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Abstract 1

The human gut microbiome is a complex community that harbors substantial ecological diversity at the 2

species level, as well as at the strain level within species. In healthy hosts, species abundance fluctuations 3

in the microbiome community are thought to be stable, and these fluctuations can be described by 4

macroecological laws. However, it is less clear how strain abundances change over time. An open question 5

is whether individual strains behave like species themselves, exhibiting stability and following the 6

macroecological relationships known to hold at the species level, or whether strains have different 7

dynamics, perhaps due to the relatively close phylogenetic relatedness of co-colonizing lineages. In this 8

study, we sought to characterize the typical strain-level dynamics of the healthy human gut microbiome on 9

timescales ranging from days to years. We show that genetic diversity within almost all species is 10

stationary, tending towards a long-term typical value within hosts over time scales of several years, despite 11

fluctuations on shorter timescales. Moreover, the abundance fluctuations of strains can be sufficiently 12

described by a stochastic logistic model (SLM) – a model previously used to describe abundance 13

fluctuations among species around a fixed carrying capacity – in the vast majority of cases, suggesting that 14

strains are dynamically stable. Lastly, we find that strain abundances follow the same macroecological laws 15

known to hold at the species level. Together, our results suggest that macroecological properties of the 16

human gut microbiome, including its stability, emerge at the level of strains. 17

Introduction 18

The human gut microbiome is composed of a diverse array of microbial species. While a typical gut 19

microbial species harbors considerable genetic variation both within and across hosts, the ecological and 20

functional consequences of this diversity remain largely unknown. Although recent efforts have begun to 21

characterize how genotypic diversity changes within healthy hosts over months to years, these trends are 22

not, at present, quantified on the short time frames most relevant for microbial ecology – that is, over 23

periods of days [5, 10, 15, 24, 25, 28, 30]. Understanding the typical scale of daily fluctuations in genetic 24

variation is critical to assessing both the long-term stability of the genetic composition of the gut 25
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microbiome, as well the effects of occasional large perturbations resulting from changes in host diet, 26

medication, travel, illness, and other factors. 27

Two kinds of processes drive within-host changes in genetic variation in the human gut. First, there 28

is the evolutionary modification of resident lineages, which can result in small numbers (O(1)�O(10)) of 29

single nucleotide variants (SNVs) sweeping from low to high frequency on timescales of weeks to months. 30

Second, fluctuations in the abundance of strains, which have a typical nucleotide divergence of 1%, can 31

result in large numbers (á O(104)) of SNV frequency changes over time [10]..The most dramatic 32

manifestation of this second process is strain replacement, when one strain of a species invades and drives 33

the resident to extinction, though such events are infrequent over á 1 year timescales [24, 25]. Thus, strain 34

abundance fluctuations have several orders of magnitude greater impact on intraspecies genetic variation 35

over time than evolutionary changes. 36

Prior analyses have demonstrated that the majority of strains persist within hosts over a period of at 37

least several years [5, 15, 24, 25]. Moreover, strains can be resilient to even large perturbations of the gut 38

community, such as antibiotics [23] and fecal microbiome transplants (FMT) [11]. Interestingly, strains in 39

the gut microbiome frequently co-exist with a handful of other strains belonging to the same species. This 40

“oligo-colonization” model – in which a species is made up of á 1� 4 strains [10,54] – has been observed in 41

a number of other host-associated microbiota, both at different human body sites [42] as well as in other 42

organisms [8, 16]. 43

The coexistence of multiple strains within an individual gut for periods of years contrasts starkly 44

with the rapid evolution known to occur regularly at individual SNVs. This suggests that while 45

competitive exclusion and directional selection may frequently prevail among closely related lineages, 46

highly diverged lineages are generally subject to different eco-evolutionary forces. That is, while SNVs are 47

known to frequently arise and fix within populations, strains, which are far more genetically diverged, seem 48

much less likely to drive other strains extinct. 49

To understand the typical abundance fluctuations of strains in the microbiome, we leverage concepts 50

from macroecology. Macroecology focuses on elucidating the statistical and ecological properties of 51

communities. There is an increasing body of work which demonstrates that patterns of microbial species 52

abundance and diversity follow macroecological laws across disparate environments, including the human 53

gut [1, 6, 14,45]. Surprisingly, many of these macroecological laws can be recapitulated through intuitive 54

ecological models containing few if any free parameters [1, 6, 44]. Among these successful models is the 55

