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Abstract

DNA methylation (5mC) is a promising biomarker for detecting circulating tumor DNA (ctDNA),
providing information on a cell’'s genomic regulation, developmental lineage, and molecular age.
Sequencing assays for detecting ctDNA methylation involve pre-processing steps such as
immunoprecipitation, enzymatic treatment, or the most common method, sodium bisulfite
treatment. These steps add complexity and time that pose a challenge for clinical labs, and
bisulfite treatment in particular degrades input DNA and can result in loss of informative ctDNA
fragmentation patterns. In this feasibility study, we demonstrate that whole genome sequencing
of circulating cell-free DNA using conventional Oxford Nanopore Technologies (ONT)
sequencing can accurately detect cell-of-origin and cancer-specific 5mC changes while
preserving important fragmentomic information. The simplicity of this approach makes it
attractive as a liquid biopsy assay for cancer as well as non-cancer applications in emergency
medicine.

Introduction

Cell-free DNA captures informative features of its originating cell, which include genomic
alterations, DNA modifications such as 5mC, fragmentation patterns due to differential DNase
activities, and nucleosomal organization (7). One of the most promising cfDNA biomarkers for
cancer is 5mC, which has been validated in a large clinical study and is now in widespread use
for cancer detection (2). Unlike other cancer-specific cfDNA biomarkers, 5mC can detect the
presence of other unusual cell types in cfDNA to detect non-cancer conditions including
myocardial infarction and sepsis (3). Most of these studies have used bisulfite-based
approaches, but immunoprecipitation-based (4) and enzymatic (5) techniques have also shown
promising results.

Native sequencing with the ONT platform is attractive for a number of reasons. First, single
base pair resolution DNA methylation calling on the Nanopore platform has improved
significantly in the past several years, and now achieves high concordance with the gold
standard whole-genome bisulfite sequencing (WGBS) in several benchmarking studies (6, 7).
ONT sequencing is also rapid, with recent clinical demonstrations of end to end turnaround time
from sample collection to DNA methylation-based classification in as little as 1-3 hours (8, 9).
Other benefits of ONT for clinical settings include the low buy-in cost and portable nature of the
device. ONT native WGS is unique among DNA methylation sequencing approaches in that it
does not require a PCR amplification step, which can bias both fragmentation patterns and
uniformity of genomic coverage.

ONT sequencing has primarily been used for long-read sequencing, but recent work has shown
that it can be adapted for short fragments to detect copy number alterations, where long read
sequencing is not cost effective (70—12). In our recent publication (717), we showed that
optimizations in library construction could generate 4-20 million sequencing reads from 4mL of
plasma of healthy and cancer patients. Here, we perform additional analysis on that same
dataset to extract 5mC and fragmentomic information which we did not investigate previously.
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63 Results

64  All analyses described below are from sequence data generated in our previous publication,
65  which used cfDNA extracted from 4mL of plasma for four healthy control individuals and six

66  metastatic lung adenocarcinoma cases (77). Six of the samples had between 3.8M and 5.3M
67 raw reads (2.2M-2.6M uniquely mapping reads), and the remaining four samples had between
68 8.4M and 20.2M raw reads (4.8M-11.2M uniquely mapping reads). All sequencing statistics are
69 available in Supplemental Table 1. We used ichorCNA (13) to estimate the tumor fraction of

70  each sample using somatic copy number alterations (SCNAs) (Supplemental Table 1). Four of
71 the six cancer cases had tumor fraction estimates greater than 0.1 (high tumor fraction), one
72  case had 0.086 (BC09), and another (BC08) was under the detection limit for TF estimation via
73 IchorCNA so tumor fraction was set to 0 (Figure 1A-1B, top).

74
75  Nanopore DNA methylation detects cancer-specific and cell-of-origin of ctDNA

76  Global DNA hypomethylation is one of the hallmarks of the cancer epigenome and has been
77  proposed as a general ctDNA biomarker (74), and was recently verified in WGBS of cfDNA from
78 NSCLC cases (15). In order to investigate this, we processed the original fast5 sequencing files
79  with DeepSignal (716) to call methylation at individual CpGs. The six lower coverage samples
80  covered between 4.3M and 5.5M CpGs (usually by a single read per CpG), while the remaining
81  four samples covered 8.1M-18.9M CpGs (Supplemental Table 1). Next, we calculated global
82  methylation within 10 Mbp genomic windows genome-wide. This analysis showed high

83  methylation levels for the four healthy control plasmas and the two low tumor fraction cases,

84  and significantly reduced methylation for three of the four high tumor fraction samples (Figure
85 1A, bottom). Reasoning that regions of copy number alteration would have skewed proportions
86  of tumor-derived DNA and thus skewed methylation levels, we split out methylation by SCNA
87  status for all cancer samples. In the three cases with globally reduced methylation (BC01,

88 19 326, BC10), amplified regions were significantly more hypomethylated than diploid regions,
89  as expected (Figure 1B). While hypomethylation could not be detected genome-wide in the low
90 tumor fraction sample BC08, amplified regions were significantly hypomethylated. Conversely,
91  deleted regions showed reduced hypomethylation relative to diploid regions, but this trend only
92 reached statistical significance in two of the three cases with global hypomethylation (19_326
93 and BC10). In the final case (BC11), DNA methylation overall was higher than in healthy

94  plasma, and SCNAs levels suggested this was due specifically to the high methylation of

95 cancer-derived DNA (Figure 1B). While this is an interesting case, it is not surprising given the
96  high degree of variability associated with global hypomethylation (77), a process that is not

97  entirely understood but is known to be affected by various chromatin modifiers that are

98  dysregulated in cancer(78, 19).

