bioRxiv preprint doi: https://doi.org/10.1101/2021.10.07.463576; this version posted October 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Low-dimensional encoding of decisions in parietal
cortex reflects long-term training history

Authors: Kenneth W. Latimer'* & David J. Freedman'!
!Department of Neurobiology, University of Chicago
*Correspondence; E-mail: latimerk@uchicago.edu.

October 7, 2021

Abstract

Neurons in parietal cortex exhibit task-related activity during decision-making tasks.
However, it remains unclear how long-term training to perform different tasks over months
or even years shapes neural computations and representations. We examine lateral in-
traparietal area (LIP) responses during a visual motion delayed-match-to-category (DMC)
task. We consider two pairs of monkeys with different training histories: one trained only
on the DMC task, and another first trained to perform fine motion-direction discrimination.
We introduce generalized multilinear models to quantify low-dimensional, task-relevant
components in population activity. During the DMC task, we found stronger cosine-like
motion-direction tuning in the pretrained monkeys than in the DMC-only monkeys, and
that the pretrained monkeys’ performance depended more heavily on sample-test stimu-
lus similarity. These results suggest that sensory representations in LIP depend on the
sequence of tasks that the animals have learned, underscoring the importance of training
history in studies with complex behavioral tasks.

1 Introduction

Activity of single neurons in the macaque lateral intraparietal area (LIP) encodes task-relevant
information in a variety of decision-making tasks (Freedman & Ibos, |2018). As a result, LIP has
been proposed to support many different neural computations underlying perceptual decision
making, including abstract visual categorization (Freedman & Assad, 2016; Huk et al., 2017).
Throughout a lifetime, animals learn to make many different kinds of decisions in a variety
of tasks and contexts, and different animals collect a unique set of experiences that shape
their perceptual and decision-making skills and strategies (Summerfield & De Lange, 2014
Goldstone & Byrge, [2015). In contrast, experiments designed to study neural mechanisms of
decision making often focus on neurons recorded during a specific task in isolation. However,
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previously learned neural representations and strategies may impact how a cortical region is
recruited when learning a new task. To understand the generality and flexibility of neural rep-
resentations which support decision making, we aim to compare decision-related LIP activity
in animals performing the same tasks, but with different long-term training histories.

We examine LIP recordings in four monkeys performing two related tasks in which they were
required to determine if sequentially presented motion directions matched according to a
learned rule (Fig.[T]A). In both tasks, the monkey views two random dot motion stimuli (sample
and test) separated by a delay period. To receive a reward, the animal responds by releas-
ing a touch bar if the two stimuli match or by continuing to hold the touch bar on non-match
trials. The delayed-match-to-sample (DMS) task is a memory-based, fine-direction discrimina-
tion task in which the sample and test motion stimuli match only if they are in the exact same
direction. In the delayed-match-to-category (DMC) task, the stimuli match if the directions be-
long to the same category (red or blue) according to a learned arbitrary category rule. In the
DMC task, two matching stimuli may be nearly 180° apart but belong to matching categories,
while neighboring directions on different sides of the category boundary do not match. Thus,
while the tasks use the same structure and stimuli, they require performing different perceptual
and/or cognitive computations.

We consider two pairs of monkeys with two different training histories (Fig. [IB). In one pair
of monkeys (B and J; Swaminathan & Freedman, 2012), the monkeys were trained only to
perform the DMC task (i.e., without first training the monkeys on fine discrimination), and LIP
recordings were made after training was completed (DMC only populations). The second pair
of monkeys (pretrained monkeys D and H; Sarma et al., [2016), was first trained extensively
on the DMS task, and LIP recordings were obtained after training (DMS population). The
monkeys were then retrained on the DMC task, and a set of LIP recordings was made dur-
ing an intermediate stage of training (when the monkeys’ performance stabilized; DMC early
populations). After the DMC-early recordings, the monkeys received additional training which
overemphasized near-category-boundary sample stimuli (the most difficult conditions where
the monkeys’ performance was lowest) so that the monkeys’ performance increased. After the
second training stage was complete, a final set of LIP neurons was recorded during the DMC
task (DMC late populations). In this study, the monkeys did not perform both tasks during a
single session; they were switched exclusively to the DMC task and retrained over the course
of months. In total, we analyzed eight LIP populations from four animals.

Not only do the DMS and DMC tasks share the same structure, timings, and stimuli, many
of the sample-test pairs are rewarded for the same responses in both contexts (e.g., sam-
ple and test stimuli of the same direction match in both tasks). It is plausible that pretrained
monkeys may reuse strategies acquired for performing the discrimination task while learning
the DMC task. Similarly, different training histories may lead to different behavioral strate-
gies to perform the DMC task, and different strategies may give rise to different patterns of
activity in LIP (Tang et al., 2020). Previous studies have found that stimulus encoding and
working-memory dependent sustained-firing activity in the prefrontal cortex during cognitive
tasks depends on training (Qi & Constantinidis, 2013; |Li et al., 2020). Additionally, the causal
contribution of the middle temporal (MT) area of macaque visual cortex, which encodes motion
and projects to LIP (Born & Bradley, 2005), depends on training history during motion-direction
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Figure 1: LIP recordings during DMS and DMC tasks. (A) In both tasks, the animal fixated and
viewed a motion direction stimulus (sample). Following a delay period, a second stimulus (test)
was presented. The monkey signaled if the sample and test stimuli matched by releasing a touch
bar, otherwise the monkey was required to hold the touch bar. In the DMS task, the sample and test
stimuli matched only if the directions were exactly the same. In the DMC task, the stimuli matched
if they belonged to the same category: the motion directions were split into two equally sized
categories with a 45°-225° boundary (red and blue directions; the boundary was constant for all
sessions). The motion stimuli were placed inside the LIP cell’s response field (yellow circle) during
recording. (B) (top) Training and recording regimes for the four monkeys. (bottom) Performance
during each recording session (dots) for each animal are summarized by the box plots. Colors
correspond to the task and training period (DMS, DMC early or late, and DMC only). Asterisks
indicate median per-session performance is greater than 90% (p < 0.01, one-sided sign test,
Holm-Bonferroni corrected). All four monkeys learned to perform the DMC task with a median
performance of at least 90 % per session. (C) Mean firing rates of six single LIP cells recorded
during each task. Colors correspond to the stimulus direction and category. Firing rates aligned
to the sample stimulus onset are averaged by sample direction (left), and the test stimulus aligned
rates are averaged over test direction (right). Although motion categories were not part of the DMS
task, the directions are labeled blue or red for consistency. (inset polar plots) The mean firing rate
for each sample direction during the sample stimulus presentation (circles and solid lines; 0 ms to
650 ms after motion onset) and delay period (triangles and dotted lines; 800 ms to 1450 ms after
motion onset). The solid black line denotes 20 sp/s.

discrimination (Liu & Pack|, 2017) and coarse depth discrimination (Chowdhury & DeAngelis,
2008). We therefore hypothesize that differences in training history could result in differences
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in LIP population activity during the DMC task which reflect behaviorally relevant aspects of
the neural computations underlying categorization (Churchland & Kiani, 2016)).

Direction and category selectivity is visible in the average firing rates of single LIP neurons in
both pairs of monkeys during the DMC task (Fig. [1|C). However, based on single cells alone
it is difficult to uncover the computations involved in the DMC task: how sample category
is computed and then stored during the delay period, or how the test stimulus is compared
to the sample. Instead, we take a dimensionality reduction approach to compare the low-
dimensional geometry of population responses to better illuminate how LIP encodes different
tasks (Okazawa et al., 2021).

While many methods of dimensionality reduction are available, we sought a compact, low-
dimensional description of LIP responses that quantified the population responses as a func-
tion of the task variables. Moreover, we wished to perform dimensionality reduction on the
trial-by-trial spike train responses (as opposed to trial-averaged spike rates) within each pop-
ulation in order to account for structure in the neural activity beyond mean firing rates (e.g.,
bursting or oscillations). We therefore introduce the generalized multilinear model (GMLM) as
a model-based dimensionality reduction method for population activity during flexible cognitive
tasks (Fig. [2A). The GMLM is a tensor-regression extension of the generalized linear model
(GLM) which describes a single neuron’s spiking response to different task events through
a set of linear weights or kernels (Zhou et al., 2013}, |Park et al., 2014}; Robinson et al., 2016},
Kossalfi et al.,[2020). The GMLM fits the data from all cells in a dataset into one compact repre-
sentation by taking a low-rank tensor decomposition of linear kernels of the task events — the
sample and test stimuli and the touch-bar release — that best describes the shared response
dynamics across the entire population as a function of the task variables. This contrasts with
the GLM, which fits each cell individually without directly recovering low-dimensional struc-
ture. Similarly to exponential family principal components analysis (Mohamed et al.,|2008), the
GMLM can be applied directly to binned spike count data rather than smoothed spike rates.
The GMLM inherits the GLM’s flexibility for modeling trials with variable structure. For example,
the timing of the end of the trial is controlled by the animal via their releasing the touch-bar. In
contrast, dimensionality reduction approaches based on peristimulus time histograms (PSTH)
require temporally aligned trials (e.g., principal components analysis-based methods; |Kobak
et al., |2016; Aoi et al., [2020), thereby limiting those approaches’ ability to quantify motion
and category tuning or touch-bar response related activity during the test period. Stimulus
category and direction are low-dimensional variables, and motion direction tuning in sensory
regions such as area MT can be well-captured by simple parametric models (Rust et al., 2006).
Therefore, the GMLM is well-suited for modeling how LIP populations represent combinations
of these task variables during the DMC task.

By applying the GMLM to the LIP populations, we quantified population-level differences in
LIP activity between animals and compared those differences with behavioral performance
with respect to the animals’ training histories. We found category and direction selectivity
in LIP during the DMC task in all subjects. However, we found stronger cosine-like motion
direction tuning in LIP during the DMC task in monkeys first trained on the DMS task compared
to monkeys trained only on categorization. During the test stimulus presentation when the
monkeys had to compare the incoming test stimulus to the remembered sample stimulus,
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Figure 2: The generalized multilinear model for dimensionality reduction of neural populations. (A)
Diagram of the GMLM. Incoming stimuli are factorized into temporal events and stimulus weights
that encode direction and category information (Fig. [STE-I). A set of temporal kernels and stim-
ulus coefficients filter the stimuli into a low-dimensional stimulus response space. The touch-bar
release event is similarly filtered using a low-dimensional set of temporal kernels. Each individual
neuron’s firing rate at each time bin is a nonlinear function (here, f(-) = exp(-)) of the sum of
a linear weighting of the low-dimensional stimulus subspace, a linear weighting of the touch-bar
subspace, and recent spike history. Spiking is given as a Poisson process given the instantaneous
rate. Because we do not include interactions between neurons here, this model can be applied
to a set of single-neuron recordings. However, the model can readily be extended to include in-
teractions in simultaneously recorded populations (Pillow et al., 2008; |Pandit et al., 2020). (B)
The model represents the different stimulus directions and categories — including whether it is
the sample or test stimulus — as vectors in a low dimensional space where the dimensionality
is the number of factors. The vectors change over time given the temporal kernels. The models
we focus on here constrain the direction tuning, but not category, to be constant over the sample
and test stimuli. The full GMLM allows for flexible direction tuning (i.e., each stimulus direction is
a distinct point) and the cosine-tuned GMLM constrains the direction tuning to an ellipse. Thus,
dimensionality reduction in the GMLM can take into account that temporal dynamics and stimu-
lus tuning information can be shared across the two stimulus presentations. Individual neurons’
stimulus tuning is a linear projection of the low-dimensional space.

sample category could be more reliably decoded from LIP responses irrespective of the test-
stimulus direction in the DMC-only monkeys than in the pretrained monkeys. Behaviorally, the
pretrained monkeys were more likely to make categorization errors when the sample and test
stimuli were similar than the DMC-monkeys. Additionally, we introduce dynamic spike history
within the GMLM which reveals a difference in oscillatory, single-trial dynamics during the
delay period between the DMC-only and pretrained monkeys. Together these results suggest
that different subjects may recruit distinct behavioral and neuronal strategies for performing
the DMC task, and that long-term training history may play a role in shaping these differences.
Low-dimensional encoding of the DMC task in LIP may therefore reflect training history or a
particular task strategy (or both).
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2 Resulis

