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Abstract

In this short note we study the 2D Ising model, a universal computational model

which reflects phase transitions and critical phenomena, as a framework for estab-

lishing links between systems that exhibit criticality with the notions of complexity.

This is motivated in the context of neuroscience applications stemming from algo-

rithmic information theory (AIT). Starting with the original 2D Ising model, we

show that — together with correlation length of the spin lattice, susceptibility to

a uniform external field — the correlation time of the magnetization time series,

the compression ratio of the spin lattice, the complexity of the magnetization time

series — as derived from Lempel-Ziv-Welch compression—, and the rate of informa-

tion transmission in the lattice, all reflect the effects of the phase transition, which

results in spacetime pockets of uniform magnetization at all scales. We also show

that in the Ising model the insertion of sparse long-range couplings has a direct

effect on the critical temperature and other parameters. The addition of positive

links extends the ordered regime to higher critical temperatures, while negative

links have a stronger, disordering influence at the global scale. We discuss some

implications for the study of long-range (e.g., ephaptic) interactions in the human

brain and the effects of weak perturbations in neural dynamics.
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1. Introduction

1.1. Network brain models

The human brain is a multiscale dynamical network. A body of evidence
suggests that brain function emerges from interactions between specialized,
spatially-segregated areas of large-scale networks. In such networks, nodes
correspond to cortical or sub-cortical brain regions and edges correspond
to either structural (i.e., direct connections) or functional (i.e., through
synaptic or ephaptic interactions) couplings between these regions. Sev-
eral computational studies have developed whole-brain network models to
explore the relationship between brain function and its underlying connec-
tivity [1, 2, 3, 4, 5, 6, 7, 8].

1.2. Critical phenomena and the 2D Ising model

More abstract frameworks from statistical physics can shed light into
understanding emerging phenomena in large networks such as phase transi-
tions in systems where nodes — neurons or cortical columns here — inter-
change information under the assumptions of the maximum entropy princi-
ple [9, 10, 11].

The description of systems with many degrees of freedom can be sum-
marized by coarse-graining variables (describing macrostates), a step which
introduces statistics into modeling. At so-called critical points, observable
quantities such as diverging correlation length or susceptibility to external
perturbations reveal singularities in the limit as the number of degrees of
freedom goes to infinity. At these transitions, from order to disorder, there
is a loss of sense of scale, with fractal properties in energy and information
flow.

In this framework, elements such as neurons, columns or brain regions
are modeled by spins (i.e., with two states, up or down, on or off) with
nearest neighbor pair interactions, and the emerging statistical properties
of large networks of these elements are studied under different conditions
(temperature or excitability, or an external magnetic or electric field, see
Figure 1). The prototypical simplest system in this context is the 2D Ising
model, which features nearest neighbor interactions and a phase transition.
This model has been shown to be universal, i.e., that all the physics of
every classical spin model (with more general types of interactions) can be
reproduced in the low-energy sector of certain “universal” models such as
the 2D Ising model [12]. This fact reflects the intrinsic computational power
of near-neighbor interactions. In fact, Ising models have been shown to be
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Figure 1: Parallels between the Ising 2D model and hybrid brain models (HMBs). LRC:
long-range connectivity, synaptic or ephaptic.

universally complete [13, 14], with a map between any given logic circuit to
the ground states of some 2D Ising model Hamiltonian.

On the other hand, the fact the brain exhibits characteristics of criti-
cality that may be modeled by systems such as the Ising model is now well
established, with ideas that go back to pioneers such as Turing, Bak [15] and
Hopfield [16]. There is further evidence that the dynamics of the healthy
brain occupy a sub-critical zone (see [17] and references therein).

While some recent studies have investigated the interpretation of fMRI
data using the Ising formalism, our context is for its use with EEG data and
for analysis/personalization of HBMs.

1.3. The amplification of weak perturbations by neuronal assemblies

Accumulating evidence from several decades of research suggests that
endogenous or exogenous weak electric fields may influence neural process-
ing, but how and where this may happen is not yet fully understood [18].
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Weak electric fields such as the ones produced by non-invasive transcranial
electrical current stimulation produce only very small perturbations of the
transmembrane potential of the most sensitive neurons (elongated pyrami-
dal cells). Understanding how these small (about 0.1–0.2 mV per V/m of
electric applied [19] and significantly lower than the 20 mV depolarization
required to bring a neuron from resting potential to spike threshold in vitro
[20]), but relatively spatiotemporally homogenous single-cell effects collec-
tively amplify is central to these questions. Two solutions can be envisioned.

