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Abstract

The noradrenergic locus coeruleus (LC) in the brainstem shows early signs
of protein pathologies in neurodegenerative diseases such as Alzheimer’'s and
Parkinson’s disease. As the LC’s small size (approximately 2.5 mm in width)
presents a challenge for molecular imaging, the past decade has seen a steep
rise in structural and functional Magnetic Resonance (MR) studies aiming to
characterise the LC’s changes in ageing and neurodegeneration. However,
given its position in the brainstem and small volume, great care must be taken
to yield methodologically reliable MR results as spatial deviations in
transformations can greatly reduce the statistical power of the analyses at the
group level. Here, we suggest a spatial transformation procedure and a set of
quality assessment methods which allow LC researchers to achieve the spatial
precision necessary for investigating this small but potentially impactful brain
structure.

Using a combination of available toolboxes (SPM12, ANTs, FSL,
FreeSurfer), individual structural and functional 3T LC scans are transformed
into MNI space via a study-specific anatomical template. Following this, the
precision of spatial alignment in individual MNI-transformed images is
quantified using in-plane distance measures based on slice-specific centroids
of structural LC segmentations and based on landmarks of salient anatomical
features in mean functional images, respectively.

Median in-plane distance of all landmarks on the transformed structural as
well as functional LC imaging data were below 2 mm, thereby falling below the
typical LC width of 2.5 mm suggested by post-mortem data.

With the set of spatial post-processing steps outlined in this paper and
available for download, we hope to give readers interested in LC imaging a
starting point for a reliable analysis of structural and functional MR data of the
LC and to have also taken a first step towards establishing reporting standards
of LC imaging data.

Keywords: Locus coeruleus, MRI, neuromelanin-sensitive imaging,

coregistration, normalisation
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1. Introduction

The locus coeruleus (LC) is a small nucleus located in the brainstem
adjacent to the lateral floor of the fourth ventricle and our major source of
noradrenaline in the brain. The noradrenergic LC’s implications for brain
function cover a broad range of processes spanning from basic autonomic
functions, such as modulation of sleep-wake cycles (Aston-Jones & Bloom,
1981; Gonzalez & Aston-Jones, 2006); to cognitive functions, such as
modulation of attention (Usher et al., 1999; Mather et al., 2016) and memory
encoding (Mello-Carpes & Izquierdo, 2013; Sterpenich et al., 2006).
Additionally, the LC appears to play a role in neurodegenerative diseases such
as Alzheimer’s and Parkinson’s disease, where it is affected early by tau protein
pathologies, functional decline, and cell loss (Gesi et al., 2000; Grudzien et al.,
2007; Del Tredici & Braak, 2013; Kelly et al., 2017; Betts et al., 2019). Indeed,
changes in LC function and structure related to neurodegenerative conditions
have been shown in post-mortem studies (Zarrow et al., 2003; Wilson et al.,
2013, Thedfilas et al., 2017), animal model studies (Arnsten & Goldman-Rakic,
1985; Kalinin et al., 2007), and pharmacological investigations (Rommelfanger
et al., 2007). However, precise structural and functional in vivo measurements
of the LC in humans are necessary for understanding its relevance as a
biomarker in Alzheimer's and Parkinson's disease (Betts et al., 2019).
Unfortunately, its small size (about 2.5mm in width and 1.5cm in length; Mouton
et al.,, 1994; Fernandes et al., 2012) makes it a difficult target for molecular
imaging of tau pathologies which typically operates at a resolution of 3mm?3.
Recent developments in magnetic resonance imaging (MRI) protocols allow us

to overcome this limitation and measure LC structure and function in vivo with
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sub-millimetre resolution (Liu et al., 2017; Kelberman et al., 2020 for a review;
Betts et al., 2019). Importantly, an MR investigation of the LC comes with the
added benefit of allowing for functional assessments of the LC as neuronal
function can be assumed to be altered before pathology-related cell loss occurs
(Giguére, Nanni, & Trudeau, 2018). However, while in vivo structural and
functional LC imaging presents as a promising biomarker, acquiring and
analysing LC scans is not without its methodological challenges.

