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Abstract: Since December 2019, the world has been intensely affected by the COVID-19 pandemic,
caused by the SARS-CoV-2 virus, first identified in Wuhan, China. In the case of a novel virus
identification, the early elucidation of taxonomic classification and origin of the virus genomic
sequence is essential for strategic planning, containment, and treatments. Deep learning techniques
have been successfully used in many viral classification problems associated with viral infections
diagnosis, metagenomics, phylogenetic, and analysis. This work proposes to generate an efficient
viral genome classifier for the SARS-CoV-2 virus using the deep neural network (DNN) based
on stacked sparse autoencoder (SSAE) technique. We performed four different experiments to
provide different levels of taxonomic classification of the SARS-CoV-2 virus. The confusion matrix
presented the validation and test sets and the ROC curve for the validation set. In all experiments,
the SSAE technique provided great performance results. In this work, we explored the utilization
of image representations of the complete genome sequences as the SSAE input to provide a viral
classification of the SARS-CoV-2. For that, a dataset based on k-mers image representation, with
k = 6, was applied. The results indicated the applicability of using this deep learning technique in
genome classification problems.

Keywords: SARS-CoV-2; COVID-19; Deep Learning; Stacked Sparse Autoencoder; Viral classifica-

tion

1. Introduction

Since the emergence of the SARS-CoV-2 virus at the end of 2019, many works are
been developed aiming to provide more comprehension about this novel virus. In March
2020, the World Health Organization (WHO) raised the level of contamination to the
COVID-19 pandemic, due to its geographical spread across several countries. On July 9,
2021, the disease had registered more than 185 million confirmed cases, and more than 4
million confirmed deaths. In the case of a novel virus identification, the early elucidation
of taxonomic classification and origin of the virus genomic sequence is essential for
strategic planning, containment, and treatments of the disease [1-3].

One of the fields of research in the bioinformatics area is the analysis of genomic
sequences. In the last years, many strategies based on alignment-free methods have been
explored as an alternative for the alignment-based methods, considering the limitations
of the second approach. Alignment-based programs assume that homologous sequences
comprise a series of linearly arranged and more or less conserved sequence stretches,
which is not always the case in the real world [4].

Among the alignment-free methodologies, there are some models based on deep
learning (DL) techniques, that can provide significant performance in applications of
genome analysis [5-7]. Deep neural networks (DNN) can improve prediction accuracy
by discovering relevant features of high complexity [7].
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Figure 1 presents the genome analysis stages and how deep learning integrates
this process. The genome analysis stages include the primary analysis, the secondary
analysis, and the tertiary analysis. The primary and secondary analysis compose the
genome sequencing. The primary analysis receives the biological sample and generates
genomic data information, called “reads”, after the processing by the sequencer machine.
Then, the secondary analysis processes the reads and produces the complete genome
sequence. Lastly, the tertiary analysis provides the genome interpretation, which can be
performed for many algorithms and techniques [8-10]. The deep learning techniques
have been successful used for the tertiary analysis in many viral classification problems
associated with the diagnosis of viral infections, metagenomics, pharmacogenomics, and
others [11-15].

DNA sequence
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Figure 1. Genome analysis stages with deep learning.

Figure 2 shows the steps of the tertiary analysis using DL, that are the mapping and
processing stages. The mapping stage receives the DNA sequence information, that can
be the reads, contigs, or the whole genome sequence, and maps this data into a feature
space. Various mapping strategies have been present in the works from the state of the
art, such as one-hot encoding [13,16-18], number representation [11,12], digital signal
processing [19], and other strategies, including multiple mapping strategies applied
sequentially [20,21]. The processing stage consists of the utilization of a DNN to perform
classification, prediction, and other assumptions about the genome information.

DNA sequence
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- Sequence
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Figure 2. Stages of viral genome analysis using deep learning.

The mapping stage is crucial for the performance of the processing stage. The
genome sequence length varies by the type of the virus. Since the DNN only receive
a fixed-size input, some researchers have not been using the whole or long sequence
length. Nevertheless, longer sequences contain more information and thus are more
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convenient to make predictions [17]. In this work, we will explore the utilization of the
whole genome sequence mapped by image representation for the use as the DNN input
in order to provide viral classification.

Recently works in literature have been applying deep learning as tertiary analysis
such as viral prediction, viral host prediction, and viral segments prediction [11-19,22—
30].

Tables 1 and 2 present some works from the state of the art that applied DNNs in
order to analyse viral genome sequences. Table 1 details the focus of each work as the
biology name, the group, the aim, indicates if the proposal was or was not applied for the
COVID-19 and present the DNN used. The DNNs applied in those references are divide
into 5 groups (CNN+FC, LSTM+FC, BLSTM+FC, BLSTM+CNN+FC, CNN+BLSTM+FC),
as we show in the last column of Table 1. Table 2 shows the details about the input and
the output of the DNN, besides the biology fields and the bioinformatics area.

