

1 A multimodal imaging and analysis pipeline for 2 creating a cellular census of the human 3 cerebral cortex

4 Irene Costantini ^{*1,2,3+}; Leah Morgan ^{*4}; Jiarui Yang ^{*6}; Yael Balbastre ^{*4,5}; Divya Varadarajan
5 ^{*4,5}; Luca Pesce ¹; Marina Scardigli ^{1,7}; Giacomo Mazzamuto ^{1,3}; Vladislav Gavryusev ^{1,7}; Filippo
6 Maria Castelli ^{1,7}; Matteo Roffilli ⁸; Ludovico Silvestri ^{1,3,7}; Jessie Laffey ⁹; Sophia Raia ⁹; Merina
7 Varghese ⁹; Bridget Wicinski ⁹; Shuaibin Chang ¹⁰; Anderson Chen I-Chun ⁶; Hui Wang ^{4,5};
8 Devani Cordero⁴; Matthew Vera ⁴; Jackson Nolan⁴; Kim Nestor^{4,5}; Jocelyn Mora ^{4,5}; Juan
9 Eugenio Iglesias ^{4,5,11,12}; Erendira Garcia Pallares ⁴; Kathryn Evancic^{4,5}; Jean Augustinack ^{4,5};
10 Morgan Fogarty ⁴; Adrian V. Dalca ^{4,12}; Matthew Frosch ⁴; Caroline Magnain ^{4,5}; Robert Frost
11 ^{4,5}; Andre van der Kouwe ^{4,5}; Shih-Chi Chen ¹³; David A. Boas ^{†6}; Francesco Saverio Pavone
12 ^{†1,3,7}; Bruce Fischl ^{†4,5,12,14}; Patrick R. Hof ^{†9}

13 Affiliations

- 14 1. European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto
15 Fiorentino (FI), Italy
- 16 2. Department of Biology, University of Florence, Italy
- 17 3. National Institute of Optics (INO), National Research Council (CNR), Italy
- 18 4. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology,
19 Massachusetts General Hospital, Charlestown, MA, USA
- 20 5. Department of Radiology, Harvard Medical School, Boston, MA, USA
- 21 6. Boston University, Department of Biomedical Engineering, Boston, USA
- 22 7. Department of Physics and Astronomy, University of Florence, Sesto Fiorentino (FI),
23 Italy
- 24 8. Bioretics srl, Cesena, Italy
- 25 9. Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of
26 Medicine at Mount Sinai, New York, NY, USA
- 27 10. Boston University, Department of Electrical and Computer Engineering, Boston, USA
- 28 11. Department of Medical Physics and Biomedical Engineering, University College London,
29 London, UK
- 30 12. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
31 Technology, Cambridge, MA, USA
- 32 13. The Chinese University of Hong Kong, Department of Mechanical Engineering, Hong
33 Kong Special Administrative Region, China
- 34 14. HST, Massachusetts Institute of Technology, Cambridge, MA, USA

37 * These authors have contributed equally to this work and share first authorship
38 † These authors have supervised this work and share last authorship
39 + Corresponding author; email: costantini@lens.unifi.it

40 Abstract

41 Cells are not uniformly distributed in the human cerebral cortex. Rather, they are arranged in a
42 regional and laminar fashion that span a range of scales. Here we demonstrate an innovative
43 imaging and analysis pipeline to construct a reliable cell census across the human cerebral
44 cortex. Magnetic resonance imaging (MRI) is used to establish a macroscopic reference
45 coordinate system of laminar and cytoarchitectural boundaries. Cell counting is obtained with
46 both traditional immunohistochemistry, to provide a stereological gold-standard, and with a
47 custom-made inverted confocal light-sheet fluorescence microscope (LSFM) for 3D imaging at
48 cellular resolution. Finally, mesoscale optical coherence tomography (OCT) enables the
49 registration of the distorted histological cell typing obtained with LSFM to the MRI-based atlas
50 coordinate system.

51 1 Introduction

52 The human brain is a complex organ organized across a range of spatial scales. To understand
53 its properties and functionality, it is critical to produce a comprehensive characterization of the
54 neuronal cell types that compose it and to visualize their distributions through the whole
55 volume^{1,2}. Although significant technological advances ³⁻⁷ have been made to obtain complete
56 cell census in animal models such as mouse and marmoset monkey⁸⁻¹⁶, no current imaging
57 technology can directly visualize the defining microscopic features of the human brain without

58 significant distortion. Indeed, available cytoarchitectural parcellations of the human brain¹⁷ are
59 limited by unavoidable distortions introduced by slice-to-slice sectioning, clearing, staining and
60 mounting steps involved in current histochemistry protocols. This processing results in artifacts
61 that prevent accurate visualization of the tissue's morphomolecular properties such as
62 individual cells across different regions or laminar and cytoarchitectural boundaries that form
63 the natural coordinate system for a cell census of the human brain.

64 Important steps have been made towards building 3D models of the human brain with cellular
65 resolution through the use of magnetic resonance imaging (MRI)¹⁸⁻³⁰, standard histology³¹⁻³⁸
66 and polarized light imaging (PLI³⁹). For example, the Big Brain project¹⁷ required 5 years and
67 1,000 person-hours to obtain a comprehensive dataset of one human brain with a nominal
68 resolution of 20 µm. In parallel, data analysis and atlassing methods have been proposed to
69 manage the the very large datasets generated during reconstructions and mapping of the
70 volumes to standardized templates^{6,40-42}. While these technologies represent remarkable
71 advances, they still do not produce the undistorted 3D images of the cytoarchitecture of the
72 human brain that are needed to build accurate models with nuclear and laminar resolution, a
73 critical component of any cellular atlas.

74 Here, we present an innovative imaging and analysis pipeline that combines a number of
75 imaging techniques to overcome the inherent limitations of each individual methodology. We
76 propose to bridge microscopic volumetric histological imaging and macroscopic MRI using
77 mesoscopic optical coherence tomography (OCT) to enable registration of the distorted
78 histological volumes containing cell typing to an MRI-based atlas coordinate system. OCT is an
79 optical technique that measures the backscattered light of the sample to provide high

80 resolution cross-sectional imaging and 3D reconstruction up to several hundred micrometers in
81 depth in fixed *ex vivo* biological tissues, in a contact-free and non-invasive manner (no staining
82 required)⁴³. Serial sectioning OCT can be accurately registered to the whole -hemisphere MRI of
83 the brain as imaging is performed prior to slicing and thus virtually minimal deformation is
84 introduced. For 3D histological analysis with even higher sub-cellular resolution, confocal light-
85 sheet fluorescence microscopy (LSFM)⁴⁴ is employed to image the large volumes of human
86 brain tissue slabs obtained after OCT measurement. LSFM allows to obtain a fast optical
87 sectioning of the sample by employing a specific configuration where the illumination axis is
88 orthogonal to the acquisition axis⁴⁴⁻⁴⁶. LSFM is coupled with a dedicated tissue transformation
89 technique to specifically label neuron subtypes and clear the tissue.
90 Finally, a stereological assessment is performed on the LSFM reconstructions to obtain a cell
91 type-specific quantitative census of the neurons.
92 This multimodal imaging infrastructure was developed to bridge the resolution gap between
93 macroscopic and microscopic techniques, resulting in a platform that integrates cellular
94 anatomical information within a whole-brain reference space. The pipeline represents a large
95 multi-institutional collaborative effort across the Massachusetts General Hospital, Boston
96 University, the European Laboratory for Non-Linear Spectroscopy, and the Icahn School of
97 Medicine at Mount Sinai.

98 2 Results

99 2.1 Imaging and Analysis Pipeline Overview

100 In this work, we generated a cell census of the human cerebral cortex by implementing a
101 multimodal imaging and analysis pipeline on Broca's area (Brodmann's areas 44/45), blocked
102 from whole human hemispheres. The postmortem specimen included in this project was
103 obtained from a subject who had no neurologic or psychiatric illnesses. **Figure 1** provides an
104 overview of the imaging pipeline performed on the sample (left, from top to bottom) and the
105 subsequent imaging and data analysis pipeline (left to right). The whole hemisphere is first
106 imaged with MRI before Broca's area is blocked and imaged with serial sectioning OCT. 3D
107 histological fluorescence imaging on the acquired slices is then performed with LSFM. In
108 parallel, gold-standard stereology is performed on additional tissue samples. A stereological
109 evaluation is performed digitally on the LSFM data with a laminar level of resolution. An atlas of
110 the data is obtained through non-linear registration of the three modalities; LSFM to OCT and
111 OCT to MRI. Cell counts and manually labeled features are also registered along with the
112 volumes on which they were generated, thereby mapping the results of our analysis to a
113 within-subject coordinate system. All the data collected are made available on the DANDI
114 platform⁴⁷. In the following sections, details are provided on each step of this pipeline.

115 2.2 Reference coordinate system establishment with MRI imaging

116 A reference coordinate system for the cellular atlas was established with *ex vivo* MRI of the
117 whole hemisphere. Structural images with 150- μ m isotropic resolution were acquired using a
118 multi-flip angle, multi-echo fast low angle shot (FLASH) MRI sequence on a Siemens 7 T MRI
119 scanner using a custom-built 31-channel head coil²¹. We performed diffusion imaging on a
120 Siemens 3 T MRI scanner using a Siemens 32-channel head coil. The MRI data were processed
121 to correct for geometric distortions due to B_0 field inhomogeneities⁴⁸⁻⁵⁰, contrast variations due
122 to B_1 transmit field inhomogeneities and intensity bias due to B_1 receive coil sensitivity
123 variations⁵¹. **Figure 2** illustrates the 150- μ m isotropic root mean squared (RMS) image for a flip
124 angle of 20° calculated across the four echo times on the sample presented in this paper.
125 **Figure 2** also demonstrates the improvement in vessel and laminar contrast quality attained by
126 performing various artifact correction steps. **Figure 2a** zooms into the Broca's area where a
127 clear contrast between grey and white matter, and the transition from the infra- to
128 supragranular layer of the cortex within the grey matter, is visible in these images. These
129 laminar boundaries are critical for tabulating information about cell types and their
130 distributions within the characteristic architectural infrastructure that defines the cortical
131 sheet. **Figure 2b** shows a zoomed-in portion of the frontal lobe that is severely effected by B_0
132 and B_1 transmit distortions. The B_0 inhomogeneity blurred the vessels and cortex in the RMS
133 image due to misalignment between their locations in the different echo images. B_1 transmit
134 field variation reduced the overall vessel contrast. Vessels are important anatomical landmarks
135 used to aid cross-modality registration and since the distortion corrected images demonstrate
136 improved vessel sharpness and contrast, they aid in providing accurate landmarks essential for
137 registration. **Figures 2c and 2d** show axial and sagittal slices before and after intensity bias

138 correction. The bias-corrected images show improved laminar and white matter contrast. The
139 artifact-corrected whole-hemisphere MRI data presented here thus provides a reliable laminar
140 framework, improved quality of vessel landmarks, and a reference space to which downstream
141 modalities can be registered.

142 2.3 OCT 3D reconstruction for tissue registration

143 The excised block (approximately 1.5x1.3x0.8 cm³) was imaged with a home-built serial
144 sectioning OCT system at 5-μm isotropic mesoscale resolution that reveals cortical layers and
145 cytoarchitectural boundaries⁴³. To enhance the penetration of light deep inside the sample for
146 OCT, we exploited a clearing procedure, based on the organic solvent 2,2'-thiodiethanol (TDE),
147 to reach an imaging depth of up to 500 μm⁵². Sectioning the 500 μm-thick slices was performed
148 using a custom-built vibratome that is capable of slicing sections up to 6 cm-wide⁵³. By
149 capturing the intrinsic back-scattering properties of the tissue, OCT elucidated features such as
150 vasculature and cortical layer structure to be used as registration landmarks (**Figure 3** and
151 **Supplementary Movie1**). Additionally, as OCT imaging precedes sectioning, tissue
152 deformations from sectioning were almost completely eliminated.

