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Abstract  23 

DNA methylation (5mC) is a promising biomarker for detecting circulating tumor DNA (ctDNA), 24 

providing information on a cell9s genomic regulation, developmental lineage, and molecular age. 25 

Sequencing assays for detecting ctDNA methylation involve pre-processing steps such as 26 

immunoprecipitation, enzymatic treatment, or the most common method, sodium bisulfite 27 

treatment. These steps add complexity and time that pose a challenge for clinical labs, and 28 

bisulfite treatment in particular degrades input DNA and can result in loss of informative ctDNA 29 

fragmentation patterns. In this feasibility study, we demonstrate that whole genome sequencing 30 

of circulating cell-free DNA using conventional Oxford Nanopore Technologies (ONT) 31 

sequencing can accurately detect cell-of-origin and cancer-specific 5mC changes while 32 

preserving important fragmentomic information. The simplicity of this approach makes it 33 

attractive as a liquid biopsy assay for cancer as well as non-cancer applications in emergency 34 

medicine. 35 

 36 

Introduction 37 

Cell-free DNA captures informative features of its originating cell, which include genomic 38 

alterations, DNA modifications such as 5mC, fragmentation patterns due to differential DNase 39 

activities, and nucleosomal organization (1). One of the most promising cfDNA biomarkers for 40 

cancer is 5mC, which has been validated in a large clinical study and is now in widespread use 41 

for cancer detection (2). Unlike other cancer-specific cfDNA biomarkers, 5mC can detect the 42 

presence of other unusual cell types in cfDNA to detect non-cancer conditions including 43 

myocardial infarction and sepsis (3). Most of these studies have used bisulfite-based 44 

approaches, but immunoprecipitation-based (4) and enzymatic (5) techniques have also shown 45 

promising results. 46 

Native sequencing with the ONT platform is attractive for a number of reasons. First, single 47 

base pair resolution DNA methylation calling on the Nanopore platform has improved 48 

significantly in the past several years, and now achieves high concordance with the gold 49 

standard whole-genome bisulfite sequencing (WGBS) in several benchmarking studies (6, 7). 50 

ONT sequencing is also rapid, with recent clinical demonstrations of end to end turnaround time 51 

from sample collection to DNA methylation-based classification in as little as 1-3 hours (8, 9). 52 

Other benefits of ONT for clinical settings include the low buy-in cost and portable nature of the 53 

device. ONT native WGS is unique among DNA methylation sequencing approaches in that it 54 

does not require a PCR amplification step, which can bias both fragmentation patterns and 55 

uniformity of genomic coverage. 56 

ONT sequencing has primarily been used for long-read sequencing, but recent work has shown 57 

that it can be adapted for short fragments to detect copy number alterations, where long read 58 

sequencing is not cost effective (10312). In our recent publication (11), we showed that 59 

optimizations in library construction could generate 4-20 million sequencing reads from 4mL of 60 

plasma of healthy and cancer patients. Here, we perform additional analysis on that same 61 

dataset to extract 5mC and fragmentomic information which we did not investigate previously. 62 
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Results 63 

All analyses described below are from sequence data generated in our previous publication, 64 

which used cfDNA extracted from 4mL of plasma for four healthy control individuals and six 65 

metastatic lung adenocarcinoma cases (11). Six of the samples had between 3.8M and 5.3M 66 

raw reads (2.2M-2.6M uniquely mapping reads), and the remaining four samples had between 67 

8.4M and 20.2M raw reads (4.8M-11.2M uniquely mapping reads). All sequencing statistics are 68 

available in Supplemental Table 1. We used ichorCNA (13) to estimate the tumor fraction of 69 

each sample using somatic copy number alterations (SCNAs) (Supplemental Table 1). Four of 70 

the six cancer cases had tumor fraction estimates greater than 0.1 (high tumor fraction), one 71 

case had 0.086 (BC09), and another (BC08) was under the detection limit for TF estimation via 72 

IchorCNA so tumor fraction was set to 0 (Figure 1A-1B, top).  73 

 74 

Nanopore DNA methylation detects cancer-specific and cell-of-origin of ctDNA 75 

Global DNA hypomethylation is one of the hallmarks of the cancer epigenome and has been 76 

proposed as a general ctDNA biomarker (14), and was recently verified in WGBS of cfDNA from 77 

NSCLC cases (15). In order to investigate this, we processed the original fast5 sequencing files 78 

with DeepSignal (16) to call methylation at individual CpGs. The six lower coverage samples 79 

covered between 4.3M and 5.5M CpGs (usually by a single read per CpG), while the remaining 80 

four samples covered 8.1M-18.9M CpGs (Supplemental Table 1). Next, we calculated global 81 

methylation within 10 Mbp genomic windows genome-wide. This analysis showed high 82 

methylation levels for the four healthy control plasmas and the two low tumor fraction cases, 83 

and significantly reduced methylation for three of the four high tumor fraction samples (Figure 84 

1A, bottom). Reasoning that regions of copy number alteration would have skewed proportions 85 

of tumor-derived DNA and thus skewed methylation levels, we split out methylation by SCNA 86 

status for all cancer samples. In the three cases with globally reduced methylation (BC01, 87 