99  “Global” cancer hypomethylation is not truly global and occurs primarily within long regions of
100 lamina-associated heterochromatin called Partially Methylated Domains (PMDs)(77). In all of
101  our hypomethylated samples, hypomethylation was concentrated within previously identified
102 PMDs from (17) (Figure 1C). When considering only bins within PMDs, significant
103  hypomethylation was identified not only within the three cases where it was significant genome-
104  wide, but also in the two low tumor fraction cases (Supplemental Figure 1A). The same
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105 association between SCNAs and hypomethylation that occurred genome-wide analysis (Figure
106  1B) was also significant in the PMD-only analysis (Supplemental Figure 1B).

107  Since global hypomethylation is a relatively generic cancer change, we next sought to

108 investigate regions marking the cell-of-origin of lung adenocarcinoma cells. The lack of a

109  suitable whole-genome DNA methylation dataset for lung epithelia prompted us to use

110  regulatory regions defined by ATAC-seq, since ATAC-seq open chromatin regions are almost
111 universally demethylated in cancer (20). A recent single-cell ATAC-seq atlas identified open
112 chromatin regions in 25 distinct human tissue types from multiple donors, and identified a strong
113  cluster of lung pneumocytes (the “Pal” cluster) in primary lung samples (27). NKX2-1 is a known
114  master regulator transcription factor in lung pneumocytes (22), and the binding site for NKX2-1
115  was the most enriched motif within this pneumocyte-specific cluster of SCATAC-seq peaks (27).
116 NKX2-1 expression also has highly restricted expression across all known organs (23), making
117 it an ideal marker for lung pneumocyte cell-of-origin analysis. Predicted NKX2-1 binding sites
118  are the most enriched motifs in open chromatin of TCGA lung adenocarcinoma tumors (20),
119  suggesting they are not only a good cell type marker but also a good marker of this cancer type.

120 To analyze NKX2-1 binding site DNA methylation, we first identified the 5,974 predicted binding
121 NKX2-1 sites within pneumocyte-specific (“Pal”’) ATAC-seq peaks from (27) (Figure 1D). We
122 confirmed lung cancer specificity using the TCGA WGBS dataset from (77), which contained 9
123  NSCLC samples and 18 other samples from four other non-lung epithelial cancer types (Breast,
124  Colorectal, Stomach, and Endometrial). NKX2-1 sites showed almost no demethylation in non-
125  lung tumors (Figure 1E, left), but substantial demethylation in both lung lung tumors and

126  adjacent normal lung tissue, with lung adenocarcinomas having the strongest demethylation
127  (Figure 1E, right). We next looked at methylation in plasma cfDNA from published studies using
128 lllumina WGBS. Neither Healthy plasmas, liver cancer, nor colorectal cancer plasmas showed
129  demethylation, confirming the lung specificity of these NKX2-1 sites (Figure 1F). In our

130  Nanopore WGS samples, plasma from healthy individuals showed no demethylation (Figure 1G,
131 left), but at least three of the four cancer samples with high tumor fraction cancer samples were
132  demethylated (Figure 1G, right, and Supplemental Figure 2). This analysis shows that shallow
133  Nanopore WGS can detect highly cell type specific features of the cancer cell-of-origin.

134  The quantitative nature of DNA methylation allows accurate estimates of cell type mixtures from
135 reference datasets of pure cell types (24), including applications to cfDNA (25). While there is
136  currently no whole-genome methylation dataset that includes pure lung epithelial cells, such a
137  dataset was recently generated on the lllumina HumanMethylation450k (HM450k) platform (25).
138  We adapted the non-negative least squares (NNLS) regression method used in (25) to

139  deconvolute our Nanopore plasma samples into lung cell and healthy plasma cell type

140 components (Figure 1H). We had to significantly expand the number of cell-type specific marker
141 CpGs used in the MethAtlas paper (25), due to the relatively low degree of overlap between
142  HMA450k probes and CpGs called in our Nanopore samples (the majority of Nanopore samples
143  overlapped less than 20% of HM450k probes, see Supplemental Table 1). We identified a total
144  of 4,355 lung-specific marker CpGs (Supplemental Figure 3), which covered a median of 818
145  CpGs per sample (Supplemental Table 1). For example, healthy sample BC05 overlapped

146 1,760 lung-specific CpGs, while cancer sample BC11 overlapped 1,251 (Figure 1H,

147  Supplemental Figure 4, Supplemental Table 1). These were used as input to NNLS regression
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148  to estimate the lung cell fraction () and healthy plasma cell fraction (1-8) for all Nanopore
149  samples (Figure 1H).

150 We used the 4,355 lung-specific marker CpGs and NNLS regression to estimate lung cell

151  fraction (B) for all Nanopore samples, which yielded 100% separation between healthy plasma
152  and lung cancer samples (Figure 1I-J). We evaluated the quantitative accuracy of these

153  estimates by comparing to the ichorCNA tumor fraction estimates (Figure 1K). While these two
154  estimates are based on completely independent features, they showed overall strong

155 agreement (PCC 0.884). One case, BCO08, had a lower read count (2.6M reads) and ichorCNA
156 failed to detect SCNAs in this case, leading to a tumor fraction estimate of 0. We sequenced
157  BCO08 with higher coverage using Illlumina WGS (17M uniquely alignable read pairs), which
158  allowed ichorCNA to detect sufficient SCNAs for a valid tumor fraction estimate of 0.11

159  (Supplemental Figure 4, Supplemental Table 1). This was extremely close to the methylation-
160 based estimate of BC0O8 from Nanopore data (Figure 1K, yellow point), suggesting that

161 Nanopore DNA methylation can be a more sensitive ctDNA detector then SCNAs for cases with
162  low tumor fraction or few SCNAs.

