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Abstract

AlphaFold2 showed a substantial improvement in the accuracy of protein structure prediction.
Following the release of the software, whole-proteome protein structure predictions by
AlphaFold2 for 21 organisms were made publicly available. Here, we developed the infrastructure,
3D-AF-Surfer, to enable real-time structure-based search for the AlphaFold2 models by combining

molecular surface representation with 3D Zernike descriptors and deep neural networks.

Structural biology has entered a new phase when structure prediction methods, particularly a recent
method, AlphaFold2!, consistently produce reliable computational structure models with atomic
accuracy. Protein structure prediction has been extensively studied in the computational biology
community. Taking advantage of the accumulated protein sequence and structure information in
the Protein Data Bank (PDB)?, numerous methods have been developed based on different
scientific disciplines, ideas, and various computational techniques. In the past few years, methods
that use machine learning methods, particularly deep neural networks, made a large improvement
in structure prediction accuracy in the Critical Assessment of techniques in protein Structure
Prediction (CASP)?. In CASP14, a breakthrough was achieved by AlphaFold2', which showed the
best performance among participants with a substantial gap to the second-best method.
Remarkably, the accuracy of AlphaFold2 models often reaches what would be expected from X-
ray crystallography. It has been reported that models generated by AlphaFold2 have indeed helped
experimental protein structure determination, as such models were successfully used for molecular

replacement in X-ray crystallography and for density interpretation of cryo-EM maps*°.
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Soon after the release of the AlphaFold2 code, predicted structure models by AlphaFold2
for proteins from 21 major model organisms have been released at the AlphaFold Protein Structure
Database®. This is an invaluable resource for the biology community as modelled protein structures
can be easily obtained without installing and running the AlphaFold2 software. Many proteins that
do not have experimentally determined structures now have computational models with an

expected high accuracy.

Here, we provide the infrastructure, 3D-AF-Surfer, for real-time protein structure model

search within AlphaFold2 models and across entries in PDB at https://kiharalab.org/3d-

surfer/submitalphafold.php. In any database, the functionality for quick entry search and

comparison are essential. In 3D-AF-Surfer, quick structure search against the entire PDB and
AlphaFold2 models is realized with 3D Zernike descriptors (3DZD), which are rotationally
invariant, mathematical representations of 3D shapes’. 3DZDs were shown to be effective in rapid
protein structure database search® and other tasks that involve biomolecular shape comparison and
matching’. In 3D-AF-Surfer, we further developed neural networks that take 3DZDs of proteins
as input and achieve more accurate retrieval of proteins of the same fold than direct comparison of

3DZDs.

In 3D-AF-Surfer, protein structure models generated by AlphaFold2 for 21 proteomes were
retrieved from the European Bioinformatics Institute’s FTP server of the AlphaFold Database

(https:/ftp.ebi.ac.uk/pub/databases/alphafold) on July 22, 2021, which is still up-to-date on Oct

21, 2021. AlphaFold2 assigns one of four confidence levels, from very high confidence to very
low confidence, to each amino acid position in a model. The confidence levels were assigned by
predicted local distance difference test (pLDDT) score'®, which examines the accuracy of Co atom

distances in a model. Since many models have low or very low confidence regions, which often
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have unfolded conformation, we extracted confident domain region(s) from each model in 3D-AF-
Surfer (see Methods). In total, this procedure yielded 508,787 domains, which cover 48.8% of
residues in the all the Alphafold2 models. The statistics of model counts is provided in

Supplementary Table 1.
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Figure 1. Input and an output example of 3D-AF-Surfer. a, the input page (see text). b, an example output
page. The query was PDB ID: 7tim-A, a TIM-barrel fold and search was against AlphaFold models using
the deep neural network. As shown, retrieved top 25 hits are all TIM-barrel folds with a distance of 0.0,

indicating that the network judged that these structures are highly likely to belong to the same fold.

