bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

pyOdesigner

PyDesigner: A Pythonic Implementation of the DESIGNER Pipeline

for Diffusion Tensor and Diffusional Kurtosis Imaging

Siddhartha Dhiman®, Joshua B Teves®, Kathryn E Thorn?®, Emilie T McKinnon*, Hunter G

Moss™€, Vitria Adisetiyo®, Benjamin Ades-Aron?, Jelle Veraart?, J enny Chen?, Els Fieremans?,

Andreana Benitez®®, Joseph A Helpern®‘, Jens HJ ensen®°f

4 Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA

® Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute
of Mental Health, Bethesda, MD, USA

¢ Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA

d Center for Biomedical Imaging, Department of Radiology, New York University School of
Medicine, NY, USA

¢ Department of Neurology, Medical University of South Carolina, Charleston, SC, USA

"Department of Radiology and Radiological Science, Medical University of South Carolina,

Charleston, SC, USA

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ABSTRACT

PyDesigner is an open-source and containerized Python software package, adapted from the
DESIGNER pipeline, for diffusion weighted magnetic resonance imaging preprocessing and
tensor estimation. PyDesigner combines tools from FSL and MRtrix3 to reduce the effects of
signal noise and imaging artifacts on multiple diffusion measures that can be derived from the
diffusion and kurtosis tensors. This publication describes the main features of PyDesigner and
highlights its ease of use across platforms, while examining its accuracy and robustness in deriving

commonly used diffusion and kurtosis metrics.

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Diffusion MRI (dMRI) is widely applied for the noninvasive study of microstructural properties in
the brain. While many dMRI methods have been proposed, two of the most commonly used are diffusion
tensor imaging (DTI) and diffusional kurtosis imaging (DKI). These techniques are closely related, with
DKI being a generalization of DTI that includes quantification of diffusional non-Gaussianity (Jensen and
Helpern, 2010). Both provide a variety of scalar diffusion measures and enable the construction of white
matter fiber tractography. An important advantage of DTI and DKI is that they have a solid foundation in
diffusion physics so that their validity does not rely on detailed assumptions regarding tissue microstructure
(Basser, 2002; Jensen et al., 2005). This allows DTI and DKI to be applied throughout the brain and body

for both healthy and diseased subjects of any age.

Because raw diffusion weighted images (DWIs) are degraded by multiple factors, including signal
noise, motion, Gibbs ringing, and eddy current distortion, preprocessing should be employed prior to
calculation of any diffusion quantities (Le Bihan et al., 2006). Preprocessing of DWIs is now highly
developed, and several popular software packages are freely available for performing the various
preprocessing steps. However, combining these steps into a single pipeline that gives consistent results is
challenging both because there are a number of user defined settings that must be adjusted depending on
the details of the dMRI acquisition and because the order in which the preprocessing steps are performed
affects the outcome. For this reason, the Diffusion parameter EStImation with Gibbs and NoisE Removal
(DESIGNER, GitHub: NYU-DiffusionMRI/DESIGNER) pipeline was proposed in order to optimize,
standardize, and streamline the preprocessing for DWIs. DESIGNER relies on FSL, MRtrix3, MATLAB,
and Python to create a seamless and complete DWI processes — one that encompasses image correction
through preprocessing and diffusion/kurtosis tensor estimation (Ades-Aron et al., 2018). With control flags
to toggle preprocessing steps on or off, DWI corrections can be performed selectively. DESIGNER always
preprocesses in a specific manner — (i) Marchenko-Pastur principal component analysis (MP-PCA)

denoising, (ii) Gibbs ringing correction, (iii) echo-planar imaging (EPI) distortion correction, eddy current

https://github.com/NYU-DiffusionMRI/DESIGNER
https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

correction, motion correction, and outlier replacement, (iv) B1 bias field correction, (v) brain mask
generation, (vi) smoothing, (vii) Rician noise bias correction, and (viii) bO normalization. Preprocessing in
this specific order improves both accuracy and the effective signal-to-noise ratio (SNR) (Ades-Aron et al.,

2018).