2.1 Dimensionality reduction in LIP with the GMLM

We aimed to describe how task-related responses in LIP are shared across neurons in a pop-
ulation by reducing the dimensionality of the eight LIP populations using GMLMs. The GMLM
uses a low-dimensional set of components to describe the population responses during each
trial as a multilinear function of the task variables (Fig. [ST). To place the DMC task into the
GMLM framework, the motion stimuli were linearized as two sets of regressors: (1) timing
events to indicate the onset of a stimulus (sample or test) and (2) stimulus identity regressors
that encode direction, category, or if the stimulus is the sample or test. The model’s parame-
ters include a set of stimulus components, where each component contains a single temporal
kernel (or linear filter) and a set of weights for the stimulus identity. Each component temporally
filters the stimulus onset events, and weights the filtered stimuli linearly by stimulus identity.
As a result, each individual component contributes to the population encoding for all stimuli
(not just a single motion direction or sample/test presentation). Each individual neuron’s tun-
ing to the motion stimuli is a linear combination of the stimulus components. The model also
includes a low-dimensional set of components to represent the touch-bar release event: a set
of temporal kernels describe the population response to a touch-bar release such that each
neuron’s touch-bar tuning is a linear combination of those kernels. Each spike train is then
defined as a Poisson process in which the instantaneous firing rate is given by the sum of the
filtered stimuli and touch-bar release, plus a linear function of recent spike history. The set
of stimulus components is a low-rank tensor that represents population tuning to the motion
stimuli in a low-dimensional subspace which captures shared response dynamics across neu-
rons in the population. The factorized representation of the stimulus into temporal and identity
weights captures shared temporal dynamics between different directions or between sample
and test stimuli. As the number of components (i.e., rank) in the kernel tensor increases, the
model approaches a GLM fit to each cell individually.
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Figure 3: GMLM with seven stimulus components fit to the LIP neurons recorded from monkey
B during the DMC task. (A) The seven GMLM stimulus components that define the population
responses to the motion stimuli are given in each row. (left) The temporal kernels for each com-
ponent (normalized). (middle) The temporal kernels weighted for each sample stimulus direction.
(right) The temporal kernels weighted by the test category (the test stimulus kernels are shown
shorter than the sample stimulus kernels because trial ends after the test stimulus presentation).
The total kernels for each test direction are computed by adding the test category kernels to the
sample direction filter. As a result, the sample and test kernels have the same direction tuning,
but the kernels may have different category tuning (e.g., component 5). (B) The distributions of
weights for each component across all neurons. Each dots is the weight for one neuron for the
given component. (C) Each column shows the model fit of the sample stimulus kernels for three
example neurons. The first seven rows show the seven components scaled by each neuron’s
linear weighting of the component (the middle column of part A with neuron-dependent scaling
from B). (D) Total sample stimulus tuning for the three example cells. The total GMLM stimulus
kernels (i.e., the sum of rows in C; top row), the GLM fit to the individual cell (middle), and the
PSTH conditioned on sample stimulus direction for comparison (bottom). The low-dimensional set
of kernels for the touch-bar release are shown in Fig.
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We designed a set of four nested models (i.e., different linearizations of the motion stimuli
with increasing complexity) in order to assess what stimulus information is encoded by an LIP
population (Fig. [STE-I). The simplest model was the no category or direction tuning model. In
this model, the linear weights for the stimulus identity only defined whether the stimulus was the
sample or test. This model can only capture the average trajectories in time during the task
over all stimulus directions. The second model, the category only model, includes stimulus
category weights, but does not consider specific motion direction. The category only model
includes stimulus identity information for the category one and category two motion directions
for both the sample and test stimuli. This way, the model can capture category tuning, which
may be different for the two stimulus presentations. While the DMS task had no category,
we still fit category weights to the DMS populations as a control (i.e., to ask what the model
produces if category was not actually a behavioral factor in the task). The third model included
cosine direction tuning and category. In addition to the category weights from the previous
model, this GMLM included two coefficients for the sine and cosine of the motion direction.
The cosine and sine weights were the same for both sample and test stimuli. Thus, this
model constrains the geometry of direction tuning to lie on an ellipse in the low-dimensional
space (Fig. [2B). The final model, the full model, extends the cosine direction tuning model
by allowing different weights for each individual motion direction, rather than constraining the
direction information to be cosine tuned.

The full GMLM fit to the LIP population from monkey B is shown in Fig. [3]A,B. The model has
seven stimulus tensor components, each with a temporal kernel (left column). The temporal
kernel is scaled for each of the six directions in the task to give a temporal kernel for the
sample stimulus (middle column). Next, we include additional test category kernels, which
are added to the direction kernels in the middle column, to describe the response to the test
stimulus (right column). Different components can have different temporal response dynamics
and different stimulus tuning properties: for example, component 5 shows strong differentiation
between the two stimulus categories (red and blue), while component 2 does not. Each cell’s
response tuning (linear kernels) is then a linear combination of the components. The tuning
to the sample directions for individual cells is illustrated in Fig. [3IC,D. The GLM fits to the
individual cell and corresponding PSTH are shown below the GMLM fit for comparison. We
note the total firing rates fit by the models are a combination of the stimulus filters, baseline
rate, spike history effects, and firing rate nonlinearity. As a result, the PSTHs and filters do not
match exactly.

The parameterization in the cosine-tuning and full models assumes the direction tuning (but
not category tuning) is the same for both sample and test stimuli: that is, the difference be-
tween the kernels for two motion directions within the same category are the same for both the
sample and test stimulus. Such direction tuning constancy would be consistent with common
bottom-up, direction-tuned input from sensory areas such as MT for the two stimulus presen-
tations. The model still includes test category filters, which allow for different category tuning
or direction-independent gain differences between sample and test stimuli. We found that
including separate sample-test direction tuning in either model did not improve the model fit
(Fig.[S3A). Additionally, comparing sample and test direction weighting in the low-dimensional
GMLM component space showed similar direction preferences for the two stimuli (Fig. [S3B).
Thus, the GMLM framework can both constrain the parameters to enforce constant direction
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Figure 4: Rank selection in the GMLM. (A) The mean cross-validated log likelihood per trial aver-
aged across neurons of the GMLM as a function of the stimulus kernel tensor rank relative to the
model without any stimulus terms (i.e., the rank 0 model) for each of the eight LIP populations.
Each trace shows the log likelihood for a single model parameterization: no stimulus information
(i.e., only mean temporal dynamics; blue), category only (no specific direction information; yellow),
category plus cosine direction tuning (red), and the full model with flexible direction tuning (green).
The dashed lines show the mean cross-validated likelihood of the GLMs, which correspond to the
full-rank model. (B) The fraction of log likelihood of the full GLM (fraction of the log likelihood that
could be captured by the GMLM) was used to select the GMLM rank for each LIP population,
shown here for monkey D, DMC late. This fraction is the cross-validated log likelihood divided by
the log likelihood of the full GLM (dashed green line), and the threshold for rank selection was
90 % of the log likelihood per trial. (C) Number of stimulus components (rank) selected for the
GMLM for each LIP population. The number of stimulus parameters in the low-rank GMLM (full
model) is compared to total parameters in the equivalent single-cell GLM fits for all cells in each
population.

tuning between the two stimuli, and test statistically whether that assumption holds.

2.2 Model selection and dimensionality

We first determined the dimensionality of stimulus-related activity in the LIP population re-
sponses. We varied the number of components to include in the GMLM (i.e., the rank of the
stimulus kernel tensor). We compared the full GMLM to the corresponding single-cell GLM fits,
where the GLMs represent the “full-rank” model. We computed the average likelihood per trial
averaged over the neurons in each population for the GMLM fit, relative to the GMLM without
any stimulus terms (Fig. [4JA). We selected the rank by the number of components needed to
explain, on average, 90 % of the explainable log likelihood per trial over all the neurons in each
population (Fig.[4B). The GMLM required 7 to 12 stimulus components per population, thereby
using only a fraction — less than 8 % — of the number of parameters compared to GLM fits to
individual cells (Fig. [4C).

We then asked how much each task variable contributed to the low-dimensional LIP responses.
To do so, we quantified model fit as we monotonically increased the complexity in the nested
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models by including more information about the stimulus identity and category. A major-
ity of the log likelihood was accounted for by the GMLM without category or direction tun-
ing in all populations, which is consistent with many previous dimensionality reduction re-
sults (Kobak et al., [2016). The category-only GMLM captured a greater percentage of the log
likelihood over the no-category model in the DMC late populations than in the DMS popula-
tions (Monkey B, DMC only 2.5 &+ 0.3 %; Monkey J, DMC only 13.8 &+ 0.9 %; Monkey D, DMS
2.1 +0.3%, DMC early 1.4 +0.7%, DMC late 2.8 4+ 0.2%; Monkey H, DMS 3.3 + 0.2 %,
DMC early 11.3 0.7 %, DMC late 9.5 + 0.3 %; mean percentage cross-validated log like-
lihood accounted for by the category-only GMLM minus the no-category GMLM where the
errors are +2 SEM over the cross-validation folds).

Cosine direction tuning during the DMC task accounted for a larger improvement of the model
fit over the category only model for the pretrained monkeys than the DMC-only monkeys. (mon-
key B, DMC only 1.0 + 0.4 %; monkey J, DMC only 0.2 4 0.7 %; monkey D, DMS 4.1 4+ 0.3 %,
DMC early 1.6 +1.0%, DMC late 1.9 + 0.1 %; monkey H, DMS 8.2 + 0.6 %, DMC early
11.9 + 0.5 %, DMC late 9.9 + 0.6 %; mean percentage cross-validated log likelihood accounted
for by the cosine-tuned GMLM minus the category-only GMLM). Thus, direction-tuning played
a stronger role in the pretrained monkeys’ LIP activity than in the DMC-only monkeys.

We tested the adequacy of cosine parameterization of direction tuning by comparing the more
flexible full model. The cosine direction tuning model was comparable to the full model for
all populations (monkey B, DMC only 0.2 + 0.2 %; monkey J, DMC only 0.3 &+ 0.7 %; mon-
key D, DMS 0.2 +0.2%, DMC early 0.2 + 0.1 %, DMC late 0.2 4+ 0.2%; monkey H, DMS
0.3 +0.4%, DMC early 1.1 + 0.5%, DMC late 1.3 + 0.3 %; mean percentage cross-validated
log likelihood accounted for by the full GMLM minus the cosine-tuned GMLM). For these tasks,
the direction tuning in the population could therefore be approximated as an ellipse (and thus
embedded within a plane).

2.3 Low-dimensional response to the sample stimulus

To gain intuition about how LIP dynamics may support the transformation of motion direction
input into a representation of category, we visualized the low-dimensional population tuning
to the sample stimuli. The top three dimensions of the trajectories show large, stimulus-
independent transient responses (Fig. B, inset; Fig. [S4). This is consistent with the large
fraction of the data explained by the GMLM without category or direction tuning. We there-
fore subtracted the mean response over stimuli and plotted the top three dimensions in the
mean-removed responses (Seely et al., 2016). The two DMC-only LIP populations showed
primarily two-dimensional responses with strong category separation (Fig. [B). For the pre-
trained monkeys, the trajectories during the DMS task reflected the stimulus geometry: the
model shows two-dimensional transient activity organized by stimulus angle. The responses
show little stimulus-specific persistent activity during the delay period (Sarma et al.,[2016): the
trajectories return to the origin after stimulus offset. During the DMC early phase, the low-
dimensional LIP response reflects the stimulus geometry, but the top dimension is aligned to
the task axis (i.e., blue and red directions are separated along dimension 1). The trajectories
are still two-dimensional without clear delay period encoding. After training was completed,
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GMLM fits: low-dimensional responses to sample stimulus
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Figure 5: Low-dimensional representations of motion direction and category during the first
1500 ms of each trial (sample stimulus presentation and delay period). The top three dimen-
sions of the GMLM’s sample stimulus encoding for each of the eight LIP populations with the
mean response over all directions removed. The inset for monkey B shows the top three dimen-
sions including the mean (left) and the top three dimensions that remain after removing the mean
(right). The two plots for each monkey show the top dimension on the x-axis plotted against the
second or third dimensions on the y-axes (except for monkey H shown in the 3-D plots). The red
and blue traces show the response to each motion direction from stimulus onset (circles), to stim-
ulus offset (triangles), and into the delay period (x’s denote 1500 ms after sample motion onset).
The three-dimensional trajectories (of the cosine-tuned model) are shown as a function of time in

Fig.

monkey D’s DMC late LIP activity showed strong direction tuning during the stimulus presen-
tation which is elongated along the task axis (that is, the axis most oriented to category along
the 135°-315° stimulus directions). In contrast, LIP in monkey H had a three-dimensional stim-
ulus response in the late period: two dimensions reflecting the circular motion directions during
the stimulus presentation and a third orthogonal axis for category that was sustained through
the delay period. Similar orthogonal stimulus input and working memory representations have
been observed in other decision making tasks (Aol et al., 2020; Libby & Buschman, 2021).
In summary, the low-dimensional stimulus components of the LIP activity differed across ani-
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mals such that the pretrained monkeys’ LIP showed strong, circular representations of motion
direction, while the DMC-only monkeys had lower-dimensional responses that more strongly
reflected category.

