source software in R programming language and is publicly

available at github (https://github.com/tanlabcode/SINBAD.1.0) under the MIT License.
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Methods

Read Preprocessing

The first step of the data processing pipeline is demultiplexing the sequencing reads in fastq
format. To reduce storage needs, SINBAD can handle the data in compressed format. The
demultiplexing script demultiplex fastq.pl can be called in R. The index length, which is
sequencing protocol dependent, can be set by the user with the demux_index length parameter

and is used to demarcate the index sequence to demultiplex the data into multiple cells.

For some protocols, such as snmC-Seq and snmC-Seq2, the index is only present in the left reads
in paired-end data. Our pipeline supports such protocols by generating intermediate right reads
with an index prior to demultiplexing, which are removed after demultiplexing. SINBAD uses
Cutadapt (Martin 2011) or Trimmomatic (Bolger, Lohse, and Usadel 2014) for trimming

sequencing adapters.
Read alignment

Trimmed reads are mapped to the reference genome using Bismark (Krueger and Andrews 2011)
and alignment files in bam format are generated as the output. If spike-in control such as lambda
phage DNA is used to measure the bisulfite conversion rate, the phage genomic sequence should
be added to the reference genome sequence file as a separate chromosome. By default, we
provide the hg38 and mm10 reference genome sequence (including lambda phage) with

SINBAD.

Low quality alignments are filtered out based on the mapq_threshold parameter set by the user
and clonal reads are removed using the samtools rmdup utility (Li et al. 2009; Li 2011). The
aligned reads with failed bisulfite conversion, which is indicated by the presence of three
consecutive non-CpG methylation events, are also removed. If a spike-in control is used, the
reads mapped to the control sequence are separated from the target genome for downstream
analyses, and the remaining reads are sorted and indexed using the samtools. The number of
aligned reads is calculated using the countBam function, and the coverage rates of the mapped
reads per cell are calculated using the pileup function of the Rsamtools package (Morgan et al.

2016).
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Following the alignment step, low quality cells, which are defined as having alignment rate
below the minimum alignment rate (set by the alignment rate threshold parameter) and aligned
filtered reads below the threshold (set by the total minimum_filtered read count parameter), are
marked in the data. Only high quality cells passing these filters are used in downstream

analyses.
Methylation calling

SINBAD uses Bismark Methylation Extractor (Krueger and Andrews 2011) to call methylated
cytosines, using the aligned and filtered reads as the input. This step is executed separately for
the spike-in control (if used) which in turn is used to compute the bisulfite conversion rate
distribution for the cells. Methylation calling results are generated for both CpG and non-CpG
sites and all are converted into bed format to facilitate its usage by various external tools.

Methylation calls in bed format are generated as output as a result of this step.

Quantification of methylation level

We designed SINBAD to accept any set of genomic regions in bed format, such as gene bodies,
promoters, or genomic bins of fixed sizes. By default, we provide several sets of predefined

genomic regions with the software, including gene bodies, promoters and genomic bins of 10Kb

and 100Kb size.

We determine the number of methylated and unmethylated cytosines in a given genomic region
using GenomicRanges (Lawrence et al. 2013) and then calculate the average methylation rate
per cell and per region by dividing the total number of methylated cytosines by all cytosine
called. Due to the sparse nature of DNA methylation data, many cells are expected to have an
insufficient number of cytosine calls, set by the min_call count threshold for region parameter,
to estimate the methylation level for the cells. We impute the methylation level for a given
region and a cell by using the mean rate of the same region based on cells with a sufficient
number of cytosine calls. The generated methylation matrices are saved in serialized R data
object (RDS) format, which can be used as the input to commonly used single-cell analysis tools

such as Seurat (Hao et al. 2021) and Monocle (Qiu et al. 2017).
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Downstream analysis

SINBAD performs dimensionality reduction on the methylation matrix generated by the
quantification module. First, using the top 2,000 regions with largest variance in the data as the
input, principal components of the methylation matrix are identified with the prcomp function.
Next, low-dimensional representation of the data is generated using UMAP (Mclnnes et al.
2018) and the top principal components explaining the largest variance in the data. In the low-
dimensional feature space, density clustering is employed to identify cell populations in the
sample (Rodriguez and Laio 2014). Methylation rates for the user defined marker genes or

regions can be visualized on the UMAP and violin plots.

Differential methylation analysis is performed for each genomic region between two cell clusters
using t-test or Wilcoxon rank sum test. Only cells having sufficient number of cytosine calls to
estimate the methylation level for that region are used. P-values are corrected for multiple
testing with the Benjamini-Hochberg method. A heatmap showing the expression levels of
significantly differentially methylated regions is generated using the pheatmap package (Kolde
and Others 2012).

Processing of frontal cortex dataset

We processed the snmC-Seq dataset of human frontal cortex (Mclnnes et al. 2018; Luo et al.
2017) as follows. Bismark cov files for the methylation calls were obtained from GEO
(accession GSE97179). We quantified CpG methylation calls for each cell across gene bodies
(from transcription start sites (TSS) to the end of 3' UTR), promoters (upstream and
downstream 2Kb of TSS) and genomic bins (100Kb and 10Kb) for 200 cells. UMAP
dimensionality reduction was applied for each of the feature matrices above on the top 10 PCA
components responsible for the largest variance in the data. For the regions without sufficient
number of CpG calls for methylation level estimate, we used the mean methylation rate of the
entire population for that region. Density clustering was employed to identify cell clusters, and
t-test was used to identify the differentially methylated genes. We then inspected methylation
levels of excitatory and inhibitory neuron marker genes and performed differential methylation
analysis with SINBAD. GO terms enriched in differentially methylated genes across the clusters
(adjusted p <0.01) were computed using metascape (Zhou et al. 2019) .
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Parallelization

SINBAD is implemented with the R statistical programming language (Wirtschaftsuniversitit
Wien Department of Statistics and Mathematics 2008). To increase processing speed, we
implemented parallel processing with multiple threads by using R doSNOW package (Analytics
and Weston 2014) in SINBAD. For the demultiplexing step, the multiplexed inputs can be
demultiplexed individually by a separate thread. In the same manner, all the remaining steps can
be parallelized for the individual cells using isolated processes with user-specified number of
threads, until dimensionality reduction. This flexibility allows the user to adjust the balance
between memory and CPU allocation and running time. We noticed that Bismark alignment can
terminate prematurely when the allocated memory becomes insufficient. This is remedied in

SINBAD by additional alignment attempts for the cells for which the mapping thread fails.
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