
 1 

Influences of rare copy number variation on human complex traits 

  
Margaux L.A. Hujoel1,2,*, Maxwell A. Sherman1,2,3, Alison R. Barton1,2,4, Ronen E. Mukamel1,2, Vijay G. 

Sankaran2,5, Po-Ru Loh1,2,* 

 
1 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, 

MA, USA 
2 Broad Institute of MIT and Harvard, Cambridge, MA, USA 
3 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA 
4 Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, MA, USA 
5 Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber 

Cancer Institute, Harvard Medical School, Boston, MA, USA 
 

* Correspondence should be addressed to M.L.A.H. (mhujoel@broadinstitute.org) or P.-R.L. 

(poruloh@broadinstitute.org) 
 

 

Abstract 

 

The human genome contains hundreds of thousands of regions exhibiting copy number variation (CNV). 

However, the phenotypic effects of most such polymorphisms are unknown because only larger CNVs 

(spanning tens of kilobases) have been ascertainable from the SNP-array data generated by large biobanks. We 

developed a new computational approach that leverages abundant haplotype-sharing in biobank cohorts to more 

sensitively detect CNVs co-inherited within extended SNP haplotypes. Applied to UK Biobank, this approach 

achieved 6-fold increased CNV detection sensitivity compared to previous analyses, accounting for 

approximately half of all rare gene inactivation events produced by genomic structural variation. This extensive 

CNV call set enabled the most comprehensive analysis to date of associations between CNVs and 56 

quantitative traits, identifying 269 independent associations (P < 5 x 10-8) – involving 97 loci – that rigorous 

statistical fine-mapping analyses indicated were likely to be causally driven by CNVs. Putative target genes 

were identifiable for nearly half of the loci, enabling new insights into dosage-sensitivity of these genes and 

implicating several novel gene-trait relationships. CNVs at several loci created extended allelic series including 

deletions or duplications of distal enhancers that associated with much stronger phenotypic effects than SNPs 

within these regulatory elements. These results demonstrate the ability of haplotype-informed analysis to 

empower structural variant detection and provide insights into the genetic basis of human complex traits. 
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Introduction 

 

Copy number variants (CNVs), which duplicate and delete 50 base pair to megabase-scale genomic 

segments throughout the human genome1–3, are known to contribute to numerous genomic disorders including 

neuropsychiatric diseases4–6 and have been estimated to account for a considerable fraction of all rare loss-of-

function (LoF) events affecting protein-coding genes2. Beyond disrupting coding sequences of genes, CNVs can 

also have unique functional consequences not producible by SNPs: for example, duplications can increase gene 

dosage, and deletions can eliminate regulatory elements. Investigating the broader phenotypic impacts of CNVs 

thus has the potential to uncover new large-effect variants and further our understanding of the genetic 

architecture of complex traits. 

However, well-powered, phenome-wide CNV association analyses to date have been limited to 

considering large CNVs (tens of kilobases or longer) detectable from low-cost SNP-array data7 available for 

biobank-scale cohorts. Moreover, CNV association studies have encountered analytical challenges such as how 

to harmonize imprecise breakpoints of CNV calls, how to group CNVs for association testing, and how to filter 

associations that only reflect linkage disequilibrium with nearby SNPs. Despite these difficulties, previous 

studies have made many important discoveries both by investigating the role of known pathogenic CNVs on 

various phenotypes8–10 and by conducting association analysis on all CNVs detected in large cohorts11–17, 

including UK Biobank18. Here we developed a more sensitive CNV-detection method leveraging haplotype-

sharing within biobank cohorts and applied it to UK Biobank, empowering exploration of the phenotypic effects 

of CNVs at much higher resolution than previously possible.  

 

Results 

 

Haplotype-informed copy-number variant detection 

 

We developed a novel computational approach to CNV detection, called HI-CNV (Haplotype-Informed 

Copy-Number-Variation), that substantially increases CNV detection power in large cohorts by pooling 

information across individuals who share extended SNP haplotypes. The intuition behind this approach is that in 

large biobank cohorts, population-polymorphic CNVs are usually carried by multiple individuals who co-

inherited a CNV on a shared haplotype originating from a common ancestor. As such, power to detect a CNV 

can be increased by sharing information about its presence (e.g., from genotyping array intensity data) across 

multiple carriers (Fig. 1a). 

To identify individuals who are likely to share a segment of genome inherited from a recent common 

ancestor (and therefore likely to have co-inherited any CNVs contained within the shared genomic tract), we 
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adapted recent approaches that use the positional Burrows-Wheeler transform (PBWT)19 to rapidly identify 

identity-by-descent (IBD) segments20. Specifically, for each haplotype of each individual in a cohort, we use a 

PBWT-based algorithm to identify its closest “haplotype neighbors” – i.e., the longest IBD matches with other 

haplotypes in the cohort – spanning each genomic position (Fig. 1a). Then, given quantitative information about 

the potential presence of a CNV in genetic data from the individual, as well as corresponding information from 

“haplotype neighbors,” we use a hidden Markov model (HMM) to detect CNVs co-inherited on shared 

haplotypes. 

To apply our HI-CNV approach to SNP-array genotyping probe intensity data available for the UK 

Biobank cohort, we further developed methods to learn probabilistic models that map allele-specific probe 

intensity measurements to probabilistic information about copy-number likelihoods (Fig. 1b). Intuitively, 

genotyping probes within CNVs produce distinctive intensity measurements compared to probes not within 

CNVs. While these deviations are difficult to detect given data from one SNP, the signal becomes clearer when 

consistent deviations are observed across multiple consecutive SNPs7 – or, for HI-CNV, across multiple 

individuals co-inheriting a CNV. To optimize signal available from SNP-array probe intensities, we estimated 

SNP-specific genotype cluster priors corresponding to nine possible genotypes across copy-number states 1 

(deletion), 2, and 3 (duplication) (Fig. 1b), and we also denoised total intensities using principal component 

analysis. Full methodological details are provided in Methods and the Supplementary Note. 

