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Abstract—There is a growing interest in the neuroscience community on the 
advantages of multimodal neuroimaging modalities. Functional and structural 
interactions between brain areas can be represented as a network (graph) allowing 
us to employ graph-theoretic tools in multiple research directions. Researchers 
usually treated brain networks acquired from different modalities or different 
frequencies separately. However, there is strong evidence that these networks share 
complementary information while their interdependencies could reveal novel 
findings. For this purpose, neuroscientists adopt multilayer networks, which can be 
described mathematically as an extension of trivial single-layer networks. Multilayer 
networks have become popular in neuroscience due to their advantage to integrate 
different sources of information. We can incorporate this information from different 
modalities (multi-modal case), from different frequencies (multi-frequency case), or a 
single modality following a dynamic functional connectivity analysis (multi-
layer,dynamic case). Researchers already used multi-layer networks to model brain 
disorders, to detect key hubs related to a specific function, to reveal structural-
functional relationships, and to define more precise connectomic biomarkers related 
to brain disorders. However, the construction of a multilayer network depends on the 
selection of multiple preprocessing steps that can affect the final network topology. 
Here, we analyzed the fMRI dataset from a single human performing scanning over 
a period of 18 months (84 scans in total). We focused on assessing the 
reproducibility of multi-frequency multilayer topologies exploring the effect of two 
filtering methods for extracting frequencies from BOLD activity, three connectivity 
estimators, with or without a topological filtering scheme, and two spatial scales. 
Finally, we untangled specific combinations of researchers’ choices that yield 
repeatable topologies, giving us the chance to recommend best practices over 
consistent topologies. 

Index Terms—Functional connectivity; Network Topologies; Brain Connectivity; 
Multilayer networks; Test-Retest Study; Reproducibility ; Topological Filtering 

 

 

I. INTRODUCTION 

 New developments in multimodal neuroimaging provide novel directions for 

measuring structural (anatomical) and functional connectivity (Tulay et al., 2019). 

These novel developments boost the emergence of brain connectivity (Sporns, 

2011). An association exists between behavior and cognition and the brain's large-

scale neuronal activity across spatially distributed brain areas (Alderson et al., 2020; 

Mišić and Sporns, 2016). Structural and functional connections between spatially 
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distributed brain areas are recognized as the key element of cognitive functions and 

behavioral repertoire (Mišić and Sporns, 2016; Smith et al., 2015). The progress of 

noninvasive imaging techniques has provided us with network maps of structural 

connections (anatomical) between neuronal elements (Sporns, 2014), and the 

simultaneous acquisition of dynamic brain activity (functional) (Loued-Khenissi et al., 

2018). The brain is a complex system that can be described as a network (graph) 

where brain areas are the nodes and their links represent the functional and 

structural interactions between brain areas (Stam, 2014). The modeling of the brain 

as a network with any type of neuroimaging modality opens new avenues of graph-

theoretic approaches and methods in multiple research directions (Bassett and 

Sporns, 2017). 

Network or graph theory has been successfully applied to any neuroimaging 

modality across many, for example, functional magnetic resonance imaging (fMRI) 

(Lv et al., 2018), magnetoencephalography (MEG) (Pusil et al., 2019), 

electroencephalography (EEG) (Maturana-Candelas et al., 2019), diffusion magnetic 

resonance imaging (dMRI) (Messaritaki et al., 2019), and structural covariance 

(Carmon et al., 2020). Network theory enables us to simultaneously characterize the 

spatial organization (network topology) and the strength of any type (either structural 

or functional) connections (Bertolero and Bassett, 2020). Various network metrics 

that describe nodal (local) and global network characteristics like segregation, 

integration, (Rubinov and Sporns, 2010), and modularity (Sporns and Betzel, 2016) 

have been demonstrated their ability to describe quantitatively brain networks in 

various scientific pathways like in brain diseases (Crossley et al., 2014) and to 

discriminate brain states while subjects performing cognitive tasks (Braun et al., 

2015). 

The success of complex network theory in uncovering the key mechanisms of the 

human brain organization is limited by the use of single-later brain networks that 

capture only a single type of interaction (De Domenico, 2017). Functional 

neuroimaging modalities like MEG, EEG, and fMRI can capture brain activity across 

multiple frequencies and experimental time and it is important to explore the full 

spectrum (De Domenico et al., 2016; Dimitriadis et al., 2018a; Naro et al., 2021). In 

contrast, structural neuroimaging modalities such as diffusion-weighted imaging 

(DWI) measure the presence and strength of physical, anatomical connections 

between the various brain areas (Garcés et al., 2016). The necessity of taking 
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advantage of the increasing large multimodal open dataset repositories (Eickhoff et 

al., 2016) leads to the search for a new type of complex network that can 

encapsulate functional interactions across multiple frequency scales (multi-frequency 

case), across experimental time (multi-layer dynamic case), and across modalities 

(multi-modal case). However, trivial complex networks cannot provide 

neuroscientists with a mathematical framework to model all the existing interactions 

across frequencies, time, and modalities. 