Implementing DESIGNER across platforms is challenging because of differences in operating
systems and environment settings. In particular, the fact that DESIGNER is mainly written in MATLAB
creates significant portability issues arising from complicated configuration requirements needed to enable
Python-MATLAB interfacing. Moreover, reproducibility of outputs can be compromised from different
combinations of MATLAB, Python and dependency versions. For this reason, we have developed
PyDesigner, which is entirely Python based. Not only does this allow for seamless preprocessing, but it also
allows PyDesigner to be incorporated into a Docker container that greatly enhances portability and
reproducibility. Moreover, by replacing the MATLAB code, PyDesigner avoids all licensing fees and

improves accessibility.

The purpose of this paper is to describe the main features of PyDesigner and its implementation.
PyDesigner augments the hands-free approach introduced by DESIGNER, adds several new features, and
incorporates tools from FSL and MRtrix3 to perform preprocessing. Standard mathematical Python
libraries such as Numpy (Harris et al., 2020), SciPy (SciPy 1.0 Contributors et al., 2020), and CVXPY
(Agrawal et al., 2018; Diamond and Boyd, 2016) were used to replace the MATLAB portions of
DESIGNER with Python code. All PyDesigner software is open source and available at:

https://github.com/m-ama/PyDesigner.

While alternative software such as Diffusion Kurtosis Estimator (DKE, Tabesh et al., 2011) and
Diffusion Imaging in Python (DIPY, Henriques et al., 2021) are also available, they do not combine image
correction and tensor fitting into a single-command pipeline. The DIPY package is a Python-based image
correction and tensor fitting tool, whereas DKE is largely a tensor fitting tool that runs in MATLAB. Here,

the core calculation of tensor fitting and associated diffusion parameter estimation of PyDesigner is

https://github.com/m-ama/PyDesigner
https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

compared with that of DESIGNER, DKE, and DIPY to examine computational differences and illustrate
the relative performance of these four DKI analysis programs. In making this comparison, the PyDesigner
preprocessing is applied in all four cases so that any differences are entirely attributable to the tensor fitting

step.

METHODS

Workstation. All processing was performed on a custom-built workstation, equipped with 8-cores AMD

Ryzen 2700x, 16 GB system memory, and Nvidia GTX 1080 running on CUDA v10.1.

OS Information. Ubuntu 20.04 (Focal Fossa) was used with the software packages FSL v6.0, MRtrix3
v3.0.1-24-g62bb3c69, and Conda 4.8.3 with a custom Python 3.6 environment containing PyDesigner v1.0-

RCS8 and all dependencies.

DWI Acquisition. An acquisition from a cognitively healthy subject in their 20s was acquired using the
Siemens Prisma®™ 3T scanner (Siemens Healthineers, Erlangen, Germany). DTI and DKI sequences were
acquired with 3 b-values (b = 0, 1000, 2000 s/mm?) for 10 images acquired at b = 0 (b0) and 30 isotopically
distributed diffusion encoding directions for » = 1000 and 2000 s/mm?. This protocol was performed using
single-shot, twice refocused echo-planar sequence at 3 mm isotropic resolution with echo time
(TE)/repetition time (TR) = 95/4800 ms, 74x74 acquisition matrix, 42 axial slices, bandwidth of 1648
Hz/px, slice acceleration factor = 2, parallel imaging factor = 2, and anterior (A)>>posterior (P) phase
encoding direction. A separate b0 volume in P>>A phase encoding direction was acquired for distortion
correction using TOPUP (Andersson et al., 2003). All acquisitions were acquired with full Fourier
coverage.

Staging. Acquired images were converted from DICOM to NifTi-standard with dem2niix v1.0

20181125 (Liet al., 2016) to generate 4D NifTi image volumes (.nii), gradient (.bvec) files, b-value (.bval)

files, and accompanying BIDS sidecars (.json). PyDesigner seeks JSON tags PartialFourier,

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PhaseEncodingSteps, AcquisitonMatrixPE and EchoTime to automatically determine ideal image
correction steps.