 

Modeling haplotype sharing increases CNV detection power in UK Biobank 

 

We applied HI-CNV to detect CNVs across 452,500 UK Biobank participants of European ancestry. HI-

CNV detected >6 times as many CNVs per individual as the widely-used PennCNV method (Fig. 1c), 

producing an average of 31.1 CNV calls per individual (18.4 deletions and 12.7 duplications spanning an 

average of 430kb and 899kb, respectively; Fig. 1c,d and Supplementary Table 1) . In contrast, previous 

PennCNV-based analyses of UK Biobank SNP-array intensity data produced ~4-6 CNV calls per individual 

depending on quality-control filters applied8,12. Validation analyses using whole-genome sequencing (WGS) 

pilot data available for 43 participants estimated a validation rate of 91% for HI-CNV, similar to that of 

PennCNV (Methods, Fig. 1e, and Supplementary Table 2). 

HI-CNV’s increased detection sensitivity was driven by improved ability to detect CNVs on the scale of 

10kb or shorter (Fig. 1f; Supplementary Table 3), which account for the majority of all CNVs1–3 but have 

traditionally been difficult to detect from SNP-array data. We designed HI-CNV with the goal of sensitively 

detecting low-frequency and rare CNVs of length >5kb (versus ~50kb for previous SNP-array-based analyses of 

UK Biobank), focusing on CNVs with minor allele frequency (MAF) < 5% because of their potential to be 

more deleterious and because SNP-array designs tend to avoid common CNV regions. Among such CNVs 
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called from WGS pilot data and spanning at least two SNP-array probes (the minimum required by our 

approach), HI-CNV achieved a recall rate of 81% (Supplementary Fig. 1 and Supplementary Table 4). Recall 

was unsurprisingly much lower (6%) when considering all MAF<5% CNVs called from WGS data (i.e., 

removing restrictions on size and array-overlap), consistent with most CNVs being shorter than the resolution of 

SNP-array probe spacing. However, recall of gene-overlapping CNVs was substantially higher (24%) because 

the UK Biobank SNP-array was designed to prioritize inclusion of coding variants18. Moreover, the HI-CNV 

call set appeared to account for approximately half of the 10.2 genes per genome estimated to be altered by rare 

structural variants2: restricting to rare (MAF < 1%) whole-gene duplications and CNVs predicted to cause loss-

of-function (pLoF), a mean of 5.0 genes per individual were altered by such CNVs (2.8 pLoF and 2.2 gene 

duplications). Across 18,251 genes, whole-gene duplications and pLoF CNVs were called in a median of 6 and 

8 individuals, respectively, with observed counts decreasing with increasing gene constraint (Fig. 1g).  

 

Fine-mapping analyses reveal likely-causal CNV-trait associations 

 

 HI-CNV’s detection of many previously-undiscovered CNVs in UK Biobank suggested that CNV-

phenotype association analyses might uncover new CNVs impacting human traits. We applied a combination of 

single-variant and burden-style analyses to test three categories of CNVs (gene-level, CNV-level, and probe-

level; Fig. 2a) for association with 56 heritable quantitative traits, including anthropometric traits, blood 

pressure, measures of lung function, bone mineral density, blood cell indices, and serum biomarkers 

(Supplementary Data 1). We performed association analyses on up to 452,500 UK Biobank participants of 

European ancestry using linear mixed models implemented in BOLT-LMM21,22. We then removed associations 

that could potentially be explained by linkage disequilibrium with other variants by requiring each association 

to remain significant (P < 5 x 10-8) after conditioning on any other more-strongly-associated SNP, indel, or 

CNV within 3 megabases (Methods). We previously observed that when fine-mapping associations involving 

rare variants (which comprised nearly all CNVs we detected; Supplementary Fig. 2 and Supplementary Table 

5), this pairwise LD filter effectively identifies variants likely to causally drive associations23. This analysis 

pipeline resulted in 269 fine-mapped CNV-trait associations at 97 loci involving 252 likely-causal CNVs 

(Supplementary Data 2 and 3). 

 Many of the 269 likely-causal CNV-phenotype associations had large effect sizes – including 59 

associations with an absolute effect size greater than 1 standard deviation (s.d.) – and effect sizes generally 

increased with decreasing minor allele frequency (MAF) (Fig. 2b). Only 10 of the 269 associations involved 

common (MAF > 5%) CNVs, whereas 186 associations involved CNVs with MAF < 0.1%. The associations 

affected most categories of phenotypes we considered, with blood cell phenotypes accounting for the majority 

of likely-causal associations (137 of 269 associations). 
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The likely-causal CNV-phenotype associations involved at least 252 unique CNVs (138 deletions, 114 

duplications; Methods and Supplementary Data 3) which were enriched for multiple attributes correlated with 

functional impact (Fig. 2c). Likely-causal CNVs tended to be longer than average13 and were much more likely 

to overlap coding sequences of genes (85.8% coding-overlapping vs. 22.1% expected for deletions; 94.7% vs. 

43.4% expected for duplications; Fig. 2c and Supplementary Table 6). For the small fraction of likely-causal 

deletions that did not overlap coding sequence (14.2%), roughly half overlapped enhancer annotations (42.1% 

vs. 8.4% expected; P = 7.76 x 10-5) (Supplementary Table 7). The majority of likely-causal deletions affected 

either one gene (35%) or two genes (18%), facilitating further investigation of potential targets of trait-

modifying CNVs.  

 

CNV loci corroborate SNP associations and implicate new genes 

 

Of the 97 loci involved in the 269 fine-mapped CNV-trait associations, 74 loci represented novel (to our 

knowledge) CNV-trait associations (Fig. 2d). In assessing novelty, we considered all previously published 

large-scale CNV association studies of which we were aware6,10–15,17, including previous analyses of UK 

Biobank in which CNVs were genotyped using PennCNV10,12 (which did not detect most likely-causal CNVs 

smaller than 100 kb; Supplementary Fig. 3). For half of the novel CNV loci (37 of 74 loci), we could identify a 

putative target gene (Fig. 2d,e and Supplementary Data 3). Among the 23 previously reported loci, roughly half 

(13 loci) corresponded to syndromic CNVs known to cause genetic disorders (Methods). These CNVs generally 

affected more phenotype categories and overlapped more genes than CNVs at non-syndromic loci (Fig. 2f), as 

expected.  

