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Abstract: Since December 2019, the world has been intensely affected by the COVID-19 pandemic,1

caused by the SARS-CoV-2 virus, first identified in Wuhan, China. In the case of a novel virus2

identification, the early elucidation of taxonomic classification and origin of the virus genomic3

sequence is essential for strategic planning, containment, and treatments. Deep learning techniques4

have been successfully used in many viral classification problems associated with viral infections5

diagnosis, metagenomics, phylogenetic, and analysis. This work proposes to generate an efficient6

viral genome classifier for the SARS-CoV-2 virus using the deep neural network (DNN) based7

on stacked sparse autoencoder (SSAE) technique. We performed four different experiments to8

provide different levels of taxonomic classification of the SARS-CoV-2 virus. The confusion matrix9

presented the validation and test sets and the ROC curve for the validation set. In all experiments,10

the SSAE technique provided great performance results. In this work, we explored the utilization11

of image representations of the complete genome sequences as the SSAE input to provide a viral12

classification of the SARS-CoV-2. For that, a dataset based on k-mers image representation, with13

k = 6, was applied. The results indicated the applicability of using this deep learning technique in14

genome classification problems.15

Keywords: SARS-CoV-2; COVID-19; Deep Learning; Stacked Sparse Autoencoder; Viral classifica-16

tion17

1. Introduction18

Since the emergence of the SARS-CoV-2 virus at the end of 2019, many works are19

been developed aiming to provide more comprehension about this novel virus. In March20

2020, the World Health Organization (WHO) raised the level of contamination to the21

COVID-19 pandemic, due to its geographical spread across several countries. On July 9,22

2021, the disease had registered more than 185 million confirmed cases, and more than 423

million confirmed deaths. In the case of a novel virus identification, the early elucidation24

of taxonomic classification and origin of the virus genomic sequence is essential for25

strategic planning, containment, and treatments of the disease [1–3].26

One of the fields of research in the bioinformatics area is the analysis of genomic27

sequences. In the last years, many strategies based on alignment-free methods have been28

explored as an alternative for the alignment-based methods, considering the limitations29

of the second approach. Alignment-based programs assume that homologous sequences30

comprise a series of linearly arranged and more or less conserved sequence stretches,31

which is not always the case in the real world [4].32

Among the alignment-free methodologies, there are some models based on deep33

learning (DL) techniques, that can provide significant performance in applications of34

genome analysis [5–7]. Deep neural networks (DNN) can improve prediction accuracy35

by discovering relevant features of high complexity [7].36
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Figure 1 presents the genome analysis stages and how deep learning integrates37

this process. The genome analysis stages include the primary analysis, the secondary38

analysis, and the tertiary analysis. The primary and secondary analysis compose the39

genome sequencing. The primary analysis receives the biological sample and generates40

genomic data information, called “reads”, after the processing by the sequencer machine.41

Then, the secondary analysis processes the reads and produces the complete genome42

sequence. Lastly, the tertiary analysis provides the genome interpretation, which can be43

performed for many algorithms and techniques [8–10]. The deep learning techniques44

have been successful used for the tertiary analysis in many viral classification problems45

associated with the diagnosis of viral infections, metagenomics, pharmacogenomics, and46

others [11–15].47

DNA extraction
(Sequencer machine) SequencingBiological

samples

DNA sequence
information

Reads
Assembly

Contigs Sequence

Primary analysis Secondary analysis

Deep learning (DL)

Tertiary analysis

- Viral classification
- Viral host prediction
- Viral segments prediction

Figure 1. Genome analysis stages with deep learning.

Figure 2 shows the steps of the tertiary analysis using DL, that are the mapping and48

processing stages. The mapping stage receives the DNA sequence information, that can49

be the reads, contigs, or the whole genome sequence, and maps this data into a feature50

space. Various mapping strategies have been present in the works from the state of the51

art, such as one-hot encoding [13,16–18], number representation [11,12], digital signal52

processing [19], and other strategies, including multiple mapping strategies applied53

sequentially [20,21]. The processing stage consists of the utilization of a DNN to perform54

classification, prediction, and other assumptions about the genome information.55

DNA sequence
information

Feature
space

Processing 
(DNN)

- Reads
- Contigs
- Sequence

- Viral classification
- Viral host prediction
- Viral segments prediction

Mapping

Figure 2. Stages of viral genome analysis using deep learning.