19_326, BC10), amplified regions were significantly more hypomethylated than diploid regions, 88 

as expected (Figure 1B). While hypomethylation could not be detected genome-wide in the low 89 

tumor fraction sample BC08, amplified regions were significantly hypomethylated. Conversely, 90 

deleted regions showed reduced hypomethylation relative to diploid regions, but this trend only 91 

reached statistical significance in two of the three cases with global hypomethylation (19_326 92 

and BC10). In the final case (BC11), DNA methylation overall was higher than in healthy 93 

plasma, and SCNAs levels suggested this was due specifically to the high methylation of 94 

cancer-derived DNA (Figure 1B). While this is an interesting case, it is not surprising given the 95 

high degree of variability associated with global hypomethylation (17), a process that is not 96 

entirely understood but is known to be affected by various chromatin modifiers that are 97 

dysregulated in cancer(18, 19).  98 

<Global= cancer hypomethylation is not truly global and occurs primarily within long regions of 99 

lamina-associated heterochromatin called Partially Methylated Domains (PMDs)(17). In all of 100 

our hypomethylated samples, hypomethylation was concentrated within previously identified 101 

PMDs from (17) (Figure 1C). When considering only bins within PMDs, significant 102 

hypomethylation was identified not only within the three cases where it was significant genome-103 

wide, but also in the two low tumor fraction cases (Supplemental Figure 1A). The same 104 
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association between SCNAs and hypomethylation that occurred genome-wide analysis (Figure 105 

1B) was also significant in the PMD-only analysis (Supplemental Figure 1B). 106 

Since global hypomethylation is a relatively generic cancer change, we next sought to 107 

investigate regions marking the cell-of-origin of lung adenocarcinoma cells. The lack of a 108 

suitable whole-genome DNA methylation dataset for lung epithelia prompted us to use 109 

regulatory regions defined by ATAC-seq, since ATAC-seq open chromatin regions are almost 110 

universally demethylated in cancer (20). A recent single-cell ATAC-seq atlas identified open 111 

chromatin regions in 25 distinct human tissue types from multiple donors, and identified a strong 112 

cluster of lung pneumocytes (the <Pal= cluster) in primary lung samples (21). NKX2-1 is a known 113 

master regulator transcription factor in lung pneumocytes (22), and the binding site for NKX2-1 114 

was the most enriched motif within this pneumocyte-specific cluster of scATAC-seq peaks (21). 115 

NKX2-1 expression also has highly restricted expression across all known organs (23), making 116 

it an ideal marker for lung pneumocyte cell-of-origin analysis. Predicted NKX2-1 binding sites 117 

are the most enriched motifs in open chromatin of TCGA lung adenocarcinoma tumors (20), 118 

suggesting they are not only a good cell type marker but also a good marker of this cancer type.  119 

To analyze NKX2-1 binding site DNA methylation, we first identified the 5,974 predicted binding 120 

NKX2-1 sites within pneumocyte-specific (<Pal=) ATAC-seq peaks from (21) (Figure 1D). We 121 

confirmed lung cancer specificity using the TCGA WGBS dataset from (17), which contained 9 122 

NSCLC samples and 18 other samples from four other non-lung epithelial cancer types (Breast, 123 

Colorectal, Stomach, and Endometrial). NKX2-1 sites showed almost no demethylation in non-124 

lung tumors (Figure 1E, left), but substantial demethylation in both lung lung tumors and 125 

adjacent normal lung tissue, with lung adenocarcinomas having the strongest demethylation 126 

(Figure 1E, right). We next looked at methylation in plasma cfDNA from published studies using 127 

Illumina WGBS. Neither Healthy plasmas, liver cancer, nor colorectal cancer plasmas showed 128 

demethylation, confirming the lung specificity of these NKX2-1 sites (Figure 1F). In our 129 

Nanopore WGS samples, plasma from healthy individuals showed no demethylation (Figure 1G, 130 

left), but at least three of the four cancer samples with high tumor fraction cancer samples were 131 

demethylated (Figure 1G, right, and Supplemental Figure 2). This analysis shows that shallow 132 

Nanopore WGS can detect highly cell type specific features of the cancer cell-of-origin. 133 

The quantitative nature of DNA methylation allows accurate estimates of cell type mixtures from 134 

reference datasets of pure cell types (24), including applications to cfDNA (25). While there is 135 

currently no whole-genome methylation dataset that includes pure lung epithelial cells, such a 136 

dataset was recently generated on the Illumina HumanMethylation450k (HM450k) platform (25). 137 

We adapted the non-negative least squares (NNLS) regression method used in (25) to 138 

deconvolute our Nanopore plasma samples into lung cell and healthy plasma cell type 139 

components (Figure 1H). We had to significantly expand the number of cell-type specific marker 140 

CpGs used in the MethAtlas paper (25), due to the relatively low degree of overlap between 141 

HM450k probes and CpGs called in our Nanopore samples (the majority of Nanopore samples 142 

overlapped less than 20% of HM450k probes, see Supplemental Table 1). We identified a total 143 

of 4,355 lung-specific marker CpGs (Supplemental Figure 3), which covered a median of 818 144 

CpGs per sample (Supplemental Table 1). For example, healthy sample BC05 overlapped 145 

1,760 lung-specific CpGs, while cancer sample BC11 overlapped 1,251 (Figure 1H, 146 

Supplemental Figure 4, Supplemental Table 1). These were used as input to NNLS regression 147 
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to estimate the lung cell fraction (³) and healthy plasma cell fraction (1-³) for all Nanopore 148 

samples (Figure 1H). 149 

We used the 4,355 lung-specific marker CpGs and NNLS regression to estimate lung cell 150 

fraction (³) for all Nanopore samples, which yielded 100% separation between healthy plasma 151 

and lung cancer samples (Figure 1I-J). We evaluated the quantitative accuracy of these 152 

estimates by comparing to the ichorCNA tumor fraction estimates (Figure 1K). While these two 153 

estimates are based on completely independent features, they showed overall strong 154 

agreement (PCC 0.884). One case, BC08, had a lower read count (2.6M reads) and ichorCNA 155 

failed to detect SCNAs in this case, leading to a tumor fraction estimate of 0. We sequenced 156 