The major methodological challenges in functional LC imaging stem
from (1) its small size, which necessitates high spatial resolution, high effective
contrast in data acquisition, and cautious alignment and spatial normalisation
of acquired functional data into the group space, and (2) its position in the dorsal
part of the upper brainstem in proximity to the major arteries and pulsatile
ventricles, which makes LC imaging prone to physiological noise artefacts from
breathing and pulsation (Brooks et al., 2013). Physiological noise and
movement correction for imaging small structures has been extensively
reported elsewhere. We refer readers to the helpful works of Brooks et al.
(2013) and Lawson et al. (2013).

As outlined above, MR imaging sequences with suitable contrasts and
resolutions are now available for researchers interested in in vivo structural LC
imaging in the sub-millimetre range for structural LC imaging (Betts et al., 2017,
Priovoulos et al., 2018) and in the 2—-0.75 mm range for functional LC imaging
(Moeller et al., 2010; Koopmans et al., 2011; Jacobs et al., 2020). However,
while current image acquisition tools offer sufficient spatial precision, spatial
misalignment in LC applied to the acquired images can still hinder a conclusive

interpretation of functional LC imaging results (Liu et al., 2017). For instance, a
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recent review showed that many reported LC activations spanned far beyond
the known anatomical boundaries of the LC (Liu et al., 2017). As illustrated in
Figure 1, a group-level analysis that is affected by spatial misalignment can
result in reduced statistical power by ‘averaging away’ the LC activations across
subjects, if the extent of the misalignment is larger than the approximately
2.5mm width of the LC (Fernandes et al. (2012).

In this paper, we aim to offer an example of a spatial transformation
pipeline based on freely available MR data processing packages which has
been adapted to minimise spatial deviations across subjects in the structural
and functional LC imaging data for more robust group-level analysis.
Additionally, as imaging data quality varies across individuals and studies, we
provide a set of quality assessments for spatial processing, which can inform
adjustments within the pipeline depending on the dataset and, more
importantly, can serve as a reporting standard for processing of LC imaging
data. The codes for these analyses and a step-by-step documentation on how
to employ them is available for download at https://github.com/alex-yi-
writes/LC-SpatialTransformation2021.

The aim of this study was not to compare the precision of different registration
and normalisation approaches for functional and structural data as this has
been done previously (Ardekani et al., 2005; Klein et al., 2009; Klein et al.,
2010; Avants et al., 2011). Several different image processing toolboxes can
be used to achieve similar spatial precision for LC imaging (e.g., FSL, SPM,
and ANTs). The present study used an intensity-based registration toolbox,
ANTs, as the primary method of spatial transformation as

antsRegistrationSyN.sh is known to perform well in multi-modal images as well


https://doi.org/10.1101/2021.10.01.462807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.01.462807; this version posted October 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

as non-typical brains such as the atrophied brains of AD patients (Avants et al.,

2008).
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lllustration of the Effect of Spatial Deviations in a Group-Level Analysis
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Figure 1. Simulated effects of imprecision in spatial transformations at the group level in the
MNI space. Group-level functional activations for reward>non-reward feedback (p<0.05,
uncorrected; N=24, two scans per subject concatenated) are shown using an inclusive brainstem
mask. The top row shows the original group-level activation map, while the rows below show the
group level result after randomly shifting individual 15t level contrast maps by up to 3mm along
the x and y axes to simulate spatial deviations in spatial transformations. White lines indicate
significant clusters at voxel threshold p<0.005 (the top row [x=-5,y=-38,z=-25; Z=2.93; Prwe.
con<0.05, small-volume corrected (SVC) with the meta LC mask by Dahl et al.]; the second row
[x=-5,y=-38,z=-24; Z=2.73, Prwe-cor=0.062, SVC]; no significant clusters after more than + 2 mm
shifts). As can be seen, activations in the LC area (white arrows) gradually disappear with only
minor spatial deviations, whereas spatially more extended activations (pink arrows) are
comparatively less affected. Moreover, new spurious activations (yellow arrow) might arise.
Cyan-coloured lines show the aggregated meta LC mask created by Dahl et al. (2021).
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2. Methods and Results
The spatial transformation pipeline and quality assessments are
exemplified using a structural and functional imaging dataset adapted for LC
imaging (Hammerer et al., 2018). During functional image acquisition, subjects
performed a reward-based memory task. Reward is a highly salient event and
was shown to elicit phasic responses of the LC in animal studies (Varazzani, et

al, 2015; Glennon et al., 2019).