The mapping stage is crucial for the performance of the processing stage. The56

genome sequence length varies by the type of the virus. Since the DNN only receive57

a fixed-size input, some researchers have not been using the whole or long sequence58

length. Nevertheless, longer sequences contain more information and thus are more59
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convenient to make predictions [17]. In this work, we will explore the utilization of the60

whole genome sequence mapped by image representation for the use as the DNN input61

in order to provide viral classification.62

Recently works in literature have been applying deep learning as tertiary analysis63

such as viral prediction, viral host prediction, and viral segments prediction [11–19,22–64

30].65

Tables 1 and 2 present some works from the state of the art that applied DNNs in66

order to analyse viral genome sequences. Table 1 details the focus of each work as the67

biology name, the group, the aim, indicates if the proposal was or was not applied for the68

COVID-19 and present the DNN used. The DNNs applied in those references are divide69

into 5 groups (CNN+FC, LSTM+FC, BLSTM+FC, BLSTM+CNN+FC, CNN+BLSTM+FC),70

as we show in the last column of Table 1. Table 2 shows the details about the input and71

the output of the DNN, besides the biology fields and the bioinformatics area.72

In the work presented in [11] was proposed a viral genome deep classifier (VGDC),73

the first viral genome subtyping based on deep learning techniques found in the liter-74

ature. Their approach uses a Convolutional Neural Network (CNN) with 25 layers to75

classify several groups of viruses in subtypes. For the tests, were used five different76

datasets, each one containing genomes sequences of a specific type of virus. The whole77

virus genome sequence was used as the input to the network, where the corresponding78

ASCII code represented each nucleotide. The results indicated that the VGDC was able79

to achieve better results in comparison with previous works from the state of the art.80

In [12] was proposed an approach to assist the tests in the detection of SARS-CoV-2,81

based on the use of DL techniques. For this, a CNN architecture with 4 layers was used82

to extract characteristics of the virus genomes, as well as to classify SARS-CoV-2 among83

Coronavirus type viruses. As presented in [11], the CNN received as input the whole84

virus genome sequences. The nucleotides were mapped in numerical values (C = 0.25,85

T = 0.50, G = 0.75, A = 1.0). Missing entries received a value of 0.0. The experiments86

showed that the CNN was able to correctly identify the sequences even in cases where87

the noise was added to the genome, reaching accuracies between 0.9674 (with noise) and88

0.9875 (without noise). Through the results, the authors also identified a sequence as89

exclusive for the SARS-CoV-2 virus. They proposed the use of this sequence as a primer90

for PCR tests.91

In [13], was proposed an approach to provide viral classification using the contigs92

(fragments of the genome sequence) and two different reverse-complement (RC) neural93

networks architectures: a RC-CNN and a RC-LSTM. These models were also applied to94

the SARS-CoV-2 virus.95

In works presented in [14] and [15], a taxonomic classification for metagenomics96

applications is proposed. Both works used segments of genome (reads) with DL input97

(see Figure 1), and the output is the number of the classes. In [14], it was proposed two98

DL models, one to classify species, and another to classify genus. In [15], a hierarchical99

taxonomic classification for viral metagenomic data via DL, called CHEER, was proposed.100

Similar to the work proposed in [14], the CHEER framework classifies the genus, family,101

and genus.102

Proposals presented in [16], [17] and [23] used the contigs with DL input for viral103

prediction, and classification. In [16], and [17] a DL virus identification framework was104

proposed and both cases try to recognize if the input is a virus or not.105

In work from [16], called ViraMiner, was proposed and approach to detect the106

presence of viruses on raw metagenomic contigs from different human samples. They107

used a CNN architecture with two different convolutional branches (pattern and fre-108

quency branch) in order to extract relevant features. The outputs of these branches are109

concatenated and inserted into the fully connected (FC) layer. The ViraMiner output110

produces a single value that indicates the likelihood of the sequence belonging to the111

virus class.112
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Table 1: State of the art references - Part 1.

Biology name Group Aim Ref. COVID-19 DNN

Genome
prediction

or sequence
classification

Genome
classification
(taxonomic

classification)

Viral
classification

Viral
Subtyping [11] - CNN+FC

Primer
design [12] Yes CNN+FC

Identified
virus sequence

[13] Yes
LSTM+FC
CNN+FC

Taxonomic
classification

[14] - CNN+FC
[15] - BLSTM+FC

Genome
prediction

Viral
prediction

Identified
virus sequence

[17] - CNN+FC
[16] - CNN+FC

Identified phage,
chromossomes,

plasmid
[23] - CNN+FC

Host
prediction

Host
classification

Viral host
classification Predicting

viruses among
several hosts

[18] -
BLSTM+CNN+FC

CNN+FC
Host

prediction
Viral host
prediction [22] Yes CNN+FC

Genome
segments
prediction

Genome
segments

classification

Viral
segments

classification

Prediction
specific

regions in
the genome

[19] - CNN+FC
[24] - CNN+BLSTM+FC
[25] - CNN+BLSTM+FC
[26] - CNN+BLSTM+FC

Table 2: State of the art references - Part 2.