BC08 with higher coverage using Illumina WGS (17M uniquely alignable read pairs), which 157 

allowed ichorCNA to detect sufficient SCNAs for a valid tumor fraction estimate of 0.11 158 

(Supplemental Figure 4, Supplemental Table 1). This was extremely close to the methylation-159 

based estimate of BC08 from Nanopore data (Figure 1K, yellow point), suggesting that 160 

Nanopore DNA methylation can be a more sensitive ctDNA detector then SCNAs for cases with 161 

low tumor fraction or few SCNAs. 162 

To verify the robustness of the NNLS deconvolution results, we performed the same analysis 163 

using a mutually exclusive set of 14,654 HM450k marker probes differentially methylated 164 

between TCGA LUAD tumors and healthy plasma (Figure 1L). This analysis yielded very similar 165 

results to the normal lung-based analysis (Figure 1M-N), reinforcing the idea that circulating 166 

tumor DNA can be detected using reference data from either the appropriate normal cell type or 167 

from tumors (3). This analysis revealed an interesting outlier, BC10, which had a methylation-168 

based lung cell estimate that was almost 2-fold higher than the ichorCNA estimate in both the 169 

normal lung based (Figure 1K) and tumor based (Figure 1N) estimates. Interestingly, the NKX2-170 

1 methylation analysis agreed with these deconvolution results, with BC10 showing the highest 171 

degree of NKX2-1 demethylation of any cancer sample (Supplemental Figure 2). While it would 172 

require study in a larger cohort, it is possible that this represents a case where low read 173 

coverage (2.6M reads) leads SCNA analysis to fail at detecting a whole-genome doubling event, 174 

and that the model could be improved by incorporating DNA methylation data. 175 

 176 

Nanopore preserves fragmentomic features of ctDNA 177 

Tumor-derived cfDNA can be distinguished by several DNA fragmentation features, including 178 

shorter fragment lengths and altered fragment end motifs. These features likely reflect the 179 

specific DNase enzymes present in the cancer cells as well as the chromatin organization in 180 

those cells (reviewed in (1)). We were able to investigate these fragmentation features for nine 181 

of the ten Nanopore samples that we previously sequenced. The tenth sample, 19_326, was 182 

generated with a different library construction kit that affects fragment size representation as 183 

well as adapter trimming. It was thus not included in our primary fragmentomic analyses (we 184 

analyzed it separately in Supplemental Figure 5A-G). 185 

Cancer-derived circulating cfDNA fragments tend to be shorter than those from healthy 186 

individuals, with an overabundance of fragments of length <150 bp (26), and these fragment 187 

length differences can classify different cancer types (27). We compared fragment lengths in our 188 

Nanopore samples, and indeed found that high tumor fraction samples had shorter fragments 189 
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than the healthy samples, using the criteria developed by (26) (Figure 2A-B). The two low tumor 190 

fraction samples did not have detectably shorter fragments. 191 

We also investigated the four bases immediately flanking cfDNA fragmentation sites, as these 192 

have been shown to have biased sequence composition which are predictive of cancer (28, 29). 193 

To compare these biases between Illumina and Nanopore end motif frequencies, we first sorted 194 

the 25 most frequent 4-mers from a prior Illumina-based study of healthy plasma (29). 195 

Visualizing 4-mer frequencies using this ordering showed that seven of the top eight 4-mers 196 

from the previous study were also top ranked in our Nanopore samples as well as our Illumina 197 

WGS samples (Figure 2C). CCCA was the most frequent 4-mer motif in both our Nanopore and 198 

Illumina samples, consistent with earlier studies of healthy plasma (28, 29). In a previous study, 199 

CCCA had a significantly lower frequency in lung and four other common cancers than in 200 

healthy plasma (28). Consistent with this, we found that CCCA was significantly lower in our 201 

cancer samples, most notably our high tumor fraction samples (Figure 2C-D, Supplemental 202 

Figure 6). That same previous study (28) highlighted two other cancer-increased and two 203 

cancer-decreased motifs, and all of these followed the same trend in our Nanopore samples, 204 

with two of the four (CCTG and AAAA) rising to statistical significance in our small sample set 205 

(Supplemental Figure 6). Despite these similarities, the overall frequencies show clear 206 

differences between Nanopore and Illumina at several 4-mers such as CCAA (Figure 2C). 207 

Future work will be required to determine which sequencing technology gives more accurate 208 

representations, but the absence of PCR bias in Nanopore sequencing could be a determining 209 

factor. 210 

Cell-free DNA circulates primarily as mono-nucleosomal fragments, and nucleosome positions 211 

inferred from fragment cut sites can be used to detect cell-of-origin (reviewed in (1)). Bisulfite 212 

conversion used with Illumina-based sequencing can degrade these fragmentation patterns 213 

(30). We have previously showed that mono-nucleosomal fragment lengths are largely 214 

preserved in Nanopore cfDNA sWGS (11), but we wanted to further investigate the ability of 215 

Nanopore to reveal biologically relevant nucleosome structure based on fragmentation patterns. 216 