153 2.4 Molecular phenotyping reconstruction with LSFM

154 Fluorescence imaging of the 16 slices was obtained using a custom-built dual-view inverted
155 confocal LSFM with a voxel-size resolution of 0.55 x 0.55 x 3.3 μm³ that results in a 3.3 μm³
156 isotropic resolution after post-processing (**Figure 4a**)⁵⁴. Molecular specificity was achieved by
157 combining LSFM with an advanced tissue transformation protocol called SHORT⁵⁵. The protocol

158 rendered the sample completely transparent to light by refractive index matching (**Figure 4b**)
159 and allowed homogeneous co-labeling of large 3D volumes with different markers (**Figure 4c**)
160 and **Supplementary Figure 1**). To perform the cell census in the area 44/45, we used
161 immunofluorescence to label specific neuronal populations. The use of neurochemical markers
162 allows for the definition of region-specific staining patterns, and generally results in a high
163 definition of cortical areas that complement traditional Nissl and myelin preparations. In this
164 context, calcium-binding proteins have been shown to be reliable cellular markers for
165 cytoarchitectural studies of the primate neocortex, in which they are present principally in
166 distinct populations of inhibitory neurons that exhibit recognizable patterns of regional and
167 laminar specialization^{35,56-64}. We used an anti-neuronal nuclear antigen (NeuN) antibody to
168 stain all neurons and an anti-calretinin (CR) antibody to identify a subpopulation of γ -
169 aminobutyric acid-ergic (GABAergic) interneurons. To detect all cell nuclei we used an
170 exogenous dye (propidium iodide, PI) obtaining a three-color costaining in the same tissue
171 (**Figure 4d and Supplementary Movie 2**). Vessels were identified from autofluorescence signals
172 generated by retained blood.

173 2.5 Stereological validation of 3D reconstruction

174 While LSFM enables the investigation of brain structures from the subcellular to the mesoscale,
175 by recording different distributions of neuronal populations in large, cleared, specifically
176 immunolabeled tissues with micrometric resolution and reasonably efficient acquisition times,
177 no quantitative gold-standard validations of such population-level imaging data acquisitions
178 currently exist. Hence we performed stereological gold-standard assessments on LSFM

179 reconstructions of identified neuronal populations using an Optical Fractionator probe^{65,66}
180 adapted to cleared materials (**Figure 5** and **Supplementary Figure 2**). We recorded on average
181 22,400 CR⁺ neurons in layer 3 across the slabs, 85,500 NeuN⁺ neurons in layer 3 and 62,700
182 NeuN⁺ in layer 5, with corresponding densities of 2787, 8120, and 6168 neurons/mm³,
183 respectively (**Supplementary Table 1**).

184 These LSFM data were validated against stereologic estimates from separate specimens
185 prepared using traditional protocols and analyzed under brightfield conditions (see
186 supplementary materials). This provides the ability to compare manual estimates to automatic
187 segmentations obtained from the same LSFM datasets, and ultimately to develop an integrated
188 and unbiased quantitative database of identified cellular populations in the human neocortex.

189 This parallel validation approach, performed on separate specimens prepared in thinner
190 materials (50 µm-thick microtome sections of the entire area 44/45) and immunostained in
191 series for each marker of interest, provides layer-specific estimates of cellular features, such as
192 total numbers, local densities, somatic volumes, and spatial distribution of various neuronal
193 populations identified by specific markers including cytoskeletal proteins, calcium-binding
194 proteins, and neuropeptides, as well as generic cellular markers such as NeuN and the Nissl
195 stain. These evaluations serve as a gold-standard for the project. Total neuronal number
196 estimates based on Nissl-stained series of sections from the entire Broca's area yielded values
197 averaging 35 million neurons in layer 3 and 22 million in layer 5, which is consistent with data
198 obtained independently from prefrontal and temporal regions⁶⁷⁻⁶⁹. Preliminary assessment of a
199 subpopulation of large pyramidal neurons identified by non-phosphorylated neurofilament
200 protein (NPNFP) shows that these neurons account for about 30% of total neurons in both

201 layers 3 and 5 of the Broca's area (**Supplementary figure 3d**), in agreement with previous
202 characterizations of this subset of projection neurons^{62,68}. Also, individual Nissl-stained
203 pyramidal cell volumes averaged 2,600 μm^3 in layer 5 and 2,400 μm^3 in layer 3, the NPNFP-
204 immunoreactive cells being the largest ones with perikaryal volumes up to 6,000 μm^3 . These
205 preliminary observations are in agreement with previous characterizations of this subset of
206 projection neurons^{62,68}.

207 2.6 Multimodal registration for MRI-referenced cell census

208 A defining feature of this project is processing the same human brain sample through each of
209 the imaging techniques and quantitative tools described above. This enables us to place the
210 cellular anatomical information within a cortical coordinate system. Cross-modality registration
211 of cytoarchitectural properties is complicated due to distortions introduced by histological
212 imaging techniques. While registration is facilitated by leveraging the fact that OCT is
213 performed on the tissue block before sectioning, slices imaged with LSFM show significant
214 distortions when compared to the OCT data. Hence we have developed a non-linear
215 registration method that uses the segmentation of common features visible across all imaging
216 modalities, such as blood vessels, to overcome this challenge. Vessels that have a diameter
217 larger than 150 μm were manually segmented in MRI data and in each LSFM slice, and the
218 Frangi filter⁷⁰ was used to segment vessel-like structures in OCT data (**Supplementary figure 4**).
219 The resulting labels were used in a composite objective function that optimizes intensity
220 similarity and label overlap to drive registration between MRI and OCT on one hand, and LSFM
221 and OCT on the other hand.

222 We also demonstrate instantiation of microscopic cellular and stereologic information from
223 distorted LSFM histological images within the MRI volume with OCT data serving as a critical
224 intermediary modality with mesoscopic resolution and minimal distortion (**Figure 6** and
225 **Supplementary Movie 3 and 4**). To the best of our knowledge, this is the first time that
226 stereological annotations performed at the microscopic scale are mapped back into the space
227 of the intact brain.

228 All deformations are fully invertible and allow any one modality to be warped to the space of
229 any other modality. In addition to vasculature, the boundary between the cortical infra- and
230 supragranular layers was segmented in MRI data and in a subset of LSFM slices to measure
231 registration accuracy. The resulting transforms were used to warp the MRI segments to each
232 manually segmented LSFM section (**Figure 7**), where the 95th ($559 \pm 200 \mu\text{m}$) and 75th ($310 \pm$
233 $96 \mu\text{m}$) percentiles of the minimum distance from the LSFM boundary to the MRI boundary
234 were computed. It should be noted that these distances were computed in 2D sections and are
235 therefore upper bounds on the 3D distances, and that 75% of boundary points have less than
236 two voxels errors in the $150\text{-}\mu\text{m}$ isotropic MRI space.

237 Discussion

238 The pipeline presented here demonstrates the possibility of performing a cell census of the
239 human brain, at micrometer resolution, by combining different techniques that overcome the
240 inherent limitations associated with any single modality. To achieve this goal, we implemented
241 new imaging and image processing approaches to correlate the four modalities involved: MRI,
242 OCT, LSFM, and stereology. By first establishing a reference coordinate system for the cellular

243 atlas, through volumetric MRI, we greatly expand the utility of the cellular atlas and provide a
244 basis for *in vivo* inferences with our analysis. Existing 3D models of the human brain with
245 cellular resolution such as the Big Brain project¹⁷ include sectioning distortions inherent to
246 histology and do not permit through-plane tracing of features of interest across slices such as
247 connecting axons, vasculature and laminar surfaces. However, the ability to build undistorted
248 laminar models of the human cerebral cortex is a critical component of any cellular atlas. In the
249 last decade, the combination of tissue clearing and high-throughput microscopy techniques,
250 such as LSFM, have paved the way for the investigation of brain anatomy in 3D^{71,72} with
251 subcellular resolution. However, clearing methods and physical sectioning of the human brain
252 sample introduce tissue distortions that complicate the coregistration between MRI reference
253 data and fluorescence reconstructions. Attempts to perform MRI on cleared samples showed a
254 contrast loss that prevents visualization of tissue microstructure⁷³, suggesting that MRI should
255 be performed before tissue clearing. To facilitate the alignment between MRI and LSFM
256 reconstruction, we decided to use OCT as an intermediate method with cellular resolution to
257 enable registration of the distorted fluorescence images of cleared volumes to the MRI-based
258 atlas coordinate system. We demonstrated for the first time accurate alignment of OCT and
259 whole-hemisphere MRI of the brain at the vasculature level. As OCT data is acquired before
260 slicing, it provides a critical, minimally distorted, intermediate reference between the MRI and
261 LSFM.
262 Another important aspect of our pipeline is the choice of using immunofluorescence for specific
263 identification of cellular markers both for LSFM imaging and stereological analysis. The precise
264 immunoreactivity in neurons for neurochemical markers allows the definition of region-specific

265 staining patterns, and generally results in a better definition of the cortical areas compared to
266 Nissl or myelin preparations. In this context, markers like neurofilament proteins and calcium-
267 binding proteins are reliable cellular markers for the mammalian neocortex that identify
268 distinct neuronal populations exhibiting recognizable patterns of regional and laminar
269 specialization^{35,56-58,60-64,74}. For example, NPNFP is present within a relatively small subset of
270 large pyramidal neurons in layers 3, 5, and 6 that display a highly specific regional
271 distribution^{62,74-77}. Similarly, calcium-binding proteins and many neuropeptides are expressed in
272 morphologically non-overlapping subgroups of GABAergic interneurons that are further
273 classified by their electrophysiologic properties and local connectivity^{78,79}. Interestingly, while
274 these markers define generic classes of neurons, they also identify neuronal groups known to
275 be differentially affected in many neuropsychiatric conditions. For example, NPNFP-enriched
276 neurons are particularly affected in the course of Alzheimer's disease while GABAergic
277 interneurons are spared^{68,80}, whereas in other conditions such as schizophrenia or autism
278 spectrum disorder the same neurons present different vulnerability profiles⁸¹⁻⁸⁴.
279 Furthermore, this approach can be integrated with myeloarchitecture data and cerebral
280 microvasculature distribution to enable the determination of patterns of molecular
281 cytoarchitecture and connectivity on multiple scales, from single layers to columnar domains of
282 cortex within a cortical region identified based on specific cytoarchitectural characteristics. To
283 this end, we integrated analytical neurostereology techniques with layer-specific resolution
284 within the pipeline^{65,66}. These approaches are rigorous and validated, and have been
285 extensively applied to the study of the human brain^{68,69,85-89}. The analysis of multiple
286 fluorescence channels on the same counting frame location is also possible⁶⁸. Such

287 morphometric parameters can be used together with a combinatorial expression profiling
288 analysis of cell classes to provide a comprehensive morphomolecular characterization of the
289 cortical cellular typology⁹⁰. A fundamental aspect of stereologic approaches is the accurate
290 delineation of the region of interest. For Broca's area, we established reliable cyto- and
291 chemoarchitectural criteria based on published studies^{89,91,92}. Finally, stereology also provides a
292 gold-standard against which automated approaches, such as machine learning-based methods
293 to quantify cell types, can be verified. A final aspect of the proposed pipeline is the big data
294 management that was optimized to allow the combination of the different techniques. Indeed,
295 special attention was devoted to the choice of the nomenclature, reference data type format,
296 compression, and post-processing methods to achieve a standardized procedure for data
297 storage and sharing, replicable upon multiple samples.

298 Several challenges remain to be addressed further to improve the current pipeline.
299 The 3D stereological analysis employed in this study to obtain a reliable counting of cells is
300 highly time-consuming. To obtain the census of the neurons in the entire acquired volumes, the
301 raw images will be automatically analyzed. In particular, we are exploring the possibility of
302 employing a convolutional neural network for pixel classification, previously proposed to
303 analyze two-photon fluorescence microscopy images⁹³ and automatic cell detection obtained
304 on mouse brain reconstruction with LSFM^{55,94,95}. The approaches will be used to count the
305 different neuronal populations stained in the samples automatically, providing a
306 comprehensive characterization of the whole imaged volume. Moreover, to expand the
307 molecular phenotyping of the tissue, multi-round staining on cleared sample^{55,90,96} will be
308 implemented to characterize human brain cytoarchitecture in greater details. In this context, a

309 quantitative database of morphofunctional neuronal types in identified cortical regions
310 represents a crucial normative resource for the study of cellular changes in brain disorders. The
311 consideration of differential cortical vulnerability in brain diseases can also be used for
312 targeting key cortical domains to carry out future analyses. Also, to speed up the alignment
313 process between the different techniques, eliminating the need to use manual landmarks as
314 performed in this study, microstructure-informed automatic non-linear registration tools are
315 needed. In this regard, we will enhance this pipeline through optimizing an automated
316 vascular segmentation approach⁹⁷. The reference labels will serve as examples to train
317 segmentation models that will be used on future samples, bypassing manual annotation
318 towards the creation of a scalable human brain cellular atlas.
319 The successful realization of this novel acquisition and analysis pipeline ensures reliable
320 replicability across laboratories, representing a substantial scientific step forward in terms of
321 rigor and reproducibility. We believe that the application of our multimodal approach will
322 provide a deeper understanding of the human brain architecture across resolution levels. Our
323 imaging technology pipeline will ultimately enable the automated reconstruction of undistorted
324 3D microscopic models of not just a brain area, but of an entire human brain, permitting the
325 assessment of intra- and inter-subject variability. In turn, this will allow investigations of the
326 presence and spread of pathologic cellular alterations observed in neuropsychiatric illnesses in
327 which selective vulnerability of different cell types occur in disease-specific distribution
328 patterns.