Preprocessing. Staged files were processed with PyDesigner using the flags --standard for standard
preprocessing; and --rpe_pairs 1 since a single pair of reverse phase-encoded bOs were acquired for EPI

correction. The full command parsed was

1 pydesigner
2 --standard \
3 --rpe_pairs 1\
4 --verbose \

5 -o[PATH TO OUTPUT DIRECTORY]\

6 $DKI_PROTOCOL.nii,$FBI_PROTOCOL.nii

These flags yield the following preprocessing steps, in order of appearance: (1) MP-PCA denoising, (2)
Gibbs ringing correction, (3) EPI distortion correction using one pair of reverse phase-encoded b0s, (4)
eddy current, motion and outlier correction, (5) brain masking, (6) smoothing at 1.25 x FWHM, (7) Rician
noise bias correction, (8) mean b0 volume extraction, (9) iterative reweighted linear least squares (IRLLS)
outlier rejection, (10) brute-forced tensor correction, (11) constrained tensor fitting, (12) DTI and DKI
scalar map extraction, in order of appearence. A visual representation of these preprocessing steps can be
found in Figure 1. These steps can be grouped into image correction and tensor fitting, where the former
aims to minimize noise and correct artifacts, and the latter performs computations to derive useful dMRI

metrics.

Image Correction

e MP-PCA Denoising. Preprocessing is initiated with MP-PCA denoising, using the MRtrix function

dwidenoise, to retain noncorrelation between spatial and successive volume voxels (Veraart et al.,

2016a, 2016b). Preprocessing is initiated with denoising, as the following steps introduce

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

interpolation or reduced entropy, which can skew the underlying Marchenko-Pastur distribution
and inhibit accurate noise estimation.

e Gibbs ringing correction. Next, Gibbs ringing correction is introduced using the MRtrix function

mrdegibbs, which resamples the DWI at zero-crossings of the sinc-function to remove ringing
artifacts with minimal smoothing (Kellner et al., 2016). Readers should note that this correction is
only applied if a DWI is acquired with full k-space coverage (full Fourier) so that sub-voxel shifts
can be accurated predicted. PyDesigner automatically detemines the k-space coverage of an image
using image metadata and will disable this correction if partial coverage is found. Of interest for
future updates to PyDesigner, recently, a Removal of Partial-fourier Gibbs (RPG) ringing artifact
method has been proposed by (Lee et al., 2021) extending the original sub-voxel shift method.

e Susceptibility-induced and Eddy current correction. After the two preceding low-pass filters,

susceptibility-induced distortion is corrected using a single pair of reverse phase-encoded b0Os to
allow rapid EPI correction without the risk of overestimating the distortion field. This is followed
by motion, b-matrix rotation, eddy current and outlier correction, which results in a co-registered
DWI free of outlier voxels (Andersson et al., 2016; Andersson and Sotiropoulos, 2016). This
correction is applied through MRtrix’s dwifslpreproc function, which is a wrapper for FSL’s topup
and eddy functions. Phase encoding information in the image metadata is read by PyDesigner to
automate this step, so users are not required to manually specify phase encodings.

e Brain mask. With all DWI volumes co-registered, a mean b0 volume is used to create a brain mask
using FSL’s bet at 0.25 threshold for subsequent steps. Users can adjust bet threshold with the --
maskthr flag or supply their own brain mask with the --user_mask flag.

e Smoothing. Smoothing with a Gaussian kernel 1.25 x full-width half maximum (FWHM) of the
voxel size is then applied to attenuate residual noise or artifacts that may have remained after prior

corrections. While not entirely necessary because of smoothing-free algorithms used in previous

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

preprocessing steps, it diminishes effects of outlier voxels. While PyDesigner defaults to 1.25 x
FWHM, users are able to adjust the size of the Gaussian kernel with the --fwhm flag.

e Rician noise bias correction. The final image correction is another low-pass filter to dampen the

Rician noise bias generated by taking the magnitude of the raw DWIs during scanner
reconstruction. The noise map derived from MP-PCA denoising is used to estimate the unbiased
noise standard deviation, thus enabling an estimation of the true signal voxel intensity (Koay and

Basser, 2006).