2.1 Participants

Twenty-four healthy younger adults (age range: 20-31 years) were
invited to participate in a reward-based memory-encoding task in the scanner.
Exclusion criteria included age, past neurological or psychiatric disorders, and
the presence of ferromagnetic implants. Each participant was scanned twice as
the study compared the effects of two different reward paradigms on memory
encoding, resulting in a total of 48 scans. All participants provided written
informed consent prior to the experiment and were compensated for their

participation and travel expenses.

2.2 Task
During the functional scan, participants performed a reward task in which
they had to classify the category of a presented picture, for example natural or
urban scenery, one of which was associated with a reward, as established in a
practice run prior to the scan. A reward or no-reward feedback was presented
after the categorization of the picture and was only contingent on the picture

type and not on the accuracy of the classification. The two experimental
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sessions that took place on two different days differed in the proportion of
reward and no-reward trials (45 and 135, or 135 and 45, respectively). The
association of stimulus category and reward was counterbalanced across
participants besides the order of the experimental sessions. Scans were
acquired at the German Center for Neurodegenerative Diseases Magdeburg

(DZNE Magdeburg).

2.3 MRI data acquisition

All images were acquired using a Siemens 3T Biograph mMR scanner
(Siemens Healthineers, Erlangen, Germany) with a 24-channel head coil. For
each subject, the following images were acquired: a whole-brain T1-weighted
MPRAGE anatomical scan to guide functional-structural spatial transformation
(1 mm isotropic voxel size, 192 slices, TR = 2,500 ms, TE = 4.37 ms, Tl =
1100ms, FOV = 256 mm, flip angle = 7°); a neuromelanin-sensitive T1-
weighted multi-echo FLASH sequence for structural LC imaging (0.6%0.6x%3
mm voxel size, 48 slices, TR = 22 ms, TA = 4:37, FOV = 230x230x144 mm,
flip angle = 23°); and axially oriented T2*-weighted 2D-EPI with Grappa and
acceleration factor 2 for functional LC imaging during the reward task (2 mm
isotropic voxel size, 51 slices, TR = 3600 ms, TE = 32 ms, FOV = 240x240x102

mm, flip angle = 80°).

2.4 Preparing functional and structural MRI data for spatial
transformation to MNI space
For each participant, two-session functional images each acquired on

different days were first slice-time corrected using the Slice Timing function of
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Statistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/

spm12.html). The output images were then unwarped with distortion fields
calculated from the double-echo gradient echo field map and realigned to the
mean volume using the Realign & Unwarp function of SPM12 in the MATLAB
environment using default parameters (Version 2015a, Mathworks, Sherborn,
MA, USA, 2015). This generated a mean functional image per person used for
spatial transformation of the structural and functional images (cf. Figure 2d).
Thereafter, the time-series functional images were smoothed with SPM using
a 3x3x3mm kernel in the native space before running single-subject general
linear models (GLM) to estimate task-related contrasts in SPM. As
physiological noise parameters were not recorded during data collection, they
were retroactively corrected using a component-based method (CompCor)
during the single-subject GLM analyses (Behzadi et al., 2007). The GLM
analysis generated a set of statistical contrast maps in the native space per
subject (Figure 2e) that was ready for transformation into the MNI space.
Individual T1-weighted whole-brain structural images were bias-
corrected using Advanced Normalisation Tools’ N4BiasFieldCorrection function
(Figure 2c) to correct for RF-field-related inhomogeneity (ANTs, Version 2.3.1;

http://picsl.upenn.edu/software/ants/, 2016; Avants et al., 2011; Tustison et al.,

2010). A study-specific template (Figure 2b) was created from these bias field-
corrected structural whole-brain images using the
antsMultivariate Template Construction2 function of ANTs (Avants et al., 2011).

The LC was manually segmented on the individual neuromelanin-
sensitive images (cf. Figure 2f and 2g) using ITK-Snap software (version 3.6.0-

RCA1; http://www.itksnap.org, 2018) by two independent expert raters (DH and
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YY). Final LC segmentations contain only the overlapping voxels from both
raters (cf. Figure 2g) (Sgrensen-Dice coefficient=0.60+0.17; see also