Input Output Ref. Biology fields Bioinformatics

The DNA or cDNA
(RNA virus) of the virus.

The whole or part of
the genome is used.

Number of
the classes

[11]
Metagenomics
Diagnosis of

viral infections
Pharmacogenomics

Free
alignments
techniques

[12]
[13]
[14]
[15]

Score [17]
Metagenomics

Phylogenetic analysis
Binary output [16]

Score [23]
Number of
the classes [18]

Metagenomics
Phylogenetic analysis

Score [22] Metagenomics

Number of
the classes

[19] Transcriptome
Analysis[24]

[25] Gene expression
analysis[26]
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In the proposal presented in [17], called DeepVirFinder, the output is a score be-113

tween 0 and 1 for a binary classification between virus and prokaryote. They fragmented114

the genomes into non-overlapping sequences of different sizes (150, 300, 500, 1000, and115

3000 bp). The sequences were mapped for the network input using the one-hot encoding116

method. Since they increase the length of the input, i.e. the sequence fragment, they117

achieve better performance results, which was measured by the area under the receiver118

operating characteristic curve (AUROC). The maximum AUROC achieved was 0.98 for119

the 3000 bp fragment.120

The work presented in [23] identifies metagenomic fragments as phages, chromo-121

somes or plasmids using the CNN technique. The experiments were performed using122

artificial contigs and real metagenomic data. The network output, provided by a softmax123

layer, consists of 3 scores that indicate the probability that each fragment belongs to a124

specific class.125

In the works from [22] and [18] are present DL architectures for host prediction and126

classification. [22] used a CNN to provide host and infectivity prediction of SARS-CoV-2127

virus. In [18] was proposed an approach to predict viral host from three different virus128

species (influenza A virus, rabies lyssavirus and rotavirus A) from the whole or only129

fractions of a given viral genome.130

In the works from [19], [24], [25] and [26] were proposed methodologies to predict131

or classify specific regions in the genome sequence. [19] presented a methodology for the132

classification of three different functional genome types: coding regions, long noncoding133

regions, and pseudogenes in genomic data. They used a digital signal processing (DSP)134

methods, called Genomic signal processing (GSP), that converts the nucleotide sequence135

into a graphical representation of the information contained in the sequence. A CNN136

with 19 layers was used to perform the classification results.137

The authors in [24] proposed a DL framework to identify similar patterns in DNA138

N6-methyladenine (6mA) sites prediction. This framework, called Deep6mA, is com-139

posed of a CNN to extract high-level features in the sequence and a Bi-directional LSTM140

(BLSTM) to learn dependence structure along the sequence, besides a fully connected141

layer that determines whether the site is a 6mA site.142

In [25] was provided a method based on CNN and BLSTM for exploring the RNA143

recognition patterns of the CCCTC-binding factor (CTCF) and identify candidate IncR-144

NAs binding. The experiments conducted with two different datasets (human U2OS and145

mouse ESC) were able to predict CTCF-binding RNA sites from nucleotide sequences.146

Moreover, [26] propose a computational prediction approach for DNA–protein binding147

based on CNN and BLSTM.148

We intend to provide viral classification using the whole genome sequences, as149

presented in [11] and [12]. However, in these works were used the length of the longest150

genome sequence of the dataset as the input of the DNN. So, it was necessary to add151

some padding for the missing entries. In this work, we will explore the utilization152

of k-mers image representation of the complete genome sequences as the DNN input,153

which will feasibly the use of genome sequences of any length and enable the use154

of smaller network inputs. The k-mers representation was used in many works that155

provide genome sequence classification, as presented in [31], which explores the spectral156

sequence representation based on k-mers occurrences. However, that work doesn’t157

explore the k-mers image representation.158

We also explore the utilization of the stacked sparse autoencoder (SSAE) technique159

as an efficient viral genome classifier. The SSAE has been successfully applied in many160

biomedical works from the state of the art [6,32–34]. We performed some experiments161

to provide various levels of taxonomic classification of the SARS-CoV-2 virus, similar162

to the proposed experiments in [35], using the SSAE technique with a dataset of k-mers163

images representations, available on [36].164
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2. Materials and Methods165

2.1. Dataset166

For the experiments, we used a k-mers representation dataset of SARS-CoV-2167

genome, available on [36]. This dataset is composed of 1557 virus instances of SARS-168