Many CNV associations corroborated target genes recently implicated by coding variant association 

studies14,23,24, including rare height-reducing deletions in CRISPLD2 and ADAMTS17, a rare sex hormone 

binding globulin (SHBG)-increasing deletion in HGFAC, and a rare IGF-1-decreasing partial deletion of MSR1 

(Fig. 2e). Other CNVs altered genes with known function but for which effects of population-polymorphic 

variants have not previously been described, such as TFRC (encoding transferrin receptor protein 1)25,26. Ultra-

rare CNVs predicted to result in TFRC loss-of-function (pLoF) were found in 15 individuals and associated 

with 2.24 (s.e. 0.22) s.d. lower mean corpuscular hemoglobin and increased risk of iron deficiency anemia (OR 

= 4.9 (95% CI, 1.2-18.1); P = 0.034, Fisher’s exact test among unrelated participants). Several other CNV 

associations newly implicated genes contributing to the architecture of complex traits (Fig. 2e). Given the large 

number of novel CNV loci identified here, we focus below on describing three classes of particularly interesting 

loci: (1) CNV associations stronger than any nearby SNP, (2) loci at which CNVs, together with nearby SNPs, 

created long allelic series, and (3) additional loci newly implicating putative target genes. 
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New CNV associations stronger than nearby SNPs 

 

 Among 169 associations involving non-syndromic CNVs, a subset of 37 associations (22%) were 

stronger than associations of all SNPs within 500kb. Several of these associations implicated novel gene-trait 

relationships; here we highlight two loci with such associations. First, ultra-rare UHRF2 pLoF CNVs (carried 

by 19 UK Biobank participants) associated with a 1.11 (0.17) s.d. decrease in height (corresponding to 7.2 (1.1) 

cm shorter stature; P = 8.2 x 10-11; Fig. 3a and Supplementary Table 8). This association between UHRF2 and 

height was not visible from SNPs at the locus, none of which reached genome-wide significance (Fig. 3a). 

However, among 185,365 exome-sequenced UK Biobank participants27, nine carriers of UHRF2 protein-

truncating SNP or indel variants (PTVs) exhibited 1.03 (0.25) s.d. decreased height (P = 3 x 10-5), corroborating 

the CNV association (Fig. 3a, Methods, and Supplementary Information). UHRF2 has not previously been 

implicated in large genome-wide association studies of height, demonstrating the utility of CNV association 

studies and motivating further study of how loss of one functional copy of UHRF2 (which encodes an E3 

ubiquitin-protein ligase) impairs growth. 

Another set of associations implicated copy-number variation of SLC2A3 as a modifier of age at 

menarche (P = 1.6 x 10-17), height (P = 7.7 x 10-12), and blood count phenotypes (Fig. 3b and Supplementary 

Data 2). SLC2A3 encodes GLUT3, a glucose transporter expressed in multiple tissues, and is prone to non-

allelic homologous recombination that produces gene dosage-modifying ~130kb duplications and deletions 

(MAF = 1.9% and 0.4%, respectively, in our call set). SLC2A3 CNVs have been observed in many earlier 

studies, several of which have reported nominally significant associations with various clinical phenotypes; 

however, replication of these associations has been mixed28. In UK Biobank, SLC2A3 deletions associated with 

delayed menarche (0.20 (0.03) years), increased height (0.25 (0.08) cm), and decreased basophil and 

lymphocyte counts, while duplications associated with reciprocal effects of roughly half the magnitude (Fig. 3b 

and Supplementary Table 9). No individuals carried zero SLC2A3 copies (vs. 7.9 such individuals expected; P = 

0.0009), consistent with previous literature suggesting that homozygous LoF mutations may be incompatible 

with life28,29 (Supplementary Fig. 4). These results support a dosage-sensitive role of GLUT3 in multiple organ 

systems.  

Several other associations provided examples of loci at which SNP associations appeared to tag more-

strongly-associated CNVs. Among the 37 associations for which a non-syndromic CNV attained the strongest 

association within 500kb, 21 involved loci at which a nearby SNP also reached significance. For six of those 

associations, the top SNP association became non-significant upon conditioning on the CNV. For example, a 

low-frequency (MAF = 2.2%) deletion upstream of BMP5, which encodes bone morphogenetic protein 5, 

associated strongly with increased bone mineral density (0.12 (0.01) s.d.; P = 9.2 x 10-82) and appeared to 

explain strong SNP associations nearby (P = 3.8 x 10-51, conditional P = 0.24; Fig. 3c and Supplementary Table 
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10), highlighting the importance of including structural variants in GWAS fine-mapping. BMP5 SNP and indel 

PTVs associated with stronger effects on bone mineral density (0.48 (0.17) s.d.; P = 0.005), suggesting that the 

deletion might affect an upstream regulatory region for BMP5, and motivating further exploration of allelic 

series including CNVs and SNPs. 

 

Allelic series involving both regulatory and gene-altering CNVs 

 

Several CNV-trait associations contributed to long allelic series involving both CNVs that appeared to 

modify regulatory elements as well as CNVs that directly affected genes, providing opportunities to explore the 

effects of such mutations relative to one another and to SNP and indel polymorphisms. At the �-globin locus, at 

which copy-number polymorphisms of HBA2 and HBA1 (both encoding �-globin) are known to cause 

thalassemias, an extended allelic series containing eight classes of CNVs enabled further insights into genetic 

control of alpha-globin expression (Fig. 4a, Supplementary Fig. 5, and Supplementary Table 11). �-globin and 

�-globin together compose hemoglobin, and both the production and balance of �- and �-globin are important 

for normal erythropoiesis (such that relatively too little �-globin can lead to �-thalassemia whereas �-globin 

duplication can increase the severity of �-thalassemia)30,31. In UK Biobank, ultra-rare deletions that spanned 

either the �-globin gene pair, the upstream �-globin locus control region (HS-40), or the entire �-globin locus 

all associated with strongly decreased (~3 s.d.) mean corpuscular hemoglobin (MCH) and increased red blood 

cell (RBC) counts, consistent with such mutations causing �-thalassemia by inactivating the locus30,32–35. 