Stochastic Logistic Model (SLM), which describes the dynamics of a population experiencing rapid 56

environmental fluctuations around a fixed carrying capacity. Whether the strains making up a community 57

exhibit regular, statistically quantifiable dynamics, and if so, whether these dynamics can be explained 58

using simple models, are fundamentally macroecological questions. 59

In this study, we examine whether the macroecological dynamics observed at the species level hold at 60

the strain level. We investigate the temporal dynamics and macroecology of strains in a densely sampled 61

cohort of four healthy, adult hosts (am, an, ao, and ae) from a previously published data set [21]. We find 62

that the vast majority of strains in the human gut are stable in these healthy hosts on á 1 year time scales, 63

and that they exhibit some of the same macroecological patterns as species. We approached the problem of 64

intraspecies stability first by quantifying the change in genetic polymorphism through time, and showed 65

that levels of intra-species genetic variation (as measured by the nucleotide diversity π) fluctuate around 66

long-term steady state values. Next, we connected the lack of directionality exhibited by genetic diversity 67

through time with an underlying model of stable population dynamics among—the SLM, first applied 68
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by [1, 6] to characterize microbial diversity at the species level. We find that this model provides a 69

sufficient description of strain dynamics in almost all cases, and that it fails in the only case of a clear 70

strain “replacement” in our cohort. Lastly, we demonstrated that several macroecological laws initially 71

shown to hold at the species level also hold among strains. Together, this work indicates that the stability 72

of the gut microbiome emerges at the level of individual strains. 73

Results 74

Stability of intraspecies diversity 75

Fluctuations in intraspecies genetic diversity reflect both the population genetic forces affecting lineages 76

within a population and the ecological forces affecting the relative abundances of different strains. To 77

investigate these forces, we first analyzed the nucleotide diversity of species in our cohort. 78

An illustrative example of these temporal dynamics is provided by Bacteroides vulgatus, the most 79

abundant species in host am. In Figure 1A, nucleotide diversity π for this population is plotted over the 80

two-year sampling period. While π undergoes relatively large fluctuations (varying by more than a factor 81

of two), there is no apparent trend for diversity to systematically either increase or decrease. Rather, π 82

seems to fluctuate around a characteristic value of about 1.5å 10�3, with periods of elevated or decreased 83

diversity followed by a return to the “steady” state. Across all species examined, nucleotide diversity 84

typically ranged from approximately 10�4 � 10�2 per basepair. 85

We implemented a permutation test to determine quantitatively if levels of diversity were indeed 86

constant through time for species in our data (Methods). Applying this test, we found that 55 of the 64 87

species for which SNPs could reliably be inferred (including B. vulgatus in am) showed no trend in π 88

throughout the sampling period at a 5% significance level, confirming our initial qualitative assessment of 89

the overall stationarity of genetic diversity (Supplementary Figure 1). 90

Levels of nucleotide diversity in many species in our data are inconsistent with the presence of a 91

single strain, or of a group of lineages which diversified since entering the host. Using conservatively high 92

estimates for per-site mutation rates, generation times, and time since colonization, the authors of [?] 93

estimated that genetic polymorphism could reach values of at most about 10�3 per basepair if lineages 94

diverged within a host. If however, a species is made up of multiple strains that accumulated mutations for 95

many generations before colonizing the same gut community, nucleotide diversity can easily surpass this 96

value. 97

The nucleotide diversity of B. vulgatus hovers just above this upper threshold, indicating that the 98

species may be made up of multiple diverged strains. To assess this, we inferred the underlying strain 99

structure B. vulgatus (Figure 1B). While accurate strain inference is inherently limited in cases where 100

read depth is low, distinct strains can be confidently inferred when SNV data is available at many 101

timepoints. Using a previously published algorithm which leverages the correlations in allele frequency 102

trajectories between linked variants to detect strains in dense longitudinal data, we were able to separate 103