To present a solution to all the aforementioned challenges, recent research 

articles in network neuroscience have started to investigate the employment of 

multilayer networks. A multilayer network enables the integration of the information 

from single-layer networks with the incorporation of interconnected layers that 

connect these networks (Joseph et al., 2014). Into these current trends, recent 

research directions in network neuroscience have begun to investigate the 

employment of multilayer networks to model the multiplex associations that 

traditional networks are not suited to capture (Boccaletti et al., 2014; De Domenico, 

2017; Muldoon and Bassett, 2016; Van Mieghem, 2016). Last years, multilayer 

networks have been introduced to the network neuroscience field (Brookes et al., 

2016; Buldú and Porter, 2018; Dimitriadis et al., 2018a; Tewarie et al., 2016; Yu et 

al., 2017), where different layers correspond to different frequency-dependent 

functional interactions or to networks derived from different modalities or to a specific 

snapshot of a dynamic functional connectivity network (Battiston et al., 2017). 

In the present study, we will focus on multi-frequency multilayer networks, and it is 

important to mention an important aspect of the construction of this type of multilayer 

network. Previous neuroimaging studies reported important findings based on multi-

frequency multilayer networks. However, the inter-layer connections between 

frequency-dependent layers were defined as pseudo-links between homologous 

brain areas between the layers. This practically means that the inter-layer networks 

involve artificial links that interconnect each node with its representation across 

layers  (Guillon et al., 2017; Yu et al., 2017). However, a true multi-frequency 

multilayer network should involve also inter-frequency layers that tabulate the cross-

frequency interactions between the studying frequencies (Brookes et al., 2016; De 

Domenico et al., 2016; Dimitriadis et al., 2018a; Tewarie et al., 2016; Williamson et 

al., 2021).  
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The spectral features of the resting-state BOLD fMRI (rs-fMRI) multi-ROI signal 

are of high significant interest (Kalcher et al., 2014). We discovered an alignment 

between the frequency spectrum within the bandwidth 0 - 0.25 Hz with biological 

brain mechanisms (Hocke et al., 2016 ; Golestani et al., 2015). Specific spectral 

content has been associated with both vascular and physiological processes 

((Golestani et al., 2015) ; (Hocke et al., 2016) ; (Mark et al., 2015)) and also with 

derived brain-network connectivity measures (Nikolaou et al., 2016)). A few studies 

attempted to decompose resting-state BOLD activity with either wavelet 

decomposition (Zhang et al., 2016) and with adaptive filtering like empirical mode 

decomposition (EMD) (Yuen et al., 2019). Here, we will adopt both methods to 

decompose the rs-fMRI multi-ROI time series into its intrinsic brain frequencies in a 

data-driven manner.  

A tremendous amount of neuroimaging research articles adopted resting-state 

fMRI to define reliable connectomic biomarkers for many brain disorders and 

diseases (Parkes et al., 2020). Research findings on multi-frequency multilayer 

networks at resting-state fMRI (rs-fMRI) are preliminary (De Domenico et al., 2016). 

In order to design reliable connectomic biomarkers from resting-state fMRI, a 

prerequisite is the test-retest repeatability of network topologies (Luppi and 

Stamatakis, 2021). The majority of rs-fMRI studies adopted multilayer networks to 

model dynamic functional connectivity interactions in many target disease groups 

attempting to design reliable connectomic biomarkers (dynamic case ; (Braun et al., 

2015; Dimitriadis et al., 2021; Gifford et al., 2020; Muldoon and Bassett, 2016)). 

Here, we analyze an rs-fMRI dataset from a single human performing scanning with 

various modalities over a period of 18 months. The total number of scans was 100. 

Our main goal is to assess the reproducibility of multi-frequency multilayer network 

topologies investigating the effect of potential choices over a) the filtering method for 

extracting frequencies from BOLD activity (empirical mode decomposition (EMD) 

(Yuen et al., 2019) versus wavelet decomposition (Zhang et al., 2016), b) the 

adopted functional connectivity estimator (Pearson’s correlation coefficient, mutual 

information, and distance correlation), c) the topological layout of the derived 

functional brain network (fully-weighted network versus a topological filtering scheme 

with orthogonal minimal spanning trees (OMST)) (Dimitriadis et al., 2017a, 2017b) 

approach, and d) the spatial scale of the functional brain network (the original based 

on the parcellation scheme versus a downsampled version based on well-known 
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subnetworks). We adopted portrait divergence (Bagrow and Bollt, 2019) as a proper 

distance metric to quantify the network topology similarity between every pair of 

scans and across every set of the aforementioned preprocessing steps (2x3x2x2 = 

24 distinct pipelines in total). 

The rest of the paper is organized as follows: Section 2 describes the adopted 

dataset and the proposed preprocessing framework across multiple levels of 

choices. Section 3 is devoted to the results of the present study and, finally, section 

4 discusses our findings giving instructions to the researchers while presenting the 

limitations of the current study. 