CTCF binding sites present the best model for nucleosome organization - they position 10 217 

phased nucleosomes on either side of a central binding site, which itself lies within a 100bp 218 

nucleosome depleted region (31). The Nanopore fragmentation pattern around CTCF binding 219 

sites recapitulated this structure (Figure 2E, top), and reproduced the pattern based on our 220 

deeper Illumina WGS sequencing (Figure 2E, bottom). The CTCF binding site is also known to 221 

sit at the center of a 400bp demethylated region, and this was also recapitulated from 5mC 222 

levels from our Nanopore sequencing (Figure 2F, top). We verified this pattern in lung 223 

adenocarcinoma tumors using bisulfite-seq (WGBS) data from TCGA (17) (Figure 2G). CTCF 224 

binding is largely not cell-type specific, and thus we did not observe any differences between 225 

healthy and cancer samples in this analysis. We tried the same fragment coverage analysis for 226 

the lung-specific NKX2-1 binding sites discussed earlier, but we were not able to detect any 227 

nucleosome structure (Supplemental Figure 6). It is possible that higher read depth will be 228 

necessary to detect nucleosomal fragmentation patterns from cell-type specific components of 229 

cfDNA, but new computational methods such as Griffin (32) may allow for more sensitive 230 

detection in the future. 231 

 232 
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Discussion 233 

While this is only a small feasibility demonstration, the results are very encouraging. We were 234 

able to detect cell-type specific and cancer-specific DNA methylation patterns that recapitulate 235 

known patterns from Illumina-based Bisulfite sequencing (WGBS), as well as cancer-specific 236 

fragmentation signatures of Illumina-based WGS. 237 

The ability to independently estimate tumor DNA fraction using either (1) ichorCNA or (2) 238 

methylation-based cell type deconvolution was somewhat limited by the low sequencing depth 239 

(median 6.4M reads in this study). Nevertheless, these two estimates were in very good 240 

agreement, and could potentially be combined to increase detection accuracy since they derive 241 

from highly independent features. In at least one case (BC08) and possibly a second (BC10), 242 

the DNA methylation-based estimate of tumor cell fraction appeared to be more accurate. The 243 

accuracy of DNA methylation-based detection could be significantly improved by generating 244 

whole-genome methylation atlases of purified human cell types (33), or by generating large-245 

scale WGBS sequencing of human cancer (such a dataset was described in (2), but remains 246 

proprietary). The loci we used here for deconvolution were based on Illumina HM450k reference 247 

data, which covers less than 3% of all CpGs in the genome and only about 13% of highly cell 248 

type specific methylation markers (Tommy Kaplan, personal communication). 249 

While bisulfite-based approaches have been successful in identifying ctDNA biomarkers, the 250 

ability to analyze DNA methylation from native DNA has a number of advantages. First, bisulfite 251 

treatment can lead to significant DNA loss (especially relevant within the limitations of clinical 252 

samples) and the loss of informative fragmentation features (30). Second, the requirement for 253 

PCR amplification in bisulfite-based and other approaches provides less uniform representation 254 

of the genome, and could skew or overshadow informative fragmentation patterns. Third, 255 

bisulfite-based approaches do not differentiate between 5mC and the other informative CpG 256 

modification 5hmC. Nanopore can identify and distinguish both of these two marks, and 257 

potentially in the future additional modifications such as 5fC and 5CaC. 258 

The Nanopore platform could have other practical advantages for the clinical setting. Current 259 

high-throughput sequencing technologies allow for reasonable per assay costs only with a large 260 

capital equipment investment and in a high throughput environment where many samples are 261 

available for multiplexing. Nanopore offers an alternative with fast turnaround times for 262 

individual samples in as little as 2 hours from sample collection to DNA methylation based 263 

classification (8, 9). Since all cell types have specific DNA methylation patterns, rapid Nanopore 264 

sequencing could have a variety of biomarker applications outside of cancer, including 265 

emergency medicine applications such as myocardial infarction or sepsis (3). 266 

 267 

Code availability 268 

R code for deconvolution is available on https://github.com/methylgrammarlab/cfdna-ont. 269 

 270 
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Data availability 271 

Processed data files for the analyses described here are available at GEO accession 272 

GSE185307 or Figshare . 273 
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Figure legends 300 

Figure 1: Nanopore DNA methylation detects cancer-specific and cell-of-origin of ctDNA 301 

features. (A) ONT cfDNA WGS of 4 healthy controls and 6 lung adenocarcinoma cases. (A, 302 

top) Tumor fraction was calculated using ichorCNA (13). (A, bottom) Average DNA methylation 303 

of all 10 Mbp bins (removing CpG islands.) (B) 10 Mbp bins stratified by copy number for all 304 

cancer cases. (C) Average DNA methylation across chr16p, comparing lung tissue WGBS from 305 

the TCGA project (top) to plasma cfDNA ONT samples from this study (bottom). Common 306 

Partially Methylated Domains (PMDs) from an earlier study from an earlier study (17) are shown 307 

as a reference. (D) Illustration of NKX2-1 binding sites within pneumocyte-specific ATAC-seq 308 

peaks taken from (21). (E) Relative methylation levels within -1kb to +1kb of pneumocyte-309 

specific NKX2-1 sites, for 18 TCGA WGBS non-lung tumors (left) and 11 TCGA WGBS lung 310 

tumors and adjacent normal tissue (right) from (17). Non-lung tumors included 5 Breast (BRCA), 311 

4 Colorectal (CRC), 4 Stomach (STAD), and 5 endometrial (UCEC). Relative methylation was 312 

defined as raw methylation divided by the mean methylation from -1,000 to -800 and +800 to 313 

+1,000 across all NKX2-1 sites. (F) NKX2-1 relative methylation for previously published cfDNA 314 

methylation studies using WGBS. (G) NXK2-1 relative methylation for healthy control plasmas 315 

(blue) and lung cancer plasmas (red) from this study, grouped by ichorCNA tumor fraction 316 

estimates. (H) Deconvolution of ONT methylation profiles into lung component and healthy cell-317 

of-origin component. Reference datasets using the HM450k platform are sorted lung epithelial 318 

cells (X1) and healthy plasma (X2) from (25). These are used to identify lung-319 

hypermethylatedCpGs (top) and lung-hypomethylated CpGs (bottom). Two ONT cfDNA 320 

samples are shown, healthy BC05 (left) and cancer BC11 (right). Each ONT sample overlaps 321 

different subsets of hyper- and hypomethylated CpGs, with BC05 overlapping 846+914=1,760 322 