163  To verify the robustness of the NNLS deconvolution results, we performed the same analysis
164  using a mutually exclusive set of 14,654 HM450k marker probes differentially methylated

165 between TCGA LUAD tumors and healthy plasma (Figure 1L). This analysis yielded very similar
166  results to the normal lung-based analysis (Figure 1M-N), reinforcing the idea that circulating

167  tumor DNA can be detected using reference data from either the appropriate normal cell type or
168  from tumors (3). This analysis revealed an interesting outlier, BC10, which had a methylation-
169  based lung cell estimate that was almost 2-fold higher than the ichorCNA estimate in both the
170  normal lung based (Figure 1K) and tumor based (Figure 1N) estimates. Interestingly, the NKX2-
171 1 methylation analysis agreed with these deconvolution results, with BC10 showing the highest
172  degree of NKX2-1 demethylation of any cancer sample (Supplemental Figure 2). While it would
173  require study in a larger cohort, it is possible that this represents a case where low read

174  coverage (2.6M reads) leads SCNA analysis to fail at detecting a whole-genome doubling event,
175  and that the model could be improved by incorporating DNA methylation data.

176
177  Nanopore preserves fragmentomic features of ctDNA

178  Tumor-derived cfDNA can be distinguished by several DNA fragmentation features, including
179  shorter fragment lengths and altered fragment end motifs. These features likely reflect the

180  specific DNase enzymes present in the cancer cells as well as the chromatin organization in
181  those cells (reviewed in (7)). We were able to investigate these fragmentation features for nine
182  of the ten Nanopore samples that we previously sequenced. The tenth sample, 19 326, was
183  generated with a different library construction kit that affects fragment size representation as
184  well as adapter trimming. It was thus not included in our primary fragmentomic analyses (we
185 analyzed it separately in Supplemental Figure 5A-G).

186  Cancer-derived circulating cfDNA fragments tend to be shorter than those from healthy

187 individuals, with an overabundance of fragments of length <150 bp (26), and these fragment
188 length differences can classify different cancer types (27). We compared fragment lengths in our
189  Nanopore samples, and indeed found that high tumor fraction samples had shorter fragments
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190 than the healthy samples, using the criteria developed by (26) (Figure 2A-B). The two low tumor
191  fraction samples did not have detectably shorter fragments.

192  We also investigated the four bases immediately flanking cfDNA fragmentation sites, as these
193  have been shown to have biased sequence composition which are predictive of cancer (28, 29).
194  To compare these biases between lllumina and Nanopore end motif frequencies, we first sorted
195  the 25 most frequent 4-mers from a prior lllumina-based study of healthy plasma (29).

196  Visualizing 4-mer frequencies using this ordering showed that seven of the top eight 4-mers
197  from the previous study were also top ranked in our Nanopore samples as well as our lllumina
198 WGS samples (Figure 2C). CCCA was the most frequent 4-mer motif in both our Nanopore and
199 lllumina samples, consistent with earlier studies of healthy plasma (28, 29). In a previous study,
200 CCCA had a significantly lower frequency in lung and four other common cancers than in

201  healthy plasma (28). Consistent with this, we found that CCCA was significantly lower in our
202  cancer samples, most notably our high tumor fraction samples (Figure 2C-D, Supplemental

203  Figure 6). That same previous study (28) highlighted two other cancer-increased and two

204  cancer-decreased motifs, and all of these followed the same trend in our Nanopore samples,
205  with two of the four (CCTG and AAAA) rising to statistical significance in our small sample set
206  (Supplemental Figure 6). Despite these similarities, the overall frequencies show clear

207  differences between Nanopore and lllumina at several 4-mers such as CCAA (Figure 2C).

208  Future work will be required to determine which sequencing technology gives more accurate
209 representations, but the absence of PCR bias in Nanopore sequencing could be a determining
210 factor.

211 Cell-free DNA circulates primarily as mono-nucleosomal fragments, and nucleosome positions
212  inferred from fragment cut sites can be used to detect cell-of-origin (reviewed in (7)). Bisulfite
213  conversion used with lllumina-based sequencing can degrade these fragmentation patterns
214  (30). We have previously showed that mono-nucleosomal fragment lengths are largely

215  preserved in Nanopore cfDNA sWGS (717), but we wanted to further investigate the ability of
216  Nanopore to reveal biologically relevant nucleosome structure based on fragmentation patterns.
217  CTCF binding sites present the best model for nucleosome organization - they position 10

218 phased nucleosomes on either side of a central binding site, which itself lies within a 100bp
219  nucleosome depleted region (37). The Nanopore fragmentation pattern around CTCF binding
220  sites recapitulated this structure (Figure 2E, top), and reproduced the pattern based on our
221  deeper lllumina WGS sequencing (Figure 2E, bottom). The CTCF binding site is also known to
222  sit at the center of a 400bp demethylated region, and this was also recapitulated from 5mC
223  levels from our Nanopore sequencing (Figure 2F, top). We verified this pattern in lung

224  adenocarcinoma tumors using bisulfite-seq (WGBS) data from TCGA (77) (Figure 2G). CTCF
225  binding is largely not cell-type specific, and thus we did not observe any differences between
226  healthy and cancer samples in this analysis. We tried the same fragment coverage analysis for
227  the lung-specific NKX2-1 binding sites discussed earlier, but we were not able to detect any
228 nucleosome structure (Supplemental Figure 6). It is possible that higher read depth will be
229 necessary to detect nucleosomal fragmentation patterns from cell-type specific components of
230  cfDNA, but new computational methods such as Griffin (32) may allow for more sensitive

231  detection in the future.

232
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233 Discussion

234  While this is only a small feasibility demonstration, the results are very encouraging. We were
235 able to detect cell-type specific and cancer-specific DNA methylation patterns that recapitulate
236  known patterns from lllumina-based Bisulfite sequencing (WGBS), as well as cancer-specific
237  fragmentation signatures of lllumina-based WGS.