Fig. 1 illustrates the input and output panels of 3D-AF-Surfer, available at

https://kiharalab.org/3d-surfer/submitalphafold.php. In the input panel, users can enter the

AlphaFold model ID, PDB ID or upload the file of the query structure (Fig. 1a). When the first
couple of letters of ID are entered, candidates of the rest will be listed. Then, the representation of
protein structures used to compute 3DZD needs to be specified (full atom or mainchain). Next,
select the database to search against, which can be the full AlphaFold proteome database, structures
from PDB (complexes, domain structures) or both. Users also have an option to select the method
of the database search, a deep neural network-based search (the default setting), which is suitable
for retrieving proteins with the same fold (see below) or original 3DZD-based search that is
equipped in 3D-Surfer. The result page shows a table where the query structure is displayed on the
left side and on the right, and a list of retrieved structures ranked by their similarity to the query
(Fig. 1b). Clicking a retrieved structure invokes a new search using the selected structure as the
query. The panel also provides the option to compute the root mean square deviation (RMSD)
between the query and the displayed similar structure. Pockets in the query structure can be
identified using VisGrid'' or LIGSITE!?. Finally, shown at the bottom of the page is the 3DZD of

the query structure.
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As of October 21, 2021, PDB entries in 3D-AF-Surfer are updated weekly. Currently, the
server holds 539,936 protein chains and 249,091 additional domain structures from PDB, and
508,787 domain structures from the AlphaFold Database. Average time for a search measured over
ten queries is as follows, when the neural network is used: Against AlphaFold domains: 55 seconds
(s); PDB chains: 1 min 10s; PDB domains: 22s; PDB chains+domains: 1 min 15s; All of the above:
2 min 26s. Search is faster if 3DZD is used: 3s against AlphaFold domains; 1.35s, 1.45s, 1.93s

against PDB chains, domains, and chains+domains, respectively, and 2.45s for All of the above.

Fig. 2a shows a breakdown of fold class of domain structures of AlphaFold2 models in
comparison with SCOPe!®. Four fold classes are considered, a, B, off, and small proteins. off
corresponds to the a+f and o/ fold classes in SCOPe. The fold classification was performed with
a machine learning method, a bagged ensemble of support vector machine classifiers (SVMs)
using the secondary structure content of SCOPe domains (see Methods). The bagged ensemble
had an accuracy of 91.5% (Supplementary Table 2). The classification result for SCOPe (Fig. 2a)
is qualitatively consistent with earlier statistics of CATH'#, where the a8 class occupies over 50%
and the share of a-class is around 15%. On the other hand, we note a greater prevalence of a-class
structures among the AlphaFold2 domains (Fig. 2b) than in the SCOPe statistics (Fig. 2a). This

result probably indicates that a-class structures tend to have higher confidence than other classes.
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Figure 2. Distribution of protein secondary structure classes and fold classes of confident domains of
AlphaFold2 models. a, the secondary structure classes were assigned to SCOPe domains and domains of
high confidence in AlphaFold2 models. Four classes were considered, a, B, afy, and small proteins. Left,
SCOPe (232,630 domains); right, domains of high confidence in AlphaFold2 models. (508,787 domains).
The classification was performed using a bagged SVM ensemble (see Methods). SCOPe domains (left)
were also classified with the SVM ensemble to be able to compare with the results on AlphaFold2 domains
(right). b, fold classification of the AlphaFold2 structure domains of high confidence. The classification
was performed with the deep neural networks that were trained on the fold assignment provided in SCOPe
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(see Methods). The outer wheel indicates fraction of each fold. Folds were ordered according to SCOPe
IDs. Left, the fold distribution of AlphaFold2 domains using the deep network trained on 3DZDs of full
atom domain structure surface. The inner wheel shows fraction of secondary structure classes. Since this
classification was based on the fold assignment, the fractions are overall consistent but not identical to those
shown in panel a. The top 10 most abundant folds are indicated. Right, the fold distribution using the deep
network trained on 3DZDs of surface shapes with main-chain atoms. ¢, the 10 most abundant folds among
AlphaFold2 domains. The fraction of each fold is indicated in the wheel diagram on the left in panel b. For
each fold, an example of AlphaFold domains is shown. 1. Non-globular all-alpha subunits of globular
proteins (a.137). Example shown is AOA1D6E4Z3 F1, residue 823-895 (maize). 2. ROP-like (a.30):
AO0A1D6MV33 F1, residue 758-815 (maize). 3. Mediator hinge subcomplex-like (a.252). Q4DL50 FI1,
residue 384-495 (T. cruzi). 4. BAR/IMD domain-like (a.238). Q8LES8 F1, residue 2-133 (Arabidopsis).
5. Intrinsically disordered proteins (g.88). I1IL2C2 FI1, residue 210-284 (soybean). 6. N-terminal domain
of bifunctional PutA protein (a.176). ATMBM?2 F1, residue 157-225 (human). 7. L27 domain (a.194).
AOA1D6PKM6 F1, residue 314-375 (maize). 8. alpha-alpha superhelix (a.118). K7KHYS8 _F, residue 213-
524 (soybean). 9. Spectrin repeat-like (a.7). P38637 F1, residue 149-238 AFvl (S. cerevisiae). 10 SRF-
like (d.88). AOAID6NUQ9 F1, residue 2-74 (maize).