CpGs and BC11 overlapping 604+647=1,251 CpGs. Lung fractions ³ are estimated using non-323 

negative least squares (NNLS) regression. (I) Full set of 4,355 differentially methylated CpGs 324 

used for normal lung NNLS analysis, showing 884 CpG overlap with differentially methylated 325 

CpGs from TCGA lung adenocarcinoma (LUAD) tumors. (J) Estimated lung fraction ³ for all 326 

Nanopore plasma samples. (K) Estimated lung fraction ³ plotted against ichorCNA tumor 327 

fractions. SCNAs were undetectable in BC08 leading to an ichorCNA estimate of 0. For this 328 

sample, we performed higher depth Illumina sequencing where ichorCNA estimated tumor 329 

fraction as 0.11 (shown as a yellow circle <³ vs. deep WGS CNA=). (L-N) Same methods as (I-K) 330 

except using 13,770 differentially methylated CpGs from TCGA LUAD tumors (14,654 total 331 

minus 884 probes overlapping normal lung CpGs). Statistical significance for panels A and B 332 

determined by one-tailed wilcoxon test. Statistical significance for J and M determined by two-333 

tailed Student9s t-test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 334 

 335 
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Figure 1: Nanopore DNA methylation detects cancer-specific and 
cell-of-origin ctDNA features
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Figure 2: Nanopore preserves fragmentomic features of ctDNA. (A) Fragment length 337 

density of all samples, colored by tumor fraction estimated by ichorCNA. (B) Fragment length 338 

ratio calculated as the number of short fragments (100-150bp, same cutoff used in (26)) divided 339 

by the total number of total mononucleosome reads (100-220bp). (C) Frequency of different 4-340 

mer sequences at 59 fragment ends, comparing ONT cfDNA WGS samples and matched 341 

Illumina samples. The 25 most frequent 4-mers in healthy plasma from (29) are shown in rank 342 

order. Samples are ordered by healthy vs. cancer and then by increasing tumor fraction. (D) 343 

Frequency of CCCA motif at 59 fragment ends. (E-G) Alignments to CTCF motifs within 9,780 344 

distal ChIP-seq peaks from (31). (E, top) cfDNA fragment coverage shown as fold-change vs. 345 

average coverage depth across the genome. The plot includes only fragments of length 130-346 

155bp to maximize resolution. (E, bottom) Matched Illumina samples of higher sequencing 347 

depth (median 17.0M fragments in Illumina vs. 6.4M in ONT samples). (F) CTCF DNA 348 

methylation of Nanopore samples from this study at CTCF sites. (G) DNA methylation from 349 

seven lung tissue WGBS samples from TCGA (17). Statistical significance for panels A and B 350 

was determined by two-tailed t-test. 351 

 352 

 353 
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Methods 528 

Plasma cfDNA samples, library construction, and sequencing. Samples, library construction and 529 

sequencing were described in our initial publication of these sequences (1). Notably, one 530 

sample (19_326) was produced using a different library kit (SQK-LSK109 vs. NBD-531 

EXP104+SQK-LSK109 for all other samples). This is the singleplex library kit, which results in 532 

shorter adapter-ligated templates overall (because adapters are shorter) and thus responds 533 

differently to the equivalent clean up bead concentration. Furthermore, the multiplex libraries (all 534 

except for 19_326) are pooled and an additional bead cleanup step is performed. We also found 535 

that adapter clipping performed differently in 19_326 due to the library kit differences. For these 536 

reasons, fragmentomic properties are not directly comparable between 19_236 and other 537 

samples. We thus analyzed 19_326 separately for all fragmentomic analyses, but included it 538 

together with others for methylation and copy number analyses where small differences in 539 

fragment length are not expected to make a difference.  540 

Basic processing of nanopore sWGS data. Fastq files were taken from our previous publication 541 

(1), where they were generated using real-time high-accuracy basecalling during the GridION 542 

run. These files were demultiplexed with guppy_barcoder (Version 5.0.11+2b6dbffa5) using <--543 

trim_barcodes --barcode_kits EXP-NBD104= . For singleplex sample (19_326) adapters were 544 

trimmed via Porechop (https://github.com/rrwick/Porechop) using: <--discard_middle  --545 

extra_end_trim 0=. Alignments were performed to GRCh38 with minimap2 (Version 2.13-r850), 546 

using the parameters <-ax map-ont --MD=, as described in our initial study (1). 547 

Filtering of alignments for ichorCNA and fragmentomic analysis. Samtools (Version 1.9) was 548 

used to filter BAM alignments, unmapped reads, secondary and supplementary reads, reads 549 

with Minimap2 mapping quality less than 20 as in (2), and reads longer than 700bp. Bedtobam 550 

was used to create bed files, which are available as file <bedsFromBAMsForGEO.zip= in GEO 551 

accession GSE185307 and figshare https://doi.org/10.6084/m9.figshare.c.5665966.v1. All 552 

genomic coordinates are in GRCh38. 553 

Tumor fraction estimation from somatic copy number analysis (ichorCNA). Somatic copy 554 

number analysis was performed using the ichorCNA package v.0.3.2 (3). We used default 555 

settings to determine copy number alterations and tumor fraction for each cancer sample. If the 556 

percentage of genome covered by CN alterations was less than 5%, then the tumor fraction was 557 

determined to be unstable and set to 0. 558 

Methylation calling of nanopore sWGS data. 5mC was called using DeepSignal Version: 0.1.8 559 