Hammerer et al. 2018 for more details on LC segmentation generation).
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Figure 2. Overview of the spatial transformation steps. Single subject data in native space (c-g)
are moved into MNI space (a) for group-level analyses (a). (a) MNI space by Fonov and
colleagues (2011). (b) A study template space generated from all whole-brain structural images
in the dataset was created to help transformation from native to MNI space. (c) Whole brain
structural image. (d) Mean functional image after reslicing, realignment, and unwarping. (e)
Statistical maps generated from smoothed functional images. (f) Neuromelanin-sensitive
structural image for LC imaging. (g) Manually segmented LC mask drawn on (f) in red. Arrows
indicate spatial transformation steps, with arrow heads pointing to the image space that an image
is transformed into. Triple-coloured arrows indicate concatenated transformation matrices, e.g.
the green-blue-magenta arrow (5-1) represents that transformation matrices calculated from a
mean functional image (d) to a structural image (c) (step 4-1), structural image (c) to study
template (b) and MNI (step 1), and study template (b) to MNI (a) (step 2), are combined in one
transformation step (step 5-1). This will transform statistical maps (e) and a mean functional image
(d) into MNI space (a) in one transformation step. Numbers indicate the order of transformation
steps executed in the pipeline.



2.5 Stepwise spatial transformations

Having prepared all relevant data, we outline a procedure which allows
for a sufficiently precise spatial transformation of structural and functional LC
data to MNI space. As each dataset will vary slightly in contrast properties and
signal-to-noise ratios, the parameter settings (i.e., maximal calculations per
iteration) of the individual spatial transformation steps might have to be
adjusted for specific datasets (see the downloadable manual for details:
https://github.com/alex-yi-writes/LC-SpatialTransformation2021).

We used ANTSs for all spatial transformations shown in Figure 2 (Klein et
al.,, 2010). However, other suitable spatial transformation tools are available,
such as the Shoot toolbox from SPM12 (Ashburner & Friston, 2011) or EPI-reg
function from FSL (Smith et al., 2004).

To facilitate spatial transformation across scans that were acquired at
different resolutions, LC-sensitive structural images and LC segmentations
(0.6%0.6x3mm native voxel size) were re-sampled to 1-millimetre isotropic
voxels matching the MNI space resolution using the mri_convert function in
FreeSurfer (Version 7.1; http://surfer.nmr.mgh.harvard.edu/, Martinos Center
for Biomedical Imaging, Charlestown, Massachusetts). In addition, brain-only
binary masks were created from the mean functional images using the bet
function in FSL (version 6.0.1; https:/fsl.fmrib.ox.ac.uk/fsl/, Analysis Group,
FMRIB, Oxford, UK) to aid better normalisation by increasing the geometric
compatibility among the images.

All spatial transformation steps are shown in Figure 2. First, the
individual whole-brain structural MPRAGE image (c) in the native space was

registered non-linearly to the study-specific template (b) using



antsRegistrationSyN.sh (step 1). To prepare the transition from the native to
the MNI space, the study-specific template (b) was non-linearly registered to
the MNI space using antsRegistrationSyN.sh (step 2 in Figure 2). Individual
whole-brain structural images (c) were transformed into the MNI space (a) with
the concatenated transformation matrix and deformation fields generated from
steps (1) and (2) using antsApplyTransforms (step 3). Then, the mean
functional image (d) was rigidly registered to the individual structural whole-
brain images (c), and the LC-sensitive structural image (f), and the LC
segmentation (g) in the space of (f) space were rigidly registered to the
individual structural whole-brain image (c) using antsRegistrationSyN.sh (steps
4-1 and 4-2, respectively). With the concatenated transformation matrices and
deformation fields acquired from steps (1), (2), and (4-1), the mean functional
images (d) and individual contrast images (e), which are in the same space as
individual mean functional images, were transformed to the MNI space (a) non-
linearly in one transformation step using antsApplyTransforms (step 5-1). The
group-level voxel-wise analyses for LC activations can then be performed on
the contrast images that have been moved into the MNI space (cf. Figure 1, the
first row). Similarly, concatenated transformation matrices and deformation
fields acquired from steps (1), (2), and (4-2) were used to transform LC
segmentations (g) delineated on neuromelanin-sensitive structural images (f)
non-linearly into the MNI space (step 5-2) using antsApplyTransforms. All
nonlinear spatial transformations were implemented at the 4" degree B-spline
interpolation except the individual contrast images (e), which were transformed
with the linear interpolation option, and the individual LC segmentations (g),

which were transformed with the nearest neighbour option. Note that by



following a similar approach but omitting the transformation step to MNI space
in the concatenated transformation matrices, group analyses for structural and
functional data can also be done in study-specific template space (b) (Suppl.
Figure 3). For further details regarding the transformation parameters, see the
code downloadable at https://github.com/alex-yi-writes/LC-

SpatialTransformation2021.