2.4 Quantifying the geometry of category and direction in the stimulus
subspace

To go beyond visualization of the low-dimensional subspace, we wished to quantitatively as-
sess the geometry of category- and direction-dependent responses in LIP. Here, we focused
on the cosine-tuned GMLM. Given this choice of parameterization, direction and category
could be decoupled, while still capturing a similar subspace to the full model (Fig.[S5). At each
point in time, category was encoded along a vector while direction (parameterized by angle)
was encoded on an ellipse in the stimulus subspace (Fig. [fJA). The ellipse could be circular,
which would represent motion directions uniformly, or elongated so that the population repre-
sentations are biased towards a preferred motion direction. We compared the norm of major
and minor axes of the direction ellipse and the norm of the sample category vector (Fig.[6B) as
a function of time relative to stimulus onset. We conducted a Bayesian analysis of the GMLM'’s
sample stimulus subspace to take into account uncertainty in the model fit given the posterior
distribution of the model parameters.

The DMC-only LIP population subspaces showed strong category tuning relative to direction
tuning. The category vector in monkey B was of similar magnitude to the minor axis of the
direction ellipse during stimulus presentation, and stronger during the delay period. The cat-
egory vector in monkey J was larger than the direction tuning ellipse throughout the stimulus
presentation and delay period. The direction tuning ellipses were elongated along a partic-
ular motion direction, rather than circular. Additionally, the direction ellipse aligned both with
category and with the choice biases in monkeys B and J on trials where the sample motion
direction was ambiguous (Fig.[S6). The sample stimuli on ambiguous trials were placed on the
category boundary, and the monkeys were rewarded randomly. The ambiguous trials were not
used to fit the GMLM. Thus, the stimulus components in the DMC-only populations reflected
category-specific input selection.

In the pretrained monkeys, the DMS populations showed strong direction tuning, which in
monkey H was nearly circular or uniform (i.e., the major and minor axes of the direction ellipse
were of similar length). During the late DMC sessions — but not during the DMS task — mon-
key D’s direction ellipse was aligned with the task category (i.e., the major axis was along the
135°-315° angles; Fig.[S6[C). The same task-aligned direction encoding during the DMC task
was not observed in monkey H. In both the monkey D late DMC and monkey H early DMC
populations, we found stimulus offset activity in the direction ellipse, but not in the category
vector. As a result, individual neurons may appear to respond more strongly for a particular
category early in the delay period, but the model accounted for this as a direction-tuned re-
sponse rather than category-specific encoding. The monkey H early and monkey D early and
late DMC populations did not have large category vectors, and the low-dimensional activity
instead reflects an elongated direction tuning ellipse (i.e., the major axis is larger than the mi-
nor axis) during stimulus presentation. In the monkey H late DMC population, we observed a
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slow increase in the category vector length over time in the trial, which does not surpass the
magnitude of direction tuning until the delay period.

We then asked how the subspace geometry could affect how decoding methods assess cat-
egory selectivity in LIP. We applied a linear decoding technique previously proposed to reveal
category representations independent of motion direction (Swaminathan et al., 2013} Sarma
et al., 2016). The decoder classifies the sample category based on spike counts from pseu-
dopopulation trials. We trained and validated the decoder on trials from orthogonal sets of
stimulus directions (Fig.[6IC). The logic of the decoder is that, if motion direction is represented
in the population circularly without any additional category-specific responses, the decoder will
not generalize across the training and validation conditions. The DMS populations provided a
control for the method, because the monkey was not yet trained to classify motion category.
We indeed found no significant category decoding in the two DMS populations (Fig. [6D).

The decoder performances during the DMC task were consistent with the GMLM stimulus
subspaces. Category could be decoded with high accuracy in monkeys B and J early in the
stimulus presentation and throughout the delay period (Fig. [6D). Similarly, the GMLM anal-
ysis had found strong category tuning beginning early in the stimulus period and continuing
through the delay in those populations. The results were different in the pretrained animals.
In both DMC early and monkey D’s DMC late populations, we found decoding above chance
during stimulus presentation, but not during the delay. The task-aligned, non-circular response
to stimulus direction in monkey H DMC early and monkey D DMC early and late enabled the
decoder to generalize across conditions due to over-representation of signal along the task
dimension (135°-315°), rather than a category vector independent of direction. In contrast, in
the DMC late population for monkey H, the decoder only found weak decoding late in the sam-
ple stimulus presentation, which became strong during delay period. The orthogonal category
dimension of monkey H DMC late is only stronger than the circular direction coding during the
delay period, corresponding to the onset of significant category decoding. The decoder’s fail-
ure to generalize during the early sample period can therefore be explained by strong direction
selectivity swamping the weaker, orthogonal category signal.

2.5 Comparing the sample and test stimuli

The DMC task requires different computations for the test and sample stimuli: the category
of the sample stimulus must be computed and stored in short-term memory, while the test
stimulus must be compared to the stored sample category. Recent work has suggested that
LIP linearly integrates the test and sample stimuli during the test period of the DMC task
while prefrontal cortex shows more nonlinear match/non-match selectivity (Zhou et al., 2021).
We therefore compared the LIP responses to the test stimulus to the population responses
to the sample stimulus. In the GMLM fits to the DMC populations, we found that test cat-
egory tuning during the test stimulus presentation was weaker than sample category tuning
during the sample presentation (Fig.[S7). This can be seen in the low-dimensional subspace
for monkey H (Fig. [7;A). During the sample stimulus, the subspace reflected category tuning
orthogonal to the motion direction response (Fig. [ bottom right). However, we did not find
the same category-selective response to the test stimulus in the stimulus subspace. Addition-
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Figure 6: Quantification of category and direction encoding in LIP. A Diagram of direction en-
coding in the cosine-tuned GMLM. Motion stimulus direction is encoded as an ellipse in the low-
dimensional stimulus space. The ellipse has major (orange arrows) and minor (green arrows)
axes which define its shape. If the axes are of similar length, tuning is approximately circular and
the motion directions are evenly distributed in the low-dimensional space (top). If the major axis
is elongate compared to the minor axis, the population shows a preferred direction which may be
aligned with category (middle) or the null direction (bottom) or anywhere in between. Category is
encoded as a vector in addition to the direction ellipse, and the category vector is constant for all
motion directions within a category (in contrast to the task-aligned direction tuning which places
near-boundary directions closer together). B Bayesian estimate of the geometry of the sample
stimulus tuning for the eight LIP populations. Each plot shows the norm of the sample category
vector (black) and the norms of the major (orange) and minor (green) axes of the direction tuning
ellipse for an LIP population as a function of time relative to the sample stimulus onset. The solid
lines denote the posterior median at each time point, and the shaded regions denote 99 % credible
intervals. If the major and minor axes have equal norms, then direction would follow a circle in the
low-dimensional space. [Continued on next page]
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Figure 6: [Continued] C The training and test scheme for a direction-independent category de-
coder. Psuedopopulation trials were created from 50 random trials sampled with replacement for
each direction from each cell. For monkeys B and J, the decoder is trained using one direction from
each category (180° apart; red and blue) and validated on the remaining four directions (yellow).
For monkeys D and H, the decoder is trained using two adjacent directions from each category
(again using opposite directions from each category; red and blue) and validated on the remaining
four directions (yellow). D Median decoder generalization performance as a function of time for
each of the eight LIP populations. The decoder was trained and tested using spike counts in a
200 ms window centered at the time relative to sample stimulus onset on the x-axis. The shaded
regions denote a 99 % confidence interval over 1000 random pseudopopulations. Symbols de-
note decoding significantly greater than chance (50%; p < 0.01 Benjamini-Hochberg corrected,
one-sided bootstrap test).

ally, LIP population activity projected onto the touch-bar (motor response) subspace showed
strong match/non-match separation with little category selectivity (Fig. [S8). Thus, LIP does
not appear simply to extract and sum the categories of the two stimuli to compute match or
non-match.

We tested if the stored sample category and incoming test stimulus category were separable
in the LIP population responses during the test stimulus presentation. We used linear clas-
sifiers to decode the sample or test category from pseudopopulation spike counts during the
first 200 ms of the test stimulus presentation. The decoders were trained on trials of all stim-
ulus directions. However, the training set consisted of only match (or non-match) trials, while
the validation set included only non-match (or match trials). For the two DMC-only animals,
monkeys B and J, the sample category decoder generalized across the two conditions (i.e.,
performed better than chance). The test category decoder, however, performed much worse
than chance (Fig.[7B). Thus, the decoding axis for test category switched signs across match
and non-match trials. We observed the opposite pattern in the pretrained monkeys: the de-
coders generalized to classify the test stimulus category, but not the sample. In the DMC-only
animals, sample category can therefore be read out by a single linear decoder regardless
of the test stimulus identity, which is consistent with stronger separability of the remembered
sample category and the incoming test stimulus in the DMC-only monkeys than in the pre-
trained monkeys. Increased separability suggests a coding scheme that reduces interference
between the stored sample stimulus category and the specific test stimulus direction (Libby &
Buschman, 2021).

We then asked how the monkeys’ performances depended on the similarity between the sam-
ple and test stimuli. We compared the monkeys’ accuracy as a function of distance between
test and sample directions (Fig. [7IC). The pretrained monkeys showed a different pattern of
accuracy than the DMC-only monkeys. At small sample-test differences, the pretrained ani-
mals showed better performance on match than non-match trials while the DMC-only monkeys
perform similarly or better on non-match. Additionally, the pretrained animals showed greater
dependence on distance. These effects were greatest during the early DMC training phase,
but they persisted after extensive training on the order of several months (the total number
DMC training sessions between the DMC early and DMC late periods was 78 for monkey D
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Figure 7: Matching the test stimulus to the stored sample in the DMC task. A The low-dimensional
test stimulus response for each direction for monkey H, late DMC with the mean response removed
projected into the same dimensions as in Fig. |5| (bottom right). B Decoding accuracy of sample
(top) or test (bottom) category using the spike counts during the first 200 ms of the test stimulus
(excluding the motor response for 95.7 % of match trials). The decoder was trained on trials from
all stimulus directions, but only from match (or non-match) trials and then tested on non-match
(or match) trials. All decoders generalized significantly different than chance (50%; p < 0.01
Benjamini-Hochberg corrected, two-sided bootstrap test). C Average performance as a function of
the difference in angle between the sample and test stimulus, sorted by match/non-match trials in
the DMC task (error bars show a 99 % credible interval). Asterisks indicate match and non-match
are significantly different (p < 0.01, two-sided rank sum test, Benjamini-Hochberg corrected).

and 65 for monkey H). Therefore, stimulus similarity — which was relevant in the DMS task
— affects categorization behavior more strongly in the pretrained monkeys than the DMC-
monkeys, reflecting the monkeys’ strategy.
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2.6 Single-trial dynamics during the delay period

Neural dynamics during single-trials may reflect aspects of sensory processing and working
memory beyond the mean firing rate (Fontanini & Katz,|[2008; Miller et al., 2018). For example,
working memory may be supported by persistent activity (Constantinidis et al.,|2018) or oscil-
latory bursts (Lundqvist et al.,[2016)) while stimulus-related activity may exhibit strong transient
responses with quenched variability (Churchland et al.,[2010). We therefore sought to charac-
terize non-Poisson variability in single trials in LIP during the DMS and DMC tasks, which could
reflect signatures of different strategies in performing the tasks. The GLM framework accounts
for non-Poisson variability or single-trial dynamics by conditioning firing rates on recent spiking
activity through a spike history filter, an autoregressive term which can reflect a combination
of intrinsic (e.g., refractory periods) and network properties (e.g., oscillations) (Truccolo et al.,
2005; Weber & Pillow, 2017; Zoltowski et al., 2019). Typically, the GLM assumes the spike
history filter to be constant: that is, spike history has the same effect on spike rate throughout
a trial. While fixed spike history effects may be an appropriate assumption in early sensory
regions under stimulation with steady-state stimulus statistics, spiking dynamics in LIP might
vary between the stimulus presentation and the delay period due to the transition in behavioral
task demands between these two periods of the task (Hart & Huk, [2020). In order to quantify
spike history effects in the DMS and DMC tasks, we extended the GMLM to include dynamic
spike history filters which allows the autoregressive dynamics to change throughout a trial
(Fig. [8A). The dynamic spike history in the GMLM was a low-rank tensor with a linear spike
history component and a gain term relative to the stimulus timing (Harris et al., [2019). As a re-
sult, the model learns how each neuron’s spike history filter changes during the course of a trial
relative to task events, and can therefore capture distinct dynamics between stimulus-driven
and delay periods of the trial.

We fit the GMLM with a single dynamic spike history component to the LIP populations. Includ-
ing dynamic spike history improved the cross-validated model performance for all populations
(Fig.[S9A). The GMLM found similar dynamic spike history kernels for the two DMC-only mon-
keys, which showed oscillatory dynamics at approximately 12 to 14 Hz (low-beta; Fig. [8B). In
contrast, the dynamic spike history kernel for the pretrained monkeys at all training stages
was dominated by a faster timescale decay (time constants monkey D 10.2, 14.8 and 11.8 ms
and monkey H 22.5, 9.0 and 6.6 ms DMS, DMC early, DMC late respectively), which suggests
stronger gamma-frequency bursts. The stimulus-timing kernels showed that the dynamic spike
history generally aligned with stimulus onset and offset (Fig. [8C). One notable exception was
monkey J: the timing showed only a short transient gain after stimulus onset. The timing of
this kernel corresponded with the strong category-dependent transient response in monkey J
(Fig. [6B), and thus raises the possibility that the network enters a memory-storage state prior
to stimulus offset.