238 The ability to independently estimate tumor DNA fraction using either (1) ichorCNA or (2)

239  methylation-based cell type deconvolution was somewhat limited by the low sequencing depth
240 (median 6.4M reads in this study). Nevertheless, these two estimates were in very good

241  agreement, and could potentially be combined to increase detection accuracy since they derive
242  from highly independent features. In at least one case (BC08) and possibly a second (BC10),
243  the DNA methylation-based estimate of tumor cell fraction appeared to be more accurate. The
244  accuracy of DNA methylation-based detection could be significantly improved by generating
245  whole-genome methylation atlases of purified human cell types (33), or by generating large-
246  scale WGBS sequencing of human cancer (such a dataset was described in (2), but remains
247  proprietary). The loci we used here for deconvolution were based on lllumina HM450k reference
248  data, which covers less than 3% of all CpGs in the genome and only about 13% of highly cell
249  type specific methylation markers (Tommy Kaplan, personal communication).

250  While bisulfite-based approaches have been successful in identifying ctDNA biomarkers, the
251  ability to analyze DNA methylation from native DNA has a number of advantages. First, bisulfite
252  treatment can lead to significant DNA loss (especially relevant within the limitations of clinical
253  samples) and the loss of informative fragmentation features (30). Second, the requirement for
254  PCR amplification in bisulfite-based and other approaches provides less uniform representation
255  of the genome, and could skew or overshadow informative fragmentation patterns. Third,

256  bisulfite-based approaches do not differentiate between 5mC and the other informative CpG
257  modification 5hmC. Nanopore can identify and distinguish both of these two marks, and

258  potentially in the future additional modifications such as 5fC and 5CaC.

259  The Nanopore platform could have other practical advantages for the clinical setting. Current
260  high-throughput sequencing technologies allow for reasonable per assay costs only with a large
261 capital equipment investment and in a high throughput environment where many samples are
262  available for multiplexing. Nanopore offers an alternative with fast turnaround times for

263 individual samples in as little as 2 hours from sample collection to DNA methylation based

264  classification (8, 9). Since all cell types have specific DNA methylation patterns, rapid Nanopore
265 sequencing could have a variety of biomarker applications outside of cancer, including

266  emergency medicine applications such as myocardial infarction or sepsis (3).

267
268 Code availability

269 R code for deconvolution is available on https://github.com/methylgrammarlab/cfdna-ont.
270
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271 Data availability

272  Processed data files for the analyses described here are available at GEO accession
273  GSE185307 or Figshare .
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300 Figure legends

301 Figure 1: Nanopore DNA methylation detects cancer-specific and cell-of-origin of ctDNA
302 features. (A) ONT cfDNA WGS of 4 healthy controls and 6 lung adenocarcinoma cases. (A,
303  top) Tumor fraction was calculated using ichorCNA (73). (A, bottom) Average DNA methylation
304  of all 10 Mbp bins (removing CpG islands.) (B) 10 Mbp bins stratified by copy number for all
305 cancer cases. (C) Average DNA methylation across chr16p, comparing lung tissue WGBS from
306 the TCGA project (top) to plasma cfDNA ONT samples from this study (bottom). Common

307  Partially Methylated Domains (PMDs) from an earlier study from an earlier study (77) are shown
308 as areference. (D) lllustration of NKX2-1 binding sites within pneumocyte-specific ATAC-seq
309 peaks taken from (217). (E) Relative methylation levels within -1kb to +1kb of pneumocyte-

310  specific NKX2-1 sites, for 18 TCGA WGBS non-lung tumors (left) and 11 TCGA WGBS lung
311 tumors and adjacent normal tissue (right) from (77). Non-lung tumors included 5 Breast (BRCA),
312 4 Colorectal (CRC), 4 Stomach (STAD), and 5 endometrial (UCEC). Relative methylation was
313  defined as raw methylation divided by the mean methylation from -1,000 to -800 and +800 to
314 +1,000 across all NKX2-1 sites. (F) NKX2-1 relative methylation for previously published cfDNA
315  methylation studies using WGBS. (G) NXK2-1 relative methylation for healthy control plasmas
316  (blue) and lung cancer plasmas (red) from this study, grouped by ichorCNA tumor fraction

317  estimates. (H) Deconvolution of ONT methylation profiles into lung component and healthy cell-
318  of-origin component. Reference datasets using the HM450k platform are sorted lung epithelial
319  cells (X1) and healthy plasma (Xz) from (25). These are used to identify lung-

320 hypermethylatedCpGs (top) and lung-hypomethylated CpGs (bottom). Two ONT cfDNA

321  samples are shown, healthy BCO5 (left) and cancer BC11 (right). Each ONT sample overlaps
322  different subsets of hyper- and hypomethylated CpGs, with BC0O5 overlapping 846+914=1,760
323 CpGs and BC11 overlapping 604+647=1,251 CpGs. Lung fractions 8 are estimated using non-
324  negative least squares (NNLS) regression. () Full set of 4,355 differentially methylated CpGs
325  used for normal lung NNLS analysis, showing 884 CpG overlap with differentially methylated
326 CpGs from TCGA lung adenocarcinoma (LUAD) tumors. (J) Estimated lung fraction (3 for all
327  Nanopore plasma samples. (K) Estimated lung fraction B plotted against ichorCNA tumor

328 fractions. SCNAs were undetectable in BCO8 leading to an ichorCNA estimate of 0. For this
329 sample, we performed higher depth lllumina sequencing where ichorCNA estimated tumor

330 fraction as 0.11 (shown as a yellow circle “B vs. deep WGS CNA”). (L-N) Same methods as (I-K)
331  except using 13,770 differentially methylated CpGs from TCGA LUAD tumors (14,654 total

332  minus 884 probes overlapping normal lung CpGs). Statistical significance for panels A and B
333  determined by one-tailed wilcoxon test. Statistical significance for J and M determined by two-
334  tailed Student’s t-test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

335
336
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Figure 1: Nanopore DNAethifatiof detects cancer-specific and
cell-of-origin ctDNA features
o400 A