2.6 Quality assessment of the spatial transformations of functional LC
imaging data
An important step that is omitted in most reports of LC imaging data is
the quality control of the spatially normalised images. This step is important
even with a rigorous stepwise transformation procedure as outlined above,
since variations in data quality might result in spatial deviations in some
participants. This may stem from variations in the signal-to-noise ratio or
contrast during the acquisition, due to head motion or different subject
positioning in the scanner as well as interindividual variability in brain anatomy
or signal dropouts. Furthermore, this step will provide a quantification of spatial
deviations at the group level which is important additional information when
reporting and interpreting group-level results. To check for spatial deviations in
individual transformations, a quality control procedure (cf. Figure 3) was carried
out on the final outputs (i.e., outputs from steps 5-1 and 5-2 in Figure 2) once
all images across subjects were transformed to the MNI space as outlined

above.



(A) Landmark placement for quality control of functional data
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Figure 3. (A) Landmarks (indicated by red markers) used in the quality assessment on the
individual mean functional images after spatial transformation to the MNI space.
Landmarks are drawn on mean functional images (left part of images) before being
assessed on the MNI template overlay (right part of images). (B) Histograms of in-plane
distances between single-subject landmarks and landmarks defined on the MNI template.
The median of in-plane distances was at 2mm or lower for all landmarks, thereby falling
below the typical width of the LC of 2.5mm (indicated by solid red line, Fernandes et al.,
2012). Note that deviations in the outline of the brainstem are bound to differ more from
the MNI marks as the precise position along the border of the brainstem is less relevant
than capturing the border between brainstem and CSF (cf. row 2 in A). See downloadable
manual for details on how to set and evaluate landmarks.



As shown in Figure 3, to assess the transformation precision of the
functional images, it is important to establish anatomical landmarks relevant to
the LC area in the MNI space, which are evident on the normalised functional
images (because the LC itself is not visible). Identified landmarks therefore
benefitted from anatomical structures that are clearly visible on the mean
functional T2*-weighted images, which include the iron-rich nucleus ruber and
the border between the cerebrospinal fluid and brainstem of the fourth ventricle
(Figure 3, A). By checking the transformation congruence of the mean
functional image across subjects, we assessed the transformation precisions
of the individual functional images relevant to the statistical analyses (cf. Figure
2, images (d) and (e) are in the same space). Afterwards, spatial
transformations are evaluated by overlaying the structural MNI template on the
transformed functional image after delineating the landmarks (cf. Figure 3A,
right half of pictures). This step also allows for identifying individual cases that
might not be well-aligned in the group space, due to interindividual differences
in image quality (e.g. low signal intensity in subcortical areas, functional images
with high-intensity out-of-tissue areas, or lower signal-to-noise ratio due to
suboptimal measurement conditions). These issues can be remedied by
additional bias-field correction for functional images or adjusting intensity
thresholds of functional mask generation for these individuals (see the
downloadable manual for details: https://github.com/alex-yi-writes/LC-
SpatialTransformation2021). Landmark checks then must be repeated for each
misaligned image after the rectification. It is important to note that landmarks
are never to be moved retrospectively once the MNI template has been

overlayed.



In the second step, once the transformation quality of all functional
images was satisfactory at a single-subject visual inspection stage, the saved
landmark images can be aggregated across subjects to assess, quantify and
report the quality of spatial transformations at the group-level in MNI space. To
quantify the quality of the transformation, landmarks outlined in Figure 3A were
also drawn on the MNI space ((a) in Figure 2) in advance to calculate the
distance between the MNI-defined landmarks and those that are drawn on the
individual transformed mean functional images. The same approach can be
applied to the procedure based on the study-specific template analyses. Then,
the in-plane distance between each landmark on the individual mean functional
images in the MNI space and the landmarks drawn on the MNI space were
calculated using a custom MATLAB script downloadable here
https://github.com/alex-yi-writes/LC-SpatialTransformation2021. This allowed
quantification of the accuracy of the functional image transformation (Figure
3B). As anatomical structures used for landmarks span across several slices, it
is recommended to identify the slice number for the respective landmarks on
the MNI template before performing quality assessment and using this slice
number on the MNI-transformed mean functional images (cf. Figure 3A). To
minimise signal loss due to spatial misalignment in the group averages, spatial
deviations of the LC landmarks should at least fall below the known width of the
LC of 2.5mm (Fernandes et al., 2012).