II. MATERIALS AND METHODS 

A. Resting-State fMRI (rs-fMRI) 

Rs-fMRI was performed in 100 scans throughout the data collection period (89 in 

the production phase), using a multi-band EPI sequence (TR=1.16�ms, TE=30�ms, 

flip angle=63 degrees (the Ernst angle for the grey matter), voxel size=2.4 × 2.4 × 

2�mm, distance factor=20%, 68 slices, oriented 30 degrees back from AC/PC, 96 × 

96 matrix, 230�mm FOV, MB factor=4, 10:00 scan length). After session no.27, the 

number of slices was changed to 64 due to an update to the multi-band sequence 

that increased the minimum TR beyond 1.16 for 68 slices. Finally, 84 sessions were 

included in the analysis due to the low signal-to-noise ratio (SNR) for 16 sessions. 

For further details, an interesting read can see the original article describing this 

dataset (Poldrack et al., 2015). The dataset included ten 10-min runs of eyes-closed 

resting-state data and ten 10-min runs of eyes-open resting-state data. Here, we 

analyzed only the eyes-closed resting-open resting-state recordings. This famous 

dataset is called MyConnectome and one can test-retest the reproducibility over a 

long period of time that is absent in other test-retest studies. 

B. Functional  MRI  preprocessing 

For further details of the preprocessing steps of the rs-fMRI recordings, one can 

read the original paper presented the myConnectome dataset (Poldrack et al., 2015). 

The parcellation procedures lead to 630 parcels (ROIs). 

 
 

C. Construction of Multi-frequency Multilayer Networks 
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Node definition:  
We are defined as nodes in the multilayer network, every ROI characterized by a 

specific frequency content. In our study, we will decompose every ROI-based brain 

activity into four basic frequencies (see next section). This practically means that the 

size of our multilayer network will be: {4 x 630} x {4 x 630} = 2520 x 2520. This 

multilayer network will tabulate both the within and between frequencies coupling 

across every pair of ROIs. In multi-frequency multilayer networks, a node is defined 

as a frequency-dependent brain activity of every ROI. 

 
Extracting of brain frequencies: 

We extract wavelet coefficients for the first four wavelet scales, which correspond 

to the frequency ranges 0.125∼0.25 Hz (Scale 1), 0.06∼0.125 Hz (Scale 2), 

0.03∼0.06 Hz (Scale 3), and 0.015∼0.03 Hz (Scale 4) (Zhang et al., 2016). Here, we 

adopted the maximum overlap discrete wavelet transform (MODWT), selecting the 

Daubechies family implemented with a wavelet length equal to 6. 

Alternatively, we decompose resting-state BOLD activity into the related intrinsic 

mode functions (IMFs) with the empirical mode decomposition (EMD)  (Yuen et al., 

2019). We estimated the mean frequency of the Hilbert spectrum across time per 

brain area and IMF across scans. 

We followed both decomposition methods first on the extracted averaged time-

series per brain area for every scan across the 630 ROIs for Pearson’s Correlation 

Coefficient (PC) and Mutual Information (MI) estimations, and secondly on the voxel 

time-series within every ROI per scan for Distance Correlation (DC) estimations. 

Fig.1 illustrates the decomposition with the two adopted methods of mean 

representative time series across voxels from the first two ROIs as presented in 

MyConnectome dataset. Fig.1A,B is dedicated to EMD and MODWT, respectively. 

We constructed multifrequency multilayer networks using the 8 in total time series (2 

ROIs x 4 frequency subbands) and adopting the three connectivity estimators. The 

estimated network topologies for both decomposition methods are shown on the 

right side of each sub-figure. Blocks of connectivity strength within the 4 time series 

per ROI are tabulated within the main diagonal. The off-diagonal blocks tabulate 

connectivity strengths between the two sets of four-time series. Both PC and MI are 

estimated on the representative time series per ROI (shown in red) derived from 
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averaging the voxel-based time series (shown in blue). In contrast, DC is computed 

between two sets of voxel-based time series (shown in blue). 

 

 

 

Figure 1. Decomposition of BOLD activity in frequency subbands with EMD (A) and 
MODWT (B). 

We showed in blue the voxel-based time series for the first two ROIs from 
MyConnectome project using both decomposition methods. The averaged 
representative time series is shown in red. Network topologies tabulate the functional 
connectivity strength across the 8 time series (2 ROIs x 4-time series) with the three 
adopted connectivity estimators. Blocks within the main diagonal are color-coded to 
underline the functional interactions between the 4 time series per ROI. The off-
diagonal blocks tabulate the functional connectivity strength of the two sets of 4-time 
series in a pair-wise fashion. 
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Functional Connectivity Estimators: 
In the present study, we adopted three connectivity estimators that are divided 

into two groups. The first group involves the Pearson’s Correlation Coefficient (PC), 

and the Mutual Information (MI). Both estimators can quantify the functional coupling 

strength between every pair of two frequency-dependent time-series derived as the 

ROI-averaged representative time-series. The second group involves the Distance 

Correlation (DC) metric that can quantify the correlation of two sets of frequency-

dependent time-series corresponding to the voxel-based time-series of two ROIs. 