Tensor Fitting

o IRLLS outlier detection. Diffusion tensor fitting is initiated with IRLLS to undermine skewness of

data distribution, so voxels demonstrating hypo- and hyperintensities can be marked as outliers
(Collier et al., 2015).

e Outlier-excluded constrained tensor fitting. Voxels unmarked by IRLLS undergo a constrained and

log-linearized (Veraart et al., 2013) diffusion and kurtosis tensor fitting through a quadratic
program (QP), where positive apparent kurtosis (K, > 0) is defined as the default constraint

(Tabesh et al., 2011). There are a total of three constraints that can be toggled on or off with the --

: . . - 3
fit_constraints flag to limit tensor fitting such that Dgp,p, > 0, Kgppy > 0, or Kgpppy < Drax Dany’

where D ;s apparent diffusion coefficient, Ky, is apparent kurtosis coefficient, and by 4, is the
maximum b-value of the data.

e Brute-forced apparent kurtosis coefficient (AKC) correction. Fitted tensors undergo additional

refinement by brute-forcing them across 100,000 pre-defined gradient directions to compute AKC
values, where tensor voxels with AKC less than —2 or more than 10 are median filtered. Users are
cautioned that this method is not yet validated and can introduce outliers in some instances. While
future updates to PyDesigner are expected to deprecate AKC correction, current users may disable

it with the --noakc flag.

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

e Parameter extraction. Culmination of IRLLS, constrained tensor fitting, and brute-forced AKC

correction yield biologically plausible tensors suitable for microstructural evaluation via DTI, DKI,
fiber ball imaging (FBI, Jensen et al., 2016; Moss et al., 2019; Moss and Jensen, 2021) and fiber
ball white matter modelling (FBWM, McKinnon et al., 2018). PyDesigner speeds up the tensor
fitting regime by limiting computations within voxels that only contain brain tissue by using a brain

mask. All aforementioned preprocessing steps are executed as part of the standard pipeline run.

Users can enable or disable image correction steps by parsing corresponding image correction flags
instead of the --standard flag. Additional control flags are available to specify granularity of image

corrections and tensor fitting. Information on all control flags is available at PyDesigner — List of Flags. A

completely pre-processed DWI using PyDesigner possesses minimal thermal noise and outliers and is co-
registered to minimize motion. PyDesigner populates subject output directories with standard PyDesigner
outputs.

DESIGNER'. Preprocessed file from PyDesigner was first converted to MRtrix image format (.mif) using
the function MRtrix3 function mrconvert. Then, all DKI-compatible b-value shells less than 3000 s/mm?
were extracted with dwiextract and parsed into DESIGNER’s tensor fitting function tensorfitting.m with
the same tensor fitting parameters as PyDesigner (including IRLLS outlier detection and AKC correction)
to generate standard DESIGNER output metrics. Fitting was performed with the default constraint Ky, >
0.

PyDesigner’s tensor fitting is adapted from DESIGNER by a straightforward Python translation of
MATLAB code. Any differences seen in resulting maps are likely due to program dependent differences in
the implementation of mathematical operations.

DKE. Preprocessed images from PyDesigner (dwi_preprocessed.nii) were parsed through the MATLAB

function des2dke.m (found in PyDesigner repository). This function extracts all b-value shells less than b =

1 pyDesigner and DESIGNER rely on the same MRTrix3 and FSL tools and command syntax to perform image
correction.

https://pydesigner.readthedocs.io/en/latest/reference/pydesigner_args.html
https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3000 s/mm?, averages b0 volumes and concatenates them to form a DKE-compatible 4D NifTi file. This is
done as DKE requires only a single b0 volume placed at the beginning of an input DWI for tensor fitting.
This requirement limits accuracy of DKE’s linear least squares tensor fitting because a single data point is
used to initialize the fit. DKE processed this file to generate standard diffusion and kurtosis parameter
outputs. Additionally, DKE’s robustness in tensor estimation is limited as it does not perform any outlier
detection or tensor correction. Fitting was performed with the default constraint K, > 0.

DIPY. The same files used for DESIGNER processing were parsed into DIPY within a Python Jupyter
Notebook. A DKI model was fitted to the data with dipy.reconst.dki.DiffusionKurtosisModel() using the
default weighted least squares (WLS) and parameter values were extracted. DIPY is the only software
among those tested that performs unconstrained tensor fitting.