329 Methods

330 Human Brain sample collection

331 The samples used in this project were obtained from control subjects who died of natural
332 causes with no clinical diagnoses or neuropathology. The brain hemisphere imaged for this
333 paper was from a 79 year-old male. A standard fixation protocol was used in which brain was
334 fixed in 10% formalin for a minimum of 90 days. The sample was packed in a 2% buffered
335 paraformaldehyde solution for MRI scanning. After OCT imaging, tissue slices were stored in
336 phosphate-buffered saline. Human brain tissue samples were procured from the Department of
337 Neuropathology at the Massachusetts General Hospital (MGH) Autopsy Service (Boston, USA).
338 Written consent was obtained from healthy participants prior to death, following IRB-approved
339 tissue collection protocols from Partners Institutional Biosafety Committee (PIBC, protocol
340 2003P001937).

341 MRI imaging

342 *Ex vivo* MRI is performed on the whole human hemisphere using multiple flip angles of a multi-
343 echo fast low-angle shot (ME FLASH or MEF) sequence at 150- μ m isotropic resolution, on a 7 T
344 Siemens MR scanner. Specific scan parameters were: TR = 34 ms, TE = 5.65, 11.95, 18.25 and
345 24.55 ms, respectively, field of view (FOV) = 192 x 81.3 mm, and slice thickness = 150 μ m. A
346 novel acquisition and optimization framework was developed to enhance signal-to-noise ratio
347 (SNR) and correct geometric and intensity distortions without additional high-resolution scans.
348 In the presence of B0 inhomogeneity, the odd and even echoes of the MEF are distorted in
349 opposite directions because they are acquired with opposite polarity readout gradients^{49,98}. To

350 remove these distortions, we collected a 2D-encoded B0 fieldmap, which estimates the amount
351 of inhomogeneity at every voxel and in turn gives us a measure of displacement at every voxel
352 of the 150- μm isotropic MEF. We acquired a standard gradient echo fieldmap consisting of two
353 gradient echoes with TR = 5 s, FOV = 192 x 144 mm, matrix size = 160 x 120, and slice thickness
354 = 1.2 mm. Geometric distortions are then corrected using a group sparsity-based edge
355 preserving intensity correction algorithm that uses the fieldmap and all the FLASH images
356 jointly to perform the correction⁴⁸. Additionally, B1+ variation was estimated by acquiring
357 multiple single echo FLASH sequences with short TE (2.7 ms), long TR (5 s), flip angles varying
358 from 20° to 340°, FOV = 192 x 156 mm, matrix = 96 x 78, and slice thickness = 2 mm. We fit the
359 frequency of the sinusoid at each voxel to estimate the multiplicative bias in our flip angle
360 measurements. The estimated flip angle bias map was then used to correct the flip angle value
361 at each voxel location. We fit T1 tissue parameter using a dictionary look up procedure and the
362 corrected flip angle map. We synthesized new FLASH MRI scans with the estimated T1 using
363 the MRI physics forward model for FLASH MRI contrast to remove variations caused by spatially
364 non-uniform B1+ field^{49,50}.

365 The whole hemisphere was imaged using a custom-built 31-channel phased array coil²¹ whose
366 intrinsic sensitivity profile can cause non-uniform intensity. The lack of a body coil with a
367 uniform receive sensitivity profile on the 7 T scanner makes acquisition-based receive bias
368 estimation non-applicable to our scenario. We use a model-based B1- bias correction method
369 that jointly segments tissue type at each voxel and estimates the intensity bias using a
370 likelihood-based cost function. The method assumes that the voxels classified under the same
371 tissue class will have the same FLASH intensity value⁵¹.

372 **Serial sectioning OCT imaging**

373 A custom-built polarization-sensitive OCT (PSOCT) system was used to acquire the volumetric

374 data, however, only the intensity signal was analyzed as the polarization part was beyond the

375 scope of this study. Therefore, we use the terminology of OCT instead of PSOCT in the results.

376 The system was built based on a previously reported setup⁹⁹ with a schematic as shown in

377 **Figure 3a**. Specifically, a swept light source (AxsunTech) was used in the OCT system which has

378 an A-line rate of 100 kHz, a center wavelength of 1310 nm and a bandwidth of 135 nm. The

379 axial resolution was estimated to be 5.6 μ m in tissue (with a refractive index of 1.4). The sample

380 arm consists of a pair of XY scanning mirrors, a 4 \times telescope, and a 4 \times air objective (Olympus,

381 UPLFLN4x, NA 0.13) to obtain a lateral resolution of 6 μ m. The interference fringe from the

382 sample and the reference arms was collected by a balanced detector. The post-objective power

383 was measured to be 3.7 mW, achieving a 95 dB SNR. For this study, we used a 3x3 mm² FOV

384 with a 3- μ m lateral step size and 10% overlap between tiles, with each tile takes about 16 s.

385 For large human brain blocks, the dimension of the embedded samples are usually a few

386 centimeters on each dimension, which is over ten times greater than that of the FOV of a single

387 image tile. Therefore, the whole sample surface was divided into a grid of views and the images

388 from all views were stitched together to form a full surface. Motorized xyz stages (x and y

389 stages: LTS150, Thorlabs; z stage: MLJ150, Thorlabs) were incorporated to translate the samples

390 under the OCT scanning head to all the imaging locations. The maximum travel distance for x, y

391 and z stages was 150 mm, 150 mm and 50 mm with correspondent one-direction moving

392 accuracy of 2 μ m, 2 μ m and 10 μ m. A customized vibratome slicer was mounted adjacent to the

393 OCT imaging head to cut off a superficial slice of the tissue block upon completion of the

394 scanning of the sample surface. A 2.5-in custom sapphire blade (DDK) was vibrated at 50 Hz and
395 1.2 mm peak-to-peak amplitude while slicing, with 0.1 mm/s stage feed rate. Custom software
396 written in LabVIEW was used to control OCT imaging and vibratome slicing.
397 The data acquisition computer was a high-performance local computer with a four-core
398 processor, 64 GB memory, a high-speed digitizer (ATS9350, Alazar), a GPU (RTX4000, NVIDIA)
399 and a 10 GB/s high-speed Ethernet card. Using the k-clock from the light source, the signal was
400 digitized in even-k space. The GPU fetched the spectral domain data and performed real-space
401 reconstruction on the fly, which included dispersion compensation¹⁰⁰, Fourier transform for
402 depth-profile creation and rough trimming in depth. The reconstructed data was then saved to
403 a local storage server with 28 TB space through the 10 GB/s Ethernet. Compared with the 0.2
404 GB/s data acquisition rate, the Ethernet transfer rate was much faster and helped avoid any
405 data loss. For high-speed post processing, data saved in local server was automatically
406 uploaded to Boston University Shared Computing Cluster (SCC), a high-performance computing
407 resource located at the site of Massachusetts Green High Performance Computing Center at
408 Holyoke, Massachusetts. Upon completion of the experiment, a parallelized post-processing
409 script was executed on SCC which included distortion correction, volume stitching and various
410 features extraction. We utilized both ImageJ plug-ins^{101,102} and customized functions to correct
411 distortion that is introduced during OCT acquisition, such as shading effect and gird distortion.
412 To stitch the OCT volume in 3D, we first stitched tiles in 2D using the average intensity
413 projection. After the coordination for each tile is obtained, we linearly blended them in x and y
414 and then stacked them in z. Once the OCT volume is reconstructed, various features, such as

415 vessels, axonal bundles and cortical laminar structure can be extracted using feature
416 enhancement algorithms.

417 **Tissue clearing and labelling for LSFIM imaging**

418 Brodmann's areas 44/45 brain slices were treated with SHORT⁵⁵ a modified version of the
419 SWITCH/TDE tissue transformation protocol from Costantini et al.⁹³, that combines the SWITCH
420 technique⁹⁰ with the TDE clearing method¹⁰³. Briefly, each slice was incubated in a SWITCH-off
421 solution, consisting of 50% phosphate- buffered saline (PBS) titrated to pH 3 using HCl, 25% 0.1
422 M HCl, 25% 0.1 M potassium hydrogen phthalate, and 4% glutaraldehyde. After 24 h, the
423 solution was replaced with PBS pH 7.4 with 1% glutaraldehyde. Finally, the samples were
424 incubated in the clearing solution for 2-4 days at 55 °C. The presence of lipofuscin in the cellular
425 soma¹⁰⁴ and the free-aldehyde double-bounds introduce high autofluorescence signals¹⁰⁵. To
426 decrease such spurious and non-specific signals, the specimens were treated with hydrogen
427 peroxide (30% v/v) for 1 h at room temperature (RT). After several washes in PBS, antigen
428 retrieval was performed using pre-heat tris-EDTA buffer (10 mM Tris base (v/v), 1 mM EDTA
429 solution (w/v), 0.05% Tween 20 (v/v), pH 9) for 10 min at 95 °C. To perform the multicolour
430 staining, after 3 washing steps with deionized water (DI) and rebalancing in PBS for 1 h, the
431 samples were incubated with primary antibodies against NeuN (Merck ABN91 chicken) and
432 calretinin (CR); Proteintech 12278-1-AP rabbit) at 37 °C for 4 days in PBS + 0.1% Triton (PBST).
433 Dilutions for the anti-NeuN and -CR antibodies were 1:100 and 1:200 respectively). Following
434 several washes in PBST, the samples were incubated for four days with the secondary
435 antibodies conjugated with different Alexa Fluor dyes (dilution of 1:200). The slices were
436 rendered transparent by soaking the samples in increasing solutions of 20%, 40% and 68%

437 (vol/vol) of 2,2'-thiodiethanol in PBS, each added with propidium iodide (dilution of 1:100) for
438 1-2 days at RT with gentle shaking. Samples were mounted in a sandwich- like configuration
439 between a 250 μ m thin quartz coverslip (for refractive index matching at a refractive index of
440 1.46) and a standard glass sample holder, with a 500 μ m-thick steel spacer in between⁵⁵.
441 Glycerol (91%) in distilled water was used outside the sandwich for the LSFM objectives
442 immersion. This step permitted us to achieve high penetration depth and to avoid any optical
443 aberration by matching the refractive index of the brain samples.

444 LSFM imaging

445 In our custom-made inverted light-sheet fluorescence microscope⁵⁴, two identical objectives
446 were inclined at 90° from each other and were spaced such that their fields-of-view (FOV) are
447 orthogonal and overlap in the center. They alternately play excitation and detection roles. The
448 objectives were a pair of LaVision Biotec LVMi-Fluor 12x PLAN with 12x magnification, NA 0.53,
449 WD 8.5-11 mm, spherically and chromatically corrected in the visible range, with a correction
450 collar for refractive index matching with the immersion solution. They were inclined at 45°
451 relative to the sample holder plane to allow for the largest possible lateral sample size while
452 not interfering with its extension within the plane. These objectives were carefully chosen to
453 maximize the optical resolution (1.1 μ m lateral and 3.7 μ m axial) and field of view (1.1×1.1
454 mm²), while respecting the geometrical constraints and allowing immersion in any refractive
455 index matching media. The microscope was equipped with four laser sources (Cobolt MLD 405
456 nm/100 mW, MLD 488 nm/60 mW, DPL 561 nm/100 mW, MLD 638 nm/180 mW), each
457 emitting a Gaussian beam that had its width adjusted by a dedicated telescope, before
458 combining all of them through a set of three dichroic mirrors. This combined beam was split by

459 a 50-50% beam splitter in two equal parts that were conveyed into the two identical excitation
460 pathways of the light-sheet microscope. In each pathway the beam was modulated in intensity,
461 timing and transmitted wavelength by an acousto-optical tunable filter (AOTF,
462 AAOptoelectronic AOTFnC-400.650-TN) and then was scanned by a galvo mirror (Cambridge
463 Technology 6220H), in order to realize the digitally scanned light sheet planar illumination^{106,107}.
464 A scanning lens (Edmund Optics #45-353, fL=100 mm, achromat), placed after the galvo mirror,
465 converted the angular deflection into a lateral displacement of the incident light. The beam was
466 then directed by the excitation tube lens (Edmund Optics #45-179, fL=200 mm, achromat) to
467 the objective's pupil, through which it sequentially illuminated neighboring lines within a single
468 plane of the sample. Each objective was held on a motorized stage (PI L-509.14AD00) to adjust
469 its focal plane position. The sample was held in a custom quartz sample holder inserted into a
470 plastic tray filled with refractive index matching medium. The sample was positioned using a 3-
471 axes motorized stage system (two PI M-531.DDG and a PI L-310.2ASD for a motion range within
472 30x30x2.5 cm³ with submicrometric repeatability) and was imaged by translating it along the
473 horizontal direction. The image velocity through the volume was 47 frames/s, corresponding to
474 a volumetric rate of 0.5 cm³/hour. The fluorescence emitted by the sample was collected by the
475 other objective lens, then was separated from the reflected laser excitation light by a multi-
476 band dichroic beam splitter (Semrock Di03-R405/488/561/635-t3-55x75), before being directed
477 by the detection tube lens (Edmund Optics #45-179, fL=200 mm, achromat) on a sCMOS
478 camera (Hamamatsu OrcaFlash4.0 v3). Each camera operated in confocal detection mode by
479 having the rolling shutter sweep in synchrony with the galvo scan of the digital light sheet^{95,108-}
480 ¹¹². Five sets of band-pass filters were mounted in front of each camera on a motorized filter

481 wheel (Thorlabs FW102C) to image selectively the differently labeled cells or structures within
482 the tissue sample.