“Silent” deletions of only HBA2 associated with a relatively milder 1.7 (0.2) s.d. decrease in MCH. Intriguingly, 

duplications of these genomic elements exhibited a further range of effects: while duplications that increased �-

globin gene dosage by 1-2 copies appeared to have little or no impact on MCH, duplications of the entire �-

globin locus appeared to have an effect similar to loss of one �-globin gene (1.9 (0.2) s.d. lower MCH). This 

allelic series suggests that increased and decreased ³-globin expression result in similar hematological 

phenotypes (consistent with the importance of balance in �- and �-globin) and that enhancer function rather 

than �-globin gene dosage primarily limits increases in �-globin expression. These results illustrate the ability 

of biobank-scale CNV analyses to extend knowledge even at well-studied loci. 

Some allelic series involved known gene-trait relationships but appeared to reveal novel CNV effects 

with no SNP analogues. At JAK2, ultra-rare CNVs predicted to cause loss of JAK2 function associated with a 

1.16 (0.15) s.d. increase in platelet counts (P = 9.9 x 10-15; Fig. 4b and Supplementary Table 12). This 

association, which replicated in an analysis of SNP and indel PTVs (b = 0.89 (0.11) s.d., P = 1.1 x 10-15;  Fig. 

4b), corroborated previous reports of an unexpected negative regulatory role for Jak2 in thrombopoiesis36. 

Interestingly, a distinct set of ultra-rare deletions centered ~220kb upstream of JAK2 associated with a 0.54 

(0.09) s.d. increase in platelet counts (P = 9.5 x 10-9; Fig. 4b and Supplementary Table 12), roughly half the 
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effect size of pLoF variants. The focal <4kb region shared by these deletions matched a strong megakaryocyte-

specific accessible chromatin region previously implicated by common-SNP association and fine-mapping 

studies37 (Fig. 4b) that appeared likely to regulate JAK2 (Supplementary Table 13). However, deletion of the 

entire enhancer element associated with a five-fold larger effect on platelet counts than the single-base pair 

modifications produced by SNPs within the enhancer (Fig. 4b and Supplementary Table 12), highlighting the 

ability of CNVs to enable further insights into complex trait genetics by altering the genome in ways that SNPs 

cannot. 

Copy-number variants also contributed to an extended allelic series at IRF8, which encodes a 

transcription factor critical to monocyte differentiation38. Strong SNP associations with monocyte counts have 

previously been observed at the IRF8 locus, led by a common noncoding 10bp insertion in IRF8 with a mild 

effect size (0.102 (0.002) s.d.; P = 7.8 x 10-587; Fig. 4c and Supplementary Table 14). Multiple SNPs 

downstream of IRF8 also associated independently with monocyte counts (consistent with the presence of 

multiple distal enhancers39,40), including a low-frequency SNP (rs11642657; MAF=0.8%) with a larger effect 

size (0.39 (0.01) s.d.; Fig. 4c and Supplementary Table 14). CNVs provided further insights into complex 

genetics at this locus: loss of one functional copy of IRF8 (identified in 10 carriers of either pLoF CNVs or 

PTVs) appeared to produce a larger increase in monocyte count (0.94 (0.28) s.d.; P = 0.0009), while a 

downstream deletion near rs11642657 had a moderate effect size similar to this SNP (0.28 (0.04) s.d.; P = 4.7 x 

10-11), suggesting the presence of an important regulatory region (Fig. 4c). 

Some allelic series implicated new gene-trait associations. Ultra-rare deletions at R3HDM4, a gene with 

unknown function, associated with 0.54 (0.08) s.d. higher reticulocyte counts (P = 3.5 x 10-11; Fig. 4d and 

Supplementary Data 2). This association was corroborated by R3HDM4 PTVs (b = 0.52 (0.10) s.d., P = 2.7 x 

10-7), and a common intronic SNP also exhibited a mild-effect but strongly significant association with 

reticulocyte counts (b = 0.041 (0.002) s.d., P = 6.6 x 10-86; Fig. 4d and Supplementary Table 15). Interestingly, 

closer inspection of the deletions showed that they consisted of both exon-overlapping, pLoF deletions as well 

as intronic deletions falling fully within the first intron of R3HDM4, yet associating with a similar increase in 

reticulocyte counts (0.45 (0.10) s.d.; Fig. 4d). These results suggest a key regulatory role of the intronic region 

spanned by the deletions, which contains an accessible chromatin region (in erythroblasts) with predicted 

R3HDM4 enhancer function41,42. Despite their associations with reticulocyte counts, neither type of deletion 

appeared to affect red blood cell counts (P = 0.17). These observations, which will require further understanding 

of R3HDM4 function to explain, again show the ability of regulatory CNVs to have significant phenotypic 

impacts, sometimes as strong as gene-dosage altering CNVs. 

 

Diverse potential functional impacts of CNVs 
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The remaining likely-causal CNVs involved in new gene-trait associations (Fig. 2e) appeared to alter 

gene dosage or function via a diversity of genomic modifications. Four rare deletions appeared to reduce or 

abolish gene function in a variety of ways. Two deletions associated with height: an inframe deletion of DIS3L2 

exon 9 previously reported to reduce ribonuclease activity and cause Perlman syndrome (an autosomal recessive 

disease characterized by congenital overgrowth)43 surprisingly appeared to decrease height by 0.44 (0.04) s.d. 

in heterozygous carriers (P = 3.9 x 10-22), and a whole-gene deletion of SLC35E2B associated with modestly 

decreased height and increased MCH (Supplementary Data 2). Two other deletions associated with ~0.2-0.3 s.d. 

effects on platelet traits: an inframe deletion of DOK3 exon 3 and a deletion of the final exon of PARVB 

(encoding 26 of 364 amino acids) (Supplementary Data 2). 