Postprocessing. A cerebral spinal fluid (CSF) excluded brain mask was created using FMRIB’s Automated
Segmentation Tool (FAST) and fsistats with a brain-masked average b0 volume. This mask was applied to
mean diffusivity (MD), fractional anisotropy (FA), and mean kurtosis (MK) maps to extract metrics values
in non-CSF tissue. Voxels with MD < 0, MK < 0, and MK = 10 were excluded as these are considered
biologically implausible parameter values. These metrics were then compared across the four software to

report on tensor fitting differences.

RESULTS

All three commonly studied diffusion parameters (MD, FA, and MK) were found to be nearly
identical in most voxels, especially for the FA and MD images, as seen in Figure 2 and 3. Differences
between the software tools are more apparent with MK, particularly for the highly aligned fibers of the
corpus callosum. Note that the PyDesigner MK appears to have more uniform intensity along the splenium
of the corpus callosum, in comparison to the DESIGNER, DKE and DIPY estimates.

Distribution plots of MD, FA, and MK, shown in Figure 3, display minimal differences between
metrics across all four software. The MD, FA, and MK values are biologically plausible, except for a small

number of voxels with MD exceeding the diffusivity of free water at 37 °C (3.0 um*ms), which likely

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

reflects CSF partial volume effects. Inter-parametric correlations of MD vs. FA and MK vs. FA are shown
in Figure 4 andFigure 5, respectively. The MD and FA are nearly identical, with only minor discrepancies
likely owing to differences in implementation of linear least squares fitting. For the MK vs. FA correlations
of Figure 5, PyDesigner and DESIGNER again yield highly similar results, but deviations can be seen for
DKE because, by default, it limits MK values to lie below 3 and with DIPY because it does not impose the
Kgapp > 0 constraint, resulting in more points with high FA together with low MK. Table 1 lists the Pearson
correlation coefficients for the various comparisons. These again are quite similar, although the MD vs. FA
correlation coefficient for DKE is somewhat larger than for the other three. Overall, the diffusion parameter
estimates obtained from PyDesigner are consistent with those obtained with the other tensor fitting

programs, thus providing supporting evidence of its accuracy and robustness.

DISCUSSION AND CONCLUSION
The primary motivation for developing PyDesigner was to implement the key elements of
DESIGNER with all MATLAB code being replaced with Python, thereby allowing greater portability and
accessibility. As our numerical results demonstrate, PyDesigner and DESIGNER yield nearly identical
outputs. Nonetheless, there are a few additional options and default settings along with some minor bug
fixes introduced while coding PyDesigner. These are described in detail in the online PyDesigner

documentation (https://github.com/m-ama/PyDesigner). At the time of this writing, not all preprocessing

features of DESIGNER such as B1 bias correction and DWI intensity normalization have been fully

implemented in PyDesigner but are planned in future updates.

Here we also compared the PyDesigner tensor fitting calculations to those of the commonly used
DKE and DIPY DKI analysis tools, showing that PyDesigner again yields similar results. Regarding the
small differences that are found between PyDesigner and DESIGNER, on the one hand, relative to DKE

and DIPY, on the other, we believe the two DESIGNER-based programs to be more accurate since they

https://github.com/m-ama/PyDesigner
https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

employ a more sophisticated fitting algorithm as discussed by Ades-Aron et al. (Ades-Aron et al., 2018).
Combining constrained tensor fitting, outlier detection, and AKC correction yield robust and accurate tensor

fitting seen in PyDesigner and DESIGNER.

A key advantage of PyDesigner over DESIGNER is that it is available in a Docker container called

NeuroDock (dmri/neurodock), which greatly enhances portability and simplifies installation. This container

runs across all major OS platforms compatible with Docker, including Microsoft Windows, Mac OS, and
various Linux distributions. Docker’s container technology also enables straightforward deployment to high
performance clusters (HPCs) for batch processing DWIs quickly on Docker-compatible local clusters,

Amazon AWS, or Microsoft Azure.