out two distinct clusters of allele frequency trajectories, strongly indicating that B. vulgatus is 104

oligo-colonized by a mixture of three strains (Supplementary Figure 2). As with π, the relative abundances 105

of the strains seem centered around a fixed steady state, to which the strains return following transient 106

increases or decreases in abundance. Indeed, variations in the relative abundances of the strains away from 107

their steady state (e.g. around timepoint 100, when one strain rises markedly in abundance) correspond 108
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Figure 1. A) Nucleotide diversity π of Bacteroides vulgatus in host am. Short term fluctuations in
diversity tend ultimately to revert to a long term average value. B) Results of strain inference for B.
vulgatus. Each colored line represents the trajectory of a single phased allele, while the color itself denotes
the strain cluster the allele was identified as belong to (the unphased allelic trajectories can be seen in
Supplementary Figure 2.) Black lines are centroids of the allele trajectory clusters, and are an estimator for
the true relative abundance of the strain. Fluctuations in strain frequency are mirrored by fluctuations in
genetic diversity. Note the x-axis shows the ordinal timepoint number, not number of days. C) Trajectories
of the ratio of πBT to πBH for each species in hosts am and ao. The bulk of trajectories are grey, indicating
no significant trend across the sampling period; red trajectories are those which show a significant positive
trend. πBT approaches πBH for F. prausnitzii in host ao, indicating a possible partial displacement.

exactly to perturbations in π. It is clear in this case that the changes in strain abundance are in fact the 109

leading contribution to fluctuations in intraspecies genetic diversity. 110

Nucleotide diversity π can, in theory, remain relatively constant even when there are dramatic 111

changes in the strain-level composition of a species—this might happen if, for instance, a species colonized 112

by a single strain was replaced by another single strain from a different host. However, such changes would 113

manifest in the genetic composition of the species changing dramatically, with the level of diversity 114

between timepoints approaching or exceeding that between hosts, as unrelated hosts typically contain 115

distinct, highly diverged sets of strains [24]. To understand how the genetic composition of species changes 116

in time, we computed the nucleotide diversity between timepoints πBT , normalizing this quantity by the 117

average genetic diversity between hosts πBH (Methods). We again conducted a permutation test on πBT 118

time series, and found significant temporal trends in diversity change in just four species. Intriguingly, 119

three of these four species were found in a single host (ao). Among all species in all hosts, the ratio πBT

πBH

120

approached one only for Faecalibacterium prausnitzii in host ao (Figure 1C, right, in red). 121
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Stochastic logistic model 122

Next, we sought to determine if the temporal dynamics of strains could be captured using a naive model. 123

Recent work in microbial ecology has repeatedly demonstrated the power of such models to reproduce 124

qualitative and quantitative features of natural microbial community dynamics [1, 6, 43, 44]. We show that 125

the stochastic logistic model (SLM), a minimal model itself requiring the fit of no free parameters, is a 126

good fit for nearly all the strain time series in our cohort. 127

We first obtained time series of strain abundances. To do so, we determined the relative frequencies 128

of strains using the technique described above, and then multiplied these by the frequencies of the species 129

to which they belong, excluding species and samples with low abundance (Methods). 130

If xi is the abundance of strain i which follows an SLM, then: 131

dxi

dt
=

xi

τi

7

1� xi

Ki

ç

+

s

σi

τi
xiη(t)

here τi is the intrinsic growth rate of the strain and η(t) is a Brownian noise term. Under the assumptions 132

of the model, each population has a long-term carrying capacity Ki, and temporal fluctuations in 133

abundance around this value are driven entirely by environmental noise with amplitude determined by σi. 134

Populations may experience large fluctuations in abundance over short timescales, and may even be 135

temporarily found far from their long-term average value, but these fluctuations will be transient. Over 136

long timescales, the stationary distribution in abundances predicted by the SLM is the following Gamma 137

distribution [1]: 138
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In Figure 2A, simulations from the SLM are compared with the actual time series of two strains. The 139

qualitative agreement between data and model is evident, and is further reflected in the close match of the 140

empirical distributions of abundances over the whole sampling period with the predicted stationary 141