We constructed a multilayer network whose ijth elements are given by the three 

connectivity estimators with blocks in the main diagonal of size 630 x 630 

corresponding to the four within-frequency functional connectivity networks and off-

diagonal blocks of size 630 x 630 corresponding to every possible pair of the 

between-frequency functional connectivity networks (4x3/2=6 in total). The 

aforementioned procedure was followed for every single scan, filtering method, and 

connectivity estimator. 

For each parcellation, the average denoised BOLD time-series across all voxels 

belonging to a  given  ROI were extracted. We considered three alternative ways of 

quantifying the interactions between regional BOLD signal time series. 

Below, we defined the mathematical descriptions of the adopted connectivity 

estimators. 

Pearson linear correlation: 

 First, we used Pearson correlation, whereby for each pair of nodes i  and j, their 

functional connectivity strength FCSij was given by the  Pearson correlation 

coefficient between the timecourses of i  and j,  over the full scanning length. We got 

the absolute Pearson’s correlation values that bound the range of FCS within [0,1].  

 

Mutual information (MI) 

Second, we also used the mutual  information  I, which  quantifies  the  

interdependence  between  two  random  variables  X  and  Y, and is defined as the  

average  reduction  in  uncertainty  about  X  when  Y  is  given  (or  vice  versa,  

since  this  quantity  is  symmetric): 

I(X;Y)  =H(X)  +  H(Y)  −  H(X,Y)  =  H(X)  −  H(X|Y) (1) 
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With  H(X)  being the Shannon entropy of a  variable  X.  Unlike Pearson 

correlation, mutual information considers both linear and nonlinear relationships.  We 

normalized mutual information (MI) values by dividing the maximum value in the 

matrix-bound within [0,1]. 

 

 

Distance Correlation:  

 Third, we adopted for the very first time based on the authors’ knowledge 

distance correlation as a proper functional connectivity estimator in functional brain 

network construction. This new test is based on an unbiased estimator of distance 

covariance, and the resulting t-test is unbiased for large sample sizes (> 30) 

(Székely and Rizzo, 2013). The combined p-value can be estimated analytically. 

Here, we adopted distance correlation to estimate the functional connectivity 

strength between pairs of tuples of voxel-based time series between every pair of 

ROIs. 

 

Surrogate Null Models: Statistical Topological Filtering 

Since the ground truth of the presence of true functional connections cannot be 

defined, the construction of surrogate data as a statistical framework is inevitable 

(Pereda et al., 2005; Schreiber and Schmitz, 2000). Surrogate time series must 

preserve specific properties of the original time series in order to be useful. These 

properties are the auto�covariance sequence, stationary cross�correlation, power 

spectral density, cross power spectral density, and amplitude distribution (Pereda et 

al., 2005; Schreiber and Schmitz, 2000; Zalesky et al., 2014). In the present study, 

we adopted two basic surrogate data methods: the first one produces surrogate data 

adopting the notion of the multivariate phase randomization (MVPR) (Prichard and 

Theiler, 1994), and the second is called multivariate autoregressive (MVAR) (Savva 

et al., 2019; Zalesky et al., 2014). 

The MVPR method is first described for generating surrogate time series (Prichard 

and Theiler, 1994). Below, we described briefly the steps of producing the surrogate 

time series. Let x = [x1,x2,...,xn] denote the BOLD recordings from n=630 parcels 

each of these time series is composed of 518 time points and X =[X1,X2,...,Xn] denote 

their discrete Fourier transform. Then, we generated a uniformly distributed random 
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phase (φ = [φ1,φ2,...,φΤ]), within the interval [0, 2π] and we further applied to each 

signal with the following equation: Xk = Xk
eiφ, k = 1,2,...,n. Practically, this 

transformation means that in the frequency domain, all our recorded signals are 

multiplied by the same uniformly random phase (Hindriks et al., 2016). Finally, we 

estimated the inverse Fourier transform and we got our first surrogate dataset. We 

repeated the same procedure 1,000 times producing 1,000 surrogate datasets for 

every scan. 

MVAR models produce a set of signals described as a combination of both their 

own past and also the past of the entire set of signals in the multidimensional set 

(Prichard and Theiler, 1994). The polynomial order p defines the number of past 

signal values that are considered in the MVAR model. We selected the value of p 

based on the minimization of the Schwarz Bayesian Criterion (SBC) (Zalesky et al., 

2014). Again, a total number of 1,000 randomized copies were created for each 

subject (Hindriks et al., 2016; Zalesky et al., 2014). 

We applied both MVPR and MVAR on the original BOLD time series. 

