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Abstract

The human gut microbiome is a complex community that harbors substantial ecological diversity at the
species level, as well as at the strain level within species. In healthy hosts, species abundance fluctuations
in the microbiome community are thought to be stable, and these fluctuations can be described by
macroecological laws. However, it is less clear how strain abundances change over time. An open question
is whether individual strains behave like species themselves, exhibiting stability and following the
macroecological relationships known to hold at the species level, or whether strains have different
dynamics, perhaps due to the relatively close phylogenetic relatedness of co-colonizing lineages. In this
study, we sought to characterize the typical strain-level dynamics of the healthy human gut microbiome on
timescales ranging from days to years. We show that genetic diversity within almost all species is
stationary, tending towards a long-term typical value within hosts over time scales of several years, despite
fluctuations on shorter timescales. Moreover, the abundance fluctuations of strains can be sufficiently
described by a stochastic logistic model (SLM) — a model previously used to describe abundance
fluctuations among species around a fixed carrying capacity — in the vast majority of cases, suggesting that
strains are dynamically stable. Lastly, we find that strain abundances follow the same macroecological laws
known to hold at the species level. Together, our results suggest that macroecological properties of the
human gut microbiome, including its stability, emerge at the level of strains.

Introduction

The human gut microbiome is composed of a diverse array of microbial species. While a typical gut
microbial species harbors considerable genetic variation both within and across hosts, the ecological and
functional consequences of this diversity remain largely unknown. Although recent efforts have begun to
characterize how genotypic diversity changes within healthy hosts over months to years, these trends are
not, at present, quantified on the short time frames most relevant for microbial ecology — that is, over
periods of days [5,10,15,24,25,28,30]. Understanding the typical scale of daily fluctuations in genetic
variation is critical to assessing both the long-term stability of the genetic composition of the gut
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microbiome, as well the effects of occasional large perturbations resulting from changes in host diet,
medication, travel, illness, and other factors.

Two kinds of processes drive within-host changes in genetic variation in the human gut. First, there
is the evolutionary modification of resident lineages, which can result in small numbers (O(1) — O(10)) of
single nucleotide variants (SNVs) sweeping from low to high frequency on timescales of weeks to months.
Second, fluctuations in the abundance of strains, which have a typical nucleotide divergence of 1%, can
result in large numbers (~ O(10%)) of SNV frequency changes over time [10]..The most dramatic
manifestation of this second process is strain replacement, when one strain of a species invades and drives
the resident to extinction, though such events are infrequent over ~ 1 year timescales [24,25]. Thus, strain
abundance fluctuations have several orders of magnitude greater impact on intraspecies genetic variation
over time than evolutionary changes.

Prior analyses have demonstrated that the majority of strains persist within hosts over a period of at
least several years [5,15,24,25]. Moreover, strains can be resilient to even large perturbations of the gut
community, such as antibiotics [23] and fecal microbiome transplants (FMT) [11]. Interestingly, strains in
the gut microbiome frequently co-exist with a handful of other strains belonging to the same species. This
“oligo-colonization” model — in which a species is made up of ~ 1 — 4 strains [10,54] — has been observed in
a number of other host-associated microbiota, both at different human body sites [42] as well as in other
organisms |8, 16].

The coexistence of multiple strains within an individual gut for periods of years contrasts starkly
with the rapid evolution known to occur regularly at individual SNVs. This suggests that while
competitive exclusion and directional selection may frequently prevail among closely related lineages,
highly diverged lineages are generally subject to different eco-evolutionary forces. That is, while SNVs are
known to frequently arise and fix within populations, strains, which are far more genetically diverged, seem
much less likely to drive other strains extinct.

To understand the typical abundance fluctuations of strains in the microbiome, we leverage concepts
from macroecology. Macroecology focuses on elucidating the statistical and ecological properties of
communities. There is an increasing body of work which demonstrates that patterns of microbial species
abundance and diversity follow macroecological laws across disparate environments, including the human
gut [1,6,14,45]. Surprisingly, many of these macroecological laws can be recapitulated through intuitive
ecological models containing few if any free parameters [1,6,44]. Among these successful models is the
Stochastic Logistic Model (SLM), which describes the dynamics of a population experiencing rapid
environmental fluctuations around a fixed carrying capacity. Whether the strains making up a community
exhibit regular, statistically quantifiable dynamics, and if so, whether these dynamics can be explained
using simple models, are fundamentally macroecological questions.