In the work presented in [11] was proposed a viral genome deep classifier (VGDC),
the first viral genome subtyping based on deep learning techniques found in the liter-
ature. Their approach uses a Convolutional Neural Network (CNN) with 25 layers to
classify several groups of viruses in subtypes. For the tests, were used five different
datasets, each one containing genomes sequences of a specific type of virus. The whole
virus genome sequence was used as the input to the network, where the corresponding
ASCII code represented each nucleotide. The results indicated that the VGDC was able
to achieve better results in comparison with previous works from the state of the art.

In [12] was proposed an approach to assist the tests in the detection of SARS-CoV-2,
based on the use of DL techniques. For this, a CNN architecture with 4 layers was used
to extract characteristics of the virus genomes, as well as to classify SARS-CoV-2 among
Coronavirus type viruses. As presented in [11], the CNN received as input the whole
virus genome sequences. The nucleotides were mapped in numerical values (C = 0.25,
T =0.50, G =0.75, A = 1.0). Missing entries received a value of 0.0. The experiments
showed that the CNN was able to correctly identify the sequences even in cases where
the noise was added to the genome, reaching accuracies between 0.9674 (with noise) and
0.9875 (without noise). Through the results, the authors also identified a sequence as
exclusive for the SARS-CoV-2 virus. They proposed the use of this sequence as a primer
for PCR tests.

In [13], was proposed an approach to provide viral classification using the contigs
(fragments of the genome sequence) and two different reverse-complement (RC) neural
networks architectures: a RC-CNN and a RC-LSTM. These models were also applied to
the SARS-CoV-2 virus.

In works presented in [14] and [15], a taxonomic classification for metagenomics
applications is proposed. Both works used segments of genome (reads) with DL input
(see Figure 1), and the output is the number of the classes. In [14], it was proposed two
DL models, one to classify species, and another to classify genus. In [15], a hierarchical
taxonomic classification for viral metagenomic data via DL, called CHEER, was proposed.
Similar to the work proposed in [14], the CHEER framework classifies the genus, family,
and genus.

Proposals presented in [16], [17] and [23] used the contigs with DL input for viral
prediction, and classification. In [16], and [17] a DL virus identification framework was
proposed and both cases try to recognize if the input is a virus or not.

In work from [16], called ViraMiner, was proposed and approach to detect the
presence of viruses on raw metagenomic contigs from different human samples. They
used a CNN architecture with two different convolutional branches (pattern and fre-
quency branch) in order to extract relevant features. The outputs of these branches are
concatenated and inserted into the fully connected (FC) layer. The ViraMiner output
produces a single value that indicates the likelihood of the sequence belonging to the
virus class.
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Table 1: State of the art references - Part 1.

Biology name Group Aim Ref. COVID-19 DNN
Viral
Genome Subtyping [t ) CNN+FC
Genome classificatign \./i?al . Prirper [12] Yes CNN+FC
diction (taxppomlc classification de51.g.n
pre classification) Identified LSTM+FC
or sequence . [13] Yes
classification virus sequence CNN+FC
Taxonomic [14] - CNN+FC
classification [15] - BLSTM+FEC
. Identified [17] - CNN+FEC
Genome Viral .
rediction rediction virus sequence [16] - CNN+FEC
p p Identified phage,
chromossomes,  [23] - CNN+FC
plasmid
Host Viral host . BLSTM+CNN+FC
Hf)St. classification classification . Predicting [18] ) CNN+FEC
prediction Host Viral host viruses among
- .. several hosts [22] Yes CNN+FEC
prediction prediction
Cenome Cenome Viral Prediction [19] - CNN+FC
segments segments segments specific [24] ) CNN+BLSTM+FC
gmet gment gment regions in [25] - CNN+BLSTM+FC
prediction classification  classification the genome [26] ) CNN+BLSTM4+FC
Table 2: State of the art references - Part 2.
Input Output Ref. Biology fields Bioinformatics
H é} Metagenomics
Number of [13] Diagnosis of
the classes [14] viral infections
[15] Pharmacogenomics
The DNA or cDNA Score [17] Metagenomics Free
(RNA virus) of the virus.  Binary output  [16] Phvloce r%e tic analvsi alienment
The whole or part of Score [23] yios ¢ ysis ghments
. - techniques
the genome is used. Number of [18] Metagenomics
the classes Phylogenetic analysis
Score [22] Metagenomics
[19] Transcriptome
Number of [24] Analysis
the classes [25] Gene expression
[26] analysis
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In the proposal presented in [17], called DeepVirFinder, the output is a score be-
tween 0 and 1 for a binary classification between virus and prokaryote. They fragmented
the genomes into non-overlapping sequences of different sizes (150, 300, 500, 1000, and
3000 bp). The sequences were mapped for the network input using the one-hot encoding
method. Since they increase the length of the input, i.e. the sequence fragment, they
achieve better performance results, which was measured by the area under the receiver
operating characteristic curve (AUROC). The maximum AUROC achieved was 0.98 for
the 3000 bp fragment.