Lastly, we examined population differences in the total spike history: the dynamic spike history
filter (which depends on time in the trial) plus the individual neurons’ fixed spike history filters.
We computed the population mean spike history kernel at two different points (Fig. [8D): dur-
ing stimulus-driven activity (100 ms after sample stimulus onset) and during the delay period
(500 ms after sample offset). The mean spike history in the DMC-only monkeys showed a pro-
nounced oscillatory-like trough during the delay period, compared to the pretrained monkeys

17


https://doi.org/10.1101/2021.10.07.463576
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.07.463576; this version posted October 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

D population mean spike history filters

A dynamic spike history 0.57 100 ms after sample onset
stimulus x low-rank dynamic spike history tensor
stimulus type NEE s 0
sample/test ———— B *‘—; —— Monkey B: DMC only
. o 'n% vdspk @ — — Monkey J: DMC only
timing Tt i 5] Monkey D: DMC late
sample f x ) ‘i 8 0.5 ‘.‘wowke:« H Dr.WC \’a .
— r"‘\" — 0 Vionkey VIC late
test time— S
H(hpk (=)
@ + total =2 05 500 ms after sample offset (delay)
—— spike history &
spike trains Y e _%
”I” I I” ”I fixed spike history filter (per neuron) 3

0 100 200 300 400
dynamic spike history components time from previous spike (ms)
B spike history kernels ;

DMC only Monkey D Monkey H

=~ 05
E — Monkey B 0.6
= — -Monkey J — DMS — DMS
e 0.4 — DMC early 0.5 — DMC early
S o — DMC late — DMC late
£ |
= | 0.2
> L
4]
%05 0
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

time from previous spike (ms)
C stimulus-timing kernels

01 sample  :delay 0.1 : : 0.14:

e : 0.1 0.1

weight (normalized)

0 500 1000 1500 0 500 1000 1500 0 500 1000
time from stimulus onset (ms)

Figure 8: Dynamic spike history captures distinct stimulus-driven and delay-period dynamics. A
The dynamic spike history filter is modeled as a low-rank, four-way tensor. The tensor includes
two temporal kernels: one which filters spike history (gold) and a second which determines the
weighting of the spike history component relative to the stimuli (gray). The spike history is scaled
by stimulus identity (for simplicity, limited to sample or test stimulus weights only, without any
category information). Each neuron adds the (weighted) dynamically filtered spike history to the
neuron’s constant spike history filter. The total spike history at any point in a trial is still a linear
function of past spiking activity, but the effective linear kernel can change during a trial. The
normalized rank-1 dynamic spike history components: B dynamic spike history kernels and C
stimulus-timing kernels for each population (posterior median and 99 % credible interval). The
left columns shows the two DMC-only monkeys, and the middle and right columns show all three
training stages for monkeys D and H respectively. D The population mean effective spike history
filters at two points in the task given the rank-1 dynamic spike history for the four fully trained DMC
populations (mean of MAP estimate of filters +£2 SEM). (top) The population mean spike history at
100 ms after sample stimulus onset. (bottom) The population mean spike history during the delay
period (500 ms after sample stimulus offset). Positive weights indicate that a previous spike at the
given lag increases a neuron’s probability of firing, while negative weights indicate that spiking is
suppressed.
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(Fig. bottom). Spike history differences between the populations were less evident during
stimulus presentation. These results were consistent for higher-rank dynamic spike history
tensors (Fig.[S9). Thus, the structure of single-trial variability during the delay period differed
between DMC-only and pretrained monkeys, but was similar within each pair, which suggests
that the balance of beta- and gamma-frequency driven activity during the delay period differed
between the animal pairs.

3 Discussion

Here we examined the low-dimensional geometry of task-related responses during a motion-
direction categorization task in LIP in two pairs of monkeys performing the same motion cat-
egorization task, but with different training histories. In the monkeys that were pretrained on
a motion-discrimination DMS task, we found similar direction-dependent activity in LIP activity
during the DMS and DMC task: two-dimensional direction-encoding subspaces that reflected
the stimulus geometry. Moreover, uniform direction tuning remained a dominant feature of
this subspace after training on the DMC task. The common direction tuning observed across
the sample and test stimuli could reflect cosine-like signals from sensory regions such as the
area MT (Born & Bradley, 2005|; Jazayeri & Movshon, 2006; Fanini & Assad, 2009). In con-
trast, the monkeys trained only on the categorization task showed stronger category tuning
and category-aligned direction tuning in LIP compared to activity in animals first trained on
the DMS task. Performing the categorization task may involve computations including input
selection and local and/or top-down recurrent dynamics. Our findings indicate that differences
in the sequences of tasks learned by the animals over long periods may result in different
network configurations that perform the same task, perhaps manifesting in different behavioral
strategies.

We hypothesize that these differences may be indicative of the pretrained monkeys still using
computational strategies learned for the DMS task. Indeed, the pretrained monkeys’ behav-
ior showed greater dependence on the angular difference between sample and test stimuli
than DMC-only monkeys, which was a key factor in solving the DMS task. Because the
tasks used the same stimuli and shared many of the same correct or incorrect sample-test
pairings, the same neural machinery and behavioral strategies could be recruited and main-
tained for the DMC task, despite extensive retraining. While many LIP neurons show delay
period encoding of category during the DMC task, we did not see direction tuning in the av-
erage firing rates during the delay period in the DMC task (Fig. [1IC, Fig. [5). It is possible
that direction is maintained in working memory in LIP populations during the delay period by
sparse bursting activity, but not by persistent firing, which cannot be seen by our analysis us-
ing single-neuron recordings (Miller et al., 2018). Additionally, previous theoretical work from
our lab has demonstrated that recurrent neural networks performing the DMS task may recruit
activity-silent computations to compare sample and test stimuli through short-term synaptic
plasticity (Masse et al., [2019). In that study using recurrent neural networks trained on both
DMS and DMC tasks, delay-period sustained activity was observed more often in tasks which
required more complex manipulation of the sample stimulus information compared to the DMS.
Our dynamic spike history analysis revealed single-trial dynamics with low-beta frequency os-
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cillatory structure during the delay period in the DMC-only monkeys, but not the pretrained
monkeys, which could reflect different working memory dynamics in the DMC-only pair (Miller
et al., 2018). Together, this raises the possibility that computations learned during the DMS
task which recruited activity-silent working memory during the delay period could explain the
observed reduced separability of the sample and test stimulus in the neural subspace in the
pretrained monkeys compared to the DMC-only monkeys (Orhan & Ma, 2019).

We also extended the GLM framework to perform dimensionality reduction on neural popu-
lations using a flexible tensor-regression model. In complex decision-making tasks, the trials
may not be aligned such that common dimensionality reduction methods can be applied with-
out artificially re-aligning single-trial firing rates by stretching or time-warping (Kobak et al.,
2016). For example, the touch-bar release ended the trial early at a time determined by the
animal in the DMS and DMC tasks. We applied the GMLM to perform dimensionality reduc-
tion to find task-relevant features in spike trains when the events in the task were not exactly
aligned on every trial, without the need for aligned trial structure. Our approach is related to
reduced-rank regression (Steinmetz et al., 2019 [Stringer et al., [2019) and the recently pro-
posed model-based targeted dimensionality reduction (Aol et al., 2020) with two important
distinctions: (1) our model is fit to spike trains through an autoregressive Poisson observation
model and (2) we consider a more general tensor decomposition of task-related dynamics. The
tensor decomposition is used to describe low-rank temporal dynamics in response to stimulus
events, similar to low-rank receptive field models of early visual neurons (Ahrens et al., 2008|;
Park & Pillow, [2013|; Elsayed et al., 2020), and those components are shared across all neu-
rons in a population. Unlike PSTH-based dimensionality reduction methods, the Poisson spike
generation mechanism accounts for discrete spiking observations and aspects of single-trial
dynamics through the spike history kernel and tensor-based dynamic spike history (Park et al.,
2014; Holbrook et al., 2017). In contrast to demixed principal components analysis (Kobak
et al., [2016) which requires balanced conditions across all variables to recover task-relevant
subspaces, the cosine-tuned GMLM takes into account cosine-like direction tuning observed
in sensory regions in order to disentangle category and direction information even though di-
rection and category are not separated in the task. Bayesian inference in this model allowed us
to quantify uncertainty in the low-dimensional subspace and test hypotheses about the geom-
etry of neural representations. This modeling framework could extend to many other tasks and
questions, given appropriate linearizations of specific tasks. For instance, the tensor could be
extended to model slow trial-to-trial changes in stimulus response within a recording session
by including coefficients for weighting each trial, thereby generalizing applications of tensor
component analysis as in Williams et al.| (2018).

There are several important limitations about the inferred behavioral strategy and neural mech-
anisms in the present study. Primarily, this study included only a small number of animals, as
is the norm in non-human primate experiments. Furthermore, multiple cortical and subcortical
areas are involved in decision making, and our analysis only considered neural activity in LIP.
Even within a single region, it is possible that our results could depend on differences in sam-
pling within LIP between animals, or other factors not directly related to the animals’ training
history. LIP recording sessions were performed using different sets of motion directions for the
two pairs (six directions for the DMC-only monkeys and eight for the pretrained pair). However,
we do not believe this small difference in sample directions contributed to the observed differ-
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ences in LIP because the monkeys were trained using many more motion directions (Sarma
et al., 2016). We cannot exclude the possibility that animals could switch behavioral strategy
with additional training such that, for example, both pairs of monkeys would perform similarly.
Consequently, the possibility remains that LIP representations of the DMC task could change
to match the currently adopted behavioral strategy, rather than purely reflecting training history.
We think this is unlikely because the LIP recordings were made after all animals had received
extensive training on the DMC task and their behavioral accuracy had appeared to asymptote
at a high-level of accuracy (Sarma et al., 2016).

There are multiple ways that the brain could learn to perform the same task. Average results
across animals may therefore fail to reflect the neural mechanisms of decision making in in-
dividual animals (Golowasch et al., 2002, |Rahnev & Denison, 2018). Individual differences
are a major focus of human decision-making research and have led to many insights into cog-
nitive functions including working memory (Vogel & Awh, 2008; Luck & Vogel, [2013). Here,
we explored between subject differences in the dimensionality and the relationship between
direction and category tuning in LIP, and we found differences that correlated with long-term
training history. Primates in particular may participate in many experiments and receive exten-
sive training in multiple closely related tasks over the course of years. Experimenters should
report and consider animals’ training histories when interpreting such data and when com-
paring seemingly conflicting results from different labs. In conclusion, the low-dimensional
dynamics that posterior parietal cortex enlists to support abstract visual categorization can
manifest differently across subjects, and exploring long-term effects of training over more sub-
jects can provide broader perspectives of the diverse neural computations that give rise to
decision making skills.

4 Methods

4.1 Data

All datasets used for this study were previously published in|Swaminathan & Freedman (2012)
and [Sarma et al. (2016).

4.1.1 Tasks

The details of the tasks have been described previously for monkeys B and J (DMC-only
monkeys; [Swaminathan & Freedman, 2012; Swaminathan et al., 2013) and monkeys D and H
(pretrained monkeys; Sarma et al., 2016). For all animals, stimuli were high-contrast, 100 %
coherent random dot motion stimuli with a dot velocity 12 °s~'. The motion patch was 9.0°
diameter, and the frame rate was 75 frames/s. Monkeys were required to keep fixation within
a 2°radius of the fixation point during each trial.

For monkeys D and H, there were eight sample stimulus directions for both the DMS and DMC
tasks, spaced 45° apart: {22.5° 67.5° 112.5° 157.5° 202.5°, 247.5° 292.5° and 337.5¢%.
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The test stimuli for the DMS task were 45°, 60°, 75°, or 0° (match) away from the sample
stimulus, giving a total of 24 possible motion directions in the task. Test stimuli for the DMC
task were the same as the eight sample stimuli. The stimulus presentations were 667 ms and
the delay period was 1013 ms.

The DMC task for monkeys B and J used directions spaced evenly in 60° intervals: {15°, 75°,
135° 195° 255°and 315°%. The stimulus presentations were 650 ms and the delay period
was 1000 ms.

For all monkeys on the DMC task, the motion directions were split evenly into two categories
separated by a constant boundary at 45°and 225°.

The DMC task for monkeys B and J included a set of null-direction trials (Fig.[S6JA). In these tri-
als, the sample direction was along the category boundary (45° or 225°) and the test direction
was either 135°or 315° (one direction from each category, furthest from the boundary). These
trials were not used to fit neural models, but examined for behavior in Fig.[S6B. The monkey’s
response was randomly rewarded at 50 % chance on these trials. We note that monkeys B
and J were first trained on a simplified DMS task where the sample and test stimuli were ei-
ther match or 180° opposite. This version of DMS task therefore did not require fine motion
direction discrimination, and all correct sample-test response pairs in this task matched were
consistent with the DMC task.

