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Abstract: 17 

In plants, many invading microbial pathogens are recognized by cell-surface pattern 18 

recognition receptors (PRRs), inducing defense responses; yet how PRRs perceive 19 

pathogen sphingolipids remains unclear. Here, we show that the ceramide Pi-Cer D 20 

from a plant pathogenic oomycete Phytophthora infestans triggers defense responses 21 

in Arabidopsis. Pi-Cer D is cleaved by an Arabidopsis apoplastic ceramidase, NCER2, 22 

and the resulting 9-methyl-branched sphingoid base is recognized by a plasma 23 

membrane lectin receptor-like kinase, RDA2. Importantly, 9-methyl-branched 24 

sphingoid base, which is unique to microbes, induces plant immune responses by 25 

interacting with RDA2. Loss of RDA2 or NCER2 function compromised Arabidopsis 26 

resistance against an oomycete pathogen, indicating that these are crucial for defense. 27 
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 2 

We provide new insights that help elucidate the recognition mechanisms of pathogen-1 

derived lipid molecules in plants. 2 

 3 

One Sentence Summary: Oomycete-derived ceramide is cleaved into sphingoid base 4 

by ceramidase and recognized by an Arabidopsis receptor kinase.  5 

 6 

Main Text:  7 

Plant defend themselves against a multitude of microbial pathogens by sensing pathogen 8 

invasion through cell-surface pattern recognition receptors (PRRs) that recognize 9 

microbe- or pathogen-associated molecular patterns (MAMPs, PAMPs) or damage-10 

associated molecular patterns (DAMPs) of host-derived molecules that emanate from 11 

damage caused by pathogen attack. This recognition then activates immune signaling (1-12 

3). The Arabidopsis genome contains genes encoding ~580 PRRs, including ~410 13 

receptor-like kinases (RLKs) and ~170 receptor-like proteins (RLPs) that lack the kinase 14 

domain (4). However, molecular interactions between MAMP/PAMPs and PRRs have 15 

been demonstrated only in a limited number of cases, with the majority involving 16 

pathogen peptides, proteins, and carbohydrates. It has recently been reported that lipids 17 

derived from pathogens are also recognized by plant PRRs. The Arabidopsis PRR 18 

LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION recognizes 19 

medium-chain 3-hydroxy fatty acids of bacterial pathogens (5), but whether other PRRs 20 

recognize pathogen lipids remains unknown. 21 

 Ceramides belong to a class of sphingolipids consisting of a sphingoid base and 22 

a fatty acid and are present at high concentrations in eukaryotic cell membranes. 23 

Ceramide and its metabolites are also involved in intracellular signal transduction in 24 

animal cells and plants (6-7). Recently, a ceramide-related compound, Phytophthora 25 

infestans ceramide D (Pi-Cer D; Fig. 1A), from the oomycete pathogen P. infestans was 26 

shown to induce immune responses in potato plants (8). Pi-Cer D also induced defense 27 

responses in Arabidopsis; therefore, we aimed to identify the Arabidopsis components 28 

involved in the perception of Pi-Cer D in Arabidopsis. For this, we employed Lumi-Map, 29 

a platform consisting of a luciferase (LUC)-based mutant screen and gene identification 30 

(fig. S1) (9). Because the Arabidopsis WRKY33 gene is induced by PAMPs, including 31 
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 3 

flg22, a peptide derived from bacterial flagellin and is required for resistance against 1 

pathogens (10-11), we tested whether Pi-Cer D induced the expression of a LUC 2 

transgene driven by the WRKY33 promoter (pWRKY33-LUC) in Arabidopsis, which 3 

resulted in a transient induction of bioluminescence (fig. S2). We then screened 10,000 4 

M2 seedlings generated by ethylmethanesulfonate (EMS) mutagenesis of the pWRKY33-5 