(4), with model.CpG.R9.4_1D.human_hx1.bn17.sn360.v0.1.7+/bn_17.sn_360.epoch_9.ckpt, 560 

which was downloaded from the DeepSignal Google Drive 561 

(https://drive.google.com/open?id=1zkK8Q1gyfviWWnXUBMcIwEDw3SocJg7P). We used the 562 

DeepSignal call_mods (mofidication_call) output tsv file. To aid in combined methylation and 563 

fragmentomic analysis, we added additional columns to this file The final 14 fields were 564 

extracted from Minimap2 alignment files, matched by read id. They are as follows: 565 

Column 11: flag, 12: contig, 13: start, 14: end, 15: mapping quality of the chosen 566 

alignment, 16: mapping quality of the alignment with the best mapping quality (check), 567 
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17: mapping quality of the alignment with the "second" best mapping quality (check), 18: 568 

number of alignments for that read, 19: number of alignments for those alignments with 569 

mapping quality > 0, 20: left hard clipped bases, 21: left soft clipped bases, 22: read 570 

length (from CIGAR, not including soft clipped bases), 23: right soft clipped bases, 24: 571 

right hard clipped bases 572 

These files are available as file <raw-modifcation-calls-fixed-format.zip= in GEO accession 573 

GSE185307 and figshare https://doi.org/10.6084/m9.figshare.c.5665966.v1. All genomic 574 

coordinates are in GRCh38.  575 

From the modified DeepSignal modification_call output described above (in <raw-modifcation-576 

calls-fixed-format.zip=), we then extracted the methylation calls for each (strand-specific) CpG 577 

from column 9 (called_label field), and calculated a methylation beta value by taking the number 578 

of methylated reads (value 1) divided by the total number of reads (value 0 or value 1). These 579 

were collapsed into a bedgraph file with a value between 0-1 for every CpG covered. These are 580 

available as file <grouped-beta-value_bedgraph.zip= in GEO accession GSE185307 and 581 

figshare https://doi.org/10.6084/m9.figshare.c.5665966.v1. All genomic coordinates are in 582 

GRCh38. 583 

DNA methylation in 10 Mbp bins. To generate Figure 1A-B and Supplemental Figure 1 plots, 584 

segmentation results from our previous CNV analysis (1) were converted from GRCh37 to 585 

GRCh38 using NCBI remap API and divided into non-overlapping 10Mb bins. These are 586 

available as file <SegmentationResultsMartignano2021.zip= in GEO accession GSE185307 and 587 

figshare https://doi.org/10.6084/m9.figshare.c.5665966.v1. Copy number status of each bin was 588 

determined by log2ratio segment mean > 0.10 and < -0.10 for Gain and Loss respectively. For 589 

healthy samples, 10Mb bins were generated from the whole genome. Mean methylation levels 590 

for each bin were calculated as sum(frac_methylation_each_cytosine)/cytosine_count. For the 591 

analysis of the methylation at Partially Methylated Domains (PMDs), we used only <Common 592 

PMDs= from (5), splitting regions within PMDs into non-overlapping 10 Mbp bins. For PMDs, we 593 

calculated average methylation using only <solo-WCGW= CpGs from the same paper (5). 594 

Common PMD and solo-WCGW annotations were taken from file 595 

https://zwdzwd.s3.amazonaws.com/pmd/solo_WCGW_inCommonPMDs_hg38.bed.gz. 596 

NKX2-1 transcription factor binding site (TFBS) analysis. First, we used HOMER to identify 597 

predicted NKX2-1 binding sites (using the HOMER built in matrix <nkx2.1.motif=) across the 598 

GRCh38 genome, and removed any site within the ENCODE blacklist. For normal lung cell 599 

analysis, we intersected this list with 6,754 ATAC-seq peaks identified in the pneumocyte (PAL) 600 

cluster 13 CREs from (6) (downloaded from supplemental table 6 of that paper 601 

<Table_S6_Union_set_of_cCREs.xlsx=). We then selected 5,974 peaks that overlapped a 602 

predicted NKX2-1 TFBS, and centered each on the predicted NXK2-1 TFBS. If multiple TFBS 603 

were present in the peak, we took the motif with the highest HOMER log-odds match score. 604 

This TFBS set is available as file 605 

<nkx2.1.incluster13_distalPeaks_PAL.bed.highestScoreMotifs.hg38.bed=  in GEO accession 606 

GSE185307 and figshare https://doi.org/10.6084/m9.figshare.c.5665966.v1. 607 
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To calculate <relative= methylation levels, raw methylation levels in each bin were divided by the 608 

mean methylation within all bins from -1000 to -800 and +800 to +1000 across all NKX2-1 sites. 609 

For NKX2-1 methylation levels in TCGA lung and non-lung samples, we downloaded TCGA 610 

WGBS bedgraph files from https://zwdzwd.github.io/pmd (5). We used all WGBS cancer types 611 

that were represented by normal tissues in the scATAC-seq atlas, as this was the atlas used to 612 

define pneumocyte specific (PAL) peaks. These TGCA types included LUAD and LUSC (Lung 613 

tissue from atlas), CRC (Transverse colon tissue from atlas), BRCA (Breast tissue from atlas), 614 

STAD (Stomach tissue from atlas), and UCEC (Uterus tissue from atlas). Plasma WGBS of 615 

HCC was downloaded from EGAD00001004317. Plasma WGBS of CRC patients was 616 

downloaded from EGAD00001004568. Plasma WGBS of healthy controls was downloaded from 617 

EGAD00001001602. 618 

450k healthy tissue reference atlas. To compose the atlas of differentially-methylated probes in 619 