To have an overall grasp of the fold distribution of AlphaFold models, we used the deep
neural network of 3D-AF-Surfer and classified AlphaFold domain structures into SCOPe folds
(Fig. 2b). For this classification, we considered 1,101 folds in the class a (all a proteins), b (all
proteins), ¢ (o/B proteins), d (a+f proteins), and g (small proteins) in the SCOPe database. The
neural network takes 3DZDs of two protein structures and outputs the probability that the two
structures belong to the same SCOPe fold'® (Supplementary Figure 1; see Methods). We trained
two networks, one that uses 3DZDs computed from full-atom protein surface and another one that
takes 3DZDs computed from main-chain Ca, C, and N atoms'®. The network with the main-chain
atoms showed higher classification accuracy (95.0%) than the full-atom network (Supplementary
Table 3). This accuracy was higher than the original 3D-Surfer®, which compares 3DZDs directly

with the Euclidean distance.

The fold classification results are shown in Fig. 2b. The inner and the outer wheels of the

pie charts show the classification result at the secondary structure class level and at the individual
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SCOPe folds, respectively. The distribution of the secondary structure class levels is consistent
with Fig. 2a, which was classified from secondary structure content of models. Classifications
using the main-chain atoms (the left panel in Fig. 2b) and full-atoms (the right panel) were also
consistent. Overall, the a-class folds are dominant when all the proteomes are considered. Among
the 10 most abundant folds (Fig. 2¢), eight of them belong to the a-class, one to the af-class (d.88),
and one to the small protein class (g.88), respectively. When fold classification was examined at
each organism (Supplementary Table 4), some differences among organisms were observed. Four
bacterial species, M. jannaschii, M. tuberculosis, S. aureus, and E. coli have four to five af3-class
folds among top 10, which include TIM B/a-barrel (c.1) and PLP-dependent transferase-like fold
(c.67). Immunoglobulin-like B-sandwich (b.1) was within top 5 in mouse, rat, and human. Plant

proteomes had a -class fold, CsrA-like (b.151) among top 10.

At last, we also analyzed low-confidence regions of AlphaFold2 models as they are not
handled in 3D-AF-Surfer and thus left out from the above analysis. Particularly, we analyzed
correlation between the low-confidence regions (pLDDT < 0.5 and 0.7) from AlphaFold2 models
and disorder predictions. We used two disorder prediction methods, SPOT-Disorder-Single!” and
fIDPnn'®. According to the two methods, about 14% to 18% of residues are disordered (Fig. 3a).
On the other hand, considering 0.5 and 0.7 pLDDT as cutoffs, more residues, 25% and 36.5%, in
AlphaFold2 models were in low confidence regions (Fig. 3b). The percentage of low-confidence
residues varies for different species. Low-confidence regions are relatively small (7-13%) in the
four bacterial proteomes, while D. discoideum has the largest fraction of low-confidence residues,

58.4%. For the other organisms, low-confident residues share about 30-40%.