Figure 3B shows that the in-plane spatial deviations of LC-focused
landmarks do not exceed 2.5mm. The observed deviations at this stage of
spatial transformation come from various sources such as anatomical

idiosyncrasies in each brain or insufficient contrast in the brainstem area.



However, they do not seem to originate from the application of nonlinear
transformation to the MNI space, as the landmark deviations calculated from
the rigid registration step between the mean functional image and structural

whole-brain image (step 4-1) shows a similar range of deviations (Suppl. Figure

1),

2.7 Quality assessment of the spatial transformations of structural LC
imaging data

As a first means to assess the spatial precision of the LC segmentations

that are moved into the MNI space, aggregated LC segmentations can be

plotted as a heatmap, in which a 0 voxel value indicates no shared LC

segmentation voxels, while a value of 1 indicates all individual segmentations

including a particular voxels. Such a heatmap can also be compared to a meta

LC mask in the MNI space as a visual inspection of the coherence and validity

of the spatial transformation into the MNI space (cf. Figure 4A).
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Figure 4. (A) A heatmap of transformed individual LC segmentations in the group
space. The cyan line indicates the meta LC mask created by Dahl and colleagues
(2020). The maximum overlap is at 62.5% and the minimum at 2%. (B) Violin plots
showing the distribution of distances across subjects for the left and right LC
centroid voxels of aggregated meta LC mask and MNI-transformed single-subject
LC segmentations. The in-plane distance is calculated slice-by-slice separately for
left and right LC and averaged across slices to yield one value per subject and left
or right LC segmentation (right: M+SD=0.92+0.27, [QR=0.30; left:
M+SD=0.87+0.25, IQR=0.23). A plot showing all cases of slice-wise distances
across all LC segmentations and slices can be found in Supplementary Figure 2.



However, the precision of the spatial transformation of the individual LC
segmentations should also be quantified by e.g., calculating the slice-wise
distance between the centres of each individual MNI-transformed LC
segmentation and a template LC mask in the MNI space (e.g., the meta-mask
of Dahl et al. (2020)) (cf. Figure 4B). On each slice of the transformed individual
LC segmentations, the 3D coordinates of the left and right LC centroids are
calculated using a custom MATLAB script downloadable here:
https://github.com/alex-yi-writes/LC-SpatialTransformation2021. Likewise,
centroid coordinates of the meta LC mask of Dahl and colleagues (2020) were
calculated per slice, and distances between these centroid points and the
centroid points of the individual segmentations were computed. Then, the
distances were averaged across slices within subjects for each side of the LC
mask using a custom MATLAB script. The averaged slice-wise distance of the
right LC (N=48) was 0.70 mm (SD=0.21, median=0.64) and that of the left LC
(N=48) was 0.72 mm (SD=0.20, median=0.66), which are both below the width
(2mm) of the aggregated meta LC mask created by Dahl et al (2020).

It should be noted that our sample included only younger adults, who are
expected to show lower signal strengths in structural LC imaging presumably
due to the continuing accumulation of neuromelanin with increasing age (Liu et
al., 2019). It might thus be assumed that structural LC recordings in younger
adults underestimate the actual volume of the LC as not all LC cells might be
sufficiently ‘labelled’ yet. This would explain the pattern of increasing LC signal
in neuromelanin-sensitive scans during adulthood (Liu et al., 2019).
Furthermore, as our focus in this paper was to provide a precise localisation of

the LC, the LC was segmented using conservative thresholds, which thereby



most likely underestimated the actual LC volume. Finally, our analyses (Suppl.
Figure 2) and postmortem data (Fernandes et al., 2012) show that also
individual LC positions in their native space vary in the range of 2.7-6.7mm
(M+SD=4.3+1.0mm) with respect to the posterior midline of the brainstem
across individuals due to interindividual differences in anatomy (cf. Figure 5,