In this study, we examine whether the macroecological dynamics observed at the species level hold at
the strain level. We investigate the temporal dynamics and macroecology of strains in a densely sampled
cohort of four healthy, adult hosts (am, an, ao, and ae) from a previously published data set [21]. We find
that the vast majority of strains in the human gut are stable in these healthy hosts on ~ 1 year time scales,
and that they exhibit some of the same macroecological patterns as species. We approached the problem of
intraspecies stability first by quantifying the change in genetic polymorphism through time, and showed
that levels of intra-species genetic variation (as measured by the nucleotide diversity ) fluctuate around
long-term steady state values. Next, we connected the lack of directionality exhibited by genetic diversity
through time with an underlying model of stable population dynamics among—the SLM, first applied
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by [1,6] to characterize microbial diversity at the species level. We find that this model provides a
sufficient description of strain dynamics in almost all cases, and that it fails in the only case of a clear
strain “replacement” in our cohort. Lastly, we demonstrated that several macroecological laws initially
shown to hold at the species level also hold among strains. Together, this work indicates that the stability
of the gut microbiome emerges at the level of individual strains.

Results

Stability of intraspecies diversity

Fluctuations in intraspecies genetic diversity reflect both the population genetic forces affecting lineages
within a population and the ecological forces affecting the relative abundances of different strains. To
investigate these forces, we first analyzed the nucleotide diversity of species in our cohort.

An illustrative example of these temporal dynamics is provided by Bacteroides vulgatus, the most
abundant species in host am. In Figure 1A, nucleotide diversity 7 for this population is plotted over the
two-year sampling period. While 7 undergoes relatively large fluctuations (varying by more than a factor
of two), there is no apparent trend for diversity to systematically either increase or decrease. Rather, 7
seems to fluctuate around a characteristic value of about 1.5 x 1073, with periods of elevated or decreased
diversity followed by a return to the “steady” state. Across all species examined, nucleotide diversity
typically ranged from approximately 10~* — 102 per basepair.

We implemented a permutation test to determine quantitatively if levels of diversity were indeed
constant through time for species in our data (Methods). Applying this test, we found that 55 of the 64
species for which SNPs could reliably be inferred (including B. vulgatus in am) showed no trend in 7
throughout the sampling period at a 5% significance level, confirming our initial qualitative assessment of
the overall stationarity of genetic diversity (Supplementary Figure 1).

Levels of nucleotide diversity in many species in our data are inconsistent with the presence of a
single strain, or of a group of lineages which diversified since entering the host. Using conservatively high
estimates for per-site mutation rates, generation times, and time since colonization, the authors of [?]
estimated that genetic polymorphism could reach values of at most about 1073 per basepair if lineages
diverged within a host. If however, a species is made up of multiple strains that accumulated mutations for
many generations before colonizing the same gut community, nucleotide diversity can easily surpass this
value.

The nucleotide diversity of B. vulgatus hovers just above this upper threshold, indicating that the
species may be made up of multiple diverged strains. To assess this, we inferred the underlying strain
structure B. vulgatus (Figure 1B). While accurate strain inference is inherently limited in cases where
read depth is low, distinct strains can be confidently inferred when SNV data is available at many
timepoints. Using a previously published algorithm which leverages the correlations in allele frequency
trajectories between linked variants to detect strains in dense longitudinal data, we were able to separate
out two distinct clusters of allele frequency trajectories, strongly indicating that B. vulgatus is
oligo-colonized by a mixture of three strains (Supplementary Figure 2). As with 7, the relative abundances
of the strains seem centered around a fixed steady state, to which the strains return following transient
increases or decreases in abundance. Indeed, variations in the relative abundances of the strains away from
their steady state (e.g. around timepoint 100, when one strain rises markedly in abundance) correspond
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Figure 1. A) Nucleotide diversity 7 of Bacteroides vulgatus in host am. Short term fluctuations in

diversity tend ultimately to revert to a long term average value. B) Results of strain inference for B.