4.1.2 Electrophysiology

Neurons in LIP were recorded using single tungsten microelectrodes. During both the DMS
and DMC tasks, the motion stimuli were placed inside an LIP cell’s response field.

In this study, we included only cells with a mean firing rate of at least 2 sp/s, averaged from
sample stimulus onset to test offset. We included N = 31 cells from 26 sessions for monkey
b, and N = 29 from 27 sessions for monkey J. For monkey D, N = 81 cells from 39 sessions
for the DMS task, N = 63 cells from 33 sessions for the DMC early period, and N = 137 cells
from 59 sessions for the DMC late period. For monkey H, N = 89 cells from 55 sessions for
the DMS task, N = 106 cells from 40 sessions for the DMC early period, and N = 114 cells
from 50 sessions for the DMC late period.

4.1.3 Data used for modeling

For all the modeling and decoding analyses, we included only correct trials. The null-direction
trials for DMC task for monkeys B and J were not included for model fitting.

We considered a window in each trial starting from sample stimulus onset until 50 ms after the
touch-bar release (if a touch-bar release occurred) or 50 ms after the test motion offset. We
discretized the spike trains during each trial into 5 ms bins. We note that on non-match trials
the animal was required to hold the touch bar until a second test stimulus (which is always a
match) appeared. However, the second test stimulus presentation was never included in our
analysis.
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We used 10 fold cross-validation to compare the models. The trials from each cell were divided
into folds evenly by sample directions. For example, if there were 40 trials recorded with
sample motion of 22.5° for one cell, these trials were divided into groups of four to make the
folds.

For plotting the PSTHs in Fig. [1|C, Fig. [3D, and Fig. [S8 we smoothed the average spike rate
over trials conditioned on motion direction using a Gaussian kernel with a 30 ms width.

4.1.4 Behavioral performance

For quantifying behavioral performance, we only analyzed behavior during the LIP recording
sessions. In the behavioral analyses in Fig.[7)A and Fig.[S6B, we estimated the fraction correct
(or fraction touch-bar releases) independently in each condition using a beta-binomial model.
The prior parameters in the model were o« = 1 and 8 = 1 (for a beta distribution over the
prior fraction correct or touch-bar released trials). In this model, the posterior over the fraction
correct (or touch-bar released) is a beta distribution. The point estimate of the fraction correct
was the posterior mean, and the error bars denote 99 % credible intervals over the posterior.

4.2 GLM for single cells (the full-rank model)

In this section, we define the generalized linear point-process model of single cells during
the DMS and DMC tasks. This class of model for single neurons in decision-making tasks is
defined in general in|Park et al. (2014). The GLM defines the distribution of spike count at time
t as a Poisson random variable with mean rate given as a linear function of external events
(here, stimulus and touch-bar release) and previous spiking activity:

A(t) =w + (hSpk * y) (t) + (ktbar % xtbar) (t)

i Z (k(s) “ x(s)) (t) (log firing rate at time ¢) (1)

seS
y(t) ~ Poisson(f(A(t))A) (spike count for bin t) (2)
() =exp(-) (inverse link function) (3)

The x operator denotes convolution. The bin width is A, and the log baseline firing rate pa-
rameter is w. Recent spiking activity, y, affects the rate through the spike history kernel, h*Pk,

The stimulus event regressors z(*)(¢) are functions of at time representing information about
the motion stimulus events. The set of all stimulus events is S. The touch-bar event is z*".
The linear temporal kernels k(*) and k*®" describe the cell’s response to each external variable
(stimulus or touch-bar, respectively) as a function of time. The stimulus events we consider
encapsulate both sample and test stimuli, but the configuration and number of stimulus kernels
depends on the specific model parameterization.

We parameterized the temporal kernels using raised cosine basis functions (Pillow et al.,
2008). The stimulus kernel basis consisted of P, = 24 functions with a nonlinear stretch-
ing parameter of 0.2 and peaks spanning 0 ms to 1500 ms (Fig. [S1J, left). We aligned the
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basis so that the first basis was zero at exact time of stimulus onset, giving peaks between
40 ms to 1540 ms relative to stimulus onset. The touch-bar basis was constructed using the
first Piar = 8 functions of the stimulus basis (Fig. [STJ, middle. The functions were reversed
and shifted the basis so that the function peaks ranged from —235 ms to 25 ms relative to the
touch-bar release and the fastest temporal resolution of the basis set was near the touch-bar
release time. We used P.,, = 24 basis functions for the spike history (Fig. [STY, right). The
first two basis functions were Kronecker delta functions to account for the first two bins (0 to
5ms and 6 to 10 ms after a spike). The remaining eight functions were a raised cosine basis
set with nonlinear stretching parameter of 0.05 and peaks from 10 ms to 20 ms post spike.

We define the kernels as the bases times a set of coefficients:

k() = Bstimk(s) for s € S where each k) is a vector of length Piim (4)

kthar — Btbarktbar, where k'™ is a vector of length Py

hPk = B¥kpPk where h**¥ is a vector of length P,

The parameters that are fit to data are ¢ = {w, h™* k™ k(9)|s € S}. This choice of basis
ensures that the stimulus kernels are causal: the stimulus filters only contribute to firing rate
after stimulus onset. In contrast, the touch-bar release is acausal: touch-bar release can
contribute to the spike rate before the behavior to reflect buildup to the match decision.

We linearized the task events as point events in time. The touch-bar release is given as

1 ift=t
(tbar) — tbhar
v ®) { 0 otherwise.

where the time the monkey released the touch-bar to signal a match response is t., (if the
touch-bar was release in the trial). We similarly consider the stimulus onsets (both sample and
test) as point events. The sample stimulus duration is constant across all trials, and although
the test stimulus is terminated early by a touch-bar release, this does not factor into the window
of the trial we model. However, the model can extend to tasks with variable stimulus duration,
as has been shown previously (Park et al., 2014). Each GLM kernel gives a scalar contribution
to firing rate of the relative time of the task event

We considered a set of four nested models of increasing complexity for the motion stimuli. For
simplicity of notation, we present the linearization for a single trial. The sample stimulus onset
time iS tsample on and the test stimulus onset is i« on. The sample and test stimulus directions
are Gsample and Oiest for sample, test € {1,2,..., D} where D is the total number of stimulus
directions in the task. The stimulus directions belong to categories denoted csample, Ctest €

{1,2}.

1. No category or direction model (Fig. [STA). This model includes only two stimulus
regressors/kernels: one for the sample stimulus onset and one for the test stimulus
onset (Fig. ): S = {gbample) q(test)) The regressors are defined as point events

1 ift=t
(sample) _ sample ons
v (®) { 0 otherwise.
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1 ift=t
(test) _ test ons
) { 0 otherwise.

This model captures temporal dynamics in the mean response for each neuron across
all stimuli.

2. Category only model (Fig. [STB). This model includes four stimulus kernels: two for
each category for the sample stimulus (z(*V and z(=?), and two separate kernels for
the test stimulus categories (z(°*) and x(°*?)). The regressors are again point events,
but the points are now conditioned on stimulus category (but not specific direction). For
each category k € {1,2}:

1 ift=t and ¢ =c
(esk) _ sample on sample ks
T { 0 otherwise,

1 ift=t and ¢t = C
(ctk) _ test on test k
T ) { 0 otherwise.

Although the DMS task does not include category, we still applied this model to those
data as if there was a category boundary at 45° and 225°.

3. Cosine direction tuning model (Fig.[ST|C). The cosine-tuned model includes both stim-
ulus category and direction tuning, but direction encoding is constrained to a parametric
form with cosine tuning. The model includes six stimulus events: two for each category
for the sample stimulus (2" and z(*?)), two for the test stimulus categories (z(°*)) and
2(°*2)), and two for the sine and cosine of the direction (z*™ and 2"). The sample and
test category events are defined as in the previous model. The direction regressors are
weighted point events, which are shared for both sample and test stimuli:

Cos(esample) ift = tsample on

x(cos) (t) = COS(@test) if £ = Liest on
0 otherwise.
. Sin(esample) if t = Lsample on
2(51m) (t) = sin(@test) if ¢ = %iest on
0 otherwise.

4. Full model (Fig. [S1D). The full model allows for general (non-cosine) direction tuning.
However, we constrained the model to have the same direction tuning for both sample
and test stimuli; that is, the difference in tuning between two directions within the same
category was the same for both sample and test stimuli. The model included one stimu-
lus regressor event for each directions plus two test category events (for the DMC task
with D = 6 stimulus directions, there are eight kernels) For each trial and direction 6, for
d € {1,2,..., D}, the stimulus regressors are

1 ift= 2fsaumple on a@nd esample = ed
x(ed) <t> = 1 ift = tiest on AN Oest = Oy
0 otherwise.
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The two stimulus events that parameterize the test category responses (z(°*Y), and z (%))
are defined as before. This parameterization maintains identifiability: it would not be
identifiable to directly expand the cosine model to have a kernel for each direction plus
two sample and two test category kernels. As a result of the identifiability constraint,
the interpretation of the corresponding kernels is different compared to the cosine tuning
model: in this model, k(%?) is the kernel for a stimulus in the 6, direction plus the response
to a stimulus of the category of ¢,. Therefore, we view k() as the kernel to a test stimuli
of category 1 minus the kernel for a category 1 sample stimulus (thereby subtracting the
sample category tuning away from the direction kernel and adding the test category
tuning).

We considered two additional models included in supplementary analyses that included inde-
pendent sample and test direction tuning (Fig. [S6). The independent direction cosine tuning
model had eight kernels total: four for the sample and test category, four for the cosine and
sine weights of the sample and test directions. The full independent direction model simply
had one kernel for each sample direction and one kernel for each test direction These two
models are defined analogously to the common direction tuning models.

4.2.1 Prior probabilities over model parameters

We defined zero-mean Gaussian priors over the stimulus kernels. The orthonormal basis
functions controlled temporal smoothness of the kernels, and the prior distributions were inde-
pendent over time. We defined i.i.d. priors for the ith coefficients of the stimulus kernels (i.e.,
a prior over the set of {f{l(.')} foreachi e {1,..., Pyx}). We describe the priors of the stimulus
kernels for each of the nested models.

1. No category or direction model. We considered that the sample and test kernels would
likely be correlated if they reflect the dynamics of common bottom-up sensory input. To
construct a correlated prior, we assumed that the kernel could be constructed as the
sum of stimulus-independent kernel (a response purely to contrast or motion in general),
and a sample kernel or a test kernel (responses to the task epoch):

Q0 ~ N<07 w(Q))a A sample ™ N(O; ws2)7 O test ™ N(07 1/}3)
such that

l}(sample) E(test)

= Q40 + & sample) = Q40 + QY test -

Using the rules of linear transformations of Gaussian variables, we obtained a correlated
Gaussian prior over the original two sample and test kernels. The set of hyperparameters

was Hstim = {¢07 %}

2. Category only model. For the category-dependent kernels, we made a similar Gaus-
sian construction

672,0 ~ N(07 ¢§)7 5i,csk ~ N<Oa @Dg), Bi,ctk ~ N(O7 ¢3)
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such that
EECSk) = ﬁi,O + Bi,cska EECtk) = 5i,0 + 6i7ctk-
The set of hyperparameters was Hgim = {%0, ¥ }-

3. Cosine direction tuning model. We used the same priors for the four category kernels
as in the category-only model. We placed an independent Gaussian prior over the cosine
and sine weights:

K\ ~ N(0, 42), K™~ N(0,42).

7

The set of hyperparameters was Him = {20, Yd, Ve }-

4. Full model. For constructing the prior over individual direction kernels, we assumed that
direction tuning should be smooth as a function of angle. We therefore used a Gaussian
process prior over the direction weights. To nest the cosine-tuning model in the full model
and provide regularization, we also included latent sine and cosine direction weighting.
Sample category weights were included as before. We define the pieces of the prior as

Yi0 ~ N(07 ¢8)7 Yi,esk ™ N(Qﬂf),
Yi,cos ™ N(O, 1/131)7 Yi,sin ™~ N(O7 wfzi)v
%7910(0) ~ GP (07 ng (97 0/)) )
where the Gaussian process kernel over angle is (Padonou & Roustant, 2016)

K(0,0) = (1 + T 00, 9’)) (1 _ %d(@, 9’))T+4,

m
d(6,0") = arccos(cos(6 — 0")).

The hyperparameter 7 > 0 determined the arc length over which similar directions are
correlated, similar to a length scale in Gaussian process kernels on the real line. The
complete direction plus sample category kernel was then defined as for each direction
ded{l,...,D}

i, .
K = 5, 0 4 Vi sk + Viscos €08(0a) + Visin S (0g) + Vigp(0a).