Gamma distribution. 142

To assess quantitatively whether the time series of populations in our cohort could be adequately 143

described by an SLM, we developed and implemented a goodness-of-fit test (Methods). The test 144

determines whether the transitions between subsequent timepoints are consistent with an SLM. 145

The SLM fit the data in the overwhelming majority of cases: 94% across all hosts combined (Figure 146

2B), with similar percentages of strains fitting the model in each host. We emphasize that this test did not 147

require the fit of any free parameters, as the parameters of the SLM associated with each population were 148

estimated only from the mean and variance in its abundance (Methods). The agreement of data and model 149

is thus unlikely to be an artifact of model over-specification. 150

The SLM was rejected in some instances. Notably, the model was rejected for one of the two strains 151

of F. prausnitzii in ao, the same species which was shown above to have experienced a large, directional 152

change in its genetic diversity and composition. This strain experienced a rapid decrease in abundance 153

midway through the sampling period, and thereafter never fully recovered to its previous state 154

(Supplemental Figure 3). The other strain fit the SLM. We conclude that ecological processes happening at 155

the level of strains drove the observed change in the genetic composition of this species; and in particular, 156

the change can be attributed to a dramatic shift in abundance of just one of the two populations initially 157
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Figure 2. A) Simulations of the SLM associated with each strain, in red, capture the behavior of the real
data at multiple time scales. Short-term increases and decreases are followed by returns to the long-term
carrying capacity K. At far right, in blue, are histograms of the strains’ abundance, and overlaid in red
is the Gamma stationary distribution of abundances predicted by the SLM, described in equation 1. B)
The percentage (y-axis) of strains for hosts am,ae,ao, and an passing the SLM goodness of fit test. A high
proportion of strains pass the test—89% in ao, 100% in an, 96% in ae, and 89% in am. Across all four
hosts, 94% of strains pass the test.

present. Despite this shift, both strains were detectable at all time points. Though the SLM was rejected 158

in several other populations, F. prausnitzii was the only species which simultaneously experienced a 159

statistically significant change in genetic diversity. 160

Together, these results indicate that the great majority of strains in the gut microbial community 161

fluctuate around fixed average carrying capacities for periods of years, at least. 162

Macroecology of strains 163

While we have already seen that individual strains tend to be well described by an SLM, we show in the 164

following section that the size of fluctuations across strains are strongly constrained. In many kinds of 165
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microbial ecosystems, including the human gut, species have been shown to broadly obey macroecological 166

laws [1, 45]. We show here that these patterns equally well characterize patterns of variation in the 167

abundance of strains across our cohort. 168

The first pattern examined is a power law scaling between the mean and variance of abundance, 169

known in ecology as Taylor’s Law, and can be stated: 170

σ2
xi
/ hxiiα (3)

where hxii and σ2
xi

are the mean and variance of population xi, respectively, and α is the scaling exponent 171

of the power law. In communities where the relative scale of fluctuations is independent of population 172

size—constant per-capita fluctuations—α will equal 2 [45]. We observed a Taylor’s Law scaling with an 173

exponent of α = 1.63 among all strains (Figure 3A), closely mirroring previous findings at the species 174

level [45]. 175

Figure 3. A) Strains obey Taylor’s Law with exponent α = 1.63. All strains are colored blue except
the previously discussed strains belonging to Faecalibacterium prausnitzii in ao, which are colored red.
B) The Gamma distribution describes the fluctuations in abundances of strains through time. To enable
comparison across strains which have mean abundances ranging across several orders of magnitude, the
AFD of each individual strain (grey lines) has been rescaled to have mean zero and unit variance. The
black dots show the mean probability of a given rescaled abundance across strains.