S 0.200
€
0.000

=
[ =

AxEk ARRE AREE

RN

o
®
L

°
~
M

4
¥
:

i

Mean methylation

o
o
1

¢

O O X O & O 00 X 0 N
Q¥ Q7 Q" Q7 QO Q0 & O A N
FEIEE 7 EE

o
™

o
~N

Mean methylation

o
o

Healthy Cancer

Non-lung
tumor WGBS

(TCGA)

0.5 M BRCA
[ cre
I sTAD

0.0 ™ ucec

5,974 scATAC-seq peaks
in lung pneumocytes

Cancer

Healthy plasma

F wacss

(Sun et al. 2015)

HCC plasma CRC plasma
WGBS WGBS
(Lietal. 2018) (Sun et al. 2019)

C chr16:1-38,651,906
mE N
| . | 1l (I . ‘ . e . e
e . - PMDs/!' =smwm m @ mu s s
1 r 1 1 — =y
< M—————
Inslns’ P ||
Q0O
B 7
T n
& =0
R o
i g o
.| Copy
" Number = ;
gain
oid | |
adlplmd
uE) BC09
Eloss Booe
. : = BCot
19_326 BCO1 BC10 BC11 o) 1390_130
BC11

Normal
lung

Lung
tumor

Healthy
plasma

Cancer
plasma

Plasma Nanopore

I Healthy

v-*——*‘-w

M cancer M cancer

Methylation (relative)

Hyper CpGs (846)

Hypo CpGs (914)
Hypo CpGs (647) Hyper CpGs (604)

-1000-500 0 500 100000-500 O
NKX2.1 NKX:

Methylation

Lung cancer
CpGs

)

884

Lung cancer
CpGs

)

884

0. 0. :
-1000-500 0 500 1001000-500 0 500 100(000-500 0 500 1000 ~-1000-500 O 500 10001000-500 0 500 1000
NKX2.1 NKX2.1 NKX2.1 NKX2.1

G (this study)

RPN %W
[ cancer (TF<0.1)

I Healthy Ml cancer (TF>=0.1)

p=0.010

J " K RMSE: 0.154 , 5010
=05 = 0.5/PCC: 0.884
H » Cancer  §
E 0.4 p ® Healthy E 0.4/
= 0.3 Numreads &
g om 209
3 ® 3M 3
T 0.2 ® 4m T 0.2
[ Q
% ® 5m %
E o041 ® &M E o1
a ® >™™ um.'

0.0' 0.0+

Healthy Cancer 00 01 02 03 04 05
Tumor fracti (ichorCNA esti )
N [RMSE: 0.178 @BC10

=05 =0.5/PCC: 0.854
_E Cancer 'g
§ 04 ® Healthy § 0.4
-g Numreads &
g) 0.3 e 2M g) 0.3{
3 ® 3mM 3
T 0.2 ® 4am © 0.2
2 ® sMm 2 .
E o1 ® &m E 0.1
E ® >™m E B vs. deep

0.0 ool Ll L]l WGS CNA

“Healthy Cancer 00 01 02 03 04 05
Tumor fracti (ichorCNA esti

\

)


https://doi.org/10.1101/2021.10.18.464684
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.18.464684; this version posted October 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

337  Figure 2: Nanopore preserves fragmentomic features of ctDNA. (A) Fragment length

338 density of all samples, colored by tumor fraction estimated by ichorCNA. (B) Fragment length
339 ratio calculated as the number of short fragments (100-150bp, same cutoff used in (26)) divided
340 by the total number of total mononucleosome reads (100-220bp). (C) Frequency of different 4-
341  mer sequences at 5’ fragment ends, comparing ONT cfDNA WGS samples and matched

342  lllumina samples. The 25 most frequent 4-mers in healthy plasma from (29) are shown in rank
343  order. Samples are ordered by healthy vs. cancer and then by increasing tumor fraction. (D)
344  Frequency of CCCA motif at 5’ fragment ends. (E-G) Alignments to CTCF motifs within 9,780
345  distal ChIP-seq peaks from (37). (E, top) cfDNA fragment coverage shown as fold-change vs.
346  average coverage depth across the genome. The plot includes only fragments of length 130-
347  155bp to maximize resolution. (E, bottom) Matched lllumina samples of higher sequencing
348  depth (median 17.0M fragments in lllumina vs. 6.4M in ONT samples). (F) CTCF DNA

349  methylation of Nanopore samples from this study at CTCF sites. (G) DNA methylation from
350 seven lung tissue WGBS samples from TCGA (177). Statistical significance for panels A and B
351  was determined by two-tailed t-test.
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Figure 2: Nanopore preserves fragmentomic features of ctDNA
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528 Methods

529  Plasma cfDNA samples, library construction, and sequencing. Samples, library construction and
530 sequencing were described in our initial publication of these sequences (7). Notably, one

531  sample (19_326) was produced using a different library kit (SQK-LSK109 vs. NBD-

532 EXP104+SQK-LSK109 for all other samples). This is the singleplex library kit, which results in
533  shorter adapter-ligated templates overall (because adapters are shorter) and thus responds

534  differently to the equivalent clean up bead concentration. Furthermore, the multiplex libraries (all
535 except for 19_326) are pooled and an additional bead cleanup step is performed. We also found
536 that adapter clipping performed differently in 19_326 due to the library kit differences. For these
537 reasons, fragmentomic properties are not directly comparable between 19_236 and other

538 samples. We thus analyzed 19_326 separately for all fragmentomic analyses, but included it
539 together with others for methylation and copy number analyses where small differences in

540 fragment length are not expected to make a difference.

541  Basic processing of nanopore sWGS data. Fastq files were taken from our previous publication
542 (1), where they were generated using real-time high-accuracy basecalling during the GridION
543  run. These files were demultiplexed with guppy_barcoder (Version 5.0.11+2b6dbffa5) using “--
544  trim_barcodes --barcode_kits EXP-NBD104” . For singleplex sample (19_326) adapters were
545  trimmed via Porechop (https://github.com/rrwick/Porechop) using: “--discard_middle --

546  extra_end_trim 0”. Alignments were performed to GRCh38 with minimap2 (Version 2.13-r850),
547  using the parameters “-ax map-ont --MD”, as described in our initial study (7).