Another novel gene-trait association involved ultra-rare (MAF=0.003%), large (>700 kb) duplications 

that appeared to target a single gene, CXCR4, and associated with a 0.99 (0.17) s.d. decrease in monocyte 

counts (P = 5.5 x 10-9, Supplementary Data 2). Gain-of-function mutations within CXCR4 (chemokine receptor 

4) cause autosomal dominant WHIM syndrome, an immunodeficiency disease44. Here, duplication of CXCR4 

appeared to produce relatively milder decreases in leukocyte counts (including 0.5 (0.2) s.d. reduced neutrophil 

and lymphocyte counts) with no apparent disease phenotypes. 

A final association with platelet distribution width involved a low-frequency (MAF=0.7%) variant that 

initially appeared to be a duplication at MTMR2 (Supplementary Data 2) but was surprisingly absent from CNV 

reference data sets2,45. Closer examination of sequencing reads from exome-sequenced carriers revealed that the 

structural variant actually constitutes a retroposition of the spliced MTMR2 transcript into an intron of LRCH1 

(Supplementary Note). A common SNP haplotype in a different intron of LRCH1 strongly and independently 

associated with increased platelet distribution width (P = 2.5 x 10-172), and both the SNP association and the 

insertion variant association (P = 3.5 x 10-17) appeared to be mediated by reduced LRCH1 expression (based on 

analyses of GTEx data46; Supplementary Note), with the insertion exhibiting four-fold larger effects 

(Supplementary Fig. 6 and Supplementary Table 16). This unexpected finding from SNP-array analysis hints at 

further discoveries that will be enabled by sequencing technologies capable of comprehensively genotyping 

structural variants.  

 

Contrasting effects of deletions and duplications 

 

Total genomic deletion burden and duplication burden have each been shown to associate with 

deleterious effects on several human traits11,47,48. We similarly observed negative associations of deletion and 

duplication burden with height and years of education (even after excluding syndromic CNVs), with deletions 

appearing to be roughly four-fold as deleterious as duplications (Fig. 5a,b and Supplementary Table 17). The 
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consistent negative effect directions of deletion burden and duplication burden contrasted with the opposite 

effect directions that we observed at several loci involving focal reciprocal CNVs (Supplementary Data 2). 

To more thoroughly explore the relative effects of focal deletions and duplications, we examined gene-

trait pairs for which we had previously identified PTVs likely to alter quantitative traits23. For each gene, we 

compared the effects of likely-causal PTVs to those of whole-gene deletions and duplications (Supplementary 

Note). As expected, gene deletions acted similarly to PTVs, with 16 of 41 genes exhibiting nominally 

significant deletion associations (Fig. 5c), consistent with available power (Fig. 5d). In contrast, gene 

duplications tended to act in the opposite direction as PTVs and with smaller effect magnitudes: 27 of 139 genes 

exhibited nominally significant duplication associations (Fig. 5e), consistent with duplications tending to have 

less than half the effects of deletions (Fig. 5f, Supplementary Fig. 7, and Supplementary Table 18). These 

results suggest a contrast between CNV burden, which may be driven by large CNVs that disrupt many genes 

and tend to be deleterious regardless of deletion or duplication status, versus focal CNVs, which may tend to 

change the dosage of a specific key gene, resulting in reciprocal effects of deletions and duplications.  

 

Discussion 

 

These results demonstrate the power of haplotype-informed structural variant analysis that leverages 

pervasive distant relatedness within large biobank cohorts to pool information about variants co-inherited by 

individuals who share extended SNP haplotypes. Applied to explore CNV-phenotype associations in UK 

Biobank, this approach uncovered many new ways in which genetic variation influences complex traits. At 

several loci, large-effect CNVs newly implicated putative target genes, and at several other loci, CNVs, together 

with nearby SNPs, created long allelic series illustrating the ability to CNVs to produce functional effects with 

no SNP analogues (e.g., gene copy-gain and regulatory element deletion or duplication). 

Beyond the specific biological findings reported here, our study also provides a careful analytical 

approach for handling the statistical subtleties of performing association and fine-mapping analyses on difficult-

to-call structural variants that can span large genomic regions. Additionally, the observation of several CNVs 

that represented lead associations at loci underscores the importance of considering structural variation even 

when performing statistical fine-mapping of SNP associations15,49. 

These results also motivate further exploration of the far-larger set of CNVs that were not accessible to 

our analyses. While our approach enabled detection of 6-fold more CNVs than previous analyses of UK 

Biobank, and these CNVs appeared to account for roughly half of the rare LoFs estimated to arise from 

structural variation2, the CNVs we detected from SNP-array data still represent only a small fraction of the 

thousands of CNVs typically present in each human genome2,3. In particular, we were unable to ascertain CNVs 

smaller than the resolution of the SNP array (Supplementary Table 4), and we were also unable to genotype 
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most common CNVs (MAF > 5%) due to inadequate SNP-array coverage and breakdown of modeling 

assumptions (Supplementary Table 5). These limitations could be overcome by extending the HI-CNV 

framework to whole-exome or whole-genome sequencing data, which is a promising direction for future 

research, especially at loci that are challenging to genotype. We anticipate that future studies using these and 

other approaches will provide further insights into the phenotypic consequences of copy-number variation. 
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Figure 1: Haplotype-informed CNV detection from SNP-array data in UK Biobank. a. The HI-CNV 

framework improves power to detect CNVs by analyzing SNP-array data from an individual together with 

corresponding data from individuals with long shared haplotypes (“haplotype neighbors”). In contrast, standard 

approaches analyze data from the individual alone. b. SNP-specific genotype cluster priors map allele-specific 

(A and B allele) probe intensity measurements to probabilistic information about copy-number likelihoods. c. 