vulgatus. Each colored line represents the trajectory of a single phased allele, while the color itself denotes
the strain cluster the allele was identified as belong to (the unphased allelic trajectories can be seen in
Supplementary Figure 2.) Black lines are centroids of the allele trajectory clusters, and are an estimator for
the true relative abundance of the strain. Fluctuations in strain frequency are mirrored by fluctuations in
genetic diversity. Note the x-axis shows the ordinal timepoint number, not number of days. C) Trajectories
of the ratio of mpr to mpy for each species in hosts am and ao. The bulk of trajectories are grey, indicating
no significant trend across the sampling period; red trajectories are those which show a significant positive
trend. wpr approaches wgy for F. prausnitzii in host ao, indicating a possible partial displacement.

exactly to perturbations in 7. It is clear in this case that the changes in strain abundance are in fact the
leading contribution to fluctuations in intraspecies genetic diversity.

Nucleotide diversity 7 can, in theory, remain relatively constant even when there are dramatic
changes in the strain-level composition of a species—this might happen if, for instance, a species colonized
by a single strain was replaced by another single strain from a different host. However, such changes would
manifest in the genetic composition of the species changing dramatically, with the level of diversity
between timepoints approaching or exceeding that between hosts, as unrelated hosts typically contain
distinct, highly diverged sets of strains [24]. To understand how the genetic composition of species changes
in time, we computed the nucleotide diversity between timepoints w7, normalizing this quantity by the
average genetic diversity between hosts mgy (Methods). We again conducted a permutation test on mpr
time series, and found significant temporal trends in diversity change in just four species. Intriguingly,
three of these four species were found in a single host (ao0). Among all species in all hosts, the ratio %
approached one only for Faecalibacterium prausnitzii in host ao (Figure 1C, right, in red).
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Stochastic logistic model

Next, we sought to determine if the temporal dynamics of strains could be captured using a naive model.
Recent work in microbial ecology has repeatedly demonstrated the power of such models to reproduce
qualitative and quantitative features of natural microbial community dynamics [1,6,43,44]. We show that
the stochastic logistic model (SLM), a minimal model itself requiring the fit of no free parameters, is a
good fit for nearly all the strain time series in our cohort.

We first obtained time series of strain abundances. To do so, we determined the relative frequencies
of strains using the technique described above, and then multiplied these by the frequencies of the species
to which they belong, excluding species and samples with low abundance (Methods).

If x; is the abundance of strain ¢ which follows an SLM, then:

Wi T (2 g [T
dt N Ti Kz Tixln

here 7; is the intrinsic growth rate of the strain and n(t) is a Brownian noise term. Under the assumptions
of the model, each population has a long-term carrying capacity K;, and temporal fluctuations in

abundance around this value are driven entirely by environmental noise with amplitude determined by o;.

Populations may experience large fluctuations in abundance over short timescales, and may even be
temporarily found far from their long-term average value, but these fluctuations will be transient. Over
long timescales, the stationary distribution in abundances predicted by the SLM is the following Gamma
distribution [1]:

1 2 N\, 2
p(xZ) N F(QUl_l — 1) (KZO'Z> v P <_Ki0'im> (2)

In Figure 2A, simulations from the SLM are compared with the actual time series of two strains. The
qualitative agreement between data and model is evident, and is further reflected in the close match of the
empirical distributions of abundances over the whole sampling period with the predicted stationary
Gamma distribution.

To assess quantitatively whether the time series of populations in our cohort could be adequately
described by an SLM, we developed and implemented a goodness-of-fit test (Methods). The test
determines whether the transitions between subsequent timepoints are consistent with an SLM.

The SLM fit the data in the overwhelming majority of cases: 94% across all hosts combined (Figure
2B), with similar percentages of strains fitting the model in each host. We emphasize that this test did not
require the fit of any free parameters, as the parameters of the SLM associated with each population were
estimated only from the mean and variance in its abundance (Methods). The agreement of data and model
is thus unlikely to be an artifact of model over-specification.