Although membrane perturbations from weak fields are sub-threshold,
nonlinear effects in coupled populations probably lead to an amplification
of effects. For example, mathematical models have demonstrated the am-
plification of weak but coherent signals in networks of nonlinear oscillators
(see, e.g., [21, 22, 23]) and, more specifically, in computational models of
neural circuits [24, 25]). This effect is ultimately dependent on the coupling
strength of network elements and their architecture, while noise can con-
tribute to the enhancement of small but homogeneous perturbations in the
network (array enhanced stochastic resonance). Thus, cooperative effects
arising from noise and coupling in coupled systems can lead to an enhance-
ment of the network response over that of a single element.

The second potential mechanism calls for the role of criticality, which is
the one we directly study here. In fact, these two mechanisms, stochastic
resonance and criticality, are probably closely related in the context of the
human brain [26, 27].

1.4. Ephaptic interactions

When modeling systems as networks, the connectivity matrix of nodes
plays a key role. Recently, the role of ephaptic interaction as an additional
cortical coupling mechanism has been suggested. Ephaptic interactions refer
to the direct effects on neurons of electric fields generated by the activity
of other neurons [28]. Their main features are that they enable vert fast,
bidirectional, propagation of information between cortical sites, influencing
both local and synaptically distant regions as long as they are close in 3D
space, and in a direction dictated by the state and orientation of the emitting
and receiving populations (i.e., with effects that can be both excitatory and
inhibitory). In [18], we studied the macroscopic electric field generated by
cortical dipoles using realistic finite element modeling of the human brain.
We found that modeled endogenous field magnitudes are comparable to
those in measurements of weak but functionally relevant endogenous fields,
or to those generated by transcranial current stimulation. The effects may
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Figure 2: Algorithmic information or Kolmogorov unification program aiming to link
algorithmic information theory, statistical mechanics and integrated information theory.
Here we focus on the first two (red arrow).

thus play a role in linking synaptically distant regions, i.e., across sulci in
the cortex.

1.5. Our aims here

As discussed above, a statistical network perspective appears of interest
for two reasons. First, it may help understand the enhanced sensitivity of
neuronal networks, which may find a direct analog in the increased suscepti-
bility of Ising models near the critical temperature. Second, it may provide a
tool to study the impact of long-range connections in the system (mimicking
ephaptic effects) in properties such as critical temperature or susceptibility.

Here, we first consider the use of this model to study the links between
the views afforded by statistical mechanics and algorithmic information the-
ory, which is part of a unification program seeking to bring together al-
gorithmic information theory, criticality and integrated information theory
perspectives of the cognition (see Figure 2). We first aim to show that,
at the abstract level, an Ising model can shed some light into how criti-
cal phenomena and complexity can be mathematically related, by studying
algorithmic complexity of Ising model data near the critical temperature.

Our second task is to then investigate the impact of short and long range
“ephaptic” links on the classical 2D Ising model with local couplings (the
original model) on phenomena such as phase transitions and complexity.
The impact on susceptibility to weak perturbations will also be studied. As
discussed, this is of interest due to the presence of such long range interac-
tions in the human brain, both structural or electrical in nature (ephaptic
interactions).

In the next sections, we first describe the model used and the metrics we
will employ to study its dynamics. We then provide the results of simulations
and discuss the results.
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2. Materials and Methods

We first describe the original 2D Ising model with fields.

2.1. The 2D Ising model

The Ising model is given by the energy or Hamiltonian of the 2D lattice
of side length L, S = {σi|i = 1, .., Nl ≡ L2},

E [σ] = −
∑

i<j≤L2

Jijσiσj −
∑

j

Bj σj (1)

where σi denotes the orientation of each spin in the lattice (±1), Jij is
the coupling matrix (reflecting nearest neighbor coupling only with pairs
counted once) and B is an external magnetic field (see Figure 3) that may
be inhomogeneous.

We can rewrite this using 2d indices as (we assume a uniform B field for
simplicity)

E [σ] = −
1

2

∑

(n,m) 6=(n′,m′)

J(n,m),(n′,m′)σ(n,m)σ(n′,m′) −B
∑

(n,m)

σ(n,m) (2)

The energy of a single spin is

E(σ(n,m)) = −σ(n,m)

∑

(n′,m′)

J(n,m),(n′,m′)σ(n′,m′) −B σ(n,m) (3)

2.2. Hyperlinks (h-links)

In order to study the impact of additional sparse short or long-range
couplings, we define a linking probability and create additional elements in
the Jij matrix. Holding the number of additional links fixed, we then study
three different scenarios: a) uniformly selected random links, b) long-range
links on the “antipodal” points in the toroidal manifold, and c) near-range
links. The probability of adding a new link to a given site used was of 0.01%.