Average number of CNVs called by PennCNV and HI-CNV per UK Biobank participant. d. Distribution of 

total CNV length per individual in the HI-CNV call set. e. Validation rate of CNV calls from PennCNV and HI-

CNV on 43 UK Biobank participants with independent whole-genome sequencing data. Error bars, 95% CIs. f. 

Distribution of CNV lengths in the HI-CNV call set. g. Distributions (across increasingly constrained gene sets) 

of observed counts of whole-gene deletions and duplications and pLoF CNVs in n=452,500 UK Biobank 

participants. Centers, medians; box edges, 25th and 75th percentiles; whiskers, 5th and 95th percentiles. 
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Figure 2: Fine-mapping analyses reveal likely-causal CNV-trait associations. a. Association and fine-mapping 

pipeline; inset depicts the three categories of CNVs tested. b. Effect size versus minor allele frequency for 269 likely-

causal CNV-phenotype associations, colored by phenotype category. c. Distributions of CNV length (left) and genic 
context (right) across all CNVs and across likely-causal CNVs. d. Breakdown of 97 CNV loci according to prior literature 

status and (for novel loci) whether a putative target gene was identified. e. Candidate target genes, categorized according 

to whether (i) the CNV-phenotype association was previously reported, (ii) the target gene was previously implicated 

(either by a previously-reported coding variant association or by previous experimental work), or (iii) the gene is newly 
implicated for the phenotype. The rightmost column lists syndromic CNVs re-identified here. Colors indicate CNV type; 

bold font indicates noncoding CNVs potentially regulating the target gene. f. Genic context of syndromic CNVs (bottom) 

and non-syndromic CNVs (top) stratified by the number of phenotype categories associated with the CNV. 
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Figure 3: New CNV-phenotype associations stronger than nearby SNPs. a. UHRF2 locus. Top: height 

associations for UHRF2 pLoF CNVs and nearby SNPs. Bottom: locations of UHRF2 pLoF CNVs and SNP and 

indel PTVs; left: effect sizes for height. b. SLC2A3 locus. Top: menarche age associations for SLC2A3 

duplications and deletions and nearby SNPs. Bottom: locations of SLC2A3 deletions and duplications; left: 

effect sizes for menarche age, height, and basophil and lymphocyte counts. c. BMP5 locus. Top: bone mineral 

density associations for a deletion upstream of BMP5 and nearby SNPs (colored according to linkage 

disequilibrium with the deletion, for SNPs with R2>0.1 to the deletion). Bottom: locations of the upstream 

deletion, BMP5 pLoF CNVs, and SNP and indel PTVs; left: effect sizes for bone mineral density. In all panels, 

deletions are colored red and duplications are colored blue. Error bars on effect sizes, 95% CIs. Numerical 

results are available in Supplementary Tables 8-10. 
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Figure 4: Allelic series involving both regulatory and gene-altering CNVs. a. HBA locus. Eight classes of 

CNVs at the �-globin locus and their effect sizes for mean corpuscular hemoglobin and red blood cell counts. 

Genomic annotations indicate accessible chromatin regions in erythroblasts37 and distal DNase I hypersensitive 

sites (DHS) for HBA2/HBA150, highlighting the HS-40 super-enhancer. b. JAK2 locus. Four classes of variants 

– JAK2 pLoF CNVs, JAK2 SNP and indel PTVs, a deletion of a distal enhancer, and the common SNP 

rs12005199 within the enhancer – and their effect sizes for platelet counts. Genomic annotations indicate 

accessible chromatin regions in megakaryocytes37 and JAK2 distal DHS pairs50, which colocalize with 

common-SNP platelet count associations (top) at the enhancer region ~220kb upstream of JAK2. c. IRF8 locus. 

Fine-mapped common variants and rare pLoF variants at the IRF8 locus – including a putatively regulatory 

distal deletion, IRF8 pLoF CNVs, and IRF8 SNP and indel PTVs – and their effect sizes for monocyte counts. 

Genomic annotations indicate accessible chromatin regions in monocytes37 and GeneHancer connections42 

between downstream regulatory regions and IRF8. d. R3HDM4 locus. Rare CNVs, SNP and indel PTVs, and a 

common intronic SNP at R3HDM4 and their effect sizes for reticulocyte counts. Genomic annotations indicate 

ChromHMM41 annotations, accessible chromatin regions in erythroblasts37, and GeneHancer connections42, all 

indicating regulatory function in the first intron of R3HDM4. The lead-associated SNP rs1683587 (top) also lies 

within this intron, suggesting regulatory function. In a and b, DHS pairs are colored by their correlation value, 

from light red (correlation < 0.8) to dark red (correlation >0.95). Error bars on effect sizes, 95% CIs. Numerical 

results are available in Supplementary Tables 11-15.  
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Figure 5: Contrasting phenotypic effects of deletions and duplications. a,b. Mean height (a) and years of 

education (b) as a function of total genomic length affected by deletions and duplications. Individuals carrying a 

known syndromic CNV were excluded from analysis. Numerical results are presented in Supplementary Table 

17. c. Associations between whole-gene deletions and quantitative traits in targeted analyses of 41 gene-trait 

pairs for which we previously identified likely trait-altering PTVs23 and for which the HI-CNV call set 

contained at least two whole-gene deletions. Effect sizes and 95% confidence intervals are shown in red for 16 

genes for which whole-gene deletions exhibited nominally significant associations (P < 0.05); effect sizes for 

SNP or indel PTVs23 are shown in black. d. Observing 16 nominally significant associations was consistent 

with whole-gene deletions having the same effects as PTVs. Probability distributions indicate numbers of 

significant associations in simulations in which whole-gene deletions have no effect (grey), half the effect 

magnitude as PTVs (light pink), or the same effect magnitude as PTVs (red). e,f. Analogous results for whole-

gene duplications in targeted analyses of 139 gene-trait pairs, which produced 27 significant associations (P < 