LUC reporter line (W33-1B) for mutants that showed a reduction in bioluminescence 6 

after Pi-Cer D treatment (named Low (L) mutants). We isolated nine mutants insensitive 7 

to Pi-Cer D (L-09, L-12, L-16, L-19, L-31, L-46, L-55, L-66, and L-74) and two mutants 8 

with an extremely low response to Pi-Cer D (L-53 and L-107) (Fig. 1B and fig. S3, Table 9 

S1). These mutants showed normal bioluminescence responses to other PAMPs, such as 10 

flg22, elf18, derived from bacterial elongation factor Tu, and chitin, a component of 11 

fungal cell walls, indicating that they carried lesions affecting the signaling pathway that 12 

is specifically required for the response to Pi-Cer D (Fig. 1C and fig. S4). To identify the 13 

gene(s) altered in these mutants, we performed MutMap analysis (12). All nine Pi-Cer D-14 

insensitive mutants showed SNP-index peaks on chromosome 1 and contained SNPs 15 

within the gene At1g11330 encoding a lectin receptor-like kinase RDA2 (resistant to 16 

DFPM-inhibition of ABA signaling 2) (Fig. 1D, fig. S5, and Table S2), a mutant of which 17 

(rda2) is insensitive to a small synthetic molecule [5-(3,4-dichlorophenyl)furan-2-yl]-18 

piperidine-1-ylmethanethione (DFPM) and incapable to mount DFPM-mediated immune 19 

signaling and inhibition of ABA signaling (13). Thus, we tentatively named the nine Pi-20 

Cer D-insensitive mutants as rda2-4 through rda2-10. The two Pi-Cer D low-response 21 

mutants showed SNP-index peaks on chromosome 2 and carried mutations in the gene 22 

At2g38010, which encodes neutral ceramidase 2 (NCER2, Fig. 1E, fig. S5, and Table S2) 23 

(14). We then tentatively named L-53 and L-107 mutants as ncer2-2 and ncer2-3, 24 

respectively. Complementation of the rda2 and ncer2 mutant lines by the respective wild-25 

type alleles restored bioluminescence induction following Pi-Cer D treatment, confirming 26 

that RDA2 and NCER2 are the responsible genes for the given phenotypes (Fig. 1F and 27 

fig. S6). Furthermore, T-DNA insertion mutant lines for RDA2 and NCER2 showed either 28 

no or reduced induction of WRKY33 gene expression after Pi-Cer D treatment (fig. S7). 29 

Collectively, these results indicate that RDA2 and NCER2 are required for Pi-Cer D 30 

recognition in Arabidopsis. We then asked whether RDA2 and NCER2 contribute to 31 

Arabidopsis immunity against an oomycete pathogen Hyaloperonospora arabidopsidis. 32 

Importantly, both rda2 and ncer2 mutants showed increased susceptibility to H. 33 
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 4 

arabidopsidis (Fig. 1G), indicating that RDA2 and NCER2 are required for resistance to 1 

this pathogen.  2 

We hypothesized that (i) Pi-Cer D is cleaved by NCER2 into a mature ligand product 3 

in the apoplastic space and (ii) the ligand is recognized via plasma-membrane-localized 4 

RDA2. To test the first hypothesis, we investigated whether the ncer2 mutant phenotype 5 

was rescued by the product generated by NCER2 ceramidase treatment of Pi-Cer D (Fig. 6 

2A). The lipid fraction containing Pi-Cer D and NCER2 produced in Nicotiana 7 

benthamiana, as well as that containing Pi-Cer D and a mouse ceramidase, induced 8 

pWRKY33-LUC bioluminescence in the ncer2-2 mutant (L-53) (Fig. 2B). We observed 9 

no bioluminescence when we used NCER2G46S, a mutant version of NCER2 present in 10 

ncer2-3 (L-107). These results indicate that Pi-Cer D was cleaved by NCER2-encoded 11 

ceramidase and the resulting compound was recognized by RDA2. The predicted 12 

molecular size of NCER2 tagged with hemagglutinin (HA-NCER2) was 82 kDa; however, 13 

the protein detected by immunoblot analysis using anti-HA antibody was 26 kDa (fig. 14 