548  Filtering of alignments for ichorCNA and fragmentomic analysis. Samtools (Version 1.9) was
549  used to filter BAM alignments, unmapped reads, secondary and supplementary reads, reads
550  with Minimap2 mapping quality less than 20 as in (2), and reads longer than 700bp. Bedtobam
551  was used to create bed files, which are available as file “bedsFromBAMsForGEO.zip” in GEO
552  accession GSE185307 and figshare https://doi.org/10.6084/m9.figshare.c.5665966.v1. All

553  genomic coordinates are in GRCh38.

554  Tumor fraction estimation from somatic copy number analysis (ichorCNA). Somatic copy

555  number analysis was performed using the ichorCNA package v.0.3.2 (3). We used default

556  settings to determine copy number alterations and tumor fraction for each cancer sample. If the
557  percentage of genome covered by CN alterations was less than 5%, then the tumor fraction was
558 determined to be unstable and set to 0.

559  Methylation calling of nanopore sWGS data. 5mC was called using DeepSignal Version: 0.1.8
560 (4), with model.CpG.R9.4_1D.human_hx1.bn17.sn360.v0.1.7+/bn_17.sn_360.epoch_9.ckpt,
561  which was downloaded from the DeepSignal Google Drive

562 (https://drive.google.com/open?id=1zkK8Q1qgyfviwWnXUBMclwEDw3SocJg7P). We used the
563 DeepSignal call_mods (mofidication_call) output tsv file. To aid in combined methylation and
564  fragmentomic analysis, we added additional columns to this file The final 14 fields were

565 extracted from Minimap2 alignment files, matched by read id. They are as follows:

566 Column 11: flag, 12: contig, 13: start, 14: end, 15: mapping quality of the chosen
567 alignment, 16: mapping quality of the alignment with the best mapping quality (check),
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568 17: mapping quality of the alignment with the "second" best mapping quality (check), 18:
569 number of alignments for that read, 19: number of alignments for those alignments with
570 mapping quality > 0, 20: left hard clipped bases, 21: left soft clipped bases, 22: read

571 length (from CIGAR, not including soft clipped bases), 23: right soft clipped bases, 24:
572 right hard clipped bases

573  These files are available as file “raw-modifcation-calls-fixed-format.zip” in GEO accession
574  GSE185307 and figshare https://doi.org/10.6084/m9.figshare.c.5665966.v1. All genomic
575  coordinates are in GRCh38.

576  From the modified DeepSignal modification_call output described above (in “raw-modifcation-
577 calls-fixed-format.zip”), we then extracted the methylation calls for each (strand-specific) CpG
578  from column 9 (called_label field), and calculated a methylation beta value by taking the number
579  of methylated reads (value 1) divided by the total number of reads (value 0 or value 1). These
580  were collapsed into a bedgraph file with a value between 0-1 for every CpG covered. These are
581  available as file “grouped-beta-value_bedgraph.zip” in GEO accession GSE185307 and

582  figshare https://doi.org/10.6084/m9.figshare.c.5665966.v1. All genomic coordinates are in

583 GRCh38.

584  DNA methylation in 10 Mbp bins. To generate Figure 1A-B and Supplemental Figure 1 plots,
585  segmentation results from our previous CNV analysis (7) were converted from GRCh37 to

586 GRCh38 using NCBI remap API and divided into non-overlapping 10Mb bins. These are

587 available as file “SegmentationResultsMartignano2021.zip” in GEO accession GSE185307 and
588  figshare https://doi.org/10.6084/m9.figshare.c.5665966.v1. Copy number status of each bin was
589  determined by log2ratio segment mean > 0.10 and < -0.10 for Gain and Loss respectively. For
590 healthy samples, 10Mb bins were generated from the whole genome. Mean methylation levels
591  for each bin were calculated as sum(frac_methylation_each_cytosine)/cytosine_count. For the
592  analysis of the methylation at Partially Methylated Domains (PMDs), we used only “Common
593 PMDs” from (5), splitting regions within PMDs into non-overlapping 10 Mbp bins. For PMDs, we
594  calculated average methylation using only “solo-WCGW” CpGs from the same paper (5).

595 Common PMD and solo-WCGW annotations were taken from file

596  https://zwdzwd.s3.amazonaws.com/pmd/solo_ WCGW_inCommonPMDs_hg38.bed.gz.

597  NKX2-1 transcription factor binding site (TFBS) analysis. First, we used HOMER to identify
598  predicted NKX2-1 binding sites (using the HOMER built in matrix “nkx2.1.motif") across the
599 GRCh38 genome, and removed any site within the ENCODE blacklist. For normal lung cell
600 analysis, we intersected this list with 6,754 ATAC-seq peaks identified in the pneumocyte (PAL)
601  cluster 13 CREs from (6) (downloaded from supplemental table 6 of that paper

602 “Table_S6_Union_set_of cCREs.xlIsx”). We then selected 5,974 peaks that overlapped a
603 predicted NKX2-1 TFBS, and centered each on the predicted NXK2-1 TFBS. If multiple TFBS
604  were present in the peak, we took the motif with the highest HOMER log-odds match score.
605 This TFBS set is available as file

606  “nkx2.1.incluster13_distalPeaks_PAL.bed.highestScoreMotifs.hg38.bed” in GEO accession
607 GSE185307 and figshare https://doi.org/10.6084/m9.figshare.c.5665966.v1.
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608 To calculate “relative” methylation levels, raw methylation levels in each bin were divided by the
609  mean methylation within all bins from -1000 to -800 and +800 to +1000 across all NKX2-1 sites.
610  For NKX2-1 methylation levels in TCGA lung and non-lung samples, we downloaded TCGA
611 WGBS bedgraph files from https://zwdzwd.qgithub.io/pmd (5). We used all WGBS cancer types
612  that were represented by normal tissues in the scATAC-seq atlas, as this was the atlas used to
613  define pneumocyte specific (PAL) peaks. These TGCA types included LUAD and LUSC (Lung
614  tissue from atlas), CRC (Transverse colon tissue from atlas), BRCA (Breast tissue from atlas),
615  STAD (Stomach tissue from atlas), and UCEC (Uterus tissue from atlas). Plasma WGBS of
616 HCC was downloaded from EGAD00001004317. Plasma WGBS of CRC patients was

617  downloaded from EGAD00001004568. Plasma WGBS of healthy controls was downloaded from
618 EGADO00001001602.