 
Surrogate Null Hypothesis 

For every multifrequency multilayer network, we generated 1,000 surrogate 

multilayer networks based on both methods. Then, we assigned to every functional 

connection a p-value by estimating the proportion of surrogate connectivity values 

that were higher than the observed values (Theiler et al., 1992). To correct the 

effects of multiple comparisons, p-values were adjusted using the false discovery 

rate (FDR) method (Benjamini and Hochberg, 1995; Dimitriadis et al., 2015). A 

threshold of significance q was set such that the expected fraction of false positives 

was restricted to q ≤ 0.01 (Dimitriadis, 2021; Dimitriadis et al., 2015). The whole 

procedure was repeated separately across filtering methods, connectivity estimators, 

and scans. Statistical topological filtering multifrequency multilayer networks were 

then fed to our data-driven topological filtering scheme called OMST. 

 
Data-driven topological filtering scheme: 

An important preprocessing step for brain networks is to topologically filter out the 

backbone of functional links across the whole network. Here, we adopted our data-

driven technique called Orthogonal Minimal Spanning Trees (OMST) (Dimitriadis et 

al., 2017a, 2017b) for the very first time to topologically filter a multilayer network. 
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OMST  (Dimitriadis et al., 2017a, 2017b)  is a data-driven approach that optimizes 

the balance between global efficiency and the global-cost efficiency of the network 

which is defined as the global efficiency minus the cost. The cost is defined as the 

ratio of the sum of functional strength of the selected functional links versus the total 

sum of functional strength of all the pairs of functional links (fully-weighted version of 

the network). OMST can be described with the following steps : (1) at the first stage, 

the original MST is extracted consisting of N-1 functional links (where N denotes the 

total number of nodes) that connect all the nodes while simultaneously minimizing 

the average wiring cost. MST captures the main net of functional links where the 

major part of all pairs of shortest paths pass through. Global efficiency and global-

cost efficiency are estimated for the 1st MST ; (2) Then, the N-1 functional links were 

removed from the network, and we searched for the 2nd MST which is orthogonal to 

the first. We added the 1st and 2nd MST to the network, and we again estimated the 

global efficiency and the global-cost efficiency ; (3) We repeated the same procedure 

until a global maximum is detected on the plot of global-cost efficiency versus the 

total cost. For further details, see the original articles  (Dimitriadis et al., 2017a, 

2017b). The OMST procedure produces sparse functional networks but denser than 

using only the first MST. Moreover, OMST method doesn’t impose a-priori selected 

sparsity level across a cohort, and it produces highly reliable structural and functional 

networks compared to alternative topological filtering schemes (Dimitriadis et al., 

2017c, 2018b; Messaritaki et al., 2019). Here, we analyzed fully-weighted multilayer 

networks and topologically filtered multilayer networks with OMST. 

 

Network Scales: 

In the present study, we constructed a multilayer network based on the 

parcellation scheme provided by the authors of MyConnectome project (Poldrack et 

al., 2015). The total number of ROIs as was already aforementioned was 630. Here, 

we explored the within and between frequency interactions across every pair of ROI 

for a total of four frequency bands as extracted with MODWT and EMD methods. 

This practically means that the size of our multilayer network will be equal: {4 x 630} 

x {4 x 630} = 2520 x 2520. Fig.2 visualizes an example of a multifrequency multilayer 

network constructed with the combination of EMD and PC. Fig.2A illustrates the fully-

weighted multifrequency multilayer network while the OMST version of the multilayer 

network is depicted in Fig.2B. Simultaneously, as many researchers integrated their 
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findings into well-known resting-state networks, we decided to create a subnetwork 

multilayer network as follow: we computed the mean of pair-wise functional strength 

between ROIs that comprised each of the following thirteen cognitive networks as 

provided within the MyConnectome project (Poldrack et al., 2015). These 

subnetworks are Default Mode Network, Somatomotor, Ventral_Attention, 

Frontoparietal_1, Frontoparietal 2, Visual_1, Visual_2, Medial_Parietal, 

Parieto_occipital, Cingulo_opercular, Salience, Dorsal_Attention, and a final 

subnetwork that includes ROIs that are not classified to the twelve subnetworks. The 

final size of these subnetworks are equal to : {4 x 13} x {4 x 13} = 52 x 52. An 

example of a small-scale multilayer network is shown in Fig.3 for the combination of 

EMD and PD as in Fig.2. 

 

 

 

 
Figure 2. An example of a full-resolution multifrequency multilayer network from the 
1st scan derived from the combination of EMD filtering technique and PC as a proper 
functional connectivity estimator.  

A) A fully-weighted version of the multifrequency multilayer network 
B) OMST version of the multifrequency multilayer network shown in A 

          In-diagonal red blocks underline the intra-frequency functional networks of size               
630x630. Off-diagonal blocks refer to cross-frequency (inter-frequency) functional 
networks of the same size (sub - subband) 
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Figure 3. An example of a low-resolution multifrequency multilayer 
subnetwork from the 1st scan derived from the combination of EMD filtering 
technique and PC as a proper functional connectivity estimator. The size of 
this subnetwork is 52 x 52. 

A) The fully-weighted low-resolution multifrequency multilayer subnetwork. In-
diagonal red blocks underline the intra-frequency functional subnetworks of 
size               13x13. Off-diagonal blocks refer to cross-frequency (inter-
frequency) functional subnetworks of the same size.   