S8). Upon purifying the HA-NCER2 protein and subjected it to gel electrophoresis, we 15 

recovered two protein bands (26 kDa and 56 kDa) (fig. S8). Analysis of the bands by 16 

liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that they 17 

corresponded to the N- and C-terminal regions of NCER2 (Table S3), respectively. These 18 

results indicate that NCER2 is processed into its N- and C-terminal regions, which 19 

function together. To investigate the localization of NCER2, we then generated transgenic 20 

Arabidopsis ncer2-2 mutant lines that expressed HA-NCER2 driven by its own promoter 21 

(ncer2-2 HA-NCER2) (fig. S9). We detected the HA-NCER2 protein in the apoplast wash 22 

fluid (AWF) of these lines (Fig. 2D) and found that WRKY33-LUC activity was induced 23 

in the AWF from the wild-type reporter line and ncer2-2 HA-NCER2 lines, but not in that 24 

from the ncer2-2 mutant (Fig. 2C). These results indicate that NCER2 localized to the 25 

apoplast and metabolizes Pi-Cer D into a mature ligand product that is recognized by 26 

RDA2.  27 

Mass spectrometry analysis of compounds in the lipid fraction prepared from a 28 

mixture of Pi-Cer D and ceramidase detected a sphingoid base, suggesting that the 29 

sphingoid base derived from Pi-Cer D might be the ligand for RDA2 (fig. S10). We also 30 

compared the WRKY33-LUC-inducing activity of Pi-Cer D analogs, which revealed that 31 

structural differences in the sphingoid base determine the level of induction (fig. S11). 32 

The sphingoid base in Pi-Cer D ((4E,8E,10E)-9-methyl-4,8,10-sphingatrienine, 33 
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 5 

9Me,4E,8E,10E-d19:3) contains a unique branching methyl group at the ninth carbon 1 

position. Remarkably, this 9-methyl-branching structure is present in sphingoid bases of 2 

oomycete, fungi and marine invertebrates, but has not been reported in plants and 3 

mammals (15-17). We thus hypothesized that the 9-methyl-branching structure of the 4 

sphingoid base is decisive in distinguishing between 8self9 and 8nonself9 in plants. 5 

Therefore, we investigated the ability of various sphingoid bases to induce a defense 6 

response. Because the sphingoid base in Pi-Cer D (9Me,4E,8E,10E-d19:3) was difficult 7 

to obtain, we used (4E,8E)-9-methyl-4,8-sphingadienine (9Me,4E,8E-d19:2, hereafter 8 

9Me-Spd) to evaluate 9-methyl structure (Fig. 3A). Notably, the rda2 mutants were 9 

almost insensitive to 9Me-Spd, indicating that 9Me-Spd is specifically recognized by 10 

RDA2 (fig. S12). Among the sphingoid bases we tested, 9Me-Spd showed the strongest 11 

RDA2-dependent elicitor activity (Fig. 3B, 3C, fig. S12 and S13). In addition, (4E,8E)-12 

4,8-sphingadienine (4E,8E-d18:2, Spd) and sphingosine (4E-d18:1, Sph), neither of 13 

which contain 9-methyl branching, also showed elicitor activity, although this was 14 

significantly weaker than that of 9Me-Spd (Fig. 3C, figs. S12 and S13). To identify the 15 

structural correlates of RDA2-dependent sensing of the sphingoid base, we tested 16 

sphingosine derivatives with different lengths of long-chain bases. Among these 17 

derivatives, Sph (4E-d18:1) induced the highest bioluminescence in the pWRKY33-LUC 18 

reporter line, followed by 4E-d16:1, 4E-d14:1, and 4E-d12:1 (fig. S14). This indicates 19 

that efficient sensing by RDA2 requires a long-chain base structure that includes 18 20 

carbon atoms. We also tested phytosphingosine (4-hydroxysphinganine, 4-t18:0, PHS) 21 

and found that it did not elicit bioluminescence in the pWRKY33-LUC reporter line. This 22 

indicates that the 4E double-bond structure in Sph is crucial for its sensing by RDA2 (fig. 23 