2.3. Implementation

The model has been implemented in Python 3 with the Numpy [29] and
Scipy [30] libraries. Starting from a random lattice configuration, the system
is evolved using a modified Metropolis algorithm where we update the state
of a quarter of the spins (randomly chosen) at each time step. The number
of time steps used is of ∼1–2 ×105.
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Figure 3: Ising model on 2D torus geometry. The torus has actually the same number of
sites in each of its to directions — the lattice is square with periodic boundary conditions
on the Jij . Nearest neighbors and remote spins that may be linked are depicted. A “focus”
spin is highlighted on the left (solid circle with border) with its four nearest neighbors.
Distant spins to which it may couple are also shown.

2.4. Observables

The main global observable is the lattice average magnetization M over
the spin lattice S,

M = 〈σ〉S =
1

Nl

Nl
∑

i=1

σi (4)

and lattice energy, where recall Nl is the number of points in the lattice.
This is a function of time as the lattice evolves. Relying on ergodicity, we
can compute time averages instead of ensemble averages.

2.4.1. Autocorrelation length of lattice and time

Autocorrelation length or time are computed from data by first generat-
ing the autocorrelation function, and then computing from it the integrated

autocorrelated time or length, e.g., lc = 1+2
∑L/2

n=1 ρ(n) [31, 32]. The auto-
correlation function of the lattice is computed along the two main axes and
averaged.

2.4.2. Compression ratio of magnetization time series or lattice data

The compression ratio is computed essentially as described in [33], i.e.,
compressing the quantized time series using the Lepel-Ziv-Welch algorithm

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.10.21.465265doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465265
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Results from simulation: magnetization as a function of temperature in a 40×40
lattice with and without long-range, sparse (0.01% probability of coupling) positive cou-
plings on the critical temperature.

and computing the ratio of compressed string length vs original string length.
For (binary) lattice data, the array is flattened first. For time series data,
quantification is done in 10 levels, (i.e., with digits 0-9).

As discussed in [33], two variants of this metric are computed, ρ0 and
ρ1 = ρ0 −H0, with H0 the first order entropy. The second metric provides
a measure of second and higher order effects on entropy rate, which can
be interpreted as the extra apparent extra entropy (bits/char) incurred by
using first order methods instead estimating the true entropy rate.

2.5. Magnetic susceptibility and heat capacity

These are computed from statistical mechanics considerations. Let

E [σ] = −
∑

i<j

Jijσiσj −B
∑

j

σj

and
Z(β,B) =

∑

σ

e−βE[σ]
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be the partition function. The average magnetization is the ensemble aver-
age of lattice magnetization,

〈M〉 =
1

Z

∑

σ

M e−βE[σ] (5)

Then we can express (see, e.g., [34])

〈M〉 =
1

βZ

∂Z

∂B

and following similar considerations

χ =
∂〈M〉

∂B

∣

∣

∣

∣

T

= σ2
M/T , and Cv =

∂〈E〉

∂T

∣

∣

∣

∣

B

= σ2
E/T

2 (6)

where the standard deviation computation is taken over the ensemble (i.e.,
time averages here).

2.6. Susceptibility to spin perturbations

We have also studied the impact of spin flips on lattice dynamics as a
function of temperature. In order to do this we clamp the time series at a
spin location to a randomly generated time series, and we study the corre-
lation of this time series with that of a spin at a nearby location. Figure 7
displays the correlation and its p-value for different temperatures, highlight
the increase in information transmission at the critical temperature.

2.7. Information transmission

Information transmission in Ising models of the brain has been studied
before [35], finding that it is maximal at the critical temperature. Here we
will study information transmission in the classical Ising model with h-links.
Our approach is simple: we inject information at a spin site (clamping it
down) and study the correlation of its forced activity at a displaced site,
looking for maximal correlation at some delay ∆τ .

3. Results and discussion

3.1. Impact of positive hyperlinks

In Figure 4 the results from a 40×40 lattice are displayed, with and
without long range hyper links. The first conclusion is that adding a few
positive-coupling hyperlinks increases the critical temperature and extends
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Figure 5: Results from simulation: lattice magnetization, correlation length and compres-
sion ratio as a function of temperature (30x30 lattice, 1e5 steps) with and without positive
links.

the sub-critical range, as reflected in the magnetization, heat capacity and
susceptibility. The effect is larger for larger lattices given a fixed percent of
new links (0.01% here).

The effect of the hyperlinks is also seen on the complexity metrics. Fig-
ure 5 displays the compression ratio and autocorrelation length and time of
lattice and magnetization time series. The addition of hyperlinks creates a
local minimum in the compression ratio of the time series.

The addition of a new links amounts, in some sense, to a change in
the topology of the lattice, i.e., increasing its genus. However, the analogy
is not perfect, as in a proper topological sense, we should reconfigure more
elements of the connectivity matrix to ensure each node has the same number
of nearest neighbors (4).