0.05), consistent with whole-gene duplications having less than half the effect magnitude of PTVs. (The 

aberrant effect directions of DOCK8 deletions and duplications relative to the DOCK8 PTV rs192864327 may 

be explained by this variant only causing loss of function in one of several transcripts.) 
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Methods 

 

UK Biobank genetic and phenotypic data 

Genome-wide SNP-array data, including allelic dosages of pairs of alleles (labeled A and B) for 805,426 

biallelic variants, was previously generated for 488,377 UK Biobank participants18. For CNV-calling, these 

allelic intensities are typically transformed to measures of total intensity (LRR) and relative intensity (B-allele 

frequency, BAF).  We analyzed the LRR values provided by UK Biobank after first applying two de-noising 

steps: (i) GC-correction of total allelic intensities and (ii) principal component (PC)-correction of LRR51; and 

we directly computed relative genotyping intensities (Supplementary Note). We also analyzed whole genome 

sequencing (WGS) data available for 48 individuals (for validation analyses) and whole exome sequencing 

(WES) data available for 200,643 individuals27 (for follow-up analyses). 

 

We restricted primary analyses to individuals of self-reported European ancestry included in the UK Biobank 

imputed dataset18, and we excluded individuals with trisomy 21, blood cancer, or those who had withdrawn at 

the time of our study (Supplementary Note), resulting in 454,759 participants with array data, 43 individuals 

with WGS data, and 186,105 individuals with WES data.  

 

We analyzed 56 heritable quantitative traits measured on the majority of UK Biobank participants. These traits 

included anthropometric traits, blood pressure, measures of lung function, bone mineral density, blood cell 

indices, and serum biomarkers (Supplementary Data 1). Quality control and normalization of the quantitative 

traits was previously described22,23.  

 

Overview of HI-CNV method for haplotype-informed CNV detection 

We reasoned that CNV detection sensitivity from SNP-array data available in UK Biobank could be 

considerably increased via two orthogonal strategies: (a) estimating SNP-specific priors for allele combinations 

corresponding to CNV states (to enable more accurate assessment of probabilistic information about copy-

number variation provided by probe intensities); and (b) integrating probe intensity data across individuals 

likely to have co-inherited a large genomic tract. To estimate SNP-specific priors for allele combinations 

corresponding to CNV states, we (i) directly estimated SNP-specific genotype cluster priors at a subset of SNPs 

covered by large, easily-called CNVs; and then (ii) used these SNPs as a reference set from which SNP-specific 

priors for other SNPs could be predicted (based on which SNPs in the reference set exhibited most-similar 

probe intensity patterns). To incorporate probe intensity data across individuals likely to have co-inherited a 

large genomic tract, for each individual and genomic position on the SNP-array, we used a PBWT-based 
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algorithm to find the 10 longest identical-by-descent (IBD) matches (per haplotype of the individual) spanning 

the position under consideration. 

 

We used a hidden Markov model to call CNVs, integrating probabilistic information about copy-number state 

across an individual and their “haplotype neighbors” by weighting each neighbor’s information according to 

length of IBD-sharing. In more detail, at each SNP, for the individual and for each haplotype neighbor, we 

computed Bayes factors for deletion and duplication states based on genotyping intensities from the 

corresponding sample. We then created a weighted sum of log Bayes factors at each SNP, giving higher weights 

to haplotype neighbors with longer IBD. We ran this analysis using several different weighting schemes 

(trading off sensitivity to more recent vs. older mutations) and compiled calls made across these weighting 

schemes.  

 

We filtered CNV calls to deletions larger than 75bp and duplications larger than 500bp and removed individuals 

with more than 100 CNV calls. Many of the samples with aberrantly many CNV calls appeared to share rare 

technical artifacts in LRR that had escaped denoising. We therefore computed the first 10 principal components 

of LRR in these aberrant individuals, ranked all individuals by the amount of LRR variance explained by these 

artifact PCs, and further removed individuals in the top 0.5%. Finally, for all downstream analyses, we removed 

calls on any chromosome in which we had previously detected a mosaic CNV52 as well as calls in regions with 

frequent somatic events. After these quality control filters, we had called CNVs in 452,500 UK Biobank 

participants (including 43 individuals with WGS data and 185,365 individuals with WES data). Further 

methodological details are available in the Supplementary Note.  

 

PennCNV call set in UK Biobank 

We compared HI-CNV calls to previously-generated PennCNV7 calls made by analyzing Affymetrix CEL files 

(Return 1701)10. Following suggested quality control procedures8, we filtered individuals with more than 30 

calls made, a genotype call rate less than 96%, or an absolute waviness factor greater than 0.3. To facilitate 

comparison to our HI-CNV call set, we then applied the same additional filtering of calls on chromosomes 

containing mosaic CNVs and in regions with frequent somatic events. 

 

Precision and recall of HI-CNV and PennCNV call sets 

To benchmark performance of HI-CNV and PennCNV, we analyzed independent WGS data available for 43 

individuals using CNVnator53 and DELLY54. To assess the precision, or validation rate, of array-based calls we 

computed the proportion of HI-CNV (respectively, PennCNV) calls that were either (1) replicated by CNVnator 

calls or (2) exhibited enrichment or depletion of read-depth (computed by CNVnator) consistent with the CNV 
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call. To assess recall, or sensitivity, of HI-CNV and PennCNV, we analyzed calls from DELLY, which 

produced a merged call set across WGS samples that was helpful for computing recall of CNVs within allele 

frequency ranges. For each DELLY call, we annotated whether HI-CNV (respectively, PennCNV) called an 

overlapping event. Further details on computing precision and recall are provided in the Supplementary Note. 