CoV-2, as also, a data stream of 11540 viruses from the Virus-Host DB dataset and the169

other three Riboviria viruses from NCBI (Betacoronavirus RaTG13, bat-SL-CoVZC45,170

and bat-SL-CoVZXC21). It also provides k-mers image representation of all data. The171

k-mers images were used to perform the experiments for this work.172

Each d-th sequence, stored in dataset, is expressed by

sd =
[

sd,1, . . . , sd,n, . . . , sd,Nd

]

(1)

where Nd is the length of d-th sequence and sd,n is the n-th nucleotide of the sequence.
Each n-th sd,n can be characterized as a symbol belonging to an alphabet of 4 possible
symbols expressed by set {A, T, C, G} for DNA or by set {A, U, C, G} for RNA, that is,

sd,n ∈ ({A, T, C, G} ( {A, U, C, G}). (2)

In k-mers representation, each d-th nucleotide sequence, sd, is grouped in k-mers
sub-sequences [37,38] that can be expressed as

Hd =



























hd,1
hd,2

...
hd,i

...
hd,Nd−k

hd,Nd−k+1



























=



























sd,1 · · · sd,k
sd,2 · · · sd,k+1

...
. . .

...
sd,i · · · sd,i+k

...
. . .

...
sd,Nd−k · · · sd,Nd−1

sd,Nd−k+1 · · · sd,Nd



























(3)

where the matrix Hd stores the k-mers associated with each d-th sequence sd. The k-mers
representations are based in each d-th matrix Hd and the matrix Γ, call here as symbol
matrix. The symbol matrix is expressed as

Γ =

















γ1
...

γi
...

γM

















=

















γ1,1 · · · γ1,k
...

. . .
...

γi,1 · · · γi,k
...

. . .
...

γM,1 · · · γM,k

















(4)

where each element γi,j ∈ ({A, T, C, G} ( {A, U, C, G}). The symbol matrix, Γ, stores all
M possibilities of the k-mers, where

M = 4k. (5)

The k-mers count 1D representation can be expressed as

cd = [cd,1, . . . , cd,i, . . . , dd,M] (6)

where

cd,i =
M

∑
j=1

N−k+1

∑
v=1

Bd,j,v (7)
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and

Bd,j,v =

{

0 for γj ̸= hd,v(∃ u = 1, . . . , k : γj,u ̸= hd,v,u)

1 for γj = hd,v(∀ u = 1, . . . , k : γj,u = hd,v,u)
. (8)

Table 3 shows a example of the k-mers count 1D representation values (with k = 2) for173

SARS-CoV-2 from China-Wuhan (ID: LR757995), USA-MA (ID: MT039888), Brazil (ID:174

MT126808), and Italy (ID: MT066156). The dataset provide in [36] has k-mers count 1D175

representation for k = 2, . . . , 6.176

The k-mers count 2D representation for each d-th sequence, sd, is described by

Λd =

















λd,1,1 · · · λd,1,L
...

. . .
...

λd,i,1 · · · λd,i,L
...

. . .
...

λd,L,1 · · · λd,L,L

















=

















cd,1 · · · cd,L
...

. . .
...

cd,(i−1)×L+1 · · · cd,i×L
...

. . .
...

cd,M−L+1 · · · cd,M

















(9)

where
L =

√
M =

√
2k. (10)

Finally, the k-mers image representation, for each d-th sequence, can be represented
as

Φd =

















φd,1,1 · · · φd,1,L
...

. . .
...

φd,i,1 · · · φd,i,L
...

. . .
...

φd,L,1 · · · φd,L,L

















(11)

where φd,i,j represents each pixel associated with d-th image Φd. Each pixel, φd,i,j, is be
expressed as

φd,i,j =

⌊

2b − 1
max{Λd}

× λd,i,j

⌋

(12)

where max{·} is the maximum value in d-th matrix Λd, +·, is the greatest integer less177

than or equal, and b is number of bits associated with the image pixels. Figure 3 show178

the k-mers image representation, matrix Φ, (with k = 6 and b = 8) for Geminiviridae179

(ID: HE616777), Alphacoronavirus (ID: JQ410000), and SARS-CoV-2 (Betacoronavirus)180

from China-Wuhan (ID: LR757995) and Brazil (ID: MT126808).181

In this work, we used k-mers image representation with k = 6. In the work182

presented in [16], the 6-mers reached the best performance in comparisons with other183

values of k (3, 4, 5 and 7). The data of each experiment was partitioned using the holdout184

method, which splits the data into a training set and a validation set at random. We used185

the proportion of 80% for the training set and 20% for the validation set. Each class data186

was split respecting these percentages. The SARS-CoV-2 k-mers images were used only187

for the test set.188

2.2. DNN Architecture189

All experiments were performed using the SSAE technique. In these models each190

hidden layer is composed of an individually trained sparse autoencoder in an unsuper-191

vised way. A sparse autoencoder is an autoencoder whose training involves a sparse192

penalty, which functions as a regularizing term added to the loss function [39]. The193

autoencoder (AE) is a DL technique specialized in dimensionality reduction and feature194

extraction. The AE output can provide the reconstruction of the input information. These195

networks are composed of three layers: an input, a hidden and an output. The encoder196

is formed by the input and hidden layers, and the decoder is formed by the hidden and197
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Table 3: Examples of k-mers count 1D representation values (with k = 2) for SARS-CoV-2.