483 The operation of the microscope hardware was controlled by a workstation running a custom
484 multi-threaded software, developed in C++ using Qt with a flexible and modular architecture
485 and composed now of approximately 9000 lines of code. Our software ensured hardware
486 synchronization and triggering by using a National Instruments PCIe-6363 card and controlled
487 the automatic image acquisition from the two sCMOS cameras in confocal detection mode,
488 with a sustained data rate of 800 MB/s at 47 fps and storage on a 16 TB SSD RAID.

489 The acquisition procedure for any sample started from determining its edges. Each image stack
490 was acquired by moving the sample along the x axis through the fixed FOVs of the two
491 objectives, then the sample was shifted by 1 mm along the y axis and the next stack was
492 acquired. This sequence continued until the whole volume had been acquired. Contiguous
493 stacks had an overlap of 100 μ m that allowed to fuse them in post-processing to form the
494 whole volume. Appropriate metadata was saved jointly with the acquired stacks.

495 The two identical optical pathways of the LSFM alternately served as excitation and detection
496 arms, with a time-delay of a half frame that was introduced between the two roles to avoid
497 exposing the active rolling-shutter rows on the acquiring camera to stray light coming from the
498 illumination beam on the same side. The two AOTF allowed to shutter each illumination
499 pathway independently to avoid introducing stray light and, furthermore, enabled to select
500 which laser wavelengths and intensities were impinging on the sample.

501 **LSFM data management**

502 To visualize the reconstruction of an entire slice, a post-processing pipeline was applied to the
503 data. First, as the objectives acquire images of the moving sample at 45° relative to the slide
504 plane, an affine transform was applied to compensate for the motion and the 45° rotation thus
505 bringing the acquired volume back to the sample's coordinate system. The affine transform also
506 performs a spatial down-sampling to 3.3- μm^3 isotropic resolution. Then a custom-made
507 stitching software, ZetaStitcher (G. Mazzamuto, "ZetaStitcher: a software tool for high-
508 resolution volumetric stitching" <https://github.com/lens-biophotonics/ZetaStitcher>), allowed us
509 to fuse the contiguous stacks, using the overlapping regions, to obtain a representation of the
510 whole sample. Only for visualization, an illumination intensity homogenization algorithm was
511 applied to the stitched volume or to single slices to compensate variations in the laser beam
512 power across the field of view and among stacks. For each fluorescence band, the observed
513 intensity along the light propagation axis was averaged, attaining a smooth intensity profile. By
514 dividing each image for this reference, illumination intensity artefacts occurring across the
515 transversal sample extension were mitigated. To store and share the information, data was
516 compressed using the JPEG2000 lossy approach that yields a 1:20 compression. The data
517 analysis pipeline was written in Python. The 561 nm wavelength 3D reconstructions were used
518 to visualize and segment the blood vessels to perform the alignment of the three modalities as
519 described in the section below.

520 **Stereology**

521 Stereologic analysis was performed on each cleared slices of Broca's area, 500 μm -thick,
522 imaged at a 3x3x3 μm pixels dimensions, and immunostained for NeuN and calretinin, using the

523 MBF Bioscience Stereo Investigator Cleared Tissue software (version 2020.1.1) with an Optical
524 Fractionator design^{65,66}. The counting frame size was 150 x 150 μm , the grid size was 800 x 800
525 μm , and the disector height was 15 μm for all sections of tissue examined generating >600
526 sampling sites. Layers 3 and 5 were outlined and their boundaries were used to estimate
527 laminar surface areas and volume. There were 10 virtual 49.5 μm -thick sections for the tissue
528 sample and layers 3 and 5 were contoured at the widest part of each sub-slab, with a 400%
529 zoom. Markers were placed at the top of each sampled cell, as it came into focus within the
530 depth of the disector.

531 Image registration

532 Intermodality deformations were modelled using a combination of affine and nonlinear
533 transformations. The affine model was restricted to a similarity transform (i.e., combinations of
534 translations, rotations and isotropic scaling) and encoded in the Lie algebra of the
535 corresponding conformal Euclidean group¹¹³. Non-linear transformations were modelled by
536 stationary velocity fields and exponentiated using a scaling and squaring algorithm¹¹⁴, which
537 ensures – under mild smoothness conditions – that the resulting transformations are invertible
538 diffeomorphisms. The parameters of the deformations were optimized by minimizing a
539 combination of losses on intensity images (normalized mutual information¹¹⁵) and manually
540 segmented landmarks (soft Dice¹¹⁶). Stationary velocity fields were regularized with a
541 combination of penalties on their bending and linear elastic energies¹¹⁷. When registering a
542 whole volume (in this case, MRI) with a sub-block (e.g., OCT), the larger volume was always
543 deformed to the space of the smaller block, where the objective function was computed.
544 Because the transformation model is diffeomorphic, the resulting transforms could

545 nevertheless be inverted and used to warp the block back to the space of the larger volume.

546 The same transforms were also used to warp stereology coordinates extracted from the MBF

547 software. The registration model was implemented in PyTorch¹¹⁸, leveraging automatic

548 differentiation, and jointly optimized with Adam¹¹⁹. Parameters were progressively optimized in

549 a coarse to fine fashion (rigid, then affine, then affine and nonlinear with a progressively finer

550 grid), and the learning rate was divided by 10 when the objective function reached a plateau,

551 until convergence. Specifically, for MRI to OCT registration, the OCT volume was downsampled

552 to 100 μm , and normalized mutual information (NMI) was computed within patches of

553 150x150x150 voxels. The objective function combined NMI (weight 1), Soft Dice between grey

554 matter segments (weight 1), Soft Dice between vessels segments (weight 0.1) and

555 regularization (bending energy: 4, divergence: 1, shears: 4). For OCT to LSFM registration, the

556 OCT volume was downsampled to 50/100/200 μm and the LSFM volumes were downsampled

557 to 20/40/60 μm . The objective function was computed jointly at all resolutions and combined

558 NMI (weight: 2), Soft Dice between vessels segments (weight: 0.1) and regularization (bending

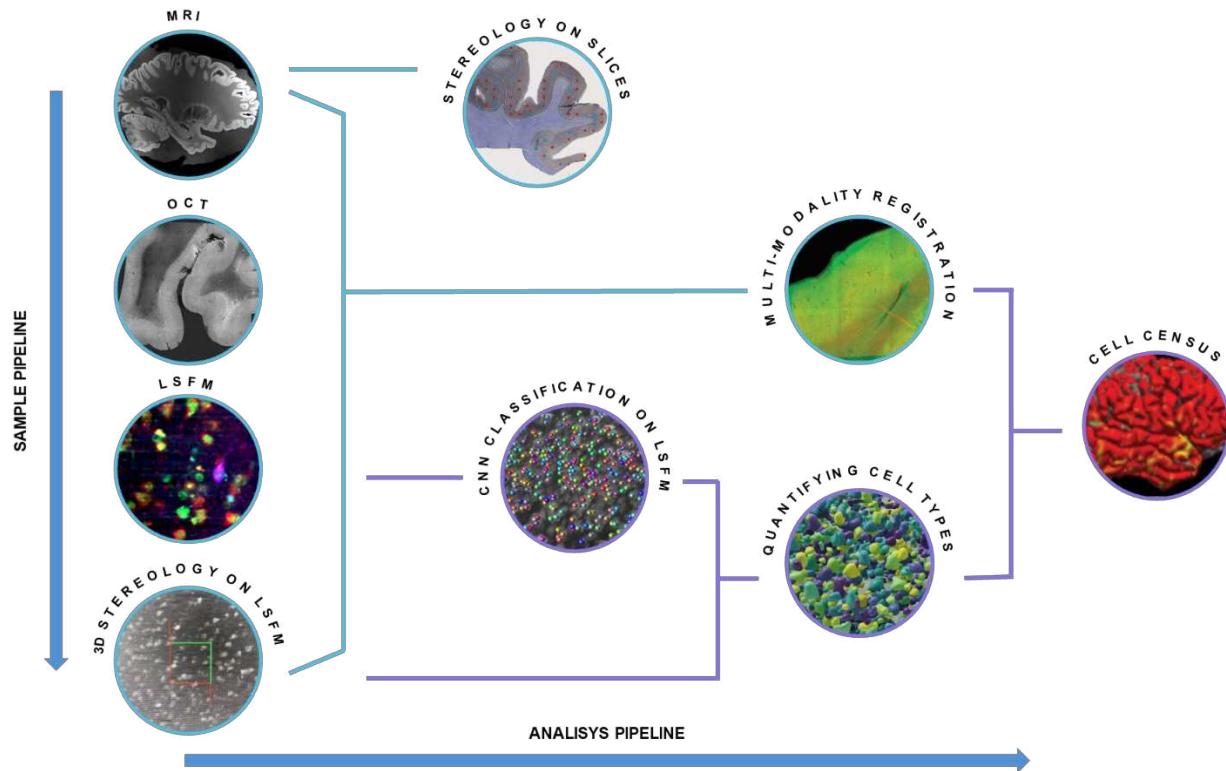
559 energy: 0.4, divergence: 0.1, shears: 0.4). The effect of different components of the SVF

560 regularization was investigated in an ablation study. Dice scores between manually segmented

561 vessels in the MRI and OCT volumes were computed in the initial position (*init*), after affine

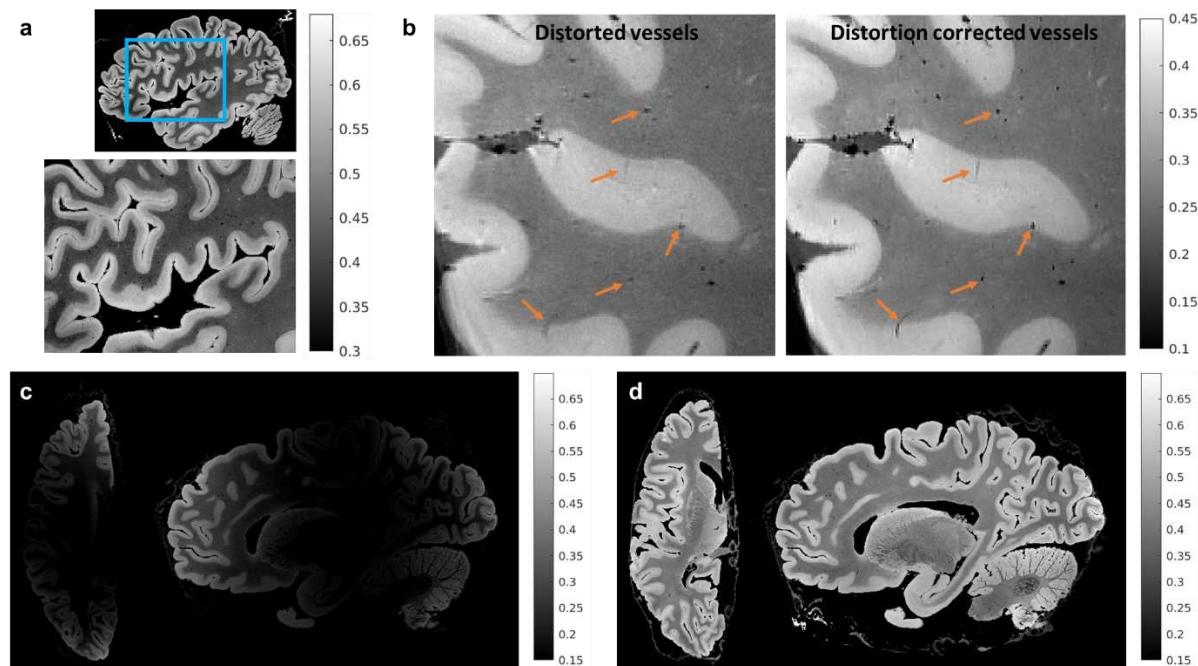
562 registration (*affine*) and after nonlinear registration with different composite types of