PyDesigner also includes microstuctural modeling calculations that go beyond DKI, including
White Matter Tract Integrity (WMTI) (Fieremans et al., 2011), FBI, and FBWM. For WMT]I, a standard
DKI dataset is adequate, and the associated microstructural parameters are calculated by default. However,
it should be emphasized that the validity of WMTI is restricted to white matter regions with high FA (i.e.,
FA = 0.4) and with some WMTI metrics having a limited accuracy due to assuming parallel alignment of
axons in any given voxel. FBI (Jensen et al., 2016; Moss et al., 2019; Moss and Jensen, 2021) is a distinct
dMRI method applicable throughout the cerebral white matter, which requires high b-value (i.e., b = 4000
s/mm?) dMRI data sampled with a minimum of about 64 diffusion encoding directions (along with data for
b = 0). The main outputs of FBI are the fiber orientation density function (fODF) for each white matter
voxel, which can be used for white matter tractography and serves as an input for FBWM, as well as the
intra-axonal fractional anisotropy (FAA). FBWM utilizes the dMRI data from both DKI and FBI to estimate
the same parameters as WMTI but with improved accuracy. Thus, if this additional data is available, then
FBWM estimates are preferred over those from WMTI (McKinnon et al., 2018). As with FBI, FBWM has

only been validated in adult cerebral white matter.

Another notable feature of PyDesigner is multi-file input, which allows it to handle various file

inputs - NifTi (.nii), compressed NifTi (.nii.gz), DICOM (.dcm), and MRtrix file format (.mif). PyDesigner

https://hub.docker.com/r/dmri/neurodock
https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

is able to automatically identify acquisition information from header metadata regardless of input format
and perform corrections accordingly, thereby supporting a hands-off approach. Regardless of differences
in protocols, the same command (see above) can be used to process a wide variety of DWIs. PyDesigner
thus saves time and effort by minimizing manual preprocessing steps and commands. In a recently released
update (v1.0-RC10), this has been enhanced by introducing compatibility for multiple echo-time (multi-
TE) datasets. This allows PyDesigner to run image preprocessing steps, which are largely independent of
TE, on a multi-TE DWI to yield an image with minimal noise and artifacts. TE-dependent tensor

calculations are then performed on each TE separately to produce diffusion or kurtosis metrics.

PyDesigner is still under development and improvements in existing features and the addition of

new features are both expected in new updates. These will be detailed on the PyDesigner website

(https://github.com/m-ama/PyDesigner), which provides both documentation and source code. Readers are
encouraged to consult this website for the most up-to-date version of PyDesigner prior to beginning a new
analysis. PyDesigner’s GitHub page also hosts a discussion forum where questions regarding PyDesigner

can be submitted (https://github.com/m-ama/PyDesigner/discussions). The Docker implementation for

portability is called NeuroDock (https://hub.docker.com/r/dmri/neurodock), which contains PyDesigner

and its dependencies to enable processing across a wide array of platforms.

FUNDING
Research reported in this publication was supported, in part, by National Institutes of Health grants
RO1AGO054159, RO1AG057602, RO1AGO055132, RO1DCO014021, ROINS110347, R21DA050085,
F31NS108623, P20GM109040, P5S0DC000422, T32GMO008716, and T32DC014435. Additional funding

was provided by the Litwin Foundation.

https://github.com/m-ama/PyDesigner
https://github.com/m-ama/PyDesigner/discussions
https://hub.docker.com/r/dmri/neurodock
https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

Ades-Aron, B., Veraart, J., Kochunov, P., McGuire, S., Sherman, P., Kellner, E., Novikov, D.S.,
Fieremans, E., 2018. Evaluation of the accuracy and precision of the diffusion parameter
EStImation with Gibbs and NoisE removal pipeline. Neurolmage 183, 532-543.
https://doi.org/10.1016/j.neuroimage.2018.07.066

Agrawal, A., Verschueren, R., Diamond, S., Boyd, S., 2018. A rewriting system for convex optimization
problems. J. Control Decis. 5, 42—60. https://doi.org/10.1080/23307706.2017.1397554

Andersson, J.L.R., Skare, S., Ashburner, J., 2003. How to correct susceptibility distortions in spin-echo
echo-planar images: application to diffusion tensor imaging. Neurolmage 20, 870—888.
https://doi.org/10.1016/S1053-8119(03)00336-7