k-mers (k = 2)
China-Wuhan USA-MA Brazil Italy
(ID: LR757995) (ID: MT039888) (ID: MT126808) (ID: MT066156)

AA 2862 2859 2853 2847
AC 2022 2022 2022 2022
AG 1741 1741 1742 1742
AT 2306 2309 2309 2308
CA 2085 2082 2084 2082
CC 886 888 888 888
CG 439 439 440 439
CT 2080 2081 2080 2082
GA 1612 1612 1612 1611
GC 1167 1167 1169 1168
GG 1092 1093 1092 1092
GT 1990 1990 1988 1989
TA 2373 2378 2377 2378
TC 1415 1412 1413 1413
TG 2589 2589 2587 2587
TT 3212 3217 3219 3216

Table 4: Examples of k-mers count 2D representation values (with k = 2) for SARS-CoV-2.

China-Wuhan (ID: LR757995) USA-MA (ID: MT039888)

Λ17 =









2862 2022 1741 1741
2085 886 439 439
1612 1167 1092 1092
2373 1415 2589 2589









Λ32 =









2859 2022 1741 1741
2082 888 439 439
1612 1167 1093 1093
2378 1412 2589 2589









Brazil (ID: MT126808) Italy (ID: MT066156)

Λ52 =









2853 2022 1742 1742
2084 888 440 440
1612 1169 1092 1092
2377 1413 2587 2587









Λ79 =









2853 2022 1742 1742
2084 888 440 440
1612 1169 1092 1092
2377 1413 2587 2587









output layers [39]. For the output layer, we used a softmax layer, where the number of198

neurons consists of the number of classes of the experiment. Figure 4 illustrates the DL199

SSAE with P inputs, K hidden layers, and a output layer. Each i-th hidden layer has200

Qi neurons and the output layer has U neurons. Functions ϕ(·) and f (·) are the action201

functions in each p-th neuron (in each i-th hidden layer) and each u-th neuron in output202

layer, respectively.203

For all experiments, the network architecture used three hidden layers (K = 3),
containing 3000 neurons in the first hidden layer, Q1, 1000 in the second hidden layer,
Q2, and 500 in the third hidden layer Q3. For input of the SSAE, it was used k-mers
images, with k = 6, generating images, matrix Φ, with 64 × 64 pixels (based on Equation
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(a) Geminiviridae (ID: HE616777).
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(b) Alphacoronavirus (ID: JQ410000).
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(c) SARS-CoV-2 betacoronavirus (ID: LR757995) from
China-Wuhan.
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(d) SARS-CoV-2 betacoronavirus (ID: MT126808) from
Brazil.

Figure 3. Examples of k-mers images representation with k = 6. Based on Equation 10, L = 64 and
each image, matrix Φ (see Equation 11), is composed by 64 × 64 pixels with b = 8 (see Equation
12).

10, L =
√

46 = 64). Each d-th image, Φd, associated with a d-th viral genome sequence
is reshaped into a vector expressed by

yd =





































y0
d,1

y0
d,2
...

y0
d,i−1
y0

d,i
y0

d,i+1
...

y0
d,P−1
y0

d,P





































=











































φd,1,1
...

φd,L,1
φd,1,2

...
φd,L,2

...
φd,1,L

...
φd,L,L











































(13)
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Input layer Hidden layer 1 Hidden layer K
Output layer

Figure 4. Deep learning stacked sparse autoencoder architecture (DL-SSAE).
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Figure 5. Viral classification process using k-mers images representation with the DL-SSAE.

with P = 64 × 64 = 4096 values and applied to the SSAE. The number of neurons in
output layer, U, is defined by the number of different viruses in a specific taxonomic
level such as family, genus, realm and other. The output can be expressed by

o =

















o1
...

ou
...

oU

















(14)

where each u-th output, ou, represents a specific virus in a taxonomic level classification
and is defined by

ou =

{

1 if yd is the u-th virus
0 otherwise

. (15)

Figure 5 illustrates how the sequence information is passed through the DL-SSAE to204

perform the viral classification. The DL-SSAE input was normalized in the range of 0 to205