The SLM was rejected in some instances. Notably, the model was rejected for one of the two strains
of F. prausnitzii in ao, the same species which was shown above to have experienced a large, directional
change in its genetic diversity and composition. This strain experienced a rapid decrease in abundance
midway through the sampling period, and thereafter never fully recovered to its previous state
(Supplemental Figure 3). The other strain fit the SLM. We conclude that ecological processes happening at
the level of strains drove the observed change in the genetic composition of this species; and in particular,
the change can be attributed to a dramatic shift in abundance of just one of the two populations initially
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Figure 2. A) Simulations of the SLM associated with each strain, in red, capture the behavior of the real
data at multiple time scales. Short-term increases and decreases are followed by returns to the long-term
carrying capacity K. At far right, in blue, are histograms of the strains’ abundance, and overlaid in red
is the Gamma stationary distribution of abundances predicted by the SLM, described in equation 1. B)
The percentage (y-axis) of strains for hosts am,ae,a0, and an passing the SLM goodness of fit test. A high
proportion of strains pass the test—89% in ao, 100% in an, 96% in ae, and 89% in am. Across all four
hosts, 94% of strains pass the test.

present. Despite this shift, both strains were detectable at all time points. Though the SLM was rejected
in several other populations, F. prausnitzii was the only species which simultaneously experienced a
statistically significant change in genetic diversity.

Together, these results indicate that the great majority of strains in the gut microbial community
fluctuate around fixed average carrying capacities for periods of years, at least.

Macroecology of strains

While we have already seen that individual strains tend to be well described by an SLM, we show in the
following section that the size of fluctuations across strains are strongly constrained. In many kinds of
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microbial ecosystems, including the human gut, species have been shown to broadly obey macroecological 1ss

laws [1,45]. We show here that these patterns equally well characterize patterns of variation in the 167

abundance of strains across our cohort. 168

The first pattern examined is a power law scaling between the mean and variance of abundance, 160

known in ecology as Taylor’s Law, and can be stated: 170
aii o (x;) (3)

where (x;) and Ui are the mean and variance of population x;, respectively, and « is the scaling exponent 1n

of the power law. In communities where the relative scale of fluctuations is independent of population 172

size—constant per-capita fluctuations—a« will equal 2 [45]. We observed a Taylor’s Law scaling with an 173
exponent of a = 1.63 among all strains (Figure 3A), closely mirroring previous findings at the species 174
level [45] 175
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Figure 3. A) Strains obey Taylor’s Law with exponent o = 1.63. All strains are colored blue except
the previously discussed strains belonging to Faecalibacterium prausnitzii in ao, which are colored red.
B) The Gamma distribution describes the fluctuations in abundances of strains through time. To enable
comparison across strains which have mean abundances ranging across several orders of magnitude, the
AFD of each individual strain (grey lines) has been rescaled to have mean zero and unit variance. The
black dots show the mean probability of a given rescaled abundance across strains.

The next pattern considered is the Gamma abundance fluctuation distribution (AFD), the overall s
distribution of abundances of a population through time. As discussed above, a population governed by 17
stochastic logistic dynamics will tends towards a Gamma distribution of abundances over long timescales. 17
Given the generally excellent fit of the SLM to the population time series, the abundances of strains might 17
generically be expected to each individually follow a Gamma distribution. In (Figure 3B), we see that the 1

distributions of strain abundances are indeed well described by a Gamma distribution; however, this 181
Gamma is also conserved across strains—that is, all strains approximately lie (up to a scaling factor) along 1s
the same Gamma. Recalling that each SLM is uniquely determined by the mean and variance of 183
population, it is apparent that the collapse of the AFDs to a single Gamma is in fact a consequence of the 1
strong constraint Taylor’s Law places on these quantities across strains. 185
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The observed macroecological patterns continue to hold even when limiting our attention only to
strains for which another strain of the same species is present (Supplemental Figure 4). Thus, two very
broad macroecological laws observed at the species level in the human gut are also observed among strains,
suggesting that the biotic and abiotic factors driving these patterns may act at the level of strains.