The work presented in [23] identifies metagenomic fragments as phages, chromo-
somes or plasmids using the CNN technique. The experiments were performed using
artificial contigs and real metagenomic data. The network output, provided by a softmax
layer, consists of 3 scores that indicate the probability that each fragment belongs to a
specific class.

In the works from [22] and [18] are present DL architectures for host prediction and
classification. [22] used a CNN to provide host and infectivity prediction of SARS-CoV-2
virus. In [18] was proposed an approach to predict viral host from three different virus
species (influenza A virus, rabies lyssavirus and rotavirus A) from the whole or only
fractions of a given viral genome.

In the works from [19], [24], [25] and [26] were proposed methodologies to predict
or classify specific regions in the genome sequence. [19] presented a methodology for the
classification of three different functional genome types: coding regions, long noncoding
regions, and pseudogenes in genomic data. They used a digital signal processing (DSP)
methods, called Genomic signal processing (GSP), that converts the nucleotide sequence
into a graphical representation of the information contained in the sequence. A CNN
with 19 layers was used to perform the classification results.

The authors in [24] proposed a DL framework to identify similar patterns in DNA
N6-methyladenine (6mA) sites prediction. This framework, called Deep6mA, is com-
posed of a CNN to extract high-level features in the sequence and a Bi-directional LSTM
(BLSTM) to learn dependence structure along the sequence, besides a fully connected
layer that determines whether the site is a 6mA site.

In [25] was provided a method based on CNN and BLSTM for exploring the RNA
recognition patterns of the CCCTC-binding factor (CTCF) and identify candidate IncR-
NAs binding. The experiments conducted with two different datasets (human U20S and
mouse ESC) were able to predict CTCF-binding RNA sites from nucleotide sequences.
Moreover, [26] propose a computational prediction approach for DNA—protein binding
based on CNN and BLSTM.

We intend to provide viral classification using the whole genome sequences, as
presented in [11] and [12]. However, in these works were used the length of the longest
genome sequence of the dataset as the input of the DNN. So, it was necessary to add
some padding for the missing entries. In this work, we will explore the utilization
of k-mers image representation of the complete genome sequences as the DNN input,
which will feasibly the use of genome sequences of any length and enable the use
of smaller network inputs. The k-mers representation was used in many works that
provide genome sequence classification, as presented in [31], which explores the spectral
sequence representation based on k-mers occurrences. However, that work doesn’t
explore the k-mers image representation.

We also explore the utilization of the stacked sparse autoencoder (SSAE) technique
as an efficient viral genome classifier. The SSAE has been successfully applied in many
biomedical works from the state of the art [6,32-34]. We performed some experiments
to provide various levels of taxonomic classification of the SARS-CoV-2 virus, similar
to the proposed experiments in [35], using the SSAE technique with a dataset of k-mers
images representations, available on [36].


https://doi.org/10.1101/2021.10.14.464414
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.14.464414; this version posted October 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

6 of 22

165 2. Materials and Methods
166 2.1. Dataset

167 For the experiments, we used a k-mers representation dataset of SARS-CoV-2
16 genome, available on [36]. This dataset is composed of 1557 virus instances of SARS-
1o CoV-2, as also, a data stream of 11540 viruses from the Virus-Host DB dataset and the
170 other three Riboviria viruses from NCBI (Betacoronavirus RaTG13, bat-SL-CoVZ(C45,
i1 and bat-SL-CoVZXC21). It also provides k-mers image representation of all data. The
12 k-mers images were used to perform the experiments for this work.

Each d-th sequence, stored in dataset, is expressed by

Sy = [sd,lw'-rsd,nf-~-lsd,Nd] (1)

where Nj is the length of d-th sequence and s; ,, is the n-th nucleotide of the sequence.
Each n-th s; ,, can be characterized as a symbol belonging to an alphabet of 4 possible
symbols expressed by set {A, T,C,G} for DNA or by set {A,U,C,G} for RNA, that is,

san € ({A,T,C,G}V {A,U,C,G}). @)

In k-mers representation, each d-th nucleotide sequence, sy, is grouped in k-mers
sub-sequences [37,38] that can be expressed as

h;q Sd1 o Sgk
h;, Sd2 TS84k
H; = hy; = Sd,i o Sdivk 3)
hy N,k SAN;—k T Sd,Ny-1
_hd,Nd—k+1_ |Sd,N;—k+1 """ Sd,N; |

where the matrix H; stores the k-mers associated with each d-th sequence s;. The k-mers
representations are based in each d-th matrix H; and the matrix I, call here as symbol
matrix. The symbol matrix is expressed as

11 Y1 o Tk
=19 |=171 - 7k 4)
M TM1 o TMEk

where each element 1, ; € ({A,T,C,G} V{A,U,C,G}). The symbol matrix, T, stores all
M possibilities of the k-mers, where