S15). 24 

To further investigate the downstream events following RDA2-mediated sensing, we 25 

tested the ability of 9Me-Spd and its derivatives to activate Arabidopsis immune 26 

responses. The 9Me-Spd activated RDA2-dependent bioluminescence induction, 27 

transcript accumulation of defense-related genes (FRK1, At1g51890), phosphorylation of 28 

mitogen-activated protein kinases, and the production of reactive oxygen species (ROS) 29 

more strongly than Spd and Sph (Fig. 3C3F and fig. S12). A protein-lipid overlay assay 30 

using a membrane fraction containing HA-tagged RDA2 demonstrated physical 31 

interaction between 9Me-Spd and RDA2 (Fig. 3G, fig. S16 and S17). Collectively, these 32 
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 6 

results suggest that RDA2 is the receptor for sphingoid bases including 9-methyl 1 

sphingoid base, which is derived from Pi-Cer D.  2 

Sphingolipids are major components of eukaryote membranes (16-18). Our findings 3 

revealed that oomycete-derived ceramide is cleaved by plant apoplastic ceramidase and 4 

the generated sphingoid base is recognized by a lectin receptor-like kinase (Fig. 4). This 5 

indicates that plants perceive differences in sphingolipid structure for non-self 6 

recognition. Notably, plant RDA2 senses the 9-methyl-branching structure of sphingoid 7 

bases that are prevalent in oomycetes and fungi. It has recently been reported that RDA2 8 

is required for immune signaling and inhibition of ABA signaling by a small synthetic 9 

molecule DFPM as identified by a chemical genetic screen (13). We hypothesize that 10 

DFPM or its metabolized product functions as a mimic of sphingoid base, but further 11 

study is required to clarify this. Based on our results, we propose the name SphingR (for 12 

sphingoid recognizing) as a synonym of RDA2 (Fig. 4). Our study here provides a basis 13 

on which to engineer RDA2/SphingR to detect various pathogen-specific lipids and to 14 

enable plants mount defense against pathogens such as P. infestans, the causal agent of 15 

the potato late blight that devastated potato crop and caused famine in the nineteenth 16 

century. 17 

 18 
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 1 

Fig. 1. Arabidopsis RDA2 and NCER2 are required for recognition of Pi-Cer D and 2 

resistance against Hyaloperonospora arabidopsidis (A) Chemical structure of Pi-Cer D. 3 

(B) Bioluminescence response over time of Arabidopsis pWRKY33-LUC reporter (WT), 4 

rda2-4, and ncer2-2 after Pi-Cer D (0.17 ¿M) treatment (means ± SD). For additional 5 

data, see fig. S3. (C) Bioluminescence of WT and mutant seedlings after treatment with 6 

Pi-Cer D, flg22, elf18, or chitin. Relative peak bioluminescence values are shown as % 7 

of WT (means ± SE). For additional data, see fig. S4. (D and E) Gene and protein 8 

structures of RDA2 (D) and NCER2 (E). Gene structure (top), showing exons in boxes 9 

and introns as lines between the boxes. Protein structure (bottom), showing the different 10 

domains. The positions of the EMS-induced point mutations in different alleles (closed 11 

triangle) and T-DNA insertion sites (opened triangle) are indicated. (F) Complementation 12 

of rda2 and ncer2 mutants with wild-type alleles. Bioluminescence (means ± SE) of WT, 13 

rda2-4, ncer2-2, and complemented lines (CL) after Pi-Cer D (0.17 ¿M) treatment is 14 

shown. For additional data, see fig. S6. (G) Growth of Hyaloperonospora arabidopsidis 15 

on Arabidopsis Col-0, WT, and rda2 and ncer2 mutants. Three-week-old Arabidopsis 16 

plants were inoculated with Hpa Waco9. Conidiospores were harvested and counted 5 17 

days post inoculation (n = 5). *, p < 0.05 in two-tailed t-tests comparing the corresponding 18 

values from Col-0. Experiments were performed three times with similar results. 19 
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Fig. 2. Pi-Cer D is cleaved by NCER2, an apoplastic ceramidase. (A) Pi-Cer D-2 

cleavage assay. Pi-Cer D was incubated for 24 h with HA-NCER2, its mutant variant 3 

produced in Nicotiana benthamiana leaves, or apoplast wash fluid (AWF) from 4 

Arabidopsis plants. The lipid fraction containing metabolites derived from Pi-Cer D was 5 

recovered and applied to ncer2-2 plants, and their bioluminescence was measured. (B) 6 