B) The OMST version of the low-resolution multifrequency multilayer subnetwork 
(sub - subband) 

 
 

Topological  Distance  as  Portrait  Divergence: 
 

To quantify the difference between network topologies, we used the recently 
developed  Portrait  Divergence (PDiv). The Portrait  Divergence (PDiv) between two 
graphs  G1  and  G2 is the Jensen-Shannon divergence between their “network 
portraits”, which encode the distribution of shortest paths of the two networks  
(Bagrow and Bollt, 2019).  Specifically,  the network portrait is a  matrix  B  whose 
entry  Blk,  l  =  0,  1,  …,  d  (with d  being the graph diameter),  k  =  0,  1,  …,  N  −  
1,  is the number of nodes having k  nodes at shortest-path distance l. For further 
details, an interested reader can read the original article describing this method 
(Bagrow and Bollt, 2019).  

PDiv considerates all the scales of the topology within the networks from motifs to 
large-scale connectivity patterns and is not restricted to a single network property 
(Bagrow and Bollt, 2019).  

For each scan, we obtained one brain network following each of the possible 
combinations of steps above (2x3x2x2 = 24 distinct pipelines in total). 

For each pipeline, we then computed the PDiv between multilayer brain network 
topologies obtained from the single subject at different time points (scans). This 
procedure constructed a similarity matrix of size 84x84 (scans x scans) and 
tabulated the PDiv distance of the multilayer brain network topologies related to 
every scan in a pair-wise fashion. We finally estimated the mean PDiv across every 
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possible pair of 84 scans (84x83/2 = 3486 pairs) to characterize the quality of each 
of the 24 distinct pipelines. Fig.4 illustrates scan-to-scan pair-wise PDiv distances 
between every pair of multifrequency multilayer networks. The column on the right 
shows the sum of every row in the distance D matrix called ΣPDiv. This vector of 
size equal to the number of scans expresses the (dis)similarity of every single-scan 
multilayer network topology across the rest of the scan-related multilayer network 
topologies. 

We set up a criterion of PDiV < 0.1 to characterize a pipeline as repeatable. 
 
 

 
Figure 4. Scan-to-Scan pairwise topological PDiv distances between pairs of 
multifrequency multilayer networks. The column on the right shows the sum of 
every row in the distance D matrix called ΣPDiv. The size of this vector is 
equal to the number of scans. 
 

Statistical Analysis: 
Scan-averaged PDiv were estimated for each of the potential 24 distinct pipelines. 

To explore the effect of researcher choice at the four levels of preprocessing steps 

on the repeatability of multi-frequency multilayer topology, we followed an n-way 

ANOVA (p < 0.05).  We performed two three-way ANOVA with repeated measures 

on three factors (filtering - connectivity estimator - topological layout), one in the atlas 

and one in the subnetworks space. As an input to the three-way ANOVA, we 

employed the 84 values produced by the sum of every row of the distance matrix as 

it was shown in Fig.4. The final p-values of every single preprocessing step and their 

interactions were adjusted for multiple comparisons. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.10.463799doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463799
http://creativecommons.org/licenses/by/4.0/


16 

 

III. RESULTS 

Appropriate Surrogate Model for Statistical Filtering of Multilayer Networks 

Produced surrogate time series must preserve specific properties of the original 

time series in order to be useful. Only surrogate BOLD time series produced by the 

MVPR model fulfilled the aforementioned prerequisites. MVAR failed to produce a 

useful surrogate BOLD time series. For that reason, MVPR was our single surrogate 

algorithmic choice and surrogate analysis was not involved in our main aim of how 

the researcher’s choice may affect the repeatability of multifrequency multilayer brain 

network topologies. 

 

Characteristic Intrinsic Frequency Modes for Resting-State BOLD Activity 
based on MODWT and EMD 

 We estimated characteristic frequency per representative ROI time series per 

scan. For the MODWT decomposition scheme, we adopted the pwelch method as 

provided by MATLAB. For the EMD decomposition scheme, we adopted the hht 

method as provided by MATLAB. We first averaged the characteristic frequency per 

ROI across scans and afterward, we got the mean and standard deviation across the 

number of ROIs. Table 1 summarizes the whole-brain averaged characteristic 

intrinsic frequency modes for resting-state BOLD activity extracted with both filtering 

schemes. It is evident that the mean frequency of subbands between the two filtering 

methods doesn’t overlap. 