Discussion

In this study, we sought to characterize the typical within-species population dynamics in the human gut
microbiome. Previous efforts have demonstrated that the genetic diversity within a host persists for
multiple years for most species [24,25]. We build on this result by demonstrating that intraspecies diversity
tends to fluctuate around a long-term average value within a typical host on a time scale of several years.
We show, crucially, that the abundance fluctuations of the vast majority of strains can be sufficiently
described by a stochastic logistic model (SLM) of growth, a model which also recapitulates fluctuations at
the species level [1,6]. Furthermore, empirical patterns of strain abundance follow macroecological laws
which have been previously demonstrated to hold at the species level [1,6]. Together, our results suggest
that the macroecological dynamics exhibited by species are recapitulated at the strain level.

While the SLM was able to sufficiently describe strain dynamics for the vast majority of strains
across species, its success is not universal. One strain of F. prausnitzii is a noted exception, as its
abundance decreased dramatically in abundance in a way that could not be explained by the stationary
dynamics of the SLM. The directional change in abundance of this strain throws into relief the stability of
the majority of the other strains—it is an exception that proves the rule, illustrating that strain dynamics
might be quite different across strains, and that these differences can be detected by our test of the SLM.
This example also brings to light an interesting tension in the interpretation of our results. Under the SLM,
strains are expected to persist indefinitely. However, over the course of decades, much of the strain content
of the adult gut is replaced [10,15], suggesting that there is an additional timescale which is relevant for
strain replacement. One hypothesis is that this timescale reflects a waiting time for large environmental
perturbations, such as antibiotics [23,32] or bowel cleanse [49], but this is just one of many hypotheses.
Indeed, this hypothesis is partially challenged by [23], where the strain content of an adult gut was initially
perturbed during a course of antibiotics, but ultimately recovered to its pretreatment state. This
antibiotics study is a powerful demonstration of the stability of strains as ecological units, even in the face
of large perturbations. Testing the possible explanations for the apparent discrepancy between years and
decades-long population dynamics is an important problem to address with broad cohorts and extended
timescales of observation.

Beyond the success of the SLM as an ecological model of strain dynamics in our cohort, the existence
of many linked mutations segregating at intermediate frequencies across multiple species is qualitatively
inconsistent with most standard population genetic models of microbial evolution [18]—particularly,
models emphasizing directional selection or neutral evolution. However, the stability of both total genetic
diversity and strain abundance belies the fact that SNVs likely continue to arise and fix within these
populations even on the timescales examined here. While strain dynamics may often be suitably described
by a time invariant model, these populations are not genetically static. Recent work has shown that
variants arise and fix within populations in the gut microbiome regularly over months to years [10,15,30]

How evolution impacts the ecological dynamics of strains and how in turn these ecological dynamics
constrain and channel evolution, is an active area of research [18]. In the context of the SLM, these
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eco-evolutionary feedbacks can viewed as tuning a strain’s carrying capacity K, growth rate %, and
sensitivity of the growth rate to environmental perturbation o. Naively, it is expected that evolution would
tend to increase carrying capacity while minimizing the sensitivity of growth to abiotic fluctuations, but
evolutionary modifications driving changes in one quantity may affect the other. The observed power-law
scaling between the mean and variance in abundance (Taylor’s Law) is, in essence, a constraint on K given
o, and vice versa. The SLM thus not only describes ecological dynamics, but also, in conjunction with the
empirical observation of macroecological laws, provides a useful framework for investigating the ecological
effects of adaptation.

How and why closely related strains stably coexist in the human gut is one of the central biological
questions raised by these results. Spatial segregation between strains, perhaps occupying different colonic
crypts, could underlie the observed pattern of strain coexistence [20,27], much as it does among
Cutibacterium acnes strains inhabiting different pores on the facial microbiome [42]. However, spatial
structure is far from the only mechanism that can foster coexistence between strains. Coexisting strains
have been reported in well-mixed laboratory evolution experiments [4,8,55]. In these experiments, strains
coexist by finely partitioning some aspect of the abiotic environment or by engaging in ecological
interactions (e.g. cross-feeding), or by some combination of both. Recent work has shown that
consumer-resource models, which describe the flux of metabolites through a community and the growth of
community members on these metabolites, can recapitulate a large number of species-level macroecological
properties of microbial communities with only a small number of input parameters [29,31,44]. Investigating
which of these scenarios promotes strain coexistence will be an interesting avenue for future research.