The next pattern considered is the Gamma abundance fluctuation distribution (AFD), the overall 176

distribution of abundances of a population through time. As discussed above, a population governed by 177

stochastic logistic dynamics will tends towards a Gamma distribution of abundances over long timescales. 178

Given the generally excellent fit of the SLM to the population time series, the abundances of strains might 179

generically be expected to each individually follow a Gamma distribution. In (Figure 3B), we see that the 180

distributions of strain abundances are indeed well described by a Gamma distribution; however, this 181

Gamma is also conserved across strains—that is, all strains approximately lie (up to a scaling factor) along 182

the same Gamma. Recalling that each SLM is uniquely determined by the mean and variance of 183

population, it is apparent that the collapse of the AFDs to a single Gamma is in fact a consequence of the 184

strong constraint Taylor’s Law places on these quantities across strains. 185
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The observed macroecological patterns continue to hold even when limiting our attention only to 186

strains for which another strain of the same species is present (Supplemental Figure 4). Thus, two very 187

broad macroecological laws observed at the species level in the human gut are also observed among strains, 188

suggesting that the biotic and abiotic factors driving these patterns may act at the level of strains. 189

Discussion 190

In this study, we sought to characterize the typical within-species population dynamics in the human gut 191

microbiome. Previous efforts have demonstrated that the genetic diversity within a host persists for 192

multiple years for most species [24,25]. We build on this result by demonstrating that intraspecies diversity 193

tends to fluctuate around a long-term average value within a typical host on a time scale of several years. 194

We show, crucially, that the abundance fluctuations of the vast majority of strains can be sufficiently 195

described by a stochastic logistic model (SLM) of growth, a model which also recapitulates fluctuations at 196

the species level [1, 6]. Furthermore, empirical patterns of strain abundance follow macroecological laws 197

which have been previously demonstrated to hold at the species level [1, 6]. Together, our results suggest 198

that the macroecological dynamics exhibited by species are recapitulated at the strain level. 199

While the SLM was able to sufficiently describe strain dynamics for the vast majority of strains 200

across species, its success is not universal. One strain of F. prausnitzii is a noted exception, as its 201

abundance decreased dramatically in abundance in a way that could not be explained by the stationary 202

dynamics of the SLM. The directional change in abundance of this strain throws into relief the stability of 203

the majority of the other strains—it is an exception that proves the rule, illustrating that strain dynamics 204

might be quite different across strains, and that these differences can be detected by our test of the SLM. 205

This example also brings to light an interesting tension in the interpretation of our results. Under the SLM, 206

strains are expected to persist indefinitely. However, over the course of decades, much of the strain content 207

of the adult gut is replaced [10,15], suggesting that there is an additional timescale which is relevant for 208

strain replacement. One hypothesis is that this timescale reflects a waiting time for large environmental 209

perturbations, such as antibiotics [23, 32] or bowel cleanse [49], but this is just one of many hypotheses. 210

Indeed, this hypothesis is partially challenged by [23], where the strain content of an adult gut was initially 211

perturbed during a course of antibiotics, but ultimately recovered to its pretreatment state. This 212

antibiotics study is a powerful demonstration of the stability of strains as ecological units, even in the face 213

of large perturbations. Testing the possible explanations for the apparent discrepancy between years and 214

decades-long population dynamics is an important problem to address with broad cohorts and extended 215

timescales of observation. 216

Beyond the success of the SLM as an ecological model of strain dynamics in our cohort, the existence 217

of many linked mutations segregating at intermediate frequencies across multiple species is qualitatively 218

inconsistent with most standard population genetic models of microbial evolution [18]—particularly, 219

models emphasizing directional selection or neutral evolution. However, the stability of both total genetic 220

diversity and strain abundance belies the fact that SNVs likely continue to arise and fix within these 221

populations even on the timescales examined here. While strain dynamics may often be suitably described 222

by a time invariant model, these populations are not genetically static. Recent work has shown that 223

variants arise and fix within populations in the gut microbiome regularly over months to years [10, 15, 30] 224

How evolution impacts the ecological dynamics of strains and how in turn these ecological dynamics 225

constrain and channel evolution, is an active area of research [18]. In the context of the SLM, these 226
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eco-evolutionary feedbacks can viewed as tuning a strain’s carrying capacity K, growth rate 1
τ
, and 227

sensitivity of the growth rate to environmental perturbation σ. Naively, it is expected that evolution would 228

tend to increase carrying capacity while minimizing the sensitivity of growth to abiotic fluctuations, but 229

evolutionary modifications driving changes in one quantity may affect the other. The observed power-law 230

scaling between the mean and variance in abundance (Taylor’s Law) is, in essence, a constraint on K given 231