The test category prior was defined slightly differently than in the previous two models
due to the identifiability constraints on our parameterization. We defined the prior using
the construction

Vi,ctk ™~ N(Oa wg)a
kz(Ctk) = 7,0 T Vijctk = Vijcsk-

Because k"’ and k(“t© were again simply linear functions of Gaussian variables, we
obtained a Gaussian prior with zero mean for the kernels depending on the hyperparam-

eters set Him = {0, UV, Ve, Vg, T}
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For the supplementary models with independent sample and test direction tuning, the priors
followed the same construction as above. The direction hyperparameters were shared for the
sample and test direction kernels.

We placed an i.i.d. Gaussian prior on the spike history and touch-bar coefficients

K2~ NV(0, Yibar) fori € {1,..., Pou}
flj’pk ~ N(Ov¢spk> forj S {1, - 7Pspk}

The prior over w was the improper uniform prior: p(w) o 1.

The complete set of hyperparameters was therefore H = {Hgtim, Yibar, Yspk }- We defined
hyperpriors over each hyperparameter independently as half-¢ distributions (Gelman) 2006).
Foreach h ¢ H

—(v+1)/2
p(h) x <1 + ;h) (5)

where we set v = 4.

4.2.2 MAP estimation with evidence optimization

We fit the GLMs to each LIP cell using MAP estimation. To set the hyperparameters for
the GLM, we used an approximate evidence optimization procedure (Sahani & Linden, 2003};
Park & Pillow, 2013; |Zoltowski & Pillow, 2018). We used a Laplace approximation of the
posterior over model parameters to get likelihood of data given hyperparameters to estimate
the log evidence (i.e., the marginal distribution of the data given the hyperparameters). We
then optimized the log posterior over the hyperparameters. Because the hyperparameters are
constrained to be positive, we optimized the log-transformed hyperparameters. We set the
hyperparameters and parameters of the GLM independently for each fold of cross-validation.

Specifically, we maximized an approximation of the log posterior of the hyperparameters given
the data. The posterior is

p(Hly,x) o< p(y|H,x)p(H) (6)
and we want to find

Hyrap = arg;nax p(Hly,x).
The evidence term can be written using Bayes’ rule as

(yl¢, x)p(¢|H)
p(oIH,y, %)

ply[H,x) =L
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where ¢ denotes the model parameters. The posterior over the parameters (p(¢|H,y, x)) is
only given up to an intractable normalizing constant. We therefore took a Laplace approxima-
tion of the posterior distribution over parameters. The Laplace approximation was a Gaussian
distribution centered around the MAP estimate of the parameters

p(o|H,y,x) = N (¢; dprap, Enrar) (8)
Prap = arg max p(yle, x)p(¢|H)

2

Shiap = — d%Q log p(d|H,y,x)
¢=drmapr
The MAP estimate given the hyperparameters, ¢,4p, was found numerically (the log posterior
over the parameters is log concave). Given this approximation, we evaluated the right side
of Eq. [7] at ¢arap. We then maximized the log posterior over the hyperparameters (Eq. [6)
numerically to find Hy;4p. The final MAP estimate of the models parameters was ¢y, 4p given
Harap.

4.3 GMLM definition

The GMLM is a special case of the GLM in which the linear kernels in a population of neurons
are assumed to share low-dimensional structure, rather than being modeled independently.
In general, the model is a GLM in which the regressors and parameters (or a subset thereof)
from all the neurons in a population can be expressed as tensors (or multi-way arrays). The
parameters (or a subset of the parameters) are then assumed to have a low-rank structure: the
parameter tensor can be decomposed into a small number of components. We emphasize that
the neurons need not be simultaneously recorded for this model: we can still fit the parameters
if only one neuron is observed at each time point.

Here, we define the GMLM for the DMC task. Introducing an index for neuronn € {1,2,..., N},
we defined the model for the spike countin bin ¢ € {1,2,...,7} for neuron n as

A (t) w,, + (Hspk % Y + Z Ttbar tbar ( )V;lf:;r

+ Z Z Z s) Vstlm

se€{sample,test} r=1

Z(s) (t) _ (X(direction,s) . Uitim) . (Titim " x(timing,s)) (t), (10)

T

Y, (t) ~ Poisson(f(\,(2))A).

The matrices HsPk, T2 and T="™ denote matrices whose columns are temporal kernels for
the stimulus, touch-bar and spike history respectively. Subscripts of those matrices indicate
a particular column or kernel. Similarly, HP* contains the spike history kernels for each cell.
The length IV vector w contains the baseline firing rates for each neuron. The baseline firing
rates and spike history kernels are equivalent to the single-cell GLM.
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We note that in this model, both the regressors and the parameters are decomposed into
components (for the stimulus parameters T*™ U™ and Vs and regressors x(direction;s)
and z(tmire:s)) “and thus we have a simple multilinear form for the stimulus tuning rather than
writing out a dense tensor.

The touch-bar kernels are parameterized as low-rank matrix factorization where T*"®* contains
R, temporal kernels and V" is a matrix of neuron loading weights of size N x R;. In our
notation, Ttbar denotes the gth column or kernel, and thar is the element in the nth row, gth
column of thar The touch-bar subspace is the span of the columns of V2| Thus, the model
effectively approximates the GLM touch-bar kernel for neuron n as k@ ~ Ttbarvﬁfj?r . The
touch-bar function, =2, is the same as in the GLM.

The stimulus kernels were parameterized as a tensor factorization of rank R,. As we did for
the GLM, we defined a matching set of nested models to parameterize the DMC task. As with
the GLM definitions, we defined the regressors for a single trial for simplicity of notation. The
notation for the stimulus timing and directions are the same as in the GLM definition.

The set of temporal kernels, T, did not depend on the stimulus direction or category.
The temporal regressors were point events representing the stimulus onset time for each
s € {sample, test}. These were the same for all GMLM parameterizations (Fig.[S1E):

imine.s 1 ift=t
(timing,sample) — sample on
‘ (®) { 0 otherwise. ’

timing, test _ 1 if £ = fiest on

atmeen () = { 0 otherwise.
The set of stimulus weights, Us™ was a matrix S x R, of coefficients for the particular stim-
ulus identity (for example, weights to encode sample, test, direction, and category) where S
is the same as the number of stimulus kernels in the matching GLM. Each observation had
two stimulus direction regressor vectors: x(directionsample) gnq x(directiontest) - Thg gntries of the
stimulus direction regressors (x(direction:s))y mirrored the kernel structure in the GLM parame-
terizations (this vector is constant for all ¢ in a single trial). The stimulus direction coefficients
depended on the model.

1. No category or direction model (Fig.[STJF This model contained two stimulus regressor
elements indexed by {sample, test}, As with the GLM, these elements represent the
identity of a stimulus event as sample or test, but does not include category or direction

information.
(direction,sample) 1 (direction,sample) O
sample - test -
(direction,test) O (direction,test) 1
sample - test -

2. Category only model (Fig.[ST|G) This model includes four stimulus direction regressors
representing the stimulus category and whether it is sample or test. For the indices
{csl, cs2, ctl, ct2}, the regressors are

(direction,sample) L if Csample — Ck, (direction,sample) 0
sk 0 otherwise. otk
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=0,

(direction,test) 1 if Ctest = Ck; (direction,test)
otk 0 otherwise. csk

for category k € {1, 2}.

3. Cosine direction tuning model (Fig.[STH). The cosine-tuning model included six stim-
ulus regressors representing the identity of a stimulus event as sample or test, the mo-
tion category, and the sine and cosine of the direction. The regressors are indexed
by {csl, cs2, ctl, ct2, cos, sin}. The category terms are the same as in the above model.
The direction tuning components are defined as cosine and sine weights of the direction:

Xg(gisrection,sample) — Cos(esample)y Xgiiremionvsample) — SiIl<9

(direction,test)
cos

_ COS(Qtest), é;irirection,test) _ Sin<9test>.
4. Full model (Fig.[ST]). This model includes one regressor for each stimulus direction and
two for the test stimulus category indexed by the D+2 coefficients in {ct1, ct2,6,...,0p}.

Foreachd € {1,...,D}

X(direction,sample) o { 1 if Qsample = ed

b 0 otherwise.
X(direction,test) o 1 if Qtest = ed
0 | 0 otherwise.

The test category regressors (indexed by ct1 and ct2) are the same as in the previous
two models. As with the full GLM, the specific model construction does not include ad-
ditional weights for the sample category for identifiability. The coefficients in Usti™(4);)
represent the tuning strength for direction 6; plus the tuning for the category of 6. There-
fore, the coefficients in Ust™(ctk) represent the tuning for a test stimulus of category &
minus the tuning for sample stimulus of category k.

Together, the matrices T, Ustim and V*'m define a CP or PARAFAC decomposition of
the GLM stimulus kernels over a population of cells (Kolda & Bader, |2009). That is, the sth
stimulus kernel at time t for neuron n is approximated as the low-rank decomposition

R
Klts,m) = Y T Um Vi (1)
r=1

Another way to view the dimensionality reduction is that the values of /A% (t) give an R, di-
mensional representation of the response to each stimulus over time. Each neuron’s response
to the stimulus is given as a linear projection of that low-dimensional stimulus with weights
defined as the rows of the matrix Vs™ so that V'™ defines the stimulus subspace.

The temporal kernels of the GMLM are parameterized using the same basis set as the GLM:

H*k = BPkHPk, where H*P* is a matrix of size Py x N, (12)
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tbar — Rtbarptbar where T is a matrix of size Poya X Ry,

petim — gstimpstim where T5™ js a matrix of size Piym X Rs.

We set R, = 3 for all GMLM fits and we selected R, using cross-validation (see Section(4.3.3).
The set of parameters that are fit to the data from all the trials in an LIP population is ¢ =

stim tbar stim Fyspk rtbar rpstim
{w,v (Vthar stim Ffspk tbar o }

For Bayesian inference, we defined prior distributions the same way we did for the GLM. The
prior for the stimulus kernels was defined independently for each component r of the stimulus
direction regressor matrix (i.e., each column U?’fjm). The vectors U,Sfjm and corresponding

GLM kernel parameters R(') are the same length and are indexed by the same set of stimulus

events The prior over the vector U“‘rn was therefore the same as the prior over the k( ) for the
corresponding GLM. The same stimulus hyperparameter set (Hsim) Was used for each model
parameterization. However, unlike the single-cell GLM fits, the hyperparameters were shared
across all neurons in each LIP population.

The prior for the entries of the spike history kernels, Hk, was i.i.d. normal with zero mean
and variance z/ﬁpk. Similarly, the prior for the entries of the touch-bar kernels, Tthar was i.i.d.
normal with zero mean and variance 3 ... The prior distribution on the entries of neuron
loading matrices (V™ and V') and T*'"™ was i.i.d. standard normal. We again used an
improper uniform prior on w.

The complete hyperparameters set was H = {Hstim: Ytvar, Yspk }- The hyperpriors were the
same half-¢ distributions used for the GLM (Eq.[5). We note that these priors only affected the
GMLM in the MCMC analysis, as rank selection used the maximum likelihood estimate.

4.3.1 Dynamic spike history
We augmented the log rate in the GMLM with low-rank dynamic spike history components to
allow spike history to change over time relative to task events:

Ry,

Z 7 bdspk Vbdspk + Z Z Z (dspk,s) Hbdspk (1 3)

s€{sample,test} r=1

Zébdspk) (t) _ (despk % xtbar) (t) . (H(k;dspk « Yn) (t),
Z(dbpk s t ( (direction,s)* U;ispk) . (TfSpk % l.(timing,s)) (t) . (Hfspk * Yn) (t),
A (0) = Mlt) + ho®) (log rate)

where \,(t) is given by Eq. @ For completeness, we included two dynamic spike history
tensors to mirror the mean-rate filter terms: one for the motion stimuli and a second for the
touch-bar release. However, we found including the touch-bar filters provided little improve-
ment to the model’s performance.

The dynamic spike history kernels HPk for the stimulus-dependent spike history (or HPdspk
for the touch-bar kernel) are shared across all neurons in a population. The stimulus kernels
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Tdspk (or TPsPk for the touch-bar release kernel) control the contribution of the dynamic spike
history kernel relative to stimulus onset (or touch-bar release) . As with the stimulus filter
tensor, we allow the dynamic spike history kernels to depend on stimulus information through
the stimulus scaling terms UPk. For simplicity, we limited the stimulus scaling for the dynamic
spike history in x(direction.s)* t5 include only sample or test information as defined for the “No
category or direction model” in the previous section. We found that including category or
direction information did not significantly affect our results (results not shown). Each neuron
weights the dynamic spike history components by the loading matrices V4sPk and Vbdspk,

At any given time in the trial, the spike history for a neuron is still a linear function of past
spiking. The “effective” spike history kernel for a neuron n at time ¢ can be computed by
rearranging the terms in Eq.[13]and adding the constant spike history kernel:

Rpp

Hffi( eff(s) _ Hspk + Z Vbdspk despk tbar) (t)) . HgdSpk(S>

T S (v (e ) (et ) ) 589

s€{sample,test} r=1

(14)
The temporal kernels were parameterized using the same basis set as before:
HPdspk — BsPkEyspk where HP%P is a matrix of size Py X Ry, (15)
rhdspk — gtbarrptbar where T%P¥ is a matrix of size Par X Rin,
HPk — BPREsPk where HYPX is a matrix of size Py x Ry,
dspk — gtimrpstim where TP is a matrix of size Puim, X Rp.