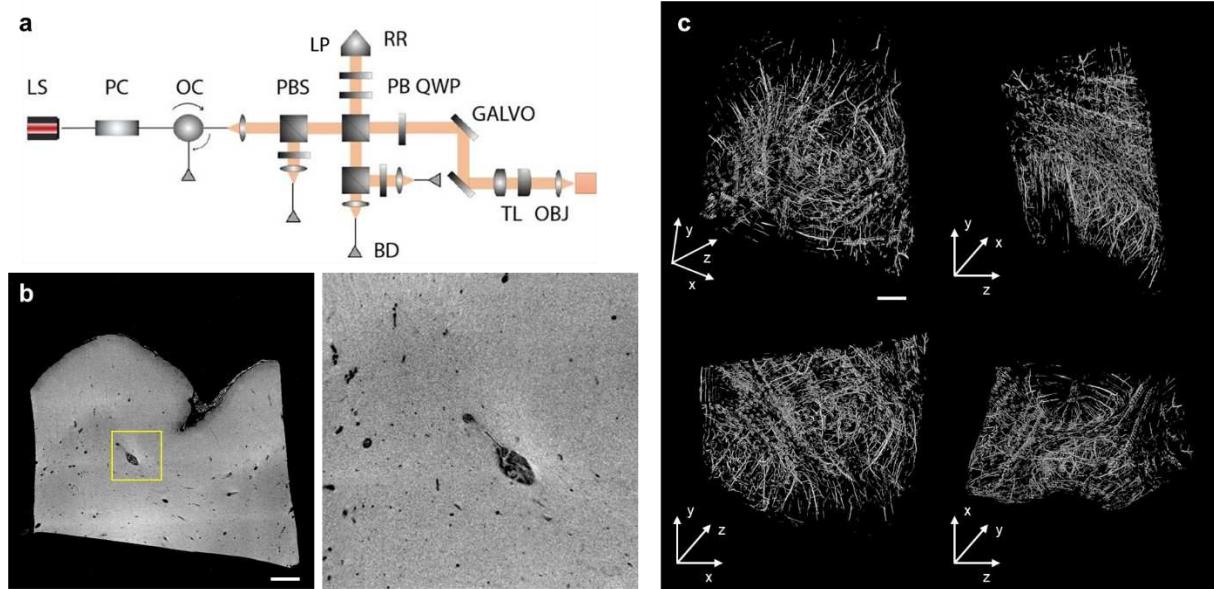
563 regularization: the membrane energy (*membrane*) penalizes first derivatives, the bending


564 energy (*bending*) penalizes second derivatives and the linear-elastic energy (*lame*) penalizes

565 local shears and zooms. The best Dice score was obtained with a combination of bending and

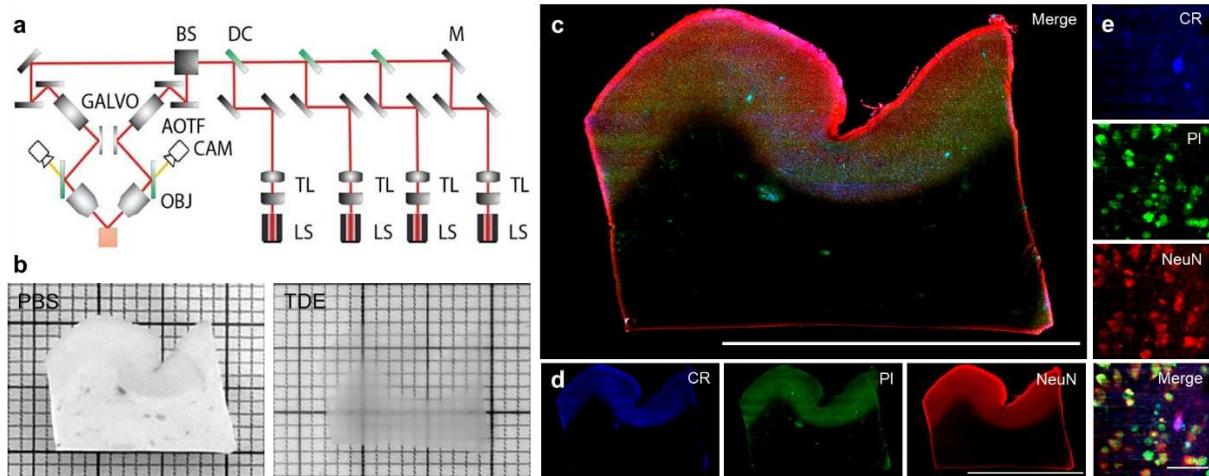
566 linear-elastic penalties.


568 **FIGURES:**

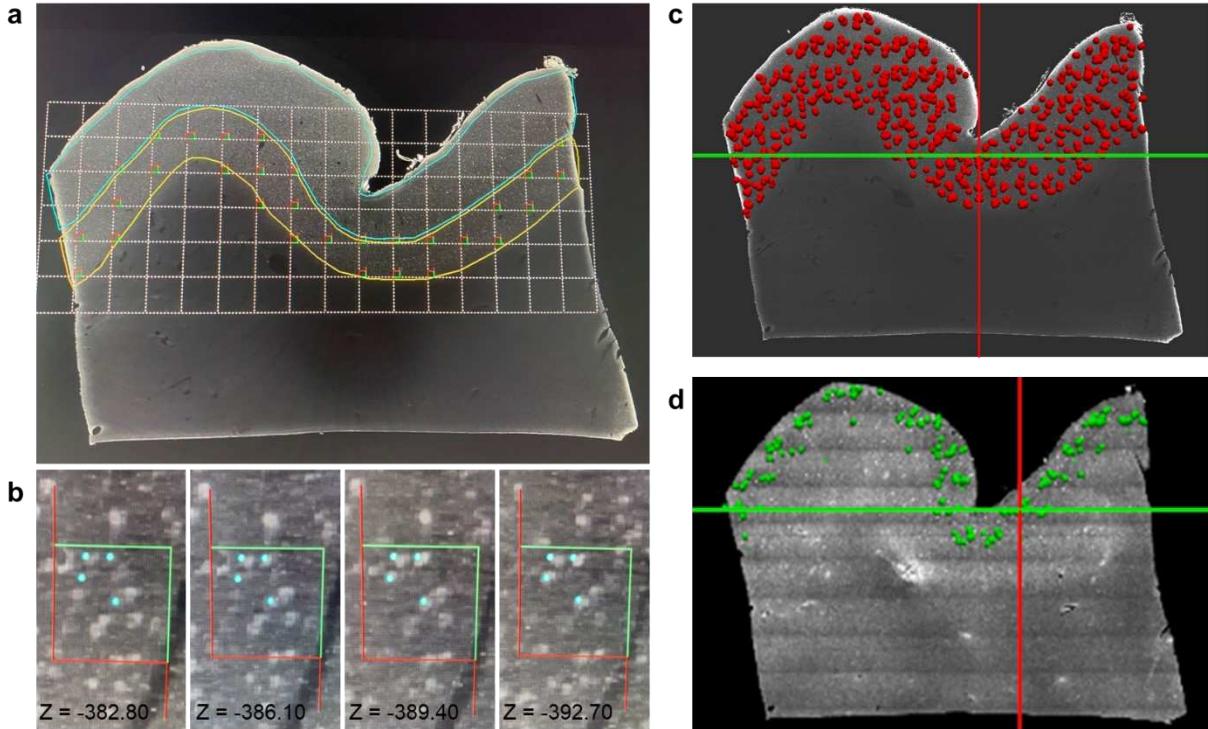

569

570 **Figure 1: Imaging and analysis pipeline overview.** From top to bottom sample pipeline: MRI,
571 OCT, LSF M, and 3D stereology on LSF M images are performed on the same sample. Left to right
572 analysis pipeline: thin-section stereology is performed on sections from separate specimens to
573 obtain gold-standard counting; registration between MRI, OCT, LSF M and 3D stereology data is
574 performed to align all the datasets back to the MRI coordinate system; cell counting with CNN
575 classification on LSF M images will permit automatic counting of the stained neurons; the
576 combination of 3D stereologic evaluation and CNN automatic counting will obtain a reliable
577 quantification of cell types; multimodal registration between the images and the counting is
578 needed to finally obtain the cell census of the neurons in a MRI-based atlas coordinate system.
579 Schematic in cyan represents the steps presented in the current manuscript where a Broca's

580 Area block of tissue underwent to all the steps. Violet steps are future implementation of the
581 pipeline.

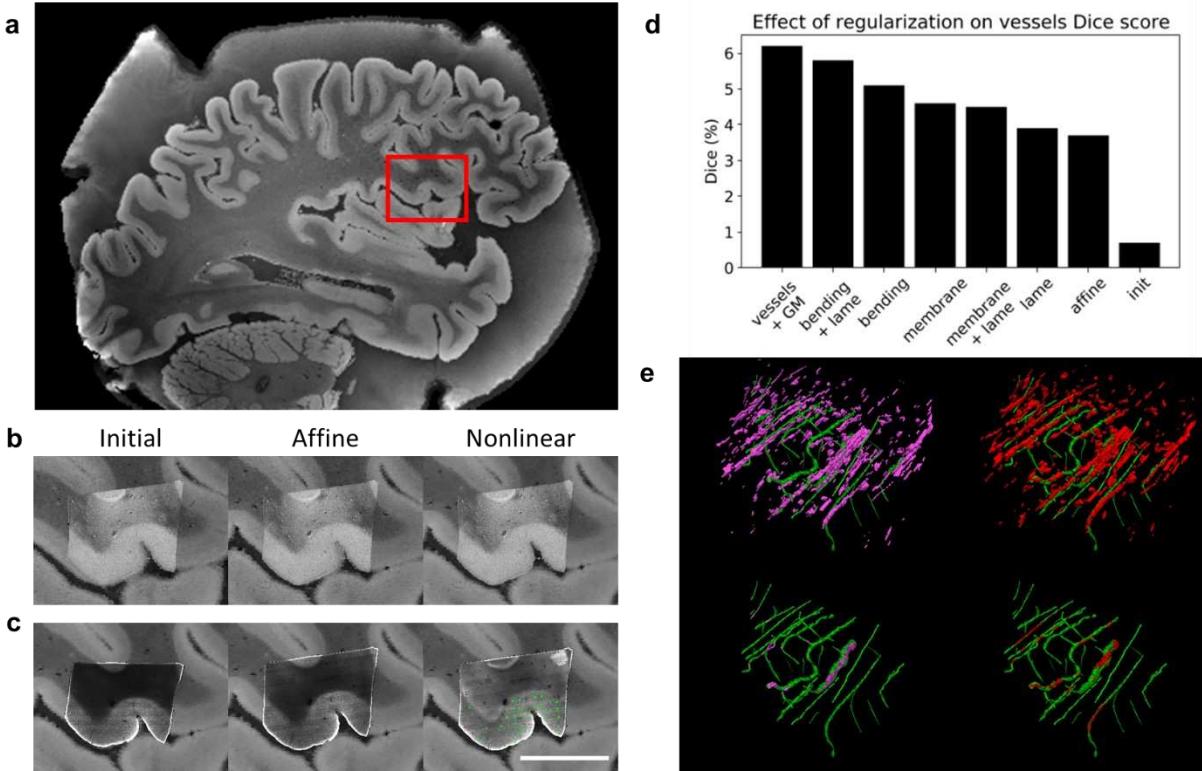


583 **Figure 2: MRI for global reference.** The figure shows results for 150 μm isotropic root mean
584 squared (RMS) FLASH MR images with RMS calculated across four echo times (TE= 5.65, 11.95,
585 18.25 and 24.55 ms) for a flip angle of 20°. a) A sagittal section that is zoomed into the Broca's
586 area showing infra- and supra-granular gray matter contrast. b) A zoomed-in sagittal frontal
587 section of the same brain sample with vessels that are blurred and have reduced contrast. The
588 blurring is due to B0 field inhomogeneity while the reduced contrast is due to B1 transmit field
589 inhomogeneity. We also show vessels post-distortion correction that are well preserved and
590 have high contrast, demonstrating the effectiveness of the correction methods. c) and d) show
591 an axial and sagittal slice before and after B1 receive intensity bias correction. The intensities
592 are visibly more uniform after bias removal.