Finally, the success of the SLM at the strain and species level raises questions regarding which scale
ought to be the focus of ecological investigations. The ambiguity surrounding the bacterial species concept
is well known [34] and reasonable alternatives have been proposed [19], but operationally species are,
nonetheless, the predominant focus of attention in microbial ecology. This focus is reasonable, as
within-host strain structure is a comparatively recent discovery [10,28,54] and 16S rRNA sequencing
provides an inexpensive high-throughput means to examine community dynamics through OTUs.
Regardless, the recapitulation of species-level macroecological dynamics at the level of strains calls into
question the disproportionate focus on species as the primary locus of attention in characterizing
community structure and dynamics. Instead, it is reasonable to propose that for the human gut, and
perhaps other microbial ecosystems, strains are an ecologically relevant unit.

Methods

Data and metagenomic pipeline

We analyzed shotgun metagenomic sequence data from a panel of stool samples from 4 healthy human
subjects [21]. The four hosts examined—ae, am, an and ao—were sampled longitudinally over the course of
between six months and two years, and none of the hosts experienced any disturbances such as antibiotics
or bowel cleanse. We excluded one sample from host ae which appeared to be mislabelled and/or
contaminated (Supplemental Figure 5). We used a reference-based approach to analyze metagenomic
sequences, calling SNVs and gene content, as well as species abundances, using the software MIDAS [13].
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Calculating diversity statistics

Nucleotide diversity 7 is a classical population genetic measure of polymorphism, representing the average
number of pairwise difference between randomly chosen members of a population. To determine 7, we used
the estimator:

el
= 2pi(1 —p;) 4
|G| > (4)

where p; is the frequency of the reference allele at site i, and |G| is the total number of sites in the genome.

This quantity was calculated after first excluding sites with low read depth ( < 5x ), as reliable estimates of
true allele frequency cannot be made for such sites.
Similarly, gy, the diversity between timepoints, was calculate

|G|
BT = |G| Z plz — P2 +P21(1 _plz)) (5)

where py; is the frequency of the reference allele at site ¢ in sample 1, and py; its frequency in sample 2

Lastly, to determine 7wy, the diversity between hosts for a give species, we used shotgun data from
the Human Microbiome Project (HMP), processed through the same metagenomic pipeline as above [17].
HMP was chosen as an due to the large number of samples (469, in total) and high coverage. mpy was
calculated as the mean pairwise diversity (Equation 5) between all pairs of samples of a species found in
different hosts.

Permutation test

To assess whether diversity tended to systematically increase or decrease through time for species in our
cohort, we performed a standard permutation test [51]. First, a linear regression was performed on ;. The
observed time series of m and 7wy were permuted with respect to temporal order 1000 times, and for each
permutation, a linear regression was fit. The slopes of these regressions—f}, 82, ..., 31°%—are centered
around 0, and form a null distribution for the true slope under the assumption that there are no long-term
temporal trends in the data. We rejected the null hypothesis at a signficance level of 5%.

Strain inference

To infer strains, we used a recently published algorithm [23] developed specifically to detect strains in
metagenomic timecourse data. At a high level, this algorithm identifies clusters of SNVs that have similar
allele frequency trajectories across a longitudinal panel of samples, modulo binomial sampling noise at each
timepoint. Such clusters are expected when alleles at different loci are linked on the same genetic
background (and therefore have the same true frequency at any timepoint), but differ in their observed
frequencies due to finite sampling. Once SNVs have been clustered, the centroid of each cluster of
trajectories is taken to be an estimator of the underlying relative frequency of the strain.
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SLM
To simulate the SLM, we used the Euler-Maruyama method:

X(t+0t) = X(t) If) (1 - ?) 5t + ﬁx@)zt\@ (6)

where Z; is a standard normal random variable. In simulations, we set 0t = ﬁ.