The parameter set for the dynamic spike history model was
= ¢U {ﬂbdspk despk '}/ bdspk ﬁdspk Tdspk Udspk Vdst}_

We set i.i.d. standard normal priors for Vdspk ybdspk pbdspk Fjdsek and Tdspk The prior for
TPk was i.i.d. zero-mean normal with variance ¢2,,,,. The Gaussian prior for Uk was
defined analogously to the stimulus term (for the no category model) with hyperparameters 1§
and ¢*. The complete hyperprior set was then H* = H |U{H, ¥vaspk, V5, V2 }-

For all dynamic spike history models here, we set R,;, = 1 and we varied Ry, from 1 to 2. For
the stimulus filter tensor, we used the cosine direction tuning model with the rank selected in

Fig.

4.3.2 Model inference
We performed rank selection in the GMLM by testing cross-validated model performance of the

maximum likelihood fit. We used gradient-descent methods to numerically maximize the log
likelihood for fold. We initialized the GMLM components randomly. The entries of Vstim ytbar
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and H* were generated as standard normal. The matrices Tstim and T were random
orthonormal matrices. The baseline firing rate parameters, w, were drawn independently from
a normal distribution.

For the MAP estimates shown in Fig.[3|and Fig. [5] we set the hyperparameters to the marginal
posterior medians of each hyperparameter estimated using Markov chain Monte Carlo meth-
ods (described below). We then maximized the posterior log likelihood given those hyperpa-
rameters.

For the Bayesian analyses of the GMLM, we used MCMC to generate samples from the pos-
terior distribution of the model parameters and hyperparameters given all data from an LIP
population. We used Hamiltonian Monte Carlo (HMC) to sample jointly from the posterior of
the parameters and the log-transformed hyperparameters. The log transform on the hyperpa-
rameters ensures that the hyperparameters are positive. A detailed description of the HMC
sampling algorithm is given in (Neal, [2011). The Hamiltonian equations were solved numeri-
cally using a leap-frog integrator with step size ¢ for S steps. We set S = min (100, [1]) where
[-] denotes the ceiling operator. The maximum number of steps was 100 to limit computational
costs per sample. However, after tuning the sampler during warmup, we found that S < 100.

We denote the vectorized set of all parameters and log-transformed hyperparameters for sam-
ple s as ®©) = {¢,H}. We initialize the model parameters for the sampler (s = 1) by ini-
tializing the parameters randomly as we did for the maximum likelihood estimation. The log
hyperparameters were initialized as i.i.d. draws from a standard normal distribution. The HMC
sampler requires specifying a P x P mass matrix, M. Because the model is high dimensional,
we assume M is diagonal.

We tuned the parameters of the sampler (¢ and M) by generating 25000 warmup samples
(also known as “burn-in”). The initial value of the step size was ¢ = 0.01. We used the dual-
averaging algorithm of Nesterov| (2009) to adapt ¢ at each step for the first 24 000 warmup
samples (and fixed for the last 1000 warmup samples) to achieve a desired acceptance rate.
We used the parameters given in Hoffman & Gelman| (2014) to control the learning rate and
target sample acceptance rate (80 %). The mass matrix M was set at three steps.

1. Sample 1: M is initialized as identity matrix.

2. Sample 4001: M = Diag (cov(CDEQOOMOOO))*l) . The diagonal is the inverse empirical
variance of each parameter given samples 2001 to 4000.

3. Sample 19001: M = Diag (cov({"™" ") 1)

)

After warmup, we generated 50 000 HMC samples. These sampled were used as the estimate
of the posterior distribution of the model parameters and hyperparameters.

One source of autocorrelation in the HMC sampler that could reduce the quality of inference
is that the GMLM tensor components could be re-scaled without changing the likelihood. For
any a, b # 0, the rth component of the GMLM stimulus kernel tensor can be rescaled

Ustin ¢ qUsti, Tom o pTtie, VIR v
) ’ ) k) b a[ k)
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without changing the resulting kernel tensor. Thus, the log likelihood remains constant. One
way to is to constrain fix the norm of two of those vectors, and thereby disallowing re-scaling.
Inference can then be performed for those parameters on an appropriate manifold (product of
sphere manifolds) using geodesic Monte Carlo methods (Byrne & Girolami, 2013; Holbrook
et al., 2016). Instead, we took a different approach by including an efficient Metropolis-
Hastings (MH) step for rapidly traversing the locally flat region of the likelihood without ad-
ditional constraints on the model parameters. The MH step was performed independently for
each component r. We define for the current sample s

u® = oz, £ = T, ol = Vet
1 1 1.
(s) — stim (s) — _— rpstim (s) — stim
u u(s) T t t(s) o A" v(s) o

) =y @5) (o),

The prior probabilities for each U™, T*!"™, and V™ are multivariate Gaussian with zero

mean. Therefore, the prior probability of the vector lengths p(u(®), t), v |u® £ v 3)
can be factorized into independent chi distributions:

S
OINOENO M (s) ())2
p(u |1_1 Hstlm) - 25/2_1F (5/2) (U ) eXp ( (Wuu ) /2)
Pitim
(S) (8) (5) — 77t ] (5) stim ™ —_ (8) 2
p(t |t ) Hstim) 2Pstim/2*11—‘ (Pstim/2) (t ) eXp ( (ntt ) /2)

N
S S s nv s — s
p(U( )|V( )7 Hétl)m) 9N/2-1T (N/2> (U( )>N ! €exp (—<77UU( ))2/2)

Ny = (u(S)Txglu(S)> 1z ’ n = (t(S)Tt(S))1/2 : Ny = (V(S)TV(S)>1/2

where X, is the prior covariance matrix for US“”1 given the hyperparameters Hsmm (the Gaus-

sian priors for the other two vectors have |dent|ty covariance). Our goal is to construct a

MH proposal to focus on the case where the total component norm ((®) is constant. There-

fore, we perform a change of variables on the prior over p(u(®, t©, v u®, ), v 1) )10
p(u® t© O u® £ v 1) Yin order to compute

p(®, 19, 0 £ v 213 ) o p(u®, 1), (), ¢ v 1) )
1

:u<s>t<sw<u“)!u Héimw 16, HE L v, 1)

We can then generate independent scaling factors to perform a random walk on the scaling
factors:

s, ~ Lognormal (0, w?), s; ~ Lognormal(0, w?)

uwt = su®, = s, vt = v
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We then accept the proposal u*, t*, v* with the MH acceptance probability

plur, ¢ u® £ v HE) Vg (sy1) g (sih)
p(u®, 1)), ul), £ v“’,HS?m)q(su)q(st)
(16)

A({u*, 5,0}, {u® 19 0} = min |1,

where ¢(s) = Lognormal(s; 0,w?). Because the likelihood remains constant in this proposal,
we only need to compute the prior to determine the MH acceptance probability. As a result,
this step is very fast to compute. We applied the same class of MH proposal to the touch-
bar components. We set w = 0.2 and interleaved 10 MH steps for each tensor component
between every HMC step.

4.3.3 Rank selection

We applied cross-validation to select the stimulus kernel tensor rank (R;) for the GMLM. To do
so, we computed the mean test log likelihood per trial per cell. For neuron n,

K Mk

1
pag(n) = 57 > D 108 DY albr: X 00 M) (17)

" k=1 1=1

where K is the number of folds (K = 10 for all the analyses conducted here). The trials in the
test set are given as y;, ;. , and x;, , , which represent the spike train and regressors respectively
for test trial [ in fold k. The number of test trials in fold & for the neuron is M*, and the total
number of trials is M, = >_~ | M*. The model parameters for the model M fit to the training
data for fold & is ¢y, .

We then took the average across all cells
oy =+ Z Ipy(n (18)

For normalization, we subtracted the EM of the GMLM without any stimulus terms (the “rank
0” model):

Alp g =1Ipy — EMRS:O' (19)

Fig. 4A shows the Alp ,, for each GLM and GMLM of from r = 1 to 12.
The fraction of log likelihood explained by the GMLM was computed relative to the full GLM
(the “full rank” model, denoted Mqr.m):

Alp,,
Alp/\/lc;LM

Fig. [4B shows the frac(M) for each GLM and GMLM of from r = 1 to 12 for the monkey D,
DMC late population. We selected the rank r for the full GMLM by selecting the smallest r

frac(M) = (20)
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for which frac(Mauem r.—») > 0.9 (i.e., the number of model components needed to explain
90 % of the likelihood that could be explained by this GLM framework).

The error bars over the cross-validated log likelihood in Fig. 4A were computed by computing
Ip,q on the test trials for each fold separately (instead of averaging over all K folds). The error
bars show two standard errors of Alp ,, over the folds.

For the dynamic spike history, we compared model predictive performance with leave-one-out
cross-validation estimated with Pareto-smoothed importance sampling using the MCMC sam-
ples (Vehtari et al., 2017). The leave-one-out cross-validated log likelihoods were computed
for each trial, and then we computed the mean cross-validated log likelihood for each neuron.

4.3.4 Visualizing the GMLM parameters

Fig. shows the individual components of the MAP fit of the full GMLM, which included
kernels for each stimulus direction and two kernels for the test stimulus category. For scale,
we normalized each component by placing the magnitude of each tensor component in the
neuron loading dimension:

Vstlm « ||Tst1m||HUstlmHVS‘mm (21)
Tstim stim
T ||Tstim|| R
T
. 1 :
U-S,t;m A ”UstimHUitrlm' (22)
T

The rth row of the left column of Fig. |3)A shows the re-scaled BS“mTStlm The middle column
shows those temporal kernels scaled by the direction weights: the rth row plots U;“‘;?Ts“m( )
for each direction d. The right columns shows the temporal kernels scaled by the additional
category weights for the test stimulus: thr rth row plots for UziﬁTSt‘m( ) for both categories k.
The loading weights in the box plot of F|g r show the elements me for each component 7.

The sample stimulus kernels for the example cells in Fig. [3C are the sample direction kernels
scaled by the neuron’s loading weights for each component. The r row for example neuron n
shows VU™ T5t™ (¢) for each direction d. The total GMLM tuning (Fig. [3D top row) was
the sum over the » components.

To visualize the subspaces, we projected the components of the full GMLM into the top three
dimensions. The loading weights of the tensor decomposition used to define the model (V*im)
are not constrained to be orthonormal (as is standard for the PARAFAC decomposition).
Therefore, we applied a Tucker decomposition (i.e., higher-order singular value decomposi-
tion) to find the three-dimensional subspace that captures most of the population’s stimulus
tuning structure. We took the stimulus kernel tensor of KC(t, 84, n) (Eq. for all sample stim-
ulus directions. We then took the Tucker decomposition of the stimulus kernel tensor such
that

K(t,0q,n) = K(t,00,n) =T x1 T x, U x5V (23)
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where 7 is the core tensor of size R, X Dmpie X 3, and T, U, and V are orthonormal
matrices. The filter tensor projected into the top three subspace dimensions (i € {1, 2, 3}) for
each direction over time is then KC*(t, 6, 7).

K*(t,04,1) = T x, T x,U

To find the mean-removed space, we took

K(t,5,00) = K(t,5,00) — ! S Kts.0) (24)

sample j€sample directions

we performed the Tucker decomposition on K (¢, s, 6,;) to obtain the mean-removed subspace.

For visualizing the rank-1 dynamic spike history components in Fig. [8B, we plot the posterior
median and pointwise 99 % credible intervals computed using MCMC for the normalized tem-
poral filters, TPk /|| T9sPk|| and H4Pk /||HPk||. Because the sign of individual components
in the PARAFAC decompositions is not identifiable, we set the sign of the posterior median
components with the following transformation in order to better compare across populations:

TPk < mode(sign(VEPK)) - sign(HSPE(1)) - sign(UPR(1)) - TPk,
Hdspk -« Sign(Hdspk(l)) X Hdspk'

To quantify the timescales of the dynamic spike history kernels (for the pretrained monkeys
only), we fit the MAP estimate of the rank-1 dynamic spike history kernel with an exponential
function with a least-squares fit.

4.3.5 Bayesian analysis of subspace geometry

We defined tuning metrics in the low-dimensional space estimated by the GMLM with cosine
direction tuning to analyze the geometry of task encoding. The metrics were constant over
rotations and translations of the latent subspace. We used the posterior distribution of the
model parameters estimated using MCMC to establish credible intervals over the metrics.