In Fig. 3d and e, we compared disorder predictions and the model confidence scores using

two score cutoffs, pLDDT of 0.5 and 0.7. When SPOT-Disorder-Single was used for disorder
9
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prediction (Fig. 3d), 52.6% and 44.2% of low-confidence regions defined with a pLDDT cutoff of
0.5 and 0.7, respectively, were predicted as disordered. Thus, reversely, 47.4% and 55.8% of low-
confidence regions were predicted as ordered. On the other hand, almost all high confident-regions
were predicted to be ordered. The result was essentially the same when fIDPnn was used (Fig. 3e),
except that disordered residues in low-confidence regions became even less, 33.5% and 30.9%
using pLDDT of 0.5 and 0.7 as a cutoff, respectively. The results indicate that low-confidence
regions do not always correspond to disordered regions, at most only 30 to 50%, and rest would
be folded in native protein structures. Fig. 3f-i show several examples. The first three panels (f, g,
h) are similar cases. Low-confidence residues at pPLDDT around 0.4 or lower have a wide range of
disorder propensities, and about half of such residues have low disorder propensity and probably
would be folded in the native structures. In the model shown in Fig. 3i does not have residues with

high disorder propensity, implying that the protein would be well folded in the native form.

10
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Figure 3. Correlation between predicted disordered regions and low-confidence regions in
AlphaFold2 models. a, percentages of residues that were predicted as disordered or ordered by SPOT-
Disorder-Single (left) and fIDPnn (right). b, percentages of residues that were with a low confidence score
< 0.5 (left) and < 0.7 (right). ¢, percentages of residues with a low confidence score < 0.7 for each
proteome. d, the number of residues in predicted disordered regions in low-confidence regions with 0.5,
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0.7 cutoff. prediction was made by SPOT-Disorder-Single. e, the same type of analysis as panel d using
disorder region prediction by fIDPnn. f, g, h, i, case studies of correlation between the confidence score and
disorder propensities by SPOT-Disorder-Single. The AlphaFold2 model ID is provided at the top of the
plot. Left, the model structure. The color code shows the confidence level as used in the AlphaFold
Database: blue (pLDDT>90), light blue (90>pLDDT>70), yellow (70>pLDDT>50), orange (pLDDT<50).
Right, correlation between the confidence score (x-axis) and disorder propensity (y-axis) for each residue
by SPOT-1D-Single.

Online Methods
Extraction of confident domain regions in Alphafold2 models

To extract a confident domain in an AlphaFold2 model, we first extracted all contiguous regions
of more than 50 confident residues that have a pLDDT score greater than 70.0. Then, confident
regions separated by at most 5 non-confident residues were merged, along with the intervening
residues regardless of confidence level. AlphaFold2 models were discarded if they have no
confident domains. In total, this procedure yielded 508,787 domains. 83,615 (22.9%) models out
of 365,198 total AlphaFold2 models contain no confident domains. The statistics of model counts
is provided in Supplementary Table 1. In terms of total residues, the domain dataset in 3D-AF-
Surfer contains 48.8% (78,133,986 residues) of residues among the residues in the all the

AlphaFold2 models (160,235,650 residues).

SCOPe Benchmark Dataset for Structure Classification

We downloaded the latest version of the SCOPe dataset release 2.07 from the download page of
the SCOPe website (https://scop.berkeley.edu/downloads/). The dataset included 256,391
structures in 1,430 folds after removing structures in class I (Artifacts). For each of the protein
structures we used EDTSurf!® to generate the solvent excluded surface, for which a 3DZD vector

12
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is computed. We computed two types of 3DZD vector for a structure. The first one is computed
using full atom of the protein structure. The second 3DZD is computed using only the main-chain
Ca, C, and N atoms from the structure, because this main-chain surface representation performed

better in our previous work!.

Classification of secondary structure class with bagged SVM.

The fold classification was performed with a bagged ensemble of SVMs using the secondary
structure content of SCOPe domains. In bagging, N = 20 different classifiers were trained on 5%
of the SCOPe dataset selected randomly with replacement. The output classes were then decided
by voting. On the training set, the bagged ensemble had an accuracy of 91.5%. This accuracy was
higher than five other methods we compared, which were a multinomial logistic regression, two
SVM architectures, and two expert-designed approaches. In the expert-designed approaches, the
secondary structure content thresholds, i.e. fraction of amino acids in a protein in a helices, 3
strands, and coil (other structures) were considered. A detailed comparison of these methods is

provided in Supplementary Table 2.