25 human tissues and cell types, we used the data collected and tissue-specific feature 620 

selection method from the MethAtlas package (https://github.com/nloyfer/meth_atlas)(7). The 621 

script feature_selection.m was used to select Lung_cell specific CpGs for 2,000 622 

hypermethylated and 2,000 hypomethylated probes. We removed any probe that did not have 623 

valid (non-NA) values for 2 or more of the Lung_cell samples and 2 or more of the healthy 624 

plasma samples. We plotted the values using the a custom R script available at 625 

(https://github.com/methylgrammarlab/cfdna-626 

ont/deconvolution_code/cell_types_probes/plot_tumor_fractions_vs_score.R). 627 

450k TCGA tumor reference atlas. We downloaded the Infinium 450k beta value files for TCGA 628 

Lung Adenocarcinoma (LUAD) tumors using the ELMER packaged in Bioconductor (8). We 629 

removed any probe that did not have valid (non-NA) values for 2 or more of the LUAD samples 630 

and 2 or more of the healthy plasma samples. We then performed a t-test to compare the 631 

methylation beta values of these Lung_specific probes to the four plasma cfDNA samples from 632 

the MethAtlas paper (7), requiring a Benjamini-Hochberg corrected FDR of <0.01 and an 633 

absolute beta value difference of 0.3 or greater. We plotted the values using the a custom R 634 

script available at (https://github.com/methylgrammarlab/cfdna-635 

ont/deconvolution_code/TCGA_probes/plot_tumor_fractions_vs_score.R file). 636 

450k cell type deconvolution. First, CpGs covering either the forward or reverse strand of each 637 

CpG on the Infinium 450k array were extracted from each Nanopore beta value file (averaged 638 

by taking the total number of methylated reads on either strand divided by the total number of 639 

methylated+unmethylated reads on both strands) to produce a beta value vector !. Each of 640 

these files was intersected with the normal Lung_cell specific probes as described above (an 641 

example of this is shown in Fig 1A). For each probe, the 450k beta values were averaged to 642 

produce a single Lung-specific beta value "!. The same was done for the four plasma cfDNA 643 

samples from (7) to yield a healthy cfDNA beta value "". We used the Lawson-Hanson 644 

algorithm for non-negative least squares (NNLS) (https://cran.r-project.org/web/packages/nnls) 645 

to perform non-negative least squares regression as in (7). Specifically, we identified non-646 

negative coefficients #!and #", representing the fraction of Lung cells and normal blood cells in 647 
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the Nanopore cfDNA mixture, respectively, subject to the constraints $%&'()#*|"# 2 !|*
"
 and 648 

# g 0. Then a single Lung fraction #	was determined by having #!and #" sum to 1. # = #!

(#!%#")
 . 649 

Correcting TCGA methylation model for cancer cell purity. For the deconvolution based on 650 

TCGA LUAD tumors, we had to account for the fact that most TCGA LUAD samples are a 651 

mixture of cancer cells and leukocytes, with a median cancer fraction of ~50%. For each probe 652 

in each TCGA cancer sample, we corrected for this by solving for the equation 1' = 1(# +653 

1)(1 2 #), where 1' is the methylation of the mixture, 1( is (unknown) methylation of the 654 

cancer cells, 1) is the (known) methylation of the leukocytes, and # is the (known) percentage 655 

of cancer cells in the mixture. 1) was taken as the average of white blood cell samples from the 656 

MethAtlas (7), and # was taken as the <tumor purity= estimate based on somatic copy number 657 

alterations from the TCGA PanCan Atlas project using the ABSOLUTE program (9), 658 

downloaded from the PanCan Atlas website (TCGA_mastercalls.abs_tables_JSedit.fixed.txt, 659 

URL https://gdc.cancer.gov/about-data/publications/pancanatlas). We used the pure cancer cell 660 

estimates 1(, and performed NNLS regression as described above. 661 

Fragment length analysis. Minimap2 alignments were filtered as described above. Reads with 662 

soft clipping at either the 59 or 39 ends were removed. Fragment length was calculated from 663 

Minimap2 BAM CIGAR column by summing all counts. Short fragment ratio was calculated as 664 
*+',-./0!##$!%#&'

*+',-./0!##$""#&'
 (150bp is the same cutoff for short fragments used in (10)).  665 

End motif analysis. Minimap2 alignments were filtered as described above. To avoid biases that 666 

would affect 59 end motif analysis, we also removed reads with any 59 soft clipping. The first 4 667 

bases of each fragment were extracted and used for 4-mer analysis. Motif frequency was 668 

calculated as 
*+',-./0()*+

*+',-./0,-,./
. 669 

CTCF nucleosome positioning analysis. We used 9,780 evolutionarily conserved CTCF motifs 670 

occurring in distal ChIP-seq peaks, which were taken from (11). Nanopore or Illumina fragments 671 

within the size range of 130-155bp were used for fragment coverage analysis. These shorter 672 

mononucleosomal fragments give better nucleosome-level resolution than longer 167 bp 673 

fragments. Deeptools (Version 3.5.0) bamCoverage was used with the parameters <--674 

ignoreDuplicates --binSize -bl ENCODE_blacklist -of bedgraph --effectiveGenomeSize 675 

2913022398 --normalizeUsing RPGC=. For Illumina WGS, we used the additional parameter <--676 

extendedReads 145=. The bedgraph was converted to a bigwig file using bigWigToBedGraph 677 

downloaded from UCSC Genome Browser. This bigwig file was passed to Deeptools 678 

computeMatrix with the command line parameters <reference-point --referencePoint center -out 679 

table.out=, and the table.out file was imported into R to create fragment coverage heatmap. 680 

Statistical tests. Student9s t-test for all sample comparisons where at least one test group had 681 

less than five samples, otherwise Wilcoxon test was used.  682 
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Supplemental tables and data files 683 

Supplemental Table 1. Samples and sequencing statistics. 684 

  685 
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Supplemental figures 686 