At each time point ¢ relative to stimulus onset, the cosine-tuned GMLM defines direction tuning
in the population as an ellipse embedded in R”: parameterized by angle as

R
E.(0) = § T3 (1) (Ut cos(6) + Usian sin(6)) R..,, (25)
r=1
1 ) .
R — orth Vstlm Tvst1rn7
VN ( )

where orth(V*""™) denotes a matrix whose columns contain an orthonormalized basis for the
span of the columns of V'™  Here, the orthogonalized R,-dimensional output space, R, is
normalized by the number of cells. We computed the angle of the major axis of the ellipse as
0.max Where

Omax = arg max D, (0), (26)
0
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Dt(e) = ||Et(9) - Et<9 + 1800)”7

to = %arccot <f1 i ; fo f2> , fl = E,(0), f; = E;(90°),

= Onax = to or tog + 90.°

Because 0,,.x is identifiable only up to a factor of 180°, we added the constraint 6,,., €
[45°,225° to relate the angle to category in the task. The norms of the major and minor
axes are Dy(0nax) and Dy (0. + 90°) respectively.

The category tuning vector is the difference in the low-dimensional tuning space between the
category one and category two kernels:

R,

Fo=) () (UL~ UlB) R (27)
r=1

Category tuning norm at each time t relative to stimulus onset is then the norm of the vector,

[Fe])-

For the Bayesian analysis, we computed 6yax, Di(Omax)s Di(fmax + 90°), and ||F;|| for each
sample from the posterior distribution of the model parameters. We then computed the poste-
rior median and a 99 % credible interval covering 0.5 % to 99.5 % of the posterior for each time
t.

For the supplementary analyses in Fig. and Fig. [S7], we performed component-wise anal-
yses of the GMLM fits. We note that the GMLM posterior has multiple modes: the order of
the components can be permuted or a sign flip could occur between Usti™ and T, These
modes define equivalent subspaces and kernel tensors, and the prior distributions are the
same at each mode. We did not find that the HMC sampler jumped between these modes,
and thus we could simply analyze the individual components of the GMLM tensor. For the
component-wise analysis, we looked at each r € {1, ..., R,} individually. The direction tuning
for the component was

6 = arctan 2 (Uit;f‘l, Uitégfs) , (angle) (28)
a®) = \JUsm? | Ugin?. (direction magnitude)

The sample and test category tuning for the component was

Cs(;)nple = ]Uiféglmple], (sample category magnitude) (29)
Ct(;?t = ]Uffig;t ) (test category magnitude) (30)

4.4 Decoding analyses
All decoders were linear, binary classifiers on pseudopopulation trials spike counts fit with lo-

gistic regression in MATLAB using the fitclinear function. The training set spike counts
were z-scored and the decoder was fit with ridge regression with penalty 0.1. Because the
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neurons were recorded independently, we constructed pseudopopulation of 50 trials per stim-
ulus. Each pseudopopulation trial consisted of one randomly sampled (with replacement) trial
from each neuron in the recorded population for a particular stimulus direction. We repeated
the decoding analysis on 1000 random pseudopopulations to obtain bootstrapped confidence
intervals.

To decode sample category as a function of time from stimulus onset, we fit and tested de-
coders using spike counts in a sliding 200 ms window (centered at the decoding time). To test
for direction-independent category tuning, training and validation conditions were trials from
different directions to test direction-independent category encoding (Sarma et al., [2016). We
therefore fit two decoders, each using trials only from a subset of motion directions. Gener-
alization was evaluated using the withheld directions for each decoder, and the total general-
ization performance was averaged across the two decoders. The two sets of monkeys had a
different set of sample directions, and thus different train/validation conditions For monkeys B
and J, each training set contained two motion directions, spaced 180° apart: {15°and 195°¢}
and {75°and 225°}. Test sets were then the four remaining motion directions in each condition
(135°and 315° trials were in the validation set for both decoders). For monkeys D and H, the
training sets were {67.5° 112.5°, 247.5°and 292.5°% or {157.5°, 202.5° 337.5°and 22.5¢%.

For decoding category decoding during the test stimulus, we used pseudopopulation spike
counts in a window from 0 to 200 ms after test motion onset. For these decoders, the training
and validation sets included pseudopopulation trials from all motion directions. The decoders
were trained using only match (or non-match) trials and tested for generalization on non-match
(or match). The total performance was the average across the match-trained and non-match-
trained decoders. We trained separate decoders for sample and test category. The DMS
populations were excluded from this analysis, because the test stimulus directions depended
on the sample stimulus.

4.5 Modeling software
All GLM and GMLM analyses were performed using custom software for MATLAB (Math-
Works) and CUDA (Nvidia). The GMLM tools are available publicly at https://github.com/

latimerk/GMLM_dmc. Tucker decomposition for visualizing the subspaces was performed with
Tensor Toolbox for MATLAB (Bader et al., 2019).
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GLM motion stimulus linearizations: example regressors
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Figure S1: Linearizations of the DMS or DMC tasks in the GMLM. (A-D) The temporal event
regressors for the four GLM types for an example trial with a sample stimulus 75° (category one)
and test stimulus of 315° (category two). (A) The two stimulus events for the no category or
direction tuning model. The top event is 1 at the sample stimulus onset time and 0 elsewhere, and
the bottom event is 1 at the test stimulus onset time and 0 elsewhere. (B) The stimulus events for
the no direction tuning model. The two sample (or test) category events encode the onset time
of a sample (or test) stimulus only for a specific category (the sample category two event is 0 for
this trial because the sample stimulus is category one). (C) The stimulus events for the cosine
tuning model. The category events are the same as the category events in B. The sine (or cosine)
event is equal to the sine (or cosine) of the stimulus direction at the onset of either stimulus. (D)
The stimulus events for the full tuning model. The first six events are 1 at the onset time of a
specific stimulus direction (sample or test). The two category events are the same as before. This
configuration is identifiable while allowing the category tuning to be different between the sample
and test period, while keeping the direction tuning constant. (E-F) The event regressors for the
four GMLM types for the same trial configuration. (E) The temporal events for the sample (top)
and test (bottom) stimulus onset times. (F-I) The GMLM stimulus weightings for the four model
configurations for the sample (top) and test (bottom) stimulus correspond to the weight of the
stimulus events in A-D. The complete temporal kernels in the corresponding GLMs are thus the
outer product of the temporal regressors in E and the weights of the weights in F-l, summed over
the sample and test events. (J) The three bases for the temporal kernels used in both the GLM
and GMLM: the stimulus event bases (left), the touch-bar release basis (middle), and the spike
history basis (right). The bases were orthonormalized for model fitting.
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Figure S2: Touch-bar and spike-history kernels from the GMLM (full model) and the GLM fits.
(A) The low-dimensional touch-bar release components for monkey B. (top) The three temporal
kernels. (bottom) The loading weights for each touch-bar release component for each cell (points).
(B) Example touch-bar filters for five cells. The GLM touch-bar filters (black) are compared to the
GMLM fit (cyan). (C) Spike-history filters fit to the same cells in B. The GLM spike-history filters
(black) are nearly identical to the to the GMLM fit (cyan). (D-F) Same as A-C for monkey J.
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Figure S3: The GMLM and GLM find similar direction tuning across the sample and test stimuli.
(A) cross-validated per-trial log likelihoods for each cell (relative to the GMLM without any stimulus
terms, R; = 0). The left column shows comparisons using the cosine tuning model and the
right column shows the full model. The top row compares the GLM fits to single cells and the
bottom row shows the GMLM fits for the same model configurations. No population showed a
significant improvement including the independent directions (for each model and population p >
0.8, one-sided Wilcoxin signed rank test with Benjamini-Hochberg correction). Several populations
indicated that overfitting occurred with the GLM with independent directions: the same direction
model was on average better. (B) Bayesian analysis of the cosine-tuned GMLM with independent
sample and test direction parameters. Each point represents a single GMLM stimulus component
for one population (i.e., there are seven points for monkey B because we selected seven GMLM
stimulus components). (top) The posterior difference in preferred angle between the sample and
test stimuli as a function of the magnitude of sample direction tuning. The angle is (") and the
magnitude is (") in Eq. (see Methods). As the magnitude increases, the test and sample
directions tend towards zero. At lower magnitudes, the preferred angle is difficult to estimate
(undetectable) and therefore the difference shows high uncertainty. (bottom) The magnitude of
the sample and test direction tuning for each component. Error bars show 99 % credible intervals.
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GMLM fits: low-dimensional responses to sample stimulus with mean response
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Figure S4: The top three dimensions of the GMLM subspaces (full model) in response to the
sample stimulus for each animal and recording epoch without removing the mean over motions
directions. Fig. shows the subspaces and trajectories after removing the mean.
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Figure S5: Low-dimensional subspaces of the GMLM with cosine direction tuning with the mean
removed for each LIP population. Each of the top three dimensions are shown as a function of
time relative to sample stimulus onset (this is similar to Fig. [5 but with the dimensions plotted
separately relative to time). For the cosine model, we can separate the direction and category
components. The left column for each population shows the sample category trajectories in the
three dimensions. The right columns shows the direction trajectories, decoupled from category.
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Figure S6: Analysis of the direction tuning of the low-dimensional GMLM cosine tuning model
components. (A) The sample and test directions selected on “null” direction trials for monkeys B
and J. The sample directions lie on the category boundary. These trials were not included in the
GMLM analysis and were rewarded randomly. (B) Behavior for the four possible combinations of
angles on the null-direction trials. The color indicates the test direction/category. The point shows
the posterior mean estimate of the fraction of touch-bar released during the test stimulus presen-
tation and the error bars denote a 99 % credible interval. Asterisks indicate that the response
proportion for the two test directions was different for a given null sample direction (p < 0.01; two-
sided Wilcoxon rank sum test, Holm-Bonferroni corrected). (C) Bayesian analysis of the cosine
tuned GMLM. The GMLM defines the direction tuning as an ellipse in a low-dimensional space.
We computed the angle of the major axis of the ellipse: the angle with the most modulation in the
low-dimensional space (see Methods Eq.[26). The angle is only identifiable up to 180°. Therefore,
we placed it within 45°to 225° to align with the task. If the axis aligned exactly with the catego-
rization task, the angle would be 135° The ellipse depends on time relative to stimulus onset,
and so we took the mean angle during the first 650 ms of stimulus presentation. The points show
the posterior median and the error bars denote a 99 % credible interval. (D) lllustration of how the
direction ellipse’s major axis aligns with the task directions. The blue region shows where motion-
direction angles project positively along the major axis vector (generally overlapping with category
one). The red region shows where motion-direction angles project negatively along the major axis
vector. The gray region shows angles that are within the 99 % credible region of the posterior
(from C) and cannot be classified. We note that the regions do not exactly align with the category
bounds. However, they do correlate with the monkeys’ choice biases for the null directions: for
monkey B, the 45° null-direction (up and to the right) is in the blue region and the monkey was
more likely to release the touch-bar on 45° trials when the test stimulus was in category one than
for a category two test stimulus.
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Figure S7: Analysis of the sample and test category tuning of the low-dimensional GMLM cosine
tuning model components. (A) The difference in the magnitude of coefficients for the sample
and test categories in the individual GMLM components (one point per each GMLM stimulus
component per population). The component-wise sample category magnitude is computed as
Cs(;r)nple and the difference is Cs(;)nme— ) in Eq.(see Methods). The points show the posterior
median and the error bars denote a 99 % credible interval. (B) The norm of the category tuning
vector as a function of stimulus onset time for the sample and test stimuli in each of the eight LIP
populations. The category vector norm is given in Eq. (see Methods). The traces show the
posterior median and the shaded regions denote a pointwise 99 % credible interval.
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PSTHs projected onto touch-bar subspace
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Figure S8: The PSTHs of the six DMC populations projected onto the three-dimensional touch-bar
subspace fit by the full GMLM (the subspace given by orth(V), see Methods). The PSTHs are
conditioned by both test stimulus direction (color) and by match (solid lines) or non-match (dotted
lines) trials. The gray region denotes the stimulus presentation period (although it is terminated
early on match trials by the touch-bar release).
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A PSISLOO-cv log likelihood change with dynamic spike history
DMC-only monkeys
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Figure S9: Including a dynamic spike history filter tensor improves model fit. (A) The mean change
in cross-validated log likelihood per-trial for each neuron as a function of the number of compo-
nents (i.e., the average improvement in predictive performance for adding an additional dynamic
spike history component). The log likelihood for the rank-1 dynamic spike history is relative to the
GMLM without any dynamic spike history (but still includes each individual neuron’s static spike
history filters). Leave-one-out cross-validation was estimated for each trial using Pareto-smoothed
importance sampling (PSISLOO-cv). Stars denote a statistically significant improvement after in-
cluding the dynamic spike history component (p < 10, paired, one-sided Wilcoxin signed-rank
test). The lines with white circle markers denote the average log likelihood per trial across neu-
rons. While the improvement after including two dynamic spike history components was often
statistically significant, it was less dramatic than the gain from a single component. (B) The mean
population mean effective spike history filters for all eight LIP populations during sample stimulus
presentation (top; 100 ms after stimulus onset) and during the delay period (bottom; 500 ms after
stimulus offset). The spike history filters were computed as the MAP estimate of the GMLM with
rank-2 dynamic spike history (R = 2). Error regions denote +2 SEM.
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