M = 4%, ()
The k-mers count 1D representation can be expressed as

ca=1[Ca1, -, Caire -, A M) (6)

where
M N—k+1

cai=13, Y. Baijo (7)

j=1 ov=1
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and
0 f i+ hy,(Ju=1,...,.k:vi, #h
Bd,j,‘() _ { or r)/] d,v( u ’)/],u d,‘l],ll) ) (8)

1 fory; = hgo(Vu=1,....k:9u=haou)

Table 3 shows a example of the k-mers count 1D representation values (with k = 2) for
SARS-CoV-2 from China-Wuhan (ID: LR757995), USA-MA (ID: MT039888), Brazil (ID:
MT126808), and Italy (ID: MT066156). The dataset provide in [36] has k-mers count 1D
representation fork = 2,...,6.

The k-mers count 2D representation for each d-th sequence, s, is described by

Adii 0 Adar Can eocqr
Ag=|Aain 0 Agir| = [Cai-1)xL+1 T CdixL )
Aari 0 AL CaM—L+1  "°°  CiM

where

L=+vM=V2k (10)

Finally, the k-mers image representation, for each d-th sequence, can be represented

as
$arn o PaiL

D= |Pai1  PairL (11)
bar1 - PaLL

where ¢, j represents each pixel associated with d-th image ®,. Each pixel, ¢, ;, is be
expressed as

= 2177_1 N (12)
(Pd,l,] - maX{Ad} d,l,]

where max{-} is the maximum value in d-th matrix Ay, | -] is the greatest integer less
than or equal, and b is number of bits associated with the image pixels. Figure 3 show
the k-mers image representation, matrix ®, (with k = 6 and b = 8) for Geminiviridae
(ID: HE616777), Alphacoronavirus (ID: JQ410000), and SARS-CoV-2 (Betacoronavirus)
from China-Wuhan (ID: LR757995) and Brazil (ID: MT126808).

In this work, we used k-mers image representation with k = 6. In the work
presented in [16], the 6-mers reached the best performance in comparisons with other
values of k (3, 4, 5 and 7). The data of each experiment was partitioned using the holdout
method, which splits the data into a training set and a validation set at random. We used
the proportion of 80% for the training set and 20% for the validation set. Each class data
was split respecting these percentages. The SARS-CoV-2 k-mers images were used only
for the test set.

2.2. DNN Architecture

All experiments were performed using the SSAE technique. In these models each
hidden layer is composed of an individually trained sparse autoencoder in an unsuper-
vised way. A sparse autoencoder is an autoencoder whose training involves a sparse
penalty, which functions as a regularizing term added to the loss function [39]. The
autoencoder (AE) is a DL technique specialized in dimensionality reduction and feature
extraction. The AE output can provide the reconstruction of the input information. These
networks are composed of three layers: an input, a hidden and an output. The encoder
is formed by the input and hidden layers, and the decoder is formed by the hidden and
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Table 3: Examples of k-mers count 1D representation values (with k = 2) for SARS-CoV-2.

k-mers (k = 2) China-Wuhan USA-MA Brazil Italy
(ID: LR757995)  (ID: MT039888) (ID: MT126808) (ID: MT066156)
AA 2862 2859 2853 2847
AC 2022 2022 2022 2022
AG 1741 1741 1742 1742
AT 2306 2309 2309 2308
CA 2085 2082 2084 2082
CC 886 888 888 888
CG 439 439 440 439
CT 2080 2081 2080 2082
GA 1612 1612 1612 1611
GC 1167 1167 1169 1168
GG 1092 1093 1092 1092
GT 1990 1990 1988 1989
TA 2373 2378 2377 2378
TC 1415 1412 1413 1413
TG 2589 2589 2587 2587
TT 3212 3217 3219 3216

Table 4: Examples of k-mers count 2D representation values (with k = 2) for SARS-CoV-2.

China-Wuhan (ID: LR757995) USA-MA (ID: MT039888)

(2862 2022 1741 1741] (2859 2022 1741 1741]
A — 2085 886 439 439 An, —  |2082 888 439 439
17 = 1612 1167 1092 1092 327 11612 1167 1093 1093

2373 1415 2589 2589 2378 1412 2589 2589

Brazil (ID: MT126808) Ttaly (ID: MT066156)

2853 2022 1742 1742 2853 2022 1742 1742

2084 888 440 440 2084 888 440 440
Asy = A7zg =

1612 1169 1092 1092
2377 1413 2587 2587

1612 1169 1092 1092
2377 1413 2587 2587

198

200

201

202

203

output layers [39]. For the output layer, we used a softmax layer, where the number of
neurons consists of the number of classes of the experiment. Figure 4 illustrates the DL
SSAE with P inputs, K hidden layers, and a output layer. Each i-th hidden layer has
Q; neurons and the output layer has U neurons. Functions ¢(-) and f(-) are the action
functions in each p-th neuron (in each i-th hidden layer) and each u-th neuron in output
layer, respectively.