Basser, P.J., 2002. Relationships between diffusion tensor and g-space MRI. Magn. Reson. Med. 47, 392—
397. https://doi.org/10.1002/mrm.10052

Collier, Q., Veraart, J., Jeurissen, B., den Dekker, A.J., Sijbers, J., 2015. Iterative reweighted linear least
squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters:
IRLLS for Estimation of Diffusion MR Parameters. Magn. Reson. Med. 73, 2174-2184.
https://doi.org/10.1002/mrm.25351

Diamond, S., Boyd, S., 2016. CVXPY: A Python-Embedded Modeling Language for Convex
Optimization. J. Mach. Learn. Res. JMLR 17.

Fieremans, E., Jensen, J.H., Helpern, J.A., 2011. White Matter Characterization with Diffusional Kurtosis
Imaging. Neurolmage 58, 177—188. https://doi.org/10.1016/j.neuroimage.2011.06.006

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M.,
Haldane, A., del Rio, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E., 2020. Array programming with
NumPy. Nature 585, 357-362. https://doi.org/10.1038/s41586-020-2649-2

Henriques, R.N., Correia, M.M., Marrale, M., Huber, E., Kruper, J., Koudoro, S., Yeatman, J.D.,
Garyfallidis, E., Rokem, A., 2021. Diffusional Kurtosis Imaging in the Diffusion Imaging in
Python Project. Front. Hum. Neurosci. 15, 390. https://doi.org/10.3389/fnhum.2021.675433

Jensen, J.H., Helpern, J.A., 2010. MRI Quantification of Non-Gaussian Water Diffusion by Kurtosis
Analysis. NMR Biomed. 23, 698—710. https://doi.org/10.1002/nbm.1518

Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K., 2005. Diffusional kurtosis imaging: the
quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn.
Reson. Med. 53, 1432-1440. https://doi.org/10.1002/mrm.20508

Jensen, J.H., Russell Glenn, G., Helpern, J.A., 2016. Fiber ball imaging. Neurolmage 124, 824—833.
https://doi.org/10.1016/j.neuroimage.2015.09.049

Koay, C.G., Basser, P.J., 2006. Analytically exact correction scheme for signal extraction from noisy
magnitude MR signals. J. Magn. Reson. 179, 317-322. https://doi.org/10.1016/j.jmr.2006.01.016

Le Bihan, D., Poupon, C., Amadon, A., Lethimonnier, F., 2006. Artifacts and pitfalls in diffusion MRL. J.
Magn. Reson. Imaging 24, 478—488. https://doi.org/10.1002/jmri.20683

Lee, H.-H., Novikov, D.S., Fieremans, E., 2021. Removal of partial Fourier-induced Gibbs (RPG) ringing
artifacts in MRI. Magn. Reson. Med. 86, 2733-2750. https://doi.org/10.1002/mrm.28830

Li, X., Morgan, P.S., Ashburner, J., Smith, J., Rorden, C., 2016. The first step for neuroimaging data
analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47-56.
https://doi.org/10.1016/j.jneumeth.2016.03.001

McKinnon, E.T., Helpern, J.A., Jensen, J.H., 2018. Modeling white matter microstructure with fiber ball
imaging. Neurolmage 176, 11-21. https://doi.org/10.1016/j.neuroimage.2018.04.025

Moss, H.G., Jensen, J.H., 2021. High fidelity fiber orientation density functions from fiber ball imaging.
NMR Biomed. e4613. https://doi.org/10.1002/nbm.4613

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Moss, H.G., McKinnon, E.T., Glenn, G.R., Helpern, J.A., Jensen, J.H., 2019. Optimization of data
acquisition and analysis for fiber ball imaging. Neurolmage 200, 690—703.
https://doi.org/10.1016/j.neuroimage.2019.07.005

SciPy 1.0 Contributors, Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett,
M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E.,
Carey, C.J., Polat, L, Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, 1., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van
Mulbregt, P., 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat.
Methods 17, 261-272. https://doi.org/10.1038/s41592-019-0686-2

Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors and tensor-derived
measures in diffusional kurtosis imaging. Magn. Reson. Med. 65, 823—-836.
https://doi.org/10.1002/mrm.22655