The SLM associated with population ¢ depends on three parameters: K;, o;, and 7;. K; and o; are
not fit, but rather are determined directly from the mean and variance of the actual time series using the
formulae:

K; = - (7)

2

~
8
N
I~
S
|
—_
—_
|
Q

where (x;) is the mean abundance of the population and agi is its variance. The parameter 7; was
held constant (7; = 1) for all strains to avoid overfitting.
To calculate o2 , we used the sampling-corrected estimate of the true variance as done in [1] and [43]:

= 1 S N T <\T|tg ) ®)

teT

where T' is the set of timepoints for which strain ¢ is present, and N () is the total abundance of all
species present in the sample at timepoint ¢, as determined by MIDAS.

Goodness of fit test

The goodness of fit test for the SLM was adopted from the test described in [50]. The null hypothesis of
this test is that the SLM with the parameters determined in the previous section generated the observed
time series.

The test is performed as follows. Suppose that z(ty), z(t1), ..., x(tr—1) are the T" observations of
strain’s abundance, at times t, t1,...t7_1. M simulations are performed using the Euler-Maruyama

procedure described in equation (6), above, from time ¢;_; until time ¢;, starting at initial abundance z; ;.

Let X; ™) be the the mt" simulated value at time t; for m =1,2,..., M. Define r; to be the number of
X" (m < x(t;)—that is, the number of simulations of the process from tZ 1 to t; in which the final simulated
value was less than the true abundance.

Under the null hypothesis, the r; are equally likely to take any value between 0 and M. Therefore, we
perform a x? goodness-of-fit test to determine if the r; follow a uniform distribution on 0,1, ..., M,
obtaining a p-value. We repeat this whole process 1000 times for each time series, and take the true p-value
to be the median p-value across all runs. We rejected the null hypothesis at a significance level of 5%.
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Supplementary Figure 1: Nucleotide diversity 7 for each species for which SNV
could be inferred, grouped by host. Each color represents a different species.
Throughout the course of the sampling period, m undergoes large fluctuations in
some species. However, in 55 of 64 cases, these fluctuations show no directional
trend significantly different from from 0, according to our permutation test.
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Supplementary Figure 2: Unphased allelic trajectories in B. vulgatus in host am
(grey lines), and imputed strain frequencies. After phasing alleles to strains,
only two of the clusters of SNVs remain visible.
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Supplementary Figure 3: Two strains of F. prausnitzii present in host ao under-
went a partial strain displacement event. In grey are the unphased trajectories
of all SNPs detected throughout the sampling period. In red and blue are the
inferred underlying strain frequencies detected after clustering SNP trajectories

(Methods).

52


https://doi.org/10.1101/2021.09.30.462616
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.30.462616; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

10 10

10- 3 L

10~4¢

10~%¢

Probability density

100+

| Taylor's Law, 02, oc ;) Gamma

167 102 [0~ 100 ) 0 2 1
\if Rescaled log abundance

Supplementary Figure 4: The macroecological laws plotted only for strains be-
longing to species which harbor more than one strain. The red points in A,
corresponding to the two strains of F. prausnitzii in host ao, are clear outliers,
as expected given the partial strain replacement event these strains underwent.
While the slope of the Taylor’s Law exponent increased from 1.63 to 1.85 when
considering only these strains, the power law scaling of the variance in abun-
dance with the mean still holds. Similarly, the Gamma AFD still provides a
good approximation to the true (rescaled) strain AFDs.
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Supplementary Figure 5: One sample, SRR9224093, was removed from our
analysis due to a possible mislabelling or contamination, which was noticed
while performing this analysis. This sample was labelled to have come from
host ae. Here, each blue dot represents wpr between each sample from that
host and a reference sample from host ae (the earliest sample detected for that
species in this host). Only those species with more than three samples are
plotted. SRR9224093 (orange dot) shows anomalously high mpr compared to
other samples. In particular, mpr approaches mpy only for this sample across
multiple species, indicating that the genetic content of this sample is as different
from the others in this host as a sample chosen from a random other individual
would be. The consistent elevation of wgr across multiple species at only this
sample suggests this sample may have been mislabelled, or else may have been
partially contaminated. S4
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