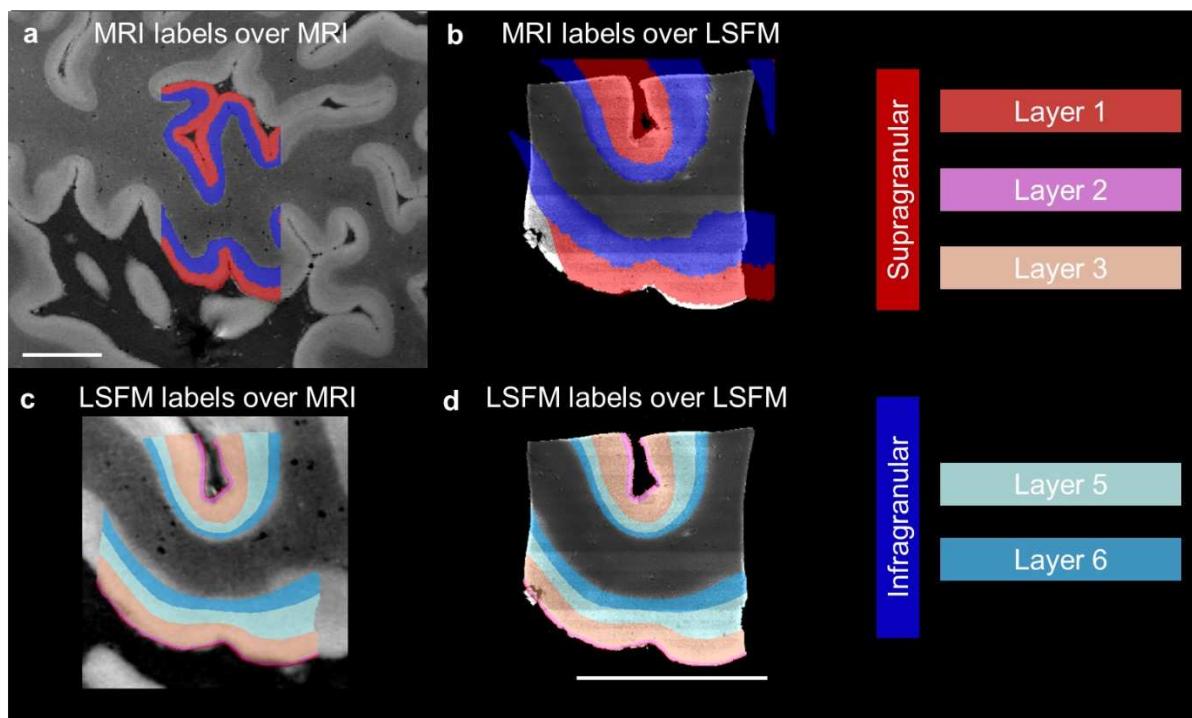
593

594 **Figure 3: OCT analysis.** a) Schematic of OCT. Annotations of components are LS: light source,
595 PC: polarization controller, OC: optical circulator, PBS: polarizing beam splitter, PB:
596 polarization beamsplitter, RR: retroreflector, LP: linear polarizer, QWP: quarter wave plate,
597 GALVO: galvo mirror, BD: balanced detector, TL: telescope, and OBJ: objective. b) An example
598 XY slice of the OCT volume intensity (left) and zoom-in view of the highlighted window (right),
599 dimension = 1.5 x 1.5 mm. Scale bar: 1 mm. c) 3D rendering and orthogonal views of the vessel
600 segmentation of the OCT volume using the Frangi filtering method. Top left: 3D rendering view.
601 Top right: YZ view. Bottom left: XY view. Bottom right: XZ view. Scale bar: 1 mm.


602 **Figure 4: Multicolor imaging with LSFm.** a) Schematic of LSFm apparatus. Annotations of
603 components are LS: laser source, TL: telescope, M: mirror, DC: dichroic, BS: beam splitter,
604 GALVO: galvo mirror, AOTF: acousto-optical tunable filters, CAM: camera, and OBJ: objective. b)
605 A 500 μm -thick slice in PBS before (left) and after (right) TDE tissue clearing. c) A representative
606 slice of a middle plane ($\approx 200 \mu\text{m}$ depth) of a 500 μm -thick slice stained with CR in blue ($\lambda_{\text{exc}} = 488$),
607 PI in green ($\lambda_{\text{exc}} = 561$), and NeuN in red ($\lambda_{\text{exc}} = 638$). Vessels are visible in the blue and
608 green channels due to the presence of autofluorescence signals. d) Single channels of slice in c.
609 Scale bars = 1 cm. e) High-resolution insets showing the different cellular markers used in the
610 study: calretinin (CR), propidium iodide (PI), neuronal nuclear antigen (NeuN). Scale bar = 50
611 μm .
612

613

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628


Figure 5: Stereological evaluation on LSFM reconstructions. a) A slab from the LSFM imaging dataset stained with the anti-NeuN antibody, displaying a systematic-random counting grid employed during stereologic analyses. The grid is placed over the infragranular layers (yellow outline) and optical disector frames are placed in all segments of the grid that are located within the region of interest. Panel b) shows different z-levels within a disector with blue markers indicating cells that have been sampled according to stereologic rules^{38,39}. Panels c) and d) represent the registration of stereologic data onto the LSFM dataset for the entire slab. Each red dot in c) corresponds to NeuN⁺ neurons sampled through the slab within an optical disector depth during stereologic analysis and used to generate an estimate of the total population number. The green dots in d) represent CR⁺ neurons that were analyzed only in layers 2 and 3 as they are very sparse in the deep layers of the neocortex. Grid size on (a) = 800 μ m, counting frame on (b) = 150 μ m.

629

630 **Figure 6: MRI, OCT, LSF, and stereology warped into a single coordinate space.** Although the
631 imaging data can be mapped into any space, we chose to display the alignment in OCT space,
632 because it preserves the sectioning axis, allowing all modalities to be visible with minimal
633 distortions. a) Panel showing the whole-hemisphere MRI image with a red box around area
634 44/45. b) Images showing the MRI deformed to OCT space after initialization, automated affine,
635 and automated nonlinear registration. c) Images showing a slice of LSF deformed to OCT
636 space after initialization, automated affine, and automated nonlinear registration. The
637 nonlinear registration panel further shows NeuN (green) and CR (red) counting coordinates
638 obtained by stereology and warped to OCT space. d) Graph showing the effect of nonlinear
639 regularization on vessels Dice score for MRI/OCT registration. *init*: initial alignment; *affine*:
640 similitude with 7 degrees of freedom; *membrane*: penalty on first derivatives; *bending*: penalty
641 on second derivatives; *lame*: penalty on zooms and shears, *vessels+GM*: bending+lame with the

642 addition of a vessel- and cortex-based objective function). Scale bar = 1 cm e) Images showing
643 the vessels registration in MRI and OCT with and without a vessel-specific loss. The vessels
644 manually segmented in the OCT volume (green) are shown alongside vessels manually
645 segmented in the MRI volume and warped to the OCT volume using either a purely intensity-
646 based objective function (pink) or a composite intensity- and vessel- based cost function (red).

647
648 **Figure 7: Overlap of Infragranular and supragranular laminar labels derived from MRI and**
649 **LSFM after coregistration.** a) MRI overlaid with the manually labeled infra- and supragranular
650 layers. b) LSFM overlaid with the same MRI-derived labels after registration. c) MRI warped in
651 LSFM space overlaid with LSFM-derived laminar labels. d) LSFM overlaid with manually labeled
652 cortical layers. There is no internal granular layer 4 in Broca's area. Scale bars = 1cm.

653 Acknowledgements

654 We thank Jack Glaser and Julie McMullen (MBF Bioscience) for all their help during
655 implementation of the Stereo Investigator Cleared Tissue software in our application. We
656 express our gratitude to the donor involved in the body donation program of the
657 Massachusetts General Hospital who made this study possible by generously donating his body
658 to science. Support for this research was provided in part by the BRAIN Initiative Cell Census
659 Network grant U01 MH117023, the National Institute for Biomedical Imaging and
660 Bioengineering (P41 EB015896, R01 EB023281, R01 EB006758, R21E B018907, R01 EB019956,
661 P41 EB030006, R00 EB023993), the National Institute on Aging (R56 AG064027, R01 AG064027,
662 R01 AG008122, R01 AG016495), the National Institute of Mental Health (R01 MH123195, R01
663 MH121885, RF1 MH123195), the National Institute for Neurological Disorders and Stroke (R01
664 NS0525851, R21 NS072652, R01 NS070963, R01 NS083534, U01 NS086625, U24 NS10059103,
665 R01 NS105820), Eunice Kennedy Shriver National Institute of Child Health and Human
666 Development (R21HD106038), Chan-Zuckerberg Initiative DAF an advised fund of Silicon Valley
667 Community Foundation grant number 2019-198101, and was made possible by the resources
668 provided by Shared Instrumentation Grants S10 RR023401, S10 RR019307, and S10 RR023043.
669 Additional support was provided by the NIH Blueprint for Neuroscience Research (U01
670 MH093765), part of the multi-institutional Human Connectome Project. This project has also
671 received funding from European Union's Horizon 2020 research and innovation Framework
672 Programme under grant agreement No. 654148 (Laserlab-Europe); European Union's Horizon
673 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement
674 No. 785907 (Human Brain Project SGA2), No. 945539 (Human Brain Project SGA3) and under

675 the Marie Skłodowska-Curie grant agreement No. 793849 (MesoBrainMicr); Italian Ministry for
676 Education in the framework of Euro-Bioimaging Italian Node (ESFRI research infrastructure);
677 "Fondazione CR Firenze" (private foundation), European Research Council (Starting Grant
678 677697, project BUNGEETOOLS), Alzheimer's Research UK (Interdisciplinary grant ARUK-
679 IRG2019A-003) and NIH R01 AG070988-01 and RF1 MH123195-01.
680 The content of this work is solely the responsibility of the authors and does not necessarily
681 represent the official views of the National Institutes of Health and other funding agencies.

682 Author Contributions

683 DV developed the B0 and B1 transmit distortion correction methods and the associated
684 imaging protocols to improve laminar and vessel contrast, optimized the scan protocol to
685 improve overall CNR and SNR of MRI and integrated intensity bias correction method into the
686 processing pipeline. AVDK developed the custom sequences used to acquire high resolution
687 structural MRI data, built the custom data-handling infrastructure and oversaw the
688 development of the MRI scan protocol with BF. DV, RF and LM contributed towards the
689 development of the MRI scan protocol, image acquisition, and analysis. YB contributed towards
690 the development of the multi-modal registration pipeline, building on original work done by JEI
691 and AD. MFr provided the human brain samples for this study. JA consulted on sample storage
692 and treatment for preservation throughout the imaging pipeline, including consulting on
693 histology protocols.
694 LM, DC, MVe, JN, KN, JM, EP, and KE performed the *ex vivo* imaging and analysis team and are
695 involved in image acquisition, data processing, and developing standards for segmenting

696 vasculature and the infra/supragranular boundary of the cortex. In MRI, OCT and LSF data.

697 DC, JN, KN, JM, EP, and KE performed manual labeling of these data. Labeling standards built on

698 CM's original groundwork for segmenting features of interest for the purpose of registering MRI

699 to OCT data. CM also consulted on OCT imaging and analysis for the BU team. LM oversaw the

700 integration of the image and analysis pipeline and data publication for this project. This builds

701 on MFo's original project oversight and management.

702 JY, SCha, HW, and IC developed and performed image acquisition and data processing of OCT

703 measurement. JY, SCha, and SChe built the serial sectioning vibratome. JY coordinated the work

704 on OCT sample preparation and transportation.

705 IC, LP, and MS developed and performed the clearing and staining protocol; VG, LS, and GM

706 built the LSF hardware and software apparatus, LP and VG performed light-sheet imaging.

707 GM, FMC, VG, and MR contributed to image processing and data analysis. IC coordinated the

708 work on sample preparation, image acquisition and data processing of LSF measurement.

709 BW, MVa, SR and JL processed tissue for stereology and performed the stereologic analyses.

710 FSP, DAB, BF, and PRH conceived and supervised the study. BF helped design many of the

711 algorithms used to analyze the data. IC, LM, JY, YB, DV, and PRH, wrote the paper with inputs

712 from all authors.

713 Competing Interests Statement

714 BF has a financial interest in CorticoMetrics, a company whose medical pursuits focus on brain

715 imaging and measurement technologies. BF's interests were reviewed and are managed by

716 Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of

717 interest policies.