orange plots on the left side of the figure).
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Figure 5. Mean slice-wise Distance of centres of individual LC segmentations
with respect to brainstem midline in native and MNI space. Each violin plot
indicates slice-wise distance from either left or right LC segmentation centroid
coordinates (native or transformed) to the midline coordinates. Midline coordinates
have been manually defined on the posterior border of brainstem and the 4th ventricle
(c.f. inset). Distances are assessed and averaged across slices per subject. Mean
distance of LC from brainstem midline (and variability in this distance) across
individuals are as follows from left to right: Left LC segmentation resampled at 1mm
isotropic voxel in the native space (M+SD=3.74+0.61, median=3.64), and right LC
(MtSD=4.1340.75, median=4.10), Left MNI-transformed LC segmentation
(M+SD=4.65+0.43, median=4.60), right MNI-transformed LC segmentation
(M+SD=4.35+0.48, median=4.43).



This is corroborated by post-mortem studies that also report deviations
in individual LC positions and size (German et al., 1988; Fernandes et al.,
2012). As normalisation to the group space is based on discernible features of
the brain anatomy such as ventricles and outline of the brainstem, variations in
LC position between individuals in the native space will to some extent translate
to LC segmentations in the group space (violet plots on the right side of Figure
5). Therefore, the delineation of the LC combined across all subjects might
exceed the typical size of an individual LC and be prone to varying levels of
overlap across indinviduals. This current obstacle of assessing LC
segmentations at the group level will greatly benefit from probabilistic LC masks
(Ye et al., 2021), which eventually are expected to incorporate age- and
disease-related information on partial volume and neuronal loss effects in

specific areas of the LC in certain populations.

Box 1. Suggestions for reporting registration and normalisation
precision for functional LC imaging

Following our outline of an analysis pipeline and a set of quality checks
on the precision of spatial transformations for functional and structural LC
imaging, we propose the following standards for reporting group-level LC
imaging results. Many existing publications already include information on
some of the aspects outlined below. However, very few encompass all
aspects outlined here, especially when it comes to including information on
quality assessments of spatial transformations. As shown in Figure 1, our
ability to reliably identify LC activations at the group level is crucially

dependent on the precision of the post-hoc spatial transformations of the




functional images. Thus, we would like to propose the following information
to be included as a reporting standard of LC imaging studies:

(1) In-plane distances of landmarks drawn on each subject’s mean
functional images in the MNI space from pre-defined landmarks on the
structural MNI or group template image (cf. Figure 3).

(2) Slice-wise distances between the centre of an LC template mask
and the centre of each subject’s LC mask in MNI or group template space
(cf. Figure 4).

Moreover, given the LCs’ position in the brainstem and its small size,
the following information on data preprocessing should be given:

(3) The description of the movement correction method should include
replicable details and should mention any deviations from default settings or
additional correctional techniques performed.

(4) The description of the physiological noise correction method
should include replicable details and mention any deviations from default
settings or additional correctional approaches taken. If no physiological
parameters have been recorded, independent component analysis (ICA)
approaches can be used to achieve similar effects (Beckmann & Smith,

2004).

3. Discussion and conclusion
Over the last decade, there have been substantial advances in functional
and structural LC imaging, both with respect to novel imaging protocols (Keren
et al., 2009; Betts et al., 2017; Priovoulos et al., 2018; Trujillo et al., 2019;

Jacobs et al., 2020) as well as in with respect to gaining a better understanding



of the contribution of the LC to cognition, behaviour, and neurodegenerative
diseases (Betts et al., 2019; Poe et al., 2020; Kelberman et al., 2020). In this
article, we suggest a set of spatial transformation and quality assessment steps
that can serve as an analysis and reporting standard to further support these
advances in the field of LC imaging.

With the set of procedures outlined here, we aim to provide readers
interested in LC imaging a mostly plug-and-play approach for processing
group-level functional and structural LC imaging data. In this study, we used
ANTs, SPM12, FSL, and FreeSurfer for pre-processing and spatial
transformations. However, the general aspects of the analysis steps outlined
here (cf. Figure 2—4) can be applied to other toolboxes such that other
combinations of toolboxes can be employed depending on the user's
preference and proficiency. These include the following: (1) the measures that
can be performed for preparing images for the spatial transformation, such as
bias correction of images before spatial transformations to compensate for low
imaging contrast in the brainstem region, (2) the order of spatial transformations
outlined in Figure 2, and (3) using different image registration metrics and
varying their parameters (e.g., cross-correlation, mutual information) to
optimise registration in individual problematic data points.