For all experiments, the network architecture used three hidden layers (K = 3),
containing 3000 neurons in the first hidden layer, Q;, 1000 in the second hidden layer,
2, and 500 in the third hidden layer Q3. For input of the SSAE, it was used k-mers
images, with k = 6, generating images, matrix ®, with 64 x 64 pixels (based on Equation
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(a) Geminiviridae (ID: HE616777).
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(b) Alphacoronavirus (ID: JQ410000).
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(c) SARS-CoV-2 betacoronavirus (ID: LR757995) from (d) SARS-CoV-2 betacoronavirus (ID: MT126808) from
Brazil.

China-Wuhan.

Figure 3. Examples of k-mers images representation with k = 6. Based on Equation 10, L = 64 and

each image, matrix ® (see Equation 11), is composed by 64 x 64 pixels with b = 8 (see Equation

12).

10, L = V46 = 64). Each d-th image, ®, associated with a d-th viral genome sequence

is reshaped into a vector expressed by

r .0
yg,1
Yao

0
yd,(i)—l
Ya= | Ya;

0

Yaiv1

Yap-
0
Yap

(P11

Pd,r1
a1,

3]

$a1,L

[ Pd,L,L]

(13)
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Figure 5. Viral classification process using k-mers images representation with the DL-SSAE.

with P = 64 x 64 = 4096 values and applied to the SSAE. The number of neurons in
output layer, U, is defined by the number of different viruses in a specific taxonomic
level such as family, genus, realm and other. The output can be expressed by

o= |o, (14)

ou

where each u-th output, 0, represents a specific virus in a taxonomic level classification
and is defined by

(15)

o — 1 ify,is the u-th virus
71 0 otherwise )

Figure 5 illustrates how the sequence information is passed through the DL-SSAE to
perform the viral classification. The DL-SSAE input was normalized in the range of 0 to
1. First, the SSAE receives the training set as input to perform the training phase. Then,
the validation set, which only contains samples that were not applied in the training
phase, is used to identify the capacity of generalization of the DNN. After the network
validation, the SSAE was applied for the test set, which only contains SARS-CoV-2
sequences. The SARS-CoV-2 k-mers images were not used for the training phase of the
SSAE.

The SSAE was implemented in the Matlab platform (License 596681) [40], adopting
the deep learning toolbox. All network was trained with the Scaled Conjugate Gradient
(SCG) algorithm. The loss function used for the training in each AE was the Mean
Squared Error with L2 and Sparsity Regularizers, that can be expressed as

E =

—~ =

I U
Z (O:fif - oui)z + A X Qweights + B x Qsparsity/ (16)
=1u=1

1

where [ is the number of training examples, U is the number of classes, Qypeignss is the
L2 regularization term, A is the coefficient for the L2 regularization term, Osparsity 1s the
sparsity regularization term, and f is the coefficient for the sparsity regularization term.
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The loss function applied for the softmax layer was the Cross-Entropy. In this work,
after the training in each layer, the fine-tuning was performed, which retrained all the
stacked network in a supervised way in order to improve the classification results. The
fine-tuning process also used the Cross-Entropy as the loss function, as in the softmax
layer.

3. Results and discussion

We performed four different experiments to provide different levels of taxonomic
classification of the SARS-CoV-2 virus, similar to the experimental methodology present
in [35]. The details about the data and the network architecture used in each experiment
are shown in Table 5. The SSAE architecture was chosen by the observation of the MSE
obtained with the reconstruction of the validation set in each AE. In order to validate
the proposed idea of this work, the results are present by the confusion matrix for
the validation and test sets. We also measured the performance of the viral classifier
proposed with some popular classification metrics, as precision, recall, F1-score, and
specificity. The precision value measure the percentages of all the examples predicted
to belong to each class that are correctly classified, which corresponds to the positive
predictive value. The recall, also called sensibility, corresponds to the percentages of
all the examples belonging to each class that are correctly classified, which is the true
positive rate. The Fl-score can be interpreted as a weighted average of the precision and
recall, and the specificity indicates the true negative rate. The column on the far right of
each confusion matrix shows the percentages of precision per class, and the row at the
bottom of each confusion matrix shows the percentages of recall per class. The cell in the
bottom right of the plot of each confusion matrix shows the overall accuracy. Besides,
for the validation set we also present the receiver operating characteristic (ROC) curve.
The ROC curve measures the classification performance, that is the true positive rate
and the false positive rate of each class, at various thresholds settings.