Pi-Cer D is cleaved by the Arabidopsis ceramidase NCER2. HA-tagged wild-type (HA-7 

NCER2WT) and mutated NCER2 (HA-NCER2G46S, carrying the same mutation as in the 8 

L-107 line) were transiently expressed in N. benthamiana (N.b.) and purified. 9 

Commercial mouse ceramidase (Mouse CD) served as a positive control. Peak 10 

bioluminescence is shown (means ± SE). For additional data for NCER2 expressed in N. 11 

benthamiana, see fig. S8. (C) Pi-Cer D-cleavage activity of Arabidopsis (A.t.) AWF. 12 

AWFs were isolated from the pWRKY33-LUC reporter line (WT), ncer2-2 and the ncer2-13 

2 HA-NCER2 complementation lines (CL). Peak bioluminescence is shown (means ± SE). 14 

For additional data with ncer2-2 HA-NCER2 plants, see fig. S9. (D) Immunoblot analysis 15 

of total protein and AWF extracted from WT, ncer2-2 and ncer2-2 HA-NCER2 plants. 16 

Anti-actin antibody was used to detect cytosolic protein. Experiments were performed 17 

three times with similar results.  18 
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Fig. 3. RDA2 recognizes 9-methyl sphingoid base and induces defense responses. (A) 2 

Structures of (4E,8E)-9-methyl-4,8-sphingadienine (9Me-Spd), (4E,8E)-4,8-3 

sphingadienine (Spd), and sphingosine (Sph). (B and C) Peak bioluminescence values for 4 

Arabidopsis pWRKY33-LUC reporter seedlings (WT) treated with (B) different 5 

concentrations of 9Me-Spd or (C) 0.5 ¿M of structurally different sphingoid bases (means 6 

± SE). For additional data, see fig. S12 and S13. (D) Expression of defense genes (FRK1 7 

and At1g51890) in Arabidopsis seedlings 3 h after elicitation with sphingoid bases (0.5 8 

¿M) relative to expression in DMSO-treated WT. Individual data (symbols) and means 9 

(bars) are shown (n = 3); *, p < 0.05 (two-tailed t-test). (E) Mitogen-activated protein 10 

kinase (MAPK) activation following treatment with sphingoid base (0.5 ¿M). 11 

Phosphorylated MAPKs were visualized with anti-phospho-p44/p42 MAPK antibody. 12 

(F) ROS accumulation in Arabidopsis leaves treated with sphingoid bases. Left, leaf disks 13 

from WT plants treated with 30 ¿M 9Me-Spd, Spd, or Sph (n = 12). Right, leaf disks 14 

from WT and rda2-4 plants treated with 30 ¿M 9Me-Spd (n = 10). Relative light unit 15 

(RLU) is shown (means ± SD). (G) Binding of sphingoid bases with HA-tagged RDA2 16 

by protein-lipid overlay assay. For additional data, see fig. S16 and S17. Experiments 17 

were performed two (B, D, and F) or three times (C, E, and G) with similar results. 18 
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Fig. 4. A model for the recognition of pathogen-derived ceramide in plants. Pi-Cer D 2 

is cleaved by plant apoplastic ceramidase NCER2 into 9-methyl sphingoid base. 9-methyl 3 

sphingoid base is recognized by a lectin-receptor kinase, RDA2/SphingR, which then 4 

induces defense responses that include WRKY33 gene expression and enhances immunity 5 

against pathogen infection. 6 
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