Veraart, J., Fieremans, E., Novikov, D.S., 2016a. Diffusion MRI noise mapping using random matrix
theory. Magn. Reson. Med. 76, 1582—1593. https://doi.org/10.1002/mrm.26059

Veraart, J., Novikov, D.S., Christiaens, D., Ades-aron, B., Sijbers, J., Fieremans, E., 2016b. Denoising of
diffusion MRI using random matrix theory. Neurolmage 142, 394—406.
https://doi.org/10.1016/j.neuroimage.2016.08.016

Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., Jeurissen, B., 2013. Weighted linear least squares
estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls. Neurolmage 81, 335—
346. https://doi.org/10.1016/j.neuroimage.2013.05.028

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

Input 4D DWI

Preprocessed
4D DWI

fl DWI outliers

Median filtered
tensor voxels

Figure 1: Visual representation of the PyDesigner pipeline; order of processing is clockwise. Preprocessing begins by providing an input 4D
diffusion weighted image (DWI) to PyDesigner (top left), which then undergoes MP-PCA denoising to yield a noise-free 4D DWI and a 3D noise
map. The noise-free 4D DWI then undergoes Gibbs ringing correction, TOPUP, eddy current correction and outlier correction. A brain mask is
then computed for subsequent steps to speed up computations by performing them within the brain mask only.

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

PyDesigner DESIGNER DKE DIPY

Kapp > 0 constraint Unconstrained

T, 47T,
F ik e | £ 8y

Kapp

AT
.d_'* ‘ 5‘1

> 0 constraint

| - B

P T -
» 4 W , ‘h_ i
MK |+ & Ay i i
L Lol .
: . 3 3 i

Figure 2: Commonly analyzed diffusion tensor and kurtosis imaging maps derived from PyDesigner, DESIGNER, DKE and DIPY. Tensor fitting
was performed with K5, > 0 constraint in PyDesigner, DESIGNER, and DKE, whereas unconstrained fitting was used in DIPY due to software
limitations. The units for the MD scale bar are in pum?/ms, while the other scale bars are dimensionless.

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

Distribution of Metric Values across Software

Software 1750 | Software

Software
PyDesigner | PyDesigner 1200 PyDesigner
2000 DESIGNER | DESIGNER DESIGNER
DKE 1500 DKE DKE
DIPY DIPY 1000 DIPY
1500 1250
800
= = 1000 €
3 =] =1
S] 8
1000 600
750
400
500
500
250 A 200
i y - —_— i B |
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 40 0.0 0.2 04 0.6 0.8 1.0 0.0 0.5 1.0 15 2.0
MD (pm?/ms) FA

MK

Figure 3: Distribution of computed values for FA, MD, and MK from PyDesigner, DESIGNER, DKE, and DIPY in cerebral spinal fluid (CSF)-
excluded brain are similar across most voxels

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MD (pm?/ms) vs FA across Software

Software = DESIGNER

Software = PyDesigner

MD (pm?ms)

Software = DIPY

Software = DKE

MD (pm?/ms)

FA

Figure 4: Plots of FA (x-axis) vs MD (y-axis) to illustrate the consistency of these diffusion parameters
across the four software tools. Plots are sorted by software. The lines are best fits from linear regression.

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MK vs FA across Software

Software = PyDesigner Software = DESIGNER

MK
S

Software = DKE Software = DIPY

MK
IS

FA FA

Figure 5: Plots of FA (x-axis) vs MK (y-axis) to illustrate consistency. Plots are sorted by software. The
lines are best fits from linear regression. Note that the MK for the DKE calculations are restricted to be
less than or equal to 3.

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.20.465189; this version posted March 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Software Correlation

FA with MD FA with MK

PyDesigner -0.3786 0.5097
DESIGNER -0.3843 0.5153
DKE -0.4288 0.5156
DIPY -0.3854 0.5049

Table 1: Pearson correlation coefficients between FA and MD, and FA and MK across all four DKI
analysis programs evaluated.

https://doi.org/10.1101/2021.10.20.465189
http://creativecommons.org/licenses/by-nc-nd/4.0/