3.2. Impact of negative hyperlinks

The addition of negative coupling h-links has a very strong effect, and
effectively reduces the phase transition temperature point.
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Figure 6: Results from simulation: magnetization time series compression ratio, specific
heat and susceptibility as a function of temperature (30x30 lattice, 1e5 steps).

3.3. Complexity and critical temperature

The results of running a 30×30 lattice model can be seen in Figure 5 and
Figure 6. The critical temperature of the classical model does not appear
to be affected by lattice size, but the addition of extra links has a strong
impact, in particular of long range links.

3.4. Information transmission is maximal at the critical temperature unaf-
fected by long range h-links

Figure 7 displays the correlation statistics as a function of temperature.
Information transmission is maximal near the critical temperature of the
standard model, irrespective of the presence of h-links.

4. Conclusions

The main conclusion from this study is that the Ising model is very
sensitive to the presence of a few long range (positive) connections. This has
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substantial impact on the critical point of the system. Negative connections
seem to have an even stronger effect.

The second conclusion is that the transition from order to disorder de-
fined by the critical boundary has a fingerprint on the entropy of the dy-
namics of system as measured by Lempel Ziv complexity, an effect that can
be seen in the entropy of variables such as the magnetization time series.

Finally, we have looked at information transmission in the lattice as
function of temperature, verifying that it peaks at the critical temperature,
as expected. The presence of long range links does not seem to have an
effect on the temperature at which the peak is found.

4.1. Relevance to hybrid brain modeling

One of the key question in HBM personalization is how to fix model
parameters. An interesting line of work can be foreseen using Ising models
derived from either cortically mapped EEG data, or from the fitted model.
From a fitted HBM we can derive an Ising model and study it from the point
of view of criticality for further insights into how to intervene. For example,
we can binarize the time series associated to each NMM dipole field J(t)
and then fit a Hamiltonian to reproduce the energy landscape in the data
as in [36], and to see how far from the critical temperature it is.

It is possible that a necessary condition for a healthy brain will be to
operate near but under its critical temperature. It has been argued that
some brain states (e.g., psychodelics) or pathologies (fibromyalgia) can be
attributed to critico-patologies — being too close [37, 17, 38] or below the
optimal zone. Several neurodenerative diseases have been characterized as
displaying less complexity (e.g., AD or PD, see e.g., [39] and references
therein).

In future research we plan to use personalized Ising models to study both
energy landscapes and associated temperature to see how close to criticality
the system is.

4.2. A personalized critical temperature for the individual brain

Ising models have been used to model brain activity (see., e.g., [36]).
Here we would suggest to proceed as follows. Use a parcellation of the cortex
and create an associated 2D Ising (classical) model, but with connectivity
defined by the connectome (see, e.g., [40]). Add h-links as estimated by the
ephaptic coupling index (see [41]) or related considerations. Compute the
critical temperature and modified susceptibility of the created Ising model
to estimate the effect of perturbations by external fields (globally or locally

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.10.21.465265doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.21.465265
http://creativecommons.org/licenses/by-nc-nd/4.0/


defined by, e.g., realistic electric field modeling). This can be done at the
global level, in each parcel.

4.3. Ising and individual or brain state dependence to tES

As we have seen, criticality may be an important concept in tES. There
is a hypothesis we can explore related to the inter-individual variability in
tES responses, or something called “brain state dependence” of stimulation
effects. Could this be related to the Tc of each patient? We can fit an Ising
model to each person and estimate distance to critical temperature. There
are different routes to do this, and different data sources we can use. A
fitted HBM can be the starting point. Or we can create an Ising model
directly from data (EEG or fMRI or other as in [36]), and include or not
DTI information. The hypothesis would be that what are traditionally called
“responders” in brain stimulation (tES or TMS) are those that happen to
be near Tc when stimulation is applied.

In order to account for the effect of the electric field, we need to adapt
it to the Ising modeling framework. The effect of an electric field can be
modeled as a shift of the firing rate of neuronal populations. If we think of
the spin as a discretized version of the local cortical dipole, we can connect
the two worlds, for example, by selecting a bandpass for the signals (fMRI,
EEG, MEG or others) and discretize the power envelope to reflect an up or
down state (-1 being a state of low activity).

E [σ] = −
∑

i<j≤L2

Jijσiσj −
∑

j

Bj σj

with
Bj = −aλ · Ej

where Ej is the vector E field value at node j in the physical mesh.
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Figure 7: Information transmission as a function of temperature measured by p-value of
correlation of the injected noise at a site with activity at another site displaced two steps.
(30x30 lattice, 1e5 steps). Top: p-value. Bottom: cross-correlation coefficient.
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Figure 8: Results from simulation—lattice and time series metrics. Left: positive (p=1e-4)
couplings. Right: negative couplings (p=2e-5). (30x30 lattice, 1e5 steps).
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