 687 

Supplemental Figure 1. Hypomethylation within PMDs. (A) Average DNA methylation from 688 

all 10 Mbp bins contained in common Partially Methylated Domains (PMDs) from an earlier 689 

study (5). Only the 1,669,234 CpGs defined as <solo-WCGW= CpGs from (5) were used. All 10 690 

Mbp bins are shown for Oxford Nanopore (ONT) cfDNA WGS of 4 healthy controls and 6 lung 691 

adenocarcinoma cases. Tumor fraction (panel A, top) was calculated from somatic copy number 692 

alterations using ichorCNA (3). (B) 10 Mbp bins stratified by copy number status for all cancer 693 

cases. Statistical significance for A and B determined by one-tailed Wilcoxon test. *p<0.05, 694 

**p<0.01, ***p<0.001, ****p<0.0001. 695 

  696 
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Supplemental Figure 1: Hypomethylation within PMDs
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Supplemental Figure 2. Methylation at Lung-specific NKX2-1 binding sites. Illustration of 697 

predicted NKX2-1 binding sites within single-cell ATAC-seq peaks specific to primary lung 698 

pneumocytes. (A) Relative methylation level of healthy controls and lung cancer samples from 699 

ONT cfDNA WGS within -1kb to +1kb of pneumocyte-specific NKX2-1 sites. Cancer cases are 700 

ordered by tumor fraction estimates from ichorCNA. (B) Same analysis, but within -2.5kb to 701 

+2.5kb of pneumocyte-specific NKX2-1 sites. 702 

 703 
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Supplemental Figure 2: Methylation at Lung-specific NKX2-1 
binding sites
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Supplemental Figure 3. Deconvolution of ctDNA using HumanMethylation450k reference 705 

data. Estimated lung fraction ³ plotted for all Nanopore plasma samples. (A) Number of probes 706 

hypomethylated in Normal lung cells relative (red) or Lung cancer cells (blue) relative to healthy 707 

plasma cfDNA methylation, using the feature_selection.m script of the MethAtlas package (7). 708 

(B) Number of hypermethylated probes. 709 

 710 

  711 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464684doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464684
http://creativecommons.org/licenses/by/4.0/


Supplemental Figure 3: Deconvolution of ctDNA using 
HumanMethylation450k reference data
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Supplemental Figure 4. ichorCNA tumor fraction estimates from deep Illumina WGS. (B) 712 

ichorCNA (12) tumor fraction estimates for samples with matched Nanopore and Illumina WGS 713 

data. Size of each bubble is the number of uniquely aligned reads in the Nanopore library. The 714 

median number of Nanopore reads per sample is 6.4M and the median number of Illumina 715 

reads per sample is 17.0M. 716 

 717 
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Supplemental Figure 4: Normal lung methylation estimates and 
deep sequencing ichorCNA tumor fraction estimates 
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Supplemental Figure 5. Fragment analysis of sample 19_326. Sample 19_326 used different bead 719 
selection parameters and a different library version, and thus is not included in the main analysis. Here, 720 
we show 19_326 in context in all fragmentomic analyses. (A-D) General fragment properties. (A) 721 
Fragment length density of all samples, colored by tumor fraction estimated by ichorCNA. (B) Fragment 722 
length ratio calculated as the number of short fragments (100-150bp, same cutoff used in (10)) divided by 723 
the total number of total mononucleosome reads (100-220bp). (C) Frequency of different 4-mer 724 
sequences at 59 fragment ends, comparing ONT cfDNA WGS samples and matched Illumina samples. 725 
The 25 most frequent 4-mers in healthy plasma from (13) are shown in rank order. Samples are ordered 726 
by healthy vs. cancer and then by increasing tumor fraction. (D) Frequency of CCCA motif at 59 fragment 727 
ends. (E-G) Alignments to CTCF motifs within distal ChIP-seq peaks from (11). (E, top) cfDNA fragment 728 
coverage shown as fold-change vs. average coverage depth across the genome. Includes only fragments 729 
of length 130-155bp to maximize resolution.  (E, bottom) Matched Illumina samples of higher sequencing 730 
depth (median 17.0M fragments in Illumina vs. 6.4M in ONT samples) show similar patterns. (F) CTCF 731 
DNA methylation of Nanopore samples from this study. (G) DNA methylation from seven lung tissue 732 
WGBS samples from TCGA (5).   733 
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Supplemental Figure 5: General fragment properties
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Supplemental Figure 6. End motif comparison of cancer and healthy samples. (A) 4-mer 734 

frequencies were grouped into Healthy samples (blue) and cancer samples (red), and ordered 735 

as above. Rank within Nanopore healthy samples is shown for the top 12 4-mers (top). 736 

Statistical significance between healthy and cancer groups in panel E was calculated using two-737 

tailed Student9s t-test. *p<0.05, **p<0.01  738 
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Supplemental Figure 6: End motif comparison of cancer and 
healthy samples
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Supplemental Figure 7. Fragment analysis of Lung-specific NKX2-1 binding sites. (A) 739 

Analysis of 5,974 lung-specific regions aligned to predicted NKX2-1 binding sites contained 740 

within single-cell ATAC-seq peaks specific to primary lung pneumocytes (same sites as Figure 741 

1H-K). Plot shows fragment coverage relative to average coverage across the genome, 742 

including only fragments of length 130-155bp. (B) Same plot, but using 28,298 predicted NKX2-743 

1 binding sites from ATAC-seq peaks of TCGA Lung adenocarcinoma samples instead of 744 

ATAC-seq peaks from normal lung pneumocytes (same sites from Supplemental Figure 3). 745 

  746 
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Supplemental Figure 7: Fragment analysis of Lung-specific NKX2-1 
binding sites
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