In Experiment 1, we intended to classify the viruses in 14 different classes, as
presented in Table 5, which consists of 10 families (Adenoviridae, Anelloviridae, Cir-
coviridae, Geminiviridae, Genomoviridae, Microviridae, Papillomaviridae, Parvoviridae,
Polyomaviridae and Tolecusatellitidae), three orders (Caudovirales, Herpesvirales and
Ortervirales) and Riboviria realm. The Riboviria class contains various families that be-
long to the realm Riboviria, including the Coronaviridae family. To ensure data balance,
only the classes with at least 100 sequences from the original dataset were considered.
For the classes with more than 500 sequences, only 500 sequences were selected at
random, except for the Riboviria class, in which was prioritized the Coronaviridade
family sequences, to guarantee the correct classification of the test data (SARS-CoV-2
sequences), which is the focus of this work. In this particular case, were selected all
Coronaviridade family sequences available in the dataset (206 samples), and the other
294 sequences were select from the rest of the Riboviria data at random. After this
balancing, Experiment 1 comprised 3433 samples of virus sequences.

The SSAE architecture used in Experiment 1 was the 4096 — 3000 — 1000 — 500 — 14
architecture. The three AEs were trained for 400 epochs. The softmax layer was trained
for 3000 epochs or until reach the minimum gradient (< 1 x 10~°). Lastly, the fine-tuning
was performed. For each experiment, the fine-tuning phase uses the same stopping
condition as the softmax layer.

The confusion matrix and the ROC curve from the validation set of Experiment 1
are present in Figures 6 and 7, respectively. In Experiment 1, the classification accuracy
from the validation set reached 92%. This result is promising, especially considering the
challenges of the classification in high-level taxonomies because of the high diversity
of the viruses sequences. It is essential to mention that the balancing process may have
caused the classification more complicated because some crucial sequences may have
been excluded from the dataset. However, this result can be improved in many ways
that will be discussed following.
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Table 5: Experiments data.

Experiments Classes Number of SSAE architecture
sequences P-Q1—Q—0Q3—-U
Adenoviridae 195
Anelloviridae 114
Caudovirales 500
Circoviridae 243
Geminiviridae 500
Genomoviridae 115
Experiment1 ~ Licrpesvirales 136 4096 — 3000 — 1000 — 500 — 14
Microviridae 102
Ortervirales 214
Papillomaviridae 354
Parvoviridae 168
Polyomaviridae 142
Riboviria 500
Tolecusatellitidae 150
Picornaviridae 423
Caliciviridae 392
Coronaviridae 206
. Potyviridae 232
Experiment 2 Flaviviridae 217 4096 — 3000 — 1000 — 500 — 8
Rhabdoviridae 186
Betaflexiviridae 129
Reoviridae 111
Alphacoronavirus 52
Experiment 3 Setacorona“.ms 125 4096 — 3000 — 1000 — 500 — 4
eltacoronavirus 20
Gammacoronavirus 9
Embecovirus 47
Experiment 4 hlﬁerbecov.lms 17 4096 — 3000 — 1000 — 500 — 4
obecovirus 9
Sarbecovirus 46

Regarded to the classification performance per class, the precision value presented
in the last column shows that the worse result was obtained from an order class (71.4%
from the Herpesvirales). Among the five worst classification results, two are from order
classes (71.4% and 83.3% from Herpesvirales and Ortervirales, respectively). Since
these classes can contain viruses from many different realms and families, they can
difficult the training process. The Riboviria realm, which is the focus of this work,
reached a classification accuracy of 93%. Analyse the results per classes can give more
understanding about the dataset used and the implications of this dataset for the results,
which is important to make decisions for the next experiments.

The confusion matrix from the test set of Experiment 1 is present in Figure 8. In
the test phase of this experiment, all the 1557 sequences of SARS-CoV-2 was correctly
classified as belonging to the Riboviria realm, so the classification accuracy reached
100%.

Experiment 2 performs the classification of Riboviria families. As in Experiment 1,
only classes with at least 100 sequences were considered. This experiment includes 1896
sequences separated into eight families (Picornaviridae, Caliciviridae, Coronaviridae,
Potyviridae, Flaviviridae, Rhabdoviridae, Betaflexiviridae and Reoviridae). We used
the 4096 — 3000 — 1000 — 500 — 8 SSAE architecture. The three AEs were trained for 400
epochs each and the softmax layer was trained for 1000 epochs or until reaching the
minimum gradient, as well as the fine-tuning phase.


https://doi.org/10.1101/2021.10.14.464414
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.14.464414; this version posted October 15, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

13 of 22

302

303

304

305

309

310

311

39 0 1 1 0 0 2 0 0 0 1 0 0 0 |88.6%

Adenoviridae 5.7% | 0.0% | 0.1% | 0.1% | 0.0% | 0.0% | 0.3% | 0.0% | 0.0% | 0.0% | 0.1% | 0.0% | 0.0% | 0.0% |11.4%

0 20 0 0 0 0 0 0 1 0 0 1 0 0 [90.9%

Anelloviridae | ¢ o, | 2.9% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.1% | 0.0% | 0.0% | 0.1% | 0.0% | 0.0% | 9.1%