σ, and vice versa. The SLM thus not only describes ecological dynamics, but also, in conjunction with the 232

empirical observation of macroecological laws, provides a useful framework for investigating the ecological 233

effects of adaptation. 234

How and why closely related strains stably coexist in the human gut is one of the central biological 235

questions raised by these results. Spatial segregation between strains, perhaps occupying different colonic 236

crypts, could underlie the observed pattern of strain coexistence [20, 27], much as it does among 237

Cutibacterium acnes strains inhabiting different pores on the facial microbiome [42]. However, spatial 238

structure is far from the only mechanism that can foster coexistence between strains. Coexisting strains 239

have been reported in well-mixed laboratory evolution experiments [4, 8, 55]. In these experiments, strains 240

coexist by finely partitioning some aspect of the abiotic environment or by engaging in ecological 241

interactions (e.g. cross-feeding), or by some combination of both. Recent work has shown that 242

consumer-resource models, which describe the flux of metabolites through a community and the growth of 243

community members on these metabolites, can recapitulate a large number of species-level macroecological 244

properties of microbial communities with only a small number of input parameters [29,31,44]. Investigating 245

which of these scenarios promotes strain coexistence will be an interesting avenue for future research. 246

Finally, the success of the SLM at the strain and species level raises questions regarding which scale 247

ought to be the focus of ecological investigations. The ambiguity surrounding the bacterial species concept 248

is well known [34] and reasonable alternatives have been proposed [19], but operationally species are, 249

nonetheless, the predominant focus of attention in microbial ecology. This focus is reasonable, as 250

within-host strain structure is a comparatively recent discovery [10,28, 54] and 16S rRNA sequencing 251

provides an inexpensive high-throughput means to examine community dynamics through OTUs. 252

Regardless, the recapitulation of species-level macroecological dynamics at the level of strains calls into 253

question the disproportionate focus on species as the primary locus of attention in characterizing 254

community structure and dynamics. Instead, it is reasonable to propose that for the human gut, and 255

perhaps other microbial ecosystems, strains are an ecologically relevant unit. 256

Methods 257

Data and metagenomic pipeline 258

We analyzed shotgun metagenomic sequence data from a panel of stool samples from 4 healthy human 259

subjects [21]. The four hosts examined—ae, am, an and ao—were sampled longitudinally over the course of 260

between six months and two years, and none of the hosts experienced any disturbances such as antibiotics 261

or bowel cleanse. We excluded one sample from host ae which appeared to be mislabelled and/or 262

contaminated (Supplemental Figure 5). We used a reference-based approach to analyze metagenomic 263

sequences, calling SNVs and gene content, as well as species abundances, using the software MIDAS [13]. 264
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Calculating diversity statistics 265

Nucleotide diversity π is a classical population genetic measure of polymorphism, representing the average 266

number of pairwise difference between randomly chosen members of a population. To determine π, we used 267

the estimator: 268

π =
1

|G|

|G|
X

i=1

2pi(1� pi) (4)

where pi is the frequency of the reference allele at site i, and |G| is the total number of sites in the genome. 269

This quantity was calculated after first excluding sites with low read depth ( < 5x ), as reliable estimates of 270

true allele frequency cannot be made for such sites. 271

Similarly, πBT , the diversity between timepoints, was calculate 272

πBT =
1

|G|

|G|
X

i=1

(p1i(1� p2i) + p2i(1� p1i)) (5)

where p1i is the frequency of the reference allele at site i in sample 1, and p2i its frequency in sample 2. 273

Lastly, to determine πBH , the diversity between hosts for a give species, we used shotgun data from 274

the Human Microbiome Project (HMP), processed through the same metagenomic pipeline as above [17]. 275

HMP was chosen as an due to the large number of samples (469, in total) and high coverage. πBH was 276

calculated as the mean pairwise diversity (Equation 5) between all pairs of samples of a species found in 277

different hosts. 278

Permutation test 279

To assess whether diversity tended to systematically increase or decrease through time for species in our 280

cohort, we performed a standard permutation test [51]. First, a linear regression was performed on βi. The 281

observed time series of π and πBT were permuted with respect to temporal order 1000 times, and for each 282

permutation, a linear regression was fit. The slopes of these regressions—β1
i
, β2

i
, ..., β1000

i
—are centered 283

around 0, and form a null distribution for the true slope under the assumption that there are no long-term 284

temporal trends in the data. We rejected the null hypothesis at a signficance level of 5%. 285