Table 1. Whole-brain averaged intrinsic frequency modes for both MODWT and 
EMD filtering schemes 

 Subband 1 Subband 2 Subband 3 Subband 4 

MODWT 0.21�0.004 0.11�0.004 0.049�0.004 0.021�0.004 

EMD 0.27�0.012 0.14�0.011 0.072�0.006 0.023�0.003 
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Researcher’s Free Choice Preprocessing Paths May Affect the Repeatability of 
Multilayer Multifrequency Network Topologies 

 Results of three-way ANOVA with repeated measures on three factors 

(filtering - connectivity estimator - topological layout) in the atlas and subnetworks 

space revealed an effect on the repeatability of multilayer multifrequency topologies 

(p < 0.05; corrected for multiple comparisons; see Table 2 and 3). Fig.5 illustrates 

the across-scans PDIv values averaged and the relevant standard deviations per 

pipeline. It is important to mention here that repeatability is preserved in both the 

atlas and subnetworks spatial layout (PDiV < 0.1). PC and DC seem to produce 

more repeatable network topologies than MI (lower PDiV values) in both filtering 

methods and both spatial layouts with the only exception of the combination of 

MODWT- MI - SUBNETWORKS - OMST/FULLY-WEIGHTED (see the rightmost 

sub-area in Fig.5). In all the pipelines, OMST data-driven topological filtering method 

further improves the repeatability of multilayer network topologies (minimizing PDiV 

values). Another significant outcome of our study is that both filtering methods 

produce repeatable multilayer network topologies in both spatial scales. The only five 

exceptions (PDiV > 0.1) are the following: ATLAS - EMD - MI - OMST/FULLY-

WEIGHTED, SUBNETWORKS - EMD - MI - FULLY-WEIGHTED and ATLAS - 

MODWT - MI - OMST/FULLY-WEIGHTED. 

 

Figure 5. PDiV scan-averaged values across every possible pipeline (24 in 
total) among the four factors explored in our study 
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Table 2. Three-Way Analysis of Variance With Repeated Measures on Three 
Factors (Within-Subjects) Table based on Full Network Resolution Analysis 

--------------------------------------------------------------------------------------------------- 

SOV                             SS          df           MS             F        P      Conclusion 

--------------------------------------------------------------------------------------------------- 

Between-Subjects      0.278        83 

 

Within-Subjects         22.618       924 

FiltM                                0.038         1          0.038         9.197   0.0032        S 

Error(FiltM)                     0.343        83          0.004 

 

FCE                               12.944         2          6.472      1936.404   0.0000        S 

Error(FCE)                     0.555       166          0.003 

 

NT                                 1.462         1          1.462       396.851   0.0000        S 

Error(NT)                      0.306        83          0.004 

 

FiltMxFCE                          1.645         2          0.822       205.859   0.0000        S 

Error(FiltM-FCE)                0.663       166          0.004 

 

FiltMxNT                           0.148         1          0.148        37.936   0.0000        S 

Error(FiltM-NT)                 0.323        83          0.004 

 

FCExNT                           2.296         2          1.148       404.146   0.0000        S 
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Error(FCE-NT)                 0.471       166          0.003 

 

FiltMxFCExNT                      0.723         2          0.362       108.238   0.0000        S 

Error(FiltM-FCE-NT)             0.555       166        0.003 

--------------------------------------------------------------------------------------------------- 

Total                                    22.749      1007 

--------------------------------------------------------------------------------------------------- 

With a given significance level of: 0.05 

The results are significant (S) or not significant (NS). 

FiltM : filtering method (MODTW or EMD) 

FCE : functional connectivity estimator (PC,MI,DC) 

NT : Network topology (fully-weighted network vs OMST) 

 

 

 

Table 3. Three-Way Analysis of Variance With Repeated Measures on Three 
Factors (Within-Subjects) Table based on Subnetwork Resolution Analysis 

--------------------------------------------------------------------------------------------------- 

SOV                             SS          df           MS             F        P      Conclusion 

--------------------------------------------------------------------------------------------------- 

Between-Subjects      0.077        83 

 

Within-Subjects         8.999       924 

FiltM                             0.009         1          0.009        13.738   0.0004        S 

Error(FiltM)                  0.052        83          0.001 
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FCE                                0.603         2          0.302       671.013   0.0000        S 

Error(FCE)                     0.075       166          0.000 

 

NT                                  3.023         1          3.023      2645.330   0.0000        S 

Error(NT)                        0.095        83          0.001 

 

FiltMxFCE                       0.340         2          0.170       481.421   0.0000        S 

Error(FiltM - FCE)           0.059       166          0.000 

 

FiltMxNT                         0.288         1          0.288       420.998   0.0000        S 

Error(FiltM - NT)             0.057        83          0.001 

 

FCExNT                          3.037         2          1.519      3318.529   0.0000        S 

Error(FCE-NT)                0.076       166          0.000 

 

FiltMxFCExNT                 0.928         2          0.464      1104.304   0.0000        S 

Error(FiltM-FCE-NT)       0.070       166          0.000 

--------------------------------------------------------------------------------------------------- 

Total                                 8.788      1007 

--------------------------------------------------------------------------------------------------- 

With a given significance level of: 0.05 

The results are significant (S) or not significant (NS). 