0 0 96 1 0 0 0 0 1 0 1 0 0 0 [97.0%
0.0% | 0.0% |{14.0%| 0.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.1% | 0.0% | 0.1% | 0.0% | 0.0% | 0.0% | 3.0%

0 0 0 40 1 2 1 1 0 0 1 0 2 0 |83.3%
0.0% | 0.0% | 0.0% | 5.8% | 0.1% | 0.3% | 0.1% | 0.1% | 0.0% | 0.0% | 0.1% | 0.0% | 0.3% | 0.0% |16.7%

0 0 0 0 98 1 0 0 0 0 1 1 0 1 [96.1%
0.0% | 0.0% | 0.0% | 0.0% [14.3%| 0.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.1% | 0.1% | 0.0% | 0.1% | 3.9%

Caudovirales

Circoviridae

Geminiviridae

0 0 0 1 0 20 2 0 0 0 0 0 0 0 |87.0%

Genomoviridae | g oz | 0.0% | 0.0% | 0.1% | 0.0% | 2.9% | 0.3% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |13.0%

1 0 0 2 0 0 20 0 0 0 0 1 1 0 [80.0%

Herpesvirales | g 1o, | 0.0% | 0.0% | 0.3% | 0.0% | 0.0% | 2.9% | 0.0% | 0.0% | 0.0% | 0.0% | 0.1% | 0.1% | 0.0% [20.0%

0 0 0 0 0 0 0 19 1 0 0 0 0 0 [95.0%

Microviridae 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 2.8% | 0.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 5.0%

Output Class

0 1 0 1 0 0 3 0 35 0 2 0 3 0 |77.8%

Ortervirales 0.0% | 0.1% | 0.0% | 0.1% | 0.0% | 0.0% | 0.4% | 0.0% | 5.1% | 0.0% | 0.3% | 0.0% | 0.4% | 0.0% |22.2%

0 0 0 0 0 0 0 0 1 70 1 0 (] 0 |97.2%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.1% |10.2%| 0.1% | 0.0% | 0.0% | 0.0% | 2.8%

0 1 1 1 0 0 0 0 2 0 27 0 1 0 |81.8%
0.0% | 0.1% | 0.1% | 0.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.3% | 0.0% | 3.9% | 0.0% | 0.1% | 0.0% |18.2%

0 0 0 0 0 0 0 0 0 0 0 25 0 0 |100%
0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 3.6% | 0.0% | 0.0% | 0.0%

Papillomaviridae

Parvoviridae

Polyomaviridae

0 0 3 1 1 0 0 0 1 0 0 0 93 0 [93.9%

Riboviria 0.0% | 0.0% | 0.4% | 0.1% | 0.1% | 0.0% | 0.0% | 0.0% | 0.1% | 0.0% | 0.0% | 0.0% |13.6%| 0.0% | 6.1%

0 0 0 0 0 ] 0 0 0 0 0 0 0 29 |100%

Tolecusateliitidae | ¢ oo, [ 0,09 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 4.2% | 0.0%

97.5%(90.9%|95.0%|83.3% 98.0% (87.0%| 71.4%| 95.0% 83.3%| 100% |79.4% |89.3%|93.0%|96.7%]92.0%
2.5% | 9.1% | 5.0% |16.7%| 2.0% (13.0%|28.6%| 5.0% [16.7%| 0.0% (20.6%|10.7%| 7.0% | 3.3% | 8.0%

(2] (/] & 2 (] (] 2 =)
FFFEFFSITE
RPN
S S S & S & S L .
NI O © \ & & : & X 9
) & N N Q}Q o K N o > © L @
A4 o QQ;(\ E W Q‘bQ Q > S

Target Class

Figure 6. Confusion matrix of the validation set from the Experiment 1.

The confusion matrix and the ROC curve from the validation set of Experiment 2
are present in Figures 9 and 10, respectively. The classification accuracy from Experiment
2 reached 96.3%. From the 379 sequences applied in this validation, only 11 were
not correctly classified. Besides, the SSAE classified all sequences that belong to the
Coronaviridade family correctly. The ROC curve from Experiment 2 also provides
excellent results.

The confusion matrix from the test set of Experiment 2 is present in Figure 11. The
SSAE achieve 100% of classification accuracy, i.e., all SARS-CoV-2 sequences applied in
this experiment were perfectly classified as Coronaviridae family sequences.

In Experiment 3 we aim to provide the classification among the Coronaviridae
genera. For this experiment, 204 sequences divided into four genera (Alphacoronavirus,
Betacoronavirus, Deltacoronavirus and Gammacoronavirus) were used. The SSAE
architecture used in this experiment was the 4096 — 3000 — 1000 — 500 — 4 architecture.
The three AEs were trained for 400 epochs each, and the softmax layer was trained for
2000 epochs or until reaching the minimum gradient.

Figures 12 and 13 show the resulting confusion matrix and ROC curve from the
Experiment 3, respectively. This experiment achieved 95% of classification accuracy of
the validation set. The classification performance of the model obtained for the Betacoro-
navirus genus was 95.8%. Also, the ROC curve plotted for all classes of Experiment 3
provides satisfactory results.