619 450k healthy tissue reference atlas. To compose the atlas of differentially-methylated probes in
620 25 human tissues and cell types, we used the data collected and tissue-specific feature

621  selection method from the MethAtlas package (https://github.com/nloyfer/meth_atlas)(7). The
622  script feature_selection.m was used to select Lung_cell specific CpGs for 2,000

623  hypermethylated and 2,000 hypomethylated probes. We removed any probe that did not have
624  valid (non-NA) values for 2 or more of the Lung_cell samples and 2 or more of the healthy

625 plasma samples. We plotted the values using the a custom R script available at

626  (https://github.com/methylgrammarlab/cfdna-

627  ont/deconvolution_code/cell_types_probes/plot_tumor_fractions_vs_score.R).

628 450k TCGA tumor reference atlas. We downloaded the Infinium 450k beta value files for TCGA
629  Lung Adenocarcinoma (LUAD) tumors using the ELMER packaged in Bioconductor (8). We
630 removed any probe that did not have valid (non-NA) values for 2 or more of the LUAD samples
631  and 2 or more of the healthy plasma samples. We then performed a t-test to compare the

632  methylation beta values of these Lung_specific probes to the four plasma cfDNA samples from
633 the MethAtlas paper (7), requiring a Benjamini-Hochberg corrected FDR of <0.01 and an

634  absolute beta value difference of 0.3 or greater. We plotted the values using the a custom R
635  script available at (https://github.com/methylgrammarlab/cfdna-

636  ont/deconvolution_code/TCGA_probes/plot_tumor_fractions_vs_score.R file).

637 450k cell type deconvolution. First, CpGs covering either the forward or reverse strand of each
638 CpG on the Infinium 450k array were extracted from each Nanopore beta value file (averaged
639 by taking the total number of methylated reads on either strand divided by the total number of
640 methylated+unmethylated reads on both strands) to produce a beta value vector Y. Each of
641 these files was intersected with the normal Lung_cell specific probes as described above (an
642  example of this is shown in Fig 1A). For each probe, the 450k beta values were averaged to
643  produce a single Lung-specific beta value X;. The same was done for the four plasma cfDNA

644  samples from (7) to yield a healthy cfDNA beta value X,. We used the Lawson-Hanson

645  algorithm for non-negative least squares (NNLS) (https://cran.r-project.org/web/packages/nnls)
646 to perform non-negative least squares regression as in (7). Specifically, we identified non-
647  negative coefficients g;and ,, representing the fraction of Lung cells and normal blood cells in
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648 the Nanopore cfDNA mixture, respectively, subject to the constraints argmin,;||Xﬁ 4 |2 and

B1

649 B > 0. Then a single Lung fraction g was determined by having g;and 5, sumto 1. 8 = TRTRE
1 2

650 Correcting TCGA methylation model for cancer cell purity. For the deconvolution based on

651  TCGA LUAD tumors, we had to account for the fact that most TCGA LUAD samples are a

652  mixture of cancer cells and leukocytes, with a median cancer fraction of ~50%. For each probe
653 in each TCGA cancer sample, we corrected for this by solving for the equation M,,, = M. +
654 M;(1 - B), where M,, is the methylation of the mixture, M. is (unknown) methylation of the

655 cancer cells, M, is the (known) methylation of the leukocytes, and g is the (known) percentage
656  of cancer cells in the mixture. M; was taken as the average of white blood cell samples from the
657 MethAtlas (7), and g was taken as the “tumor purity” estimate based on somatic copy number
658  alterations from the TCGA PanCan Atlas project using the ABSOLUTE program (9),

659 downloaded from the PanCan Atlas website (TCGA_mastercalls.abs_tables_JSedit.fixed.txt,
660 URL https://gdc.cancer.gov/about-data/publications/pancanatlas). We used the pure cancer cell
661  estimates M., and performed NNLS regression as described above.

662  Fragment length analysis. Minimap2 alignments were filtered as described above. Reads with
663  soft clipping at either the 5’ or 3’ ends were removed. Fragment length was calculated from

664  Minimap2 BAM CIGAR column by summing all counts. Short fragment ratio was calculated as
665 numfragsioo-1sobp (

numfragsioo-zzo0bp

150bp is the same cutoff for short fragments used in (10)).

666  End motif analysis. Minimap2 alignments were filtered as described above. To avoid biases that
667  would affect 5’ end motif analysis, we also removed reads with any 5’ soft clipping. The first 4
668  bases of each fragment were extracted and used for 4-mer analysis. Motif frequency was

numfragSimer
numfragseotal

669 calculated as

670  CTCF nucleosome positioning analysis. We used 9,780 evolutionarily conserved CTCF motifs
671  occurring in distal ChlP-seq peaks, which were taken from (717). Nanopore or lllumina fragments
672  within the size range of 130-155bp were used for fragment coverage analysis. These shorter
673  mononucleosomal fragments give better nucleosome-level resolution than longer 167 bp

674  fragments. Deeptools (Version 3.5.0) bamCoverage was used with the parameters “--

675 ignoreDuplicates --binSize -bl ENCODE_blacklist -of bedgraph --effectiveGenomeSize

676 2913022398 --normalizeUsing RPGC”. For lllumina WGS, we used the additional parameter “--
677 extendedReads 145”. The bedgraph was converted to a bigwig file using bigWigToBedGraph
678 downloaded from UCSC Genome Browser. This bigwig file was passed to Deeptools

679  computeMatrix with the command line parameters “reference-point --referencePoint center -out
680 table.out’, and the table.out file was imported into R to create fragment coverage heatmap.