718 Data Availability

719 All the datasets acquired for this study are made available on the DANDI platform at the link:
720 <https://gui.dandiarchive.org/#/dandiset/000026>⁴⁷.

721 References

- 722 1 Kasthuri, N. & Lichtman, J. W. Neurocartography. *Neuropsychopharmacology* **35**, 342-
723 343 (2010).
- 724 2 Venkataraju, K. U., Gornet, J., Murugaiyan, G., Wu, Z. & Osten, P. in *Neural Imaging*
725 and *Sensing 2019*. 1086511 (International Society for Optics and Photonics).
- 726 3 Huang, S.-H. *et al.* Optical volumetric brain imaging: speed, depth, and resolution
727 enhancement. *Journal of Physics D: Applied Physics* **54**, 323002 (2021).
- 728 4 Tyson, A. L. & Margrie, T. W. Mesoscale microscopy and image analysis tools for
729 understanding the brain. *Progress in Biophysics and Molecular Biology* (2021).
- 730 5 Tward, D. *et al.* in *Multimodal Brain Image Analysis and Mathematical Foundations of*
731 *Computational Anatomy*. (eds Dajiang Zhu *et al.*) 162-173 (Springer International
732 Publishing).
- 733 6 Lee, B. C. *et al.* Multimodal cross-registration and quantification of metric distortions in
734 marmoset whole brain histology using diffeomorphic mappings. *Journal of Comparative*
735 *Neurology* **529**, 281-295, doi:<https://doi.org/10.1002/cne.24946> (2021).
- 736 7 Lee, B. C., Tward, D. J., Mitra, P. P. & Miller, M. I. On variational solutions for whole
737 brain serial-section histology using a Sobolev prior in the computational anatomy
738 random orbit model. *PLoS Comput Biol* **14**, e1006610, doi:10.1371/journal.pcbi.1006610
739 (2018).
- 740 8 Bakken, T. E. *et al.* Comparative cellular analysis of motor cortex in human, marmoset
741 and mouse. *Nature* **598**, 111-119 (2021).
- 742 9 Callaway, E. M. *et al.* A multimodal cell census and atlas of the mammalian primary
743 motor cortex. *Nature* **598**, 86-102 (2021).
- 744 10 Muñoz-Castañeda, R. *et al.* Cellular anatomy of the mouse primary motor cortex. *Nature*
745 **598**, 159-166 (2021).
- 746 11 Kim, Y. *et al.* Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical
747 Architecture and Subcortical Sexual Dimorphism. *Cell* **171**, 456-469.e422 (2017).
- 748 12 Lin, M. K. *et al.* A high-throughput neurohistological pipeline for brain-wide mesoscale
749 connectivity mapping of the common marmoset. *Elife* **8** (2019).
- 750 13 Kasthuri, N. *et al.* Saturated Reconstruction of a Volume of Neocortex. *Cell* **162**, 648-
751 661, doi:<https://doi.org/10.1016/j.cell.2015.06.054> (2015).
- 752 14 Prasad, J. A. *et al.* A three-dimensional thalamocortical dataset for characterizing brain
753 heterogeneity. *Sci Data* **7**, 358, doi:10.1038/s41597-020-00692-y (2020).
- 754 15 Network, B. I. C. C. A multimodal cell census and atlas of the mammalian primary motor
755 cortex. *Nature* **598**, 86-102 (2021).
- 756 16 Ueda, H. R. *et al.* Whole-brain profiling of cells and circuits in mammals by tissue
757 clearing and light-sheet microscopy. *Neuron* **106**, 369-387 (2020).
- 758 17 Amunts, K. *et al.* BigBrain: an ultrahigh-resolution 3D human brain model. *Science* **340**,
759 1472-1475 (2013).

760 18 Fischl, B. *et al.* Predicting the location of entorhinal cortex from MRI. *Neuroimage* **47**, 8-
761 17 (2009).

762 19 Yushkevich, P. A. *et al.* A high-resolution computational atlas of the human
763 hippocampus from postmortem magnetic resonance imaging at 9.4 T. *Neuroimage* **44**,
764 385-398 (2009).

765 20 Pfefferbaum, A., Sullivan, E. V., Adalsteinsson, E., Garrick, T. & Harper, C. Postmortem
766 MR imaging of formalin-fixed human brain. *Neuroimage* **21**, 1585-1595 (2004).

767 21 Edlow, B. L. *et al.* 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. *Sci
768 Data* **6**, 244 (2019).

769 22 Roebroeck, A., Miller, K. L. & Aggarwal, M. Ex vivo diffusion MRI of the human brain:
770 Technical challenges and recent advances. *NMR in Biomedicine* **32**, e3941 (2019).

771 23 Foxley, S. *et al.* Improving diffusion-weighted imaging of post-mortem human brains:
772 SSFP at 7T. *NeuroImage* **102**, 579-589 (2014).

773 24 Miller, K. L., McNab, J. A., Jbabdi, S. & Douaud, G. Diffusion tractography of post-
774 mortem human brains: Optimization and comparison of spin echo and steady-state free
775 precession techniques. *NeuroImage* **59**, 2284-2297 (2012).

776 25 Miller, K. L. *et al.* Diffusion imaging of whole, post-mortem human brains on a clinical
777 MRI scanner. *NeuroImage* **57**, 167-181 (2011).

778 26 Kolasinski, J. *et al.* A combined post-mortem magnetic resonance imaging and
779 quantitative histological study of multiple sclerosis pathology. *Brain* **135**, 2938-2951
780 (2012).

781 27 Mollink, J. *et al.* Dentatorubrothalamic tract localization with postmortem MR diffusion
782 tractography compared to histological 3D reconstruction. *Brain Structure and Function*
783 **221**, 3487-3501 (2016).

784 28 Justine Beaujoin, C. D., Fabrice Poupon, Ilyess ZEMMOURA, Jean-François Mangin,
785 Cyril Poupon. Post-mortem mapping of cortical layers using combined
786 multicompartmental relaxometry and diffusometry at ultra-high field (7T and 11.7T).
787 *ISMRM* (2018).

788 29 Justine Beaujoin, A. P., Raïssa Yeba Hot, Fabrice Poupon, & Jean-François Mangin,
789 C. D., Cyril Poupon. CHENONCEAU: towards a novel mesoscopic (100/200μm) post-
790 mortem human brain MRI atlas at 11.7T. *Organization for Human Brain Mapping* (2019).

791 30 Yann Leprince, B. S., Christophe Destrieux, Laurent Baratin, & Alexandre Vignaud, D.
792 R., Cyril Poupon. Optimization of sample preparation for MRI of formaldehyde-fixed
793 brains. *International Society for Magnetic Resonance in Medicine* (2015).

794 31 Juergen K Mai, M. M., George Paxinos. *Atlas of the Human Brain*. Academic Press,
795 London., 456 (2015).

796 32 Malikovic, A. *et al.* Cytoarchitectonic analysis of the human extrastriate cortex in the
797 region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. *Cereb Cortex* **17**, 562-
798 574 (2007).

799 33 Morosan, P. *et al.* Human primary auditory cortex: cytoarchitectonic subdivisions and
800 mapping into a spatial reference system. *Neuroimage* **13**, 684-701 (2001).

801 34 Schleicher, A., Amunts, K., Geyer, S., Morosan, P. & Zilles, K. Observer-independent
802 method for microstructural parcellation of cerebral cortex: A quantitative approach to
803 cytoarchitectonics. *Neuroimage* **9**, 165-177 (1999).

804 35 Ding, S. L. *et al.* Comprehensive cellular-resolution atlas of the adult human brain. *J
805 Comp Neurol* **524**, 3127-3481 (2016).

806 36 Iglesias, J. E. *et al.* A probabilistic atlas of the human thalamic nuclei combining ex vivo
807 MRI and histology. *NeuroImage* **183**, 314-326 (2018).

808 37 Adler, D. H. *et al.* Characterizing the human hippocampus in aging and Alzheimer's
809 disease using a computational atlas derived from ex vivo MRI and histology.
810 *Proceedings of the National Academy of Sciences* **115**, 4252 (2018).

811 38 Yushkevich, P. A. *et al.* Quantitative comparison of 21 protocols for labeling
812 hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a
813 harmonized segmentation protocol. *NeuroImage* **111**, 526-541 (2015).

814 39 Larsen, L., Griffin, L. D., Grassel, D., Witte, O. W. & Axer, H. Polarized light imaging of
815 white matter architecture. *Microsc Res Tech* **70**, 851-863 (2007).

816 40 Banerjee, S. *et al.* Semantic segmentation of microscopic neuroanatomical data by
817 combining topological priors with encoder-decoder deep networks. *Nat Mach Intell* **2**,
818 585-594, doi:10.1038/s42256-020-0227-9 (2020).

819 41 Majka, P. *et al.* Open access resource for cellular-resolution analyses of corticocortical
820 connectivity in the marmoset monkey. *Nat Commun* **11**, 1133 (2020).

821 42 Tward, D. J., Mitra, P. P. & Miller, M. I. ESTIMATING DIFFEOMORPHIC MAPPINGS
822 BETWEEN TEMPLATES AND NOISY DATA: VARIANCE BOUNDS ON THE
823 ESTIMATED CANONICAL VOLUME FORM. *Q Appl Math* **77**, 467-488 (2019).

824 43 De Boer, J. F., Hitzenberger, C. K. & Yasuno, Y. Polarization sensitive optical coherence
825 tomography—a review. *Biomedical optics express* **8**, 1838-1873 (2017).

826 44 Ueda, H. R. *et al.* Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue
827 Clearing and Light-Sheet Microscopy. *Neuron* **106**, 369-387 (2020).

828 45 Osten, P. & Margrie, T. W. Mapping brain circuitry with a light microscope. *Nature
829 Methods* **10**, 515-523 (2013).

830 46 Franceschini, A., Costantini, I., Pavone, F. S. & Silvestri, L. Dissecting Neuronal
831 Activation on a Brain-Wide Scale With Immediate Early Genes. *Front Neurosci* **14**,
832 569517 (2020).

833 47 Mazzamuto, G. *et al.* <https://dandiarchive.org/dandiset/000026/draft>. U01MH117023
834 (Version draft) [Data set] DANDI archive (2021).

835 48 Varadarajan, D., Frost, R., van der Kouwe, A., Morgan, L., Diamond, B., Boyd, E.,
836 Fogarty, M., Stevens, A., Fischl, B., and Polimeni, J.R., . Edge-preserving B0
837 inhomogeneity distortion correction for high-resolution multi-echo ex vivo MRI at 7T.
838 *International Society for Magnetic Resonance in Medicine*, 664 (2020).

839 49 Fischl, B. *et al.* Sequence-independent segmentation of magnetic resonance images.
840 *NeuroImage* **23**, S69-S84 (2004).

841 50 Deoni, S. C. L., Peters, T. M. & Rutt, B. K. High-resolution T1 and T2 mapping of the
842 brain in a clinically acceptable time with DESPOT1 and DESPOT2. *Magnetic Resonance
843 in Medicine* **53**, 237-241 (2005).

844 51 Van Leemput, K., Maes F Fau - Vandermeulen, D., Vandermeulen D Fau - Suetens, P.
845 & Suetens, P. Automated model-based bias field correction of MR images of the brain.

846 52 Yang, J. *et al.* Improving the characterization of ex vivo human brain optical properties
847 using high numerical aperture optical coherence tomography by spatially constraining
848 the confocal parameters. *Neurophotonics* **7**, 045005 (2020).

849 53 Ragan, T. *et al.* Serial two-photon tomography for automated ex vivo mouse brain
850 imaging. *Nature methods* **9**, 255-258 (2012).

851 54 Pesce, L. *et al.* Fast volumetric mapping of human brain slices. *Proc. SPIE* **11360** (2020).

852 55 Pesce, L. *et al.* 3D molecular phenotyping of cleared human brain tissues with light-
853 sheet fluorescence microscopy. *bioRxiv*, 2021.2007.2018.452829 (2021).

854 56 Hendry, S. H. *et al.* Two classes of cortical GABA neurons defined by differential calcium
855 binding protein immunoreactivities. *Exp Brain Res* **76**, 467-472 (1989).

856 57 Blumcke, I., Hof, P. R., Morrison, J. H. & Celio, M. R. Distribution of parvalbumin
857 immunoreactivity in the visual cortex of Old World monkeys and humans. *J Comp Neurol*
858 **301**, 417-432 (1990).

859 58 Hof, P. R., Nimchinsky, E. A., Celio, M. R., Bouras, C. & Morrison, J. H. Calretinin-
860 immunoreactive neocortical interneurons are unaffected in Alzheimer's disease.
861 *Neurosci Lett* **152**, 145-148 (1993).