 

Stratifying carrier counts of gene dosage-modifying CNVs by LOEUF score 

For each protein-coding gene, we computed the number of UK Biobank participants of European ancestry 

carrying whole-gene deletions, whole-gene duplications, and CNVs predicted to cause loss of function (pLoF; 

Supplementary Note). We then annotated each gene with its LOEUF sextile bin (‘oe_lof_upper_bin_6’ from the 

pLoF Metrics by Gene TSV file downloaded from https://gnomad.broadinstitute.org/downloads), which 

estimates strength of selection against protein-truncating mutations55. We restricted to genes with a non-missing 

LOEUF sextile bin and genes with only one annotated canonical transcript. In Fig. 1g, we reversed the order of 

LOEUF sextile bins such that higher-numbered bins correspond to more-constrained genes. 

 

Association testing and statistical fine-mapping 

We performed CNV-phenotype association analyses on three distinct classes of CNVs defined based on 1) 

SNP-array probe overlap, 2) gene overlap, and 3) specific CNVs. Analyses on the SNP probe level tested the 

hypothesis that a change in copy number (deletion or duplication, respectively) at the genomic location of the 

SNP alters the phenotype. Analyses on the gene level tested the hypothesis that a change in copy number 

affecting the gene in question (whole-gene deletion, whole-gene duplication, and pLoF, respectively) alters the 

phenotype. Analyses on the CNV level tested whether a specific CNV (allowing for slightly differing endpoints 

in calls from different samples) alters the phenotype. These tests comprised both burden-style analyses (the 

probe- and gene-level tests) and single-variant analyses (the CNV-level tests), for a total of ~1.7 million tests. 

Given that these tests contained a high degree of redundancy (e.g., because probe-level tests at consecutive 

SNPs tended to be very strongly correlated), we used the standard genome-wide significance threshold (P < 5 x 

10-8) to determine significant associations. 

 

We conducted association tests using BOLT-LMM21,22 (--lmmForceNonInf) with assessment center, genotyping 

array, sex, age, age squared and 20 genetic principal components included as covariates. We fit the mixed 

model on directly genotyped autosomal variants with MAF > 10-4 and missingness < 0.1 and computed 

association test statistics for CNVs in the three categories defined above; a similar pipeline produced 

association test statistics for SNP and indel variants imputed by UK Biobank (the imp_v3 release) and variants 

we previously imputed from the first tranche of exome-sequencing of 49,960 participants23. We included all 

participants with non-missing phenotypes in the European-ancestry HI-CNV call set described above.  
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To filter significant associations to a set of likely-causal associations, we used a pipeline we previously 

developed23 to eliminate associations that could be explained by linkage disequilibrium (LD) with nearby 

variants (here, either SNP or indel variants from the UK Biobank imp_v3 release or variants we had imputed 

from WES23). This filter required CNVs to remain significant after conditioning on any other more strongly 

associated variant nearby. More explicitly, for every CNV i significantly associated with a given phenotype, we 

calculated its correlation �$% with each more strongly associated variant j (including other CNVs and imputed 

SNPs and indels) within 3Mb using plink ‘--r’56. We then computed the approximate chi-square association 

statistic for CNV i conditioned on variant j as:  

�$|%( j �$( *1 2 �$%����1�$�%23�%(�$(4
(
.	

We defined likely-causal associations as those with the property that �$|%( g	29.7168	(P < 5 x 10-8) for all 

variants j more strongly associated with the trait than CNV i. We previously observed that this pairwise LD-

based filter was effective for fine-mapping rare variant associations23.	
 

Defining and annotating CNV loci 

To group phenotype-associated CNVs into genomic loci, we first identified a set of unique CNVs contributing 

to likely-causal associations (accounting for uncertainty in CNV breakpoints and for probe-level and gene-level 

tests aggregating signal across multiple CNVs; Supplementary Note). We then ordered this set of likely-causal 

CNVs from smallest to largest, and if a CNV fell within 100kb of a previous CNV, we considered it to be part 

of the same locus. We annotated a likely-causal CNV as syndromic if it overlapped a previously-curated 

pathogenic CNV10 by more than 50%. We identified putative target genes of non-syndromic, likely-causal 

CNVs either by observing that a focal CNV association only overlapped a single gene or by finding 

independent supporting evidence for a particular gene within or near the CNV region (specifically, a coding 

variant association or experimental literature). Further details on defining and annotating loci are provided in 

the Supplementary Note.  

 

Follow-up analyses at highlighted loci 

At a subset of loci we investigated in greater detail (Fig. 3 and Fig. 4), we identified carriers of high-confidence 

loss-of-function SNP and indel variants (annotated using LOFTEE55) among the 185,365 individuals with 

whole-exome sequencing data27 in our analysis set. To increase power to assess phenotypic impacts of SNP and 

indel PTVs, we residualized phenotypes for polygenic predictions of the phenotype using array-typed SNPs 

(omitting those within 2Mb of the gene of interest) that we generated using BOLT-LMM ‘—predBetasFile’ in 
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10-fold cross-validation (emulating linear mixed model association analysis)57. Residualized phenotypes could 

then be modeled as a function of SNP and indel PTV carrier status, as well as carrier status for other CNVs or 

SNPs of interest. We performed these analyses after our initial association analyses, such that numbers of 

carriers of CNVs differ slightly between Supplementary Data 2 and the locus plots in Fig. 3 and Fig. 4 

(generated using karyoploteR58) due to participant withdrawals. 

 

Data availability. Access to the UK Biobank Resource is available by application 

(http://www.ukbiobank.ac.uk/). Individual-level HI-CNV calls and summary association statistics for the 56 

quantitative traits we analyzed will be returned to UK Biobank. 

 

Code availability. The following publicly available software packages were used to perform analyses: BOLT-

LMM (v2.3.5), https://data.broadinstitute.org/alkesgroup/BOLT-LMM/; plink (v1.9), https://www.cog-

genomics.org/plink/1.9/; CNVnator, https://github.com/abyzovlab/CNVnator; DELLY, 

https://github.com/dellytools/delly. Code and scripts used to perform CNV-calling and downstream analyses 

will be released prior to publication. 
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