1. First, the SSAE receives the training set as input to perform the training phase. Then,206

the validation set, which only contains samples that were not applied in the training207

phase, is used to identify the capacity of generalization of the DNN. After the network208

validation, the SSAE was applied for the test set, which only contains SARS-CoV-2209

sequences. The SARS-CoV-2 k-mers images were not used for the training phase of the210

SSAE.211

The SSAE was implemented in the Matlab platform (License 596681) [40], adopting
the deep learning toolbox. All network was trained with the Scaled Conjugate Gradient
(SCG) algorithm. The loss function used for the training in each AE was the Mean
Squared Error with L2 and Sparsity Regularizers, that can be expressed as

E =
1
I

I

∑
i=1

U

∑
u=1

(o
re f
ui − oui)

2 + λ × Ωweights + β × Ωsparsity, (16)

where I is the number of training examples, U is the number of classes, Ωweights is the212

L2 regularization term, λ is the coefficient for the L2 regularization term, Ωsparsity is the213

sparsity regularization term, and β is the coefficient for the sparsity regularization term.214
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The loss function applied for the softmax layer was the Cross-Entropy. In this work,215

after the training in each layer, the fine-tuning was performed, which retrained all the216

stacked network in a supervised way in order to improve the classification results. The217

fine-tuning process also used the Cross-Entropy as the loss function, as in the softmax218

layer.219

3. Results and discussion220

We performed four different experiments to provide different levels of taxonomic221

classification of the SARS-CoV-2 virus, similar to the experimental methodology present222

in [35]. The details about the data and the network architecture used in each experiment223

are shown in Table 5. The SSAE architecture was chosen by the observation of the MSE224

obtained with the reconstruction of the validation set in each AE. In order to validate225

the proposed idea of this work, the results are present by the confusion matrix for226

the validation and test sets. We also measured the performance of the viral classifier227

proposed with some popular classification metrics, as precision, recall, F1-score, and228

specificity. The precision value measure the percentages of all the examples predicted229

to belong to each class that are correctly classified, which corresponds to the positive230

predictive value. The recall, also called sensibility, corresponds to the percentages of231

all the examples belonging to each class that are correctly classified, which is the true232

positive rate. The F1-score can be interpreted as a weighted average of the precision and233

recall, and the specificity indicates the true negative rate. The column on the far right of234

each confusion matrix shows the percentages of precision per class, and the row at the235

bottom of each confusion matrix shows the percentages of recall per class. The cell in the236

bottom right of the plot of each confusion matrix shows the overall accuracy. Besides,237

for the validation set we also present the receiver operating characteristic (ROC) curve.238

The ROC curve measures the classification performance, that is the true positive rate239

and the false positive rate of each class, at various thresholds settings.240

In Experiment 1, we intended to classify the viruses in 14 different classes, as241

presented in Table 5, which consists of 10 families (Adenoviridae, Anelloviridae, Cir-242

coviridae, Geminiviridae, Genomoviridae, Microviridae, Papillomaviridae, Parvoviridae,243

Polyomaviridae and Tolecusatellitidae), three orders (Caudovirales, Herpesvirales and244

Ortervirales) and Riboviria realm. The Riboviria class contains various families that be-245

long to the realm Riboviria, including the Coronaviridae family. To ensure data balance,246

only the classes with at least 100 sequences from the original dataset were considered.247

For the classes with more than 500 sequences, only 500 sequences were selected at248

random, except for the Riboviria class, in which was prioritized the Coronaviridade249

family sequences, to guarantee the correct classification of the test data (SARS-CoV-2250

sequences), which is the focus of this work. In this particular case, were selected all251

Coronaviridade family sequences available in the dataset (206 samples), and the other252

294 sequences were select from the rest of the Riboviria data at random. After this253

balancing, Experiment 1 comprised 3433 samples of virus sequences.254

The SSAE architecture used in Experiment 1 was the 4096 − 3000 − 1000 − 500 − 14255

architecture. The three AEs were trained for 400 epochs. The softmax layer was trained256

for 3000 epochs or until reach the minimum gradient (< 1× 10−6). Lastly, the fine-tuning257

was performed. For each experiment, the fine-tuning phase uses the same stopping258

condition as the softmax layer.259

The confusion matrix and the ROC curve from the validation set of Experiment 1260

are present in Figures 6 and 7, respectively. In Experiment 1, the classification accuracy261

from the validation set reached 92%. This result is promising, especially considering the262

challenges of the classification in high-level taxonomies because of the high diversity263

of the viruses sequences. It is essential to mention that the balancing process may have264

caused the classification more complicated because some crucial sequences may have265

been excluded from the dataset. However, this result can be improved in many ways266

that will be discussed following.267
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Table 5: Experiments data.