3D Zernike Descriptors (3DZD)

3DZDs are mathematical rotation-invariant moment-based descriptors. For a protein structure, a
surface from a set of atoms was constructed and then mapped to a 3D cubic grid of size N* (N =
200). Each voxel (a cube defined by the grid) is assigned either 1 or 0; 1 for a surface voxel that
locates closer than 1.7 grid intervals to any triangle defining the protein surface, and 0 otherwise.

This grid was considered as a 3D function f(x), for which a series was computed in terms of the

13
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Zernike-Canterakis basis’. 3D Zernike moments of f(x) are defined as the vector of coefficients

of the expansion in this orthonormal basis, and the rotationally invariant 3DZDs are defined as

norms of the vectors’.

Deep neural network for fold classification

Using the generated 3DZD, we trained a deep neural network that outputs the probability that a
given pair of protein structures belong to the same fold. The network (Supplementary Figure 1)
takes the 3DZDs of two protein shapes as input. Three hidden layers have 250, 200, and 150
neurons, respectively, which were used as the encoding of an input 3DZD. The encoder is
connected to the feature extractor, a fully-connected network, which takes the 3DZDs of the two
proteins, and the encodings from the three hidden layers, and four metrics that compare two vectors,
the Euclidian distance, the cosine distance, the element-wise absolute difference, and the element-
wise product, and the two features of the two protein shapes (the difference in the number of
vertices and faces). In total, the number of the input features of the feature comparator is 2*121 +
2 *(250+200+ 150) +2 * 4+ 2 = 1,452 features. The first term is the 3DZDs of order 20 (n=20),
which is a 121-element vector of the two protein shapes. The third term, 2 * 4 comes from the
four-comparison metrics applied to two representations of the two proteins, the original 3DZDs
and encodings, which concatenate the output of the input layer and the three intermediate layers
of the encoder. The feature comparator outputs a score between 0 and 1 using a sigmoid activation
function, which is the probability that the two proteins are in the same fold classification in the

SCOPe database.
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The training and validation were performed on the aforementioned structure dataset of
SCOPe. Out of 256,391 structures in 1,430 unique folds, we set aside 2,541 structures for model
validation. For each of the structure in the database, we generated positive and negative pairs.
Positive pairs are protein structures that belong to the same fold, while negative pairs are from
different folds. For training, we randomly sampled a balanced set of positive and negative pairs
based on the batch size (i.e. 32 positive pairs and 32 negative pairs for a batch size of 64). We used
ADAM for parameter optimization with a binary cross entropy loss function. The learning rate
was explored from le-3 to 7e-3 and 0.1-0.7 in our previous work and set to 0.005'°. The accuracy
of networks was evaluated on the negative and positive set generated from the 2,541 structures,

which totals 167,872 pairs.

To assign a fold to a query protein, the query was compared with 10 randomly selected
structures from each SCOPe fold. Then, the fold that showed the highest probability for the query
is assigned. Although the training of each network was performed on the folds for all the classes
except for the artifact class (class I), in the pie charts in Figure 2 we assigned to folds that belong
to o, B, af (a+P and af), and small proteins, because the other classes are consider factors other

than structural features.

Disorder region prediction methods

We used two methods, fIDPnn'® and SPOT-Disorder-Single!”. fIDPnn uses profile information
computed by three other methods, which is processed by a deep learning architecture to output
residue-wise disorder prediction. fIDPnn showed the top performance in the most recent Critical

Assessment of protein Intrinsic Disorder prediction (CAID) experiment?®. Following the
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instruction of the software, residues with a disorder propensity score above 0.3 were considered as
disordered. We used the open-sourced implementation and trained models at

http://biomine.cs.vcu.edu/servers/fIDPnn/.

SPOT-Disorder-Single is a fast method that computes prediction from the single sequence
of the query. It uses an ensemble of nine models. At their core, each model is constructed from
ResNet blocks and/or LSTM BRNN blocks. Following the instruction of the software, residues
with a disorder propensity score above 0.426 were considered as disordered. We adopted the local

version of SPOT-Disorder-Single available at (http://sparks-lab.org/server/SPOT-Disorder-Single)

and kept the default configuration.
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