681 Statistical tests. Student’s t-test for all sample comparisons where at least one test group had
682 less than five samples, otherwise Wilcoxon test was used.
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683 Supplemental tables and data files

684  Supplemental Table 1. Samples and sequencing statistics.

685
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Supplemental fiqures

Supplemental Figure 1. Hypomethylation within PMDs. (A) Average DNA methylation from
all 10 Mbp bins contained in common Partially Methylated Domains (PMDs) from an earlier
study (5). Only the 1,669,234 CpGs defined as “solo-WCGW” CpGs from (5) were used. All 10
Mbp bins are shown for Oxford Nanopore (ONT) cfDNA WGS of 4 healthy controls and 6 lung
adenocarcinoma cases. Tumor fraction (panel A, top) was calculated from somatic copy number
alterations using ichorCNA (3). (B) 10 Mbp bins stratified by copy number status for all cancer
cases. Statistical significance for A and B determined by one-tailed Wilcoxon test. *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001.
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Supplemental Figure 2. Methylation at Lung-specific NKX2-1 binding sites. lllustration of
predicted NKX2-1 binding sites within single-cell ATAC-seq peaks specific to primary lung
pneumocytes. (A) Relative methylation level of healthy controls and lung cancer samples from
ONT cfDNA WGS within -1kb to +1kb of pneumocyte-specific NKX2-1 sites. Cancer cases are
ordered by tumor fraction estimates from ichorCNA. (B) Same analysis, but within -2.5kb to
+2.5kb of pneumocyte-specific NKX2-1 sites.
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705  Supplemental Figure 3. Deconvolution of ctDNA using HumanMethylation450k reference
706  data. Estimated lung fraction 3 plotted for all Nanopore plasma samples. (A) Number of probes
707  hypomethylated in Normal lung cells relative (red) or Lung cancer cells (blue) relative to healthy
708 plasma cfDNA methylation, using the feature_selection.m script of the MethAtlas package (7).
709  (B) Number of hypermethylated probes.

710

711
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712  Supplemental Figure 4. ichorCNA tumor fraction estimates from deep lllumina WGS. (B)
713  ichorCNA (72) tumor fraction estimates for samples with matched Nanopore and Illlumina WGS
714  data. Size of each bubble is the number of uniquely aligned reads in the Nanopore library. The
715  median number of Nanopore reads per sample is 6.4M and the median number of lllumina
716  reads per sample is 17.0M.

717

718
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Supplemental Figure 4: Normal lung methylation estimates and
deep sequencing ichorCNA tumor fraction estimates
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719  Supplemental Figure 5. Fragment analysis of sample 19_326. Sample 19_326 used different bead
720 selection parameters and a different library version, and thus is not included in the main analysis. Here,
721 we show 19_326 in context in all fragmentomic analyses. (A-D) General fragment properties. (A)

722 Fragment length density of all samples, colored by tumor fraction estimated by ichorCNA. (B) Fragment
723  length ratio calculated as the number of short fragments (100-150bp, same cutoff used in (70)) divided by
724  the total number of total mononucleosome reads (100-220bp). (C) Frequency of different 4-mer

725  sequences at 5’ fragment ends, comparing ONT cfDNA WGS samples and matched lllumina samples.
726  The 25 most frequent 4-mers in healthy plasma from (73) are shown in rank order. Samples are ordered
727 by healthy vs. cancer and then by increasing tumor fraction. (D) Frequency of CCCA motif at 5’ fragment
728  ends. (E-G) Alignments to CTCF motifs within distal ChlP-seq peaks from (77). (E, top) cfDNA fragment
729 coverage shown as fold-change vs. average coverage depth across the genome. Includes only fragments
730  of length 130-155bp to maximize resolution. (E, bottom) Matched lllumina samples of higher sequencing
731 depth (median 17.0M fragments in lllumina vs. 6.4M in ONT samples) show similar patterns. (F) CTCF
732 DNA methylation of Nanopore samples from this study. (G) DNA methylation from seven lung tissue

733 WGBS samples from TCGA (5).
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Supplemental Figure 5: General fragment properties
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734  Supplemental Figure 6. End motif comparison of cancer and healthy samples. (A) 4-mer
735  frequencies were grouped into Healthy samples (blue) and cancer samples (red), and ordered
736  as above. Rank within Nanopore healthy samples is shown for the top 12 4-mers (top).

737  Statistical significance between healthy and cancer groups in panel E was calculated using two-
738  tailed Student’s t-test. *p<0.05, **p<0.01
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Supplemental Figure 6: End motif comparison of cancer and
healthy samples
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Supplemental Figure 7. Fragment analysis of Lung-specific NKX2-1 binding sites. (A)
Analysis of 5,974 lung-specific regions aligned to predicted NKX2-1 binding sites contained
within single-cell ATAC-seq peaks specific to primary lung pneumocytes (same sites as Figure
1H-K). Plot shows fragment coverage relative to average coverage across the genome,
including only fragments of length 130-155bp. (B) Same plot, but using 28,298 predicted NKX2-
1 binding sites from ATAC-seq peaks of TCGA Lung adenocarcinoma samples instead of
ATAC-seq peaks from normal lung pneumocytes (same sites from Supplemental Figure 3).
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Supplemental Figure 7: Fragment analysis of Lung-specific NKX2-1
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