Experiments Classes
Number of
sequences

SSAE architecture
P − Q1 − Q2 − Q3 − U

Experiment 1

Adenoviridae 195

4096 − 3000 − 1000 − 500 − 14

Anelloviridae 114
Caudovirales 500
Circoviridae 243

Geminiviridae 500
Genomoviridae 115
Herpesvirales 136
Microviridae 102
Ortervirales 214

Papillomaviridae 354
Parvoviridae 168

Polyomaviridae 142
Riboviria 500

Tolecusatellitidae 150

Experiment 2

Picornaviridae 423

4096 − 3000 − 1000 − 500 − 8

Caliciviridae 392
Coronaviridae 206

Potyviridae 232
Flaviviridae 217

Rhabdoviridae 186
Betaflexiviridae 129

Reoviridae 111

Experiment 3

Alphacoronavirus 52

4096 − 3000 − 1000 − 500 − 4
Betacoronavirus 123
Deltacoronavirus 20

Gammacoronavirus 9

Experiment 4

Embecovirus 47

4096 − 3000 − 1000 − 500 − 4
Merbecovirus 17
Nobecovirus 9
Sarbecovirus 46

Regarded to the classification performance per class, the precision value presented268

in the last column shows that the worse result was obtained from an order class (71.4%269

from the Herpesvirales). Among the five worst classification results, two are from order270

classes (71.4% and 83.3% from Herpesvirales and Ortervirales, respectively). Since271

these classes can contain viruses from many different realms and families, they can272

difficult the training process. The Riboviria realm, which is the focus of this work,273

reached a classification accuracy of 93%. Analyse the results per classes can give more274

understanding about the dataset used and the implications of this dataset for the results,275

which is important to make decisions for the next experiments.276

The confusion matrix from the test set of Experiment 1 is present in Figure 8. In277

the test phase of this experiment, all the 1557 sequences of SARS-CoV-2 was correctly278

classified as belonging to the Riboviria realm, so the classification accuracy reached279

100%.280

Experiment 2 performs the classification of Riboviria families. As in Experiment 1,281

only classes with at least 100 sequences were considered. This experiment includes 1896282

sequences separated into eight families (Picornaviridae, Caliciviridae, Coronaviridae,283

Potyviridae, Flaviviridae, Rhabdoviridae, Betaflexiviridae and Reoviridae). We used284

the 4096 − 3000 − 1000 − 500 − 8 SSAE architecture. The three AEs were trained for 400285

epochs each and the softmax layer was trained for 1000 epochs or until reaching the286

minimum gradient, as well as the fine-tuning phase.287
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Figure 6. Confusion matrix of the validation set from the Experiment 1.

The confusion matrix and the ROC curve from the validation set of Experiment 2288

are present in Figures 9 and 10, respectively. The classification accuracy from Experiment289

2 reached 96.3%. From the 379 sequences applied in this validation, only 11 were290

not correctly classified. Besides, the SSAE classified all sequences that belong to the291

Coronaviridade family correctly. The ROC curve from Experiment 2 also provides292

excellent results.293

The confusion matrix from the test set of Experiment 2 is present in Figure 11. The294

SSAE achieve 100% of classification accuracy, i.e., all SARS-CoV-2 sequences applied in295

this experiment were perfectly classified as Coronaviridae family sequences.296

In Experiment 3 we aim to provide the classification among the Coronaviridae297

genera. For this experiment, 204 sequences divided into four genera (Alphacoronavirus,298

Betacoronavirus, Deltacoronavirus and Gammacoronavirus) were used. The SSAE299

architecture used in this experiment was the 4096 − 3000 − 1000 − 500 − 4 architecture.300

The three AEs were trained for 400 epochs each, and the softmax layer was trained for301

2000 epochs or until reaching the minimum gradient.302

Figures 12 and 13 show the resulting confusion matrix and ROC curve from the303

Experiment 3, respectively. This experiment achieved 95% of classification accuracy of304

the validation set. The classification performance of the model obtained for the Betacoro-305

navirus genus was 95.8%. Also, the ROC curve plotted for all classes of Experiment 3306

provides satisfactory results.307

Regarding the test set of Experiment 3, the confusion matrix is present in Figure308

14. The test phase of Experiment 3 achieved 98.9% of classification accuracy. In the309

validation phase of Experiment 3, the Betacoronavirus genus did not reach the highest310

performance, which probably explains these result in the test phase.311
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Figure 7. ROC curve of the validation set from the Experiment 1.