Regarding the test set of Experiment 3, the confusion matrix is present in Figure
14. The test phase of Experiment 3 achieved 98.9% of classification accuracy. In the
validation phase of Experiment 3, the Betacoronavirus genus did not reach the highest
performance, which probably explains these result in the test phase.
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Figure 7. ROC curve of the validation set from the Experiment 1.
a12 In Experiment 4, we provide the Betacoronaviridae subgenera classification. This

sz test includes 119 genome sequences divided into four classes (Embecovirus, Marbe-
s1a covirus, Nobecovirus and Sarbecovirus). The SSAE architecture was the same as the
a5 architecture used in Experiment 3 (4096 — 3000 — 1000 — 500 — 4), as well as the training
316 parameters.

317 The confusion matrix and the ROC curve from the validation set of Experiment 4
a1s  are present in Figures 15 and 16, respectively. In this experiment, the SSAE achieved the
a1 highest classification accuracy (100%), which is reaffirmed for the ROC curve plot.

320 Figure 15 exposes the confusion matrix from the test set of Experiment 4. In this
sn  case, the SSAE achieved 99.9% of classification accuracy, that is equivalent to only one
32 sequence wrong classified.

323 Table 6 presents the results regarding some popular classification performance
32« metrics obtained from the validation set. The first column of the table indicates the ex-
325 periment proposed. The second column shows the overall accuracy for each experiment.
a2 The precision, recall, F1-score, and specificity are present in the others columns, which
;27 were obtained by the average of the values obtained for each class.

Table 6: Classification performance metrics results obtained from the validation set.

Experiment Accuracy Precision Recall F1 score Specificity
1 0.920 (92.0%) 0.924 (92.4%) 0.920 (92.0%) 0.931 (93.1%) 0.993 (99.3%)
2 0.963 (96.3%)  0.968 (96.8%) 0.971 (97.1%) 0.962 (96.2%) 0.997 (99.7%)
3 0.950 (95.0%) 0.979 (97.9%) 0.979 (97.9%) 0.955(95.5%) 0.983 (98.3%)
4 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)
328 All the metrics presented in Table 6 indicate that the viral classifier proposed

s20 performs great for all experiments. The highest performance was obtained for the
30 Experiment 4. Besides, Experiments 2 and 3, reached values more than 0.95 for all the
;1 metrics evaluated. The classification performance slightly decreased in the Experiment
;2 1, which is acceptable because of the high diversity of the viruses sequences applied.
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Figure 8. Confusion matrix of the test set from the Experiment 1.

However, considering all the experiments, the specificity (true negative rate) reached
values between 0.983 and 1.

Table 7 presents the results regarding some popular classification performance
metrics obtained from the test set. The first column of the table indicates the experiment
proposed. The second column shows the overall accuracy for each experiment. And the
last column shows the recall, or true positive rate, which were obtained only for the class
that corresponds to the SARS-CoV-2 samples. The other metrics (precision, F1-score, and
specificity) are not presented because in the tests we do not have false positives samples.

Table 7: Classification performance metrics results obtained from the test set.

Experiment  Accuracy Recall
1 1 (100%) 1 (100%)
2 1 (100%) 1 (100%)
3 0.989 (98.9%)  0.989 (98.9%)
4 0.999 (99.9%)  0.999 (99.9%)

When the SARS-CoV-2 samples were applied, all the experiments perform excel-
lently. The accuracy reached values between 98.9% and 100%, as well as the recall (true
positive rate). The results presented in Table 7 are very significant since the classification
of the SARS-CoV-2 virus was the main objective of this study.

In all experiments, the SSAE technique provided great performance results, espe-
cially for the test set. However, some strategies can be applied in future experiments
to improve classification accuracy results. One of them consists in the use of the k-fold
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Figure 9. Confusion matrix of the validation set from the Experiment 2.

cross-validation scheme. Besides, we also intend to study data balancing alternatives,
based on the analysis of the results presented here.

4. Conclusions

This work presented an alignment-free methodology, based on the stacked sparse
autoencoder technique, in order to classify genome sequences of the SARS-CoV-2 virus
in various levels of taxonomy (realm, family, genus and subgenus). We explored the
utilization of k-mers image representation of the whole genome sequence, which feasi-
bility the use of genome sequences of any length and enable the use of smaller network
inputs. The results were presented by the confusion matrix for the validation and test
sets, and the ROC curve for the validation set. All experiments provided great perfor-
mance results, reaching accuracies between 98.9% and 100% for the test set. These results
indicated the applicability of using the stacked sparse autoencoder technique in genome
classification problems.
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Figure 11. Confusion matrix of the test set from the Experiment 2.
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Figure 14. Confusion matrix of the test set from the Experiment 3.
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Figure 15. Confusion matrix of the validation set from the Experiment 4.
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