Most importantly, we hope that the quality assessments and reporting
details of spatial transformations for functional and structural LC imaging data
outlined in this paper can serve as a starting point for a reporting standard of
LC imaging data.

The focus of this paper is on allowing sufficiently congruent spatial

alignment for interpreting group-level results in functional LC imaging. It should



be noted that a variety of factors can contribute to spatial deviations at the group
level, and not all the deviations can be reduced by improving the spatial
alignment. In structural LC imaging, which currently provides our best spatial
resolution for LC imaging (Betts et al., 2017; Priovoulos et al., 2018), existing
imaging sequences most likely do not capture the entire extent of the LC, which
can lead to inaccurate delineation of LC. This can be due to movements during
image acquisition which obscures hyperintense LC voxels, partial-volume
effects, and insufficient signal for neuromelanin-sensitive imaging in the
younger age group (the LC contrast intensity shows an inverted-U shape curve
across the lifespan, which may be due to neuromelanin increase during
maturation and cell loss during ageing, Manaye et al., 1995; Liu et al., 2019),
as well as differences in the properties of the imaging sequences (Betts et al.,
2019). Furthermore, the LC position in the brainstem varies across individuals
(German et al., 1988; Fernandes et al., 2012), which can translate into spatial
deviations at the group level (Figure 5). In the future, examining such group
differences can be further assisted by the development of probabilistic LC
atlases (Ye et al., 2020), which could help identify and interpret partial LC loss
in  MNiI-transformed individual LC segmentations as well as base
transformations on the informed LC shapes of different populations.
Regarding functional LC imaging, limitations in the intersubject image
alignment of spatial transformations are also related to the inevitably larger
voxel sizes (with a currently minimum size of 1.5-2 mm in 3T scanners and
0.75-1 mm in 7T scanners) and smoothing kernels, as well as the lower level
of anatomical information available in mean functional images as compared to

that of structural data for assessing the spatial precision based on landmarks.



Based on these constraints, spatial deviation of at least up to a voxel size in
spatial transformation of functional data can often be expected (cf. Figure 3).
Given the detrimental effects of spatial deviations on functional LC activation at
the group level (cf. Figure 1), functional LC sequences that aim for lower voxel
sizes may help to counteract this effect. Nonetheless, as exemplified in Figure
1, also LC imaging studies using larger voxel sizes of up to 3 mm can benefit
greatly from improved spatial precision in image processing.

In addition, our sample was rather unconventional as the same subjects
were invited twice for MRI scans, which might have resulted in lower noise
levels than studies which did not perform repeated assessments. However, this
does not affect the principles of the analyses and quality assessments
presented in this study. Similarly, although ICA-based methods of correcting for
physiological noise have been shown to be comparable in their ability to correct
for noise as compared to regression-based approaches using recorded
physiological parameters (Salimi-Khorshidi et al., 2014; Griffanti et al., 2014),
physiological noise correction using additional recordings for physiological
noise is generally preferable. The spatial precision in alignment achieved with
our dataset might thus be further improved in a dataset using concurrent
acquisition of physiological signal and MR data or higher spatial resolutions in
MR data acquisition. However, it might be important to also show that sufficient
spatial precision can be obtained in a non-optimal dataset as the present given
that not all set-ups might allow for e.g., additional physiological signal
recordings. Finally, identifying reliable LC activation depends not only on the
precision of spatial transformation, but also on the sample size and the

effectiveness of experimental manipulations. However, it is only by starting with



methods that allow for a robust assessment of LC activations, as outlined here,
that one can address questions regarding which sample sizes or paradigms are
most suited for LC imaging.

Brainstem imaging has only recently begun to attract attention for
methodological scrutiny (Sclocco et al., 2018; Brooks et al., 2013).
Nevertheless, it will in the future undoubtedly afford higher spatial precision
than that reported in this paper, owing to new imaging sequences and further
developments in spatial transformation methods. We hope that the set of
analyses, quality assessments, and reporting standards outlined in this paper
can contribute to this development. Finally, although we have been focusing on
optimising spatial transformations for brainstem imaging, the analysis steps and
quality checks outlined here can be easily adjusted for other small brain areas,
such as hippocampal subfields or other small nuclei within or outside the

brainstem, for example, habenula or mamillary bodies.
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