In Experiment 4, we provide the Betacoronaviridae subgenera classification. This312

test includes 119 genome sequences divided into four classes (Embecovirus, Marbe-313

covirus, Nobecovirus and Sarbecovirus). The SSAE architecture was the same as the314

architecture used in Experiment 3 (4096 − 3000 − 1000 − 500 − 4), as well as the training315

parameters.316

The confusion matrix and the ROC curve from the validation set of Experiment 4317

are present in Figures 15 and 16, respectively. In this experiment, the SSAE achieved the318

highest classification accuracy (100%), which is reaffirmed for the ROC curve plot.319

Figure 15 exposes the confusion matrix from the test set of Experiment 4. In this320

case, the SSAE achieved 99.9% of classification accuracy, that is equivalent to only one321

sequence wrong classified.322

Table 6 presents the results regarding some popular classification performance323

metrics obtained from the validation set. The first column of the table indicates the ex-324

periment proposed. The second column shows the overall accuracy for each experiment.325

The precision, recall, F1-score, and specificity are present in the others columns, which326

were obtained by the average of the values obtained for each class.327

Table 6: Classification performance metrics results obtained from the validation set.

Experiment Accuracy Precision Recall F1 score Specificity

1 0.920 (92.0%) 0.924 (92.4%) 0.920 (92.0%) 0.931 (93.1%) 0.993 (99.3%)
2 0.963 (96.3%) 0.968 (96.8%) 0.971 (97.1%) 0.962 (96.2%) 0.997 (99.7%)
3 0.950 (95.0%) 0.979 (97.9%) 0.979 (97.9%) 0.955 (95.5%) 0.983 (98.3%)
4 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)

All the metrics presented in Table 6 indicate that the viral classifier proposed328

performs great for all experiments. The highest performance was obtained for the329

Experiment 4. Besides, Experiments 2 and 3, reached values more than 0.95 for all the330

metrics evaluated. The classification performance slightly decreased in the Experiment331

1, which is acceptable because of the high diversity of the viruses sequences applied.332
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Figure 8. Confusion matrix of the test set from the Experiment 1.

However, considering all the experiments, the specificity (true negative rate) reached333

values between 0.983 and 1.334

Table 7 presents the results regarding some popular classification performance335

metrics obtained from the test set. The first column of the table indicates the experiment336

proposed. The second column shows the overall accuracy for each experiment. And the337

last column shows the recall, or true positive rate, which were obtained only for the class338

that corresponds to the SARS-CoV-2 samples. The other metrics (precision, F1-score, and339

specificity) are not presented because in the tests we do not have false positives samples.340

Table 7: Classification performance metrics results obtained from the test set.

Experiment Accuracy Recall

1 1 (100%) 1 (100%)
2 1 (100%) 1 (100%)
3 0.989 (98.9%) 0.989 (98.9%)
4 0.999 (99.9%) 0.999 (99.9%)

When the SARS-CoV-2 samples were applied, all the experiments perform excel-341

lently. The accuracy reached values between 98.9% and 100%, as well as the recall (true342

positive rate). The results presented in Table 7 are very significant since the classification343

of the SARS-CoV-2 virus was the main objective of this study.344

In all experiments, the SSAE technique provided great performance results, espe-345

cially for the test set. However, some strategies can be applied in future experiments346

to improve classification accuracy results. One of them consists in the use of the k-fold347
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Figure 9. Confusion matrix of the validation set from the Experiment 2.

cross-validation scheme. Besides, we also intend to study data balancing alternatives,348

based on the analysis of the results presented here.349

4. Conclusions350

This work presented an alignment-free methodology, based on the stacked sparse351

autoencoder technique, in order to classify genome sequences of the SARS-CoV-2 virus352

in various levels of taxonomy (realm, family, genus and subgenus). We explored the353

utilization of k-mers image representation of the whole genome sequence, which feasi-354

bility the use of genome sequences of any length and enable the use of smaller network355

inputs. The results were presented by the confusion matrix for the validation and test356

sets, and the ROC curve for the validation set. All experiments provided great perfor-357

mance results, reaching accuracies between 98.9% and 100% for the test set. These results358

indicated the applicability of using the stacked sparse autoencoder technique in genome359

classification problems.360
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Figure 10. ROC curve of the validation set from the Experiment 2.
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Figure 11. Confusion matrix of the test set from the Experiment 2.
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Figure 12. Confusion matrix of the validation set from the Experiment 3.
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Figure 13. ROC curve of the validation set from the Experiment 3.
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Figure 14. Confusion matrix of the test set from the Experiment 3.
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Figure 15. Confusion matrix of the validation set from the Experiment 4.
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Figure 17. Confusion matrix of the test set from the Experiment 4.
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