FiltM : filtering method (MODTW or EMD) 

FCE : functional connectivity estimator (PC,MI,DC) 
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NT : Network topology (fully-weighted network vs OMST) 

IV. DISCUSSION 

A large amount of current neuroimaging research with fMRI is focused on 

harnessing repeatable brain network-based connectomic biomarkers related to both 

normal and abnormal brain function. However, this investigation involves a 

combination of arbitrary preprocessing choices (Korhonen et al., 2021). Test-retest 

repeatability is a prerequisite over the definition of repeatable connectomic 

biomarkers (Fornito et al., 2015; Hallquist and Hillary, 2019). Here, we explored for 

the very first time in the literature how different researcher’s choices may affect the 

repeatability of multilayer multifrequency network topologies. We systematically 

investigated 24 unique pipelines from resting-state fMRI recordings acquired from 84 

scans of a single subject (MyConnectome dataset ; (Poldrack et al., 2015)). Test-

retest studies of resting-state fMRI single-layer brain networks focused on the 

reliability of graph metrics in various cohorts and in both short and long-term periods 

between scans (Andellini et al., 2015; Noble et al., 2017, 2019; Somandepalli et al., 

2015; Song et al., 2012; Termenon et al., 2016; Wang et al., 2017 ; Somandepalli et 

al., 2015). However, the estimation of graph metrics derived from the network 

topology and the final conclusion regarding the reliability of these network metrics 

might differ from study to study due to the researcher's choice of which to represent 

and also due to their different nature. For the above reasons, our research focused 

on how the overall multilayer network topology quantified with PDiV measurement is 

affected on the 24 pipelines across the 84 scans. 

We first investigated the quality of surrogate time series produced by two 

important methods, the MVAR and MVPR.  Based on specific time-frequency 

criteria, we decided that MVPR is our unique algorithmic choice for the surrogate 

analysis and statistical topological filtering of the multilayer multifrequency networks. 

To address the effect of three factors (topological filtering - connectivity estimator - 

topological layout) on the repeatability of multilayer multifrequency topologies, we 

repeated a three-way ANOVA in the atlas and subnetwork space. Our main finding is 

that repeatability (PDiV < 0.1) is preserved in both the atlas and subnetworks spatial 

layout. PC and DC produce more repeatable network topologies than MI (lower PDiV 

values) in both filtering methods and both spatial layouts with the only exception of 

the combination of MODWT- MI - SUBNETWORKS - OMST/FULLY-WEIGHTED. In 
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all pipelines, our OMST data-driven topological filtering method further improves the 

repeatability of multilayer network topologies (minimizing PDiV values). An 

interesting finding that deserves further consideration is that both filtering methods 

produce repeatable multilayer network topologies in both spatial scales. The only five 

out of twenty-four pipelines exceptions that lead to not repeatable topologies (PDiV > 

0.1) are the following: ATLAS - EMD - MI - OMST/FULLY-WEIGHTED, 

SUBNETWORKS - EMD - MI - FULLY-WEIGHTED and ATLAS - MODWT - MI - 

OMST/FULLY-WEIGHTED.  

It is important to mention here that five out of twenty-four pipelines include MI as a 

connectivity estimator. In addition, against the overall superiority of OMST compared 

to fully-weighted multilayer networks, two out of the five worst pipelines include 

OMST. This finding can be interpreted in conjunction with three-way ANOVA findings 

where the combination of processing choices matters and a single choice cannot 

guarantee the reproducibility of network topologies. 

In the present study, we decided to decompose the BOLD signal with a well-

known technique, the MODWT (Zhang et al., 2016)  vs an adaptive filtering 

technique called EMD (Yuen et al., 2019). Our intention was to demonstrate how 

different filtering techniques of the BOLD signal can lead to repeatable multilayer 

multifrequency topologies as part of a common preprocessing pipeline. The mean 

frequency across the ROIs and scans of every frequency subband with both 

methods didn’t overlap. This finding could be evidence of the complementary 

information encapsulated by the ROI-based time series extracted from both the 

filtering methods. This is definitely a statement that deserves further consideration in 

a multi-subject test-retest study. 

 

Limitations 

In particular, we did not explore potential differences between resting-state 

conditions (eyes-open vs eyes-closed vs naturalistic viewing) (Van Dijk et al., 2010; 

Wang et al., 2011), or the impact of scan duration and arousal state (Laumann et al., 

2017). Similarly, we did not consider a wide number of alternative parcellation 

schemes in existence but we adopted the parcellation scheme proposed by the 

authors provided for free this dataset (Arslan et al., 2018; Eickhoff et al., 2018). Test-

retest studies are the first step of a systematic evaluation of how alternative network 

processing steps can affect the repeatability of network topologies. We hope that the 
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proposed network topology construction framework will lead to more consistent 

analytic practices in the human network neuroscience of functional neuroimaging 

data.  

Conclusions 

In conclusion, our study provides an exploratory framework searching for the best 

multilayer multifrequency network construction pipelines across hundreds of 

candidates, with the aim of recovering a reliable brain network topology. Our findings  

support that only the combination of several specific processing steps can guarantee 

the repeatability of multilayer network topologies. We untangled that every choice 

across the adopted processing steps matters and specific pipelines can produce 

similar network topologies over the period of eighteen months. Interestingly, 

alternative pipelines produce repeatable multilayer networks leading to the 

assumption that they share complementary information. 
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