862 59 Hof, P. R. *et al.* Parvalbumin-immunoreactive neurons in the neocortex are resistant to
863 degeneration in Alzheimer's disease. *J Neuropathol Exp Neurol* **50**, 451-462 (1991).
864 60 Hof, P. R. & Morrison, J. H. Neocortical neuronal subpopulations labeled by a
865 monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer's disease.
866 *Exp Neurol* **111**, 293-301 (1991).
867 61 Hof, P. R., Mufson, E. J. & Morrison, J. H. Human orbitofrontal cortex: cytoarchitecture
868 and quantitative immunohistochemical parcellation. *J Comp Neurol* **359**, 48-68 (1995).
869 62 Hof, P. R. & Morrison, J. H. Neurofilament protein defines regional patterns of cortical
870 organization in the macaque monkey visual system: a quantitative immunohistochemical
871 analysis. *J Comp Neurol* **352**, 161-186 (1995).
872 63 Carmichael, S. T. & Price, J. L. Architectonic subdivision of the orbital and medial
873 prefrontal cortex in the macaque monkey. *J Comp Neurol* **346**, 366-402 (1994).
874 64 del Rio, M. R. & DeFelipe, J. Colocalization of calbindin D-28k, calretinin, and GABA
875 immunoreactivities in neurons of the human temporal cortex. *J Comp Neurol* **369**, 472-
876 482 (1996).
877 65 Schmitz, C. & Hof, P. R. Design-based stereology in neuroscience. *Neuroscience* **130**,
878 813-831 (2005).
879 66 Slomianka, L. Basic quantitative morphological methods applied to the central nervous
880 system. *J Comp Neurol* **529**, 694-756 (2021).
881 67 Blinkov, S. M. & Glezer, I. B. *i. a. I. The human brain in figures and tables; a quantitative
882 handbook.* (Basic Books, 1968).
883 68 Bussiere, T. *et al.* Stereologic analysis of neurofibrillary tangle formation in prefrontal
884 cortex area 9 in aging and Alzheimer's disease. *Neuroscience* **117**, 577-592 (2003).
885 69 van Kooten, I. A. *et al.* Neurons in the fusiform gyrus are fewer and smaller in autism.
886 *Brain* **131**, 987-999 (2008).
887 70 Frangi, A. F., Niessen, W. J., Vincken, K. L. & Viergever, M. A. in *Medical Image
888 Computing and Computer-Assisted Intervention — MICCAI'98.* (eds William M. Wells,
889 Alan Colchester, & Scott Delp) 130-137 (Springer Berlin Heidelberg).
890 71 Ueda, H. R. *et al.* Tissue clearing and its applications in neuroscience. *Nat Rev Neurosci*
891 **21**, 61-79 (2020).
892 72 Costantini, I., Cicchi, R., Silvestri, L., Vanzi, F. & Pavone, F. S. In-vivo and ex-vivo
893 optical clearing methods for biological tissues: review. *Biomed Opt Express* **10**, 5251-
894 5267 (2019).
895 73 Morawski, M. *et al.* Developing 3D microscopy with CLARITY on human brain tissue:
896 Towards a tool for informing and validating MRI-based histology. *Neuroimage* **182**, 417-
897 428 (2018).
898 74 Hof, P. R., Nimchinsky, E. A. & Morrison, J. H. Neurochemical phenotype of
899 corticocortical connections in the macaque monkey: quantitative analysis of a subset of
900 neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal,
901 and cingulate cortices. *J Comp Neurol* **362**, 109-133 (1995).
902 75 Hof, P. R., Cox, K. & Morrison, J. H. Quantitative analysis of a vulnerable subset of
903 pyramidal neurons in Alzheimer's disease: I. Superior frontal and inferior temporal
904 cortex. *J Comp Neurol* **301**, 44-54 (1990).
905 76 Hof, P. R. & Morrison, J. H. Quantitative analysis of a vulnerable subset of pyramidal
906 neurons in Alzheimer's disease: II. Primary and secondary visual cortex. *J Comp Neurol*
907 **301**, 55-64 (1990).
908 77 Campbell, M. J. & Morrison, J. H. Monoclonal antibody to neurofilament protein (SMI-32)
909 labels a subpopulation of pyramidal neurons in the human and monkey neocortex. *J
910 Comp Neurol* **282**, 191-205 (1989).
911 78 DeFelipe, J. *et al.* New insights into the classification and nomenclature of cortical
912 GABAergic interneurons. *Nature Reviews Neuroscience* **14**, 202-216 (2013).

913 79 Petilla Interneuron Nomenclature, G. *et al.* Petilla terminology: nomenclature of features
914 of GABAergic interneurons of the cerebral cortex. *Nat Rev Neurosci* **9**, 557-568 (2008).

915 80 Bussiere, T. *et al.* Progressive degeneration of nonphosphorylated neurofilament protein
916 enriched pyramidal neurons predicts cognitive impairment in Alzheimer's disease:
917 Stereologic analysis of prefrontal cortex area 9. *Journal of Comparative Neurology* **463**
918 (2003).

919 81 Varghese, M. *et al.* Autism spectrum disorder: neuropathology and animal models. *Acta
920 Neuropathol* **134**, 537-566 (2017).

921 82 Glausier, J. R., Roberts, R. C. & Lewis, D. A. Ultrastructural analysis of parvalbumin
922 synapses in human dorsolateral prefrontal cortex. *J Comp Neurol* **525**, 2075-2089
923 (2017).

924 83 Glausier, J. R., Fish, K. N. & Lewis, D. A. Altered parvalbumin basket cell inputs in the
925 dorsolateral prefrontal cortex of schizophrenia subjects. *Mol Psychiatry* **19**, 30-36 (2014).

926 84 Lewis, D. A., Curley, A. A., Glausier, J. R. & Volk, D. W. Cortical parvalbumin
927 interneurons and cognitive dysfunction in schizophrenia. *Trends Neurosci* **35**, 57-67
928 (2012).

929 85 Bussière, T. *et al.* Progressive degeneration of nonphosphorylated neurofilament
930 protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer's
931 disease: stereologic analysis of prefrontal cortex area 9.

932 86 Akram, A. *et al.* Stereologic estimates of total spinophilin-immunoreactive spine number
933 in area 9 and the CA1 field: relationship with the progression of Alzheimer's disease.
934 *Neurobiol Aging* **29**, 1296-1307 (2008).

935 87 Uppal, N. *et al.* Neuropathology of the posteroinferior occipitotemporal gyrus in children
936 with autism. *Mol Autism* **5**, 17-17 (2014).

937 88 Uppal, N. *et al.* Neuropathology of the anterior midcingulate cortex in young children with
938 autism. *J Neuropathol Exp Neurol* **73**, 891-902 (2014).

939 89 Jacot-Descombes, S. *et al.* Decreased pyramidal neuron size in Brodmann areas 44 and
940 45 in patients with autism. *Acta Neuropathol* **124**, 67-79 (2012).

941 90 Murray, E. *et al.* Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of
942 Intact Systems. *Cell* **163**, 1500-1514 (2015).

943 91 Sherwood, C. C., Broadfield, D. C., Holloway, R. L., Gannon, P. J. & Hof, P. R.
944 Variability of Broca's area homologue in African great apes: implications for language
945 evolution. *Anat Rec A Discov Mol Cell Evol Biol* **271**, 276-285 (2003).

946 92 Amunts, K. *et al.* Broca's region revisited: cytoarchitecture and intersubject variability. *J
947 Comp Neurol* **412**, 319-341 (1999).

948 93 Costantini, I. *et al.* Large-scale, cell-resolution volumetric mapping allows layer-specific
949 investigation of human brain cytoarchitecture. *Biomed Opt Express* **12**, 3684-3699
950 (2021).

951 94 Frasconi, P. *et al.* Large-scale automated identification of mouse brain cells in confocal
952 light sheet microscopy images. *Bioinformatics* **30**, i587-593 (2014).

953 95 Silvestri, L. *et al.* Universal autofocus for quantitative volumetric microscopy of whole
954 mouse brains. *Nature Methods* (2021).

955 96 Chung, K. *et al.* Structural and molecular interrogation of intact biological systems.
956 *Nature* **497**, 332-337 (2013).

957 97 Di Giovanna, A. P. *et al.* Whole-Brain Vasculature Reconstruction at the Single Capillary
958 Level. *Scientific reports* **8** (2018).

959 98 van der Kouwe, A. J. W., Benner, T., Salat, D. H. & Fischl, B. Brain morphometry with
960 multiecho MPRAGE. *NeuroImage* **40**, 559-569 (2008).

961 99 Golde, J. *et al.* Detection of carious lesions utilizing depolarization imaging by
962 polarization sensitive optical coherence tomography. *Journal of biomedical optics* **23**,
963 071203 (2018).

964 100 Wojtkowski, M. *et al.* Ultrahigh-resolution, high-speed, Fourier domain optical coherence
965 tomography and methods for dispersion compensation. *Optics express* **12**, 2404-2422
966 (2004).

967 101 Sorzano, C. O. S., Thévenaz, P. & Unser, M. Elastic registration of biological images
968 using vector-spline regularization. *IEEE Transactions on Biomedical Engineering* **52**,
969 652-663 (2005).

970 102 Arganda-Carreras, I. *et al.* Consistent and Elastic Registration of Histological Sections
971 Using Vector-Spline Regularization. *Computer Vision Approaches to Medical Image
972 Analysis*, 85-95 (2006).

973 103 Costantini, I. *et al.* A versatile clearing agent for multi-modal brain imaging. *Scientific
974 reports* **5**, 9808 (2015).

975 104 Pesce, L. *et al.* Exploring the human cerebral cortex using confocal microscopy.
976 *Progress in Biophysics and Molecular Biology* (2021).

977 105 Costantini, I. *et al.* Autofluorescence enhancement for label-free imaging of myelinated
978 fibers in mammalian brains. *Scientific reports* **11**, 8038 (2021).

979 106 Keller Philipp, J., Schmidt Annette, D., Wittbrodt, J. & Stelzer Ernst, H. K. Reconstruction
980 of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy.
981 *Science* **322**, 1065-1069 (2008).

982 107 Olarte, O. E., Andilla, J., Gualda, E. J. & Loza-Alvarez, P. Light-sheet microscopy: a
983 tutorial. *Adv. Opt. Photon.* **10**, 111-179 (2018).

984 108 Baumgart, E. & Kubitscheck, U. Scanned light sheet microscopy with confocal slit
985 detection. *Opt. Express* **20**, 21805-21814 (2012).

986 109 Silvestri, L., Bria, A., Sacconi, L., Iannello, G. & Pavone, F. S. Confocal light sheet
987 microscopy: micron-scale neuroanatomy of the entire mouse brain. *Opt Express* **20**,
988 20582-20598 (2012).

989 110 Mullenbroich, M. C. *et al.* Comprehensive optical and data management infrastructure
990 for high-throughput light-sheet microscopy of whole mouse brains. *Neurophotonics* **2**,
991 041404 (2015).

992 111 Gavryusev, V. *et al.* Dual-beam confocal light-sheet microscopy via flexible acousto-
993 optic deflector. *Journal of biomedical optics* **24**, 1-6 (2019).

994 112 Ricci, P. *et al.* Fast multi-directional DSLM for confocal detection without striping
995 artifacts. *Biomed Opt Express* **11**, 3111-3124 (2020).

996 113 Ashburner, J. & Ridgway, G. R. Symmetric diffeomorphic modeling of longitudinal
997 structural MRI. *Front Neurosci* **6**, 197 (2012).

998 114 Arsigny, V., Commowick, O., Pennec, X. & Ayache, N. A log-Euclidean framework for
999 statistics on diffeomorphisms. *Med Image Comput Comput Assist Interv* **9**, 924-931
1000 (2006).

1001 115 Studholme, C., Hill, D. L. G. & Hawkes, D. J. An overlap invariant entropy measure of 3D
1002 medical image alignment. *Pattern Recognition* **32**, 71-86 (1999).

1003 116 Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Jorge Cardoso, M. Generalised Dice
1004 Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. *Deep
1005 Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision
1006 Support*, 240-248 (2017).

1007 117 Ashburner, J. A fast diffeomorphic image registration algorithm. *Neuroimage* **38**, 95-113
1008 (2007).

1009 118 Paszke, A. *et al.* *PyTorch: An Imperative Style, High-Performance Deep Learning
1010 Library*. (2019).

1011 119 Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. *Proceedings of the
1012 3rd International Conference on Learning Representations (ICLR 2015)* (2014).

1013