Strain inference 286

To infer strains, we used a recently published algorithm [23] developed specifically to detect strains in 287

metagenomic timecourse data. At a high level, this algorithm identifies clusters of SNVs that have similar 288

allele frequency trajectories across a longitudinal panel of samples, modulo binomial sampling noise at each 289

timepoint. Such clusters are expected when alleles at different loci are linked on the same genetic 290

background (and therefore have the same true frequency at any timepoint), but differ in their observed 291

frequencies due to finite sampling. Once SNVs have been clustered, the centroid of each cluster of 292

trajectories is taken to be an estimator of the underlying relative frequency of the strain. 293
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SLM 294

To simulate the SLM, we used the Euler-Maruyama method: 295

X(t+ δt) = X(t) +
x(t)

τi

 

1� x(t)

K

!

δt+

r

σ

τ
x(t)Zt

p
δt (6)

where Zt is a standard normal random variable. In simulations, we set δt = 1
1000

. 296

The SLM associated with population i depends on three parameters: Ki, σi, and τi. Ki and σi are 297

not fit, but rather are determined directly from the mean and variance of the actual time series using the 298

formulae: 299

σi =
2

hxii2

σ
2
xi

� 1
, Ki =

hxii
1� σi

2

(7)

where hxii is the mean abundance of the population and σ2
xi

is its variance. The parameter τi was 300

held constant (τi = 1) for all strains to avoid overfitting. 301

To calculate σ2
xi
, we used the sampling-corrected estimate of the true variance as done in [1] and [43]: 302

σ2
xi
=

1

|T |

X

t2T

xi(t)(xi(t)� 1)

N(t)(N(t)� 1)
�
 

1

|T |

X

t2T

xi(t)

N(t)

!2

. (8)

where T is the set of timepoints for which strain i is present, and N(t) is the total abundance of all 303

species present in the sample at timepoint t, as determined by MIDAS. 304

Goodness of fit test 305

The goodness of fit test for the SLM was adopted from the test described in [50]. The null hypothesis of 306

this test is that the SLM with the parameters determined in the previous section generated the observed 307

time series. 308

The test is performed as follows. Suppose that x(t0), x(t1), ..., x(tT�1) are the T observations of 309

strain’s abundance, at times t0, t1, ...tT�1. M simulations are performed using the Euler-Maruyama 310

procedure described in equation (6), above, from time ti�1 until time ti, starting at initial abundance xi�1. 311

Let X
(m)
i be the the mth simulated value at time ti for m = 1, 2, ...,M . Define ri to be the number of 312

X
(m)
i < x(ti)—that is, the number of simulations of the process from ti�1 to ti in which the final simulated 313

value was less than the true abundance. 314

Under the null hypothesis, the ri are equally likely to take any value between 0 and M . Therefore, we 315

perform a χ2 goodness-of-fit test to determine if the ri follow a uniform distribution on 0, 1, ...,M , 316

obtaining a p-value. We repeat this whole process 1000 times for each time series, and take the true p-value 317

to be the median p-value across all runs. We rejected the null hypothesis at a significance level of 5%. 318
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Supplementary Information

Supplementary Figure 1: Nucleotide diversity π for each species for which SNVs

could be inferred, grouped by host. Each color represents a different species.

Throughout the course of the sampling period, π undergoes large fluctuations in

some species. However, in 55 of 64 cases, these fluctuations show no directional

trend significantly different from from 0, according to our permutation test.
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Supplementary Figure 2: Unphased allelic trajectories in B. vulgatus in host am
(grey lines), and imputed strain frequencies. After phasing alleles to strains,
only two of the clusters of SNVs remain visible.

Supplementary Figure 3: Two strains of F. prausnitzii present in host ao under-
went a partial strain displacement event. In grey are the unphased trajectories
of all SNPs detected throughout the sampling period. In red and blue are the
inferred underlying strain frequencies detected after clustering SNP trajectories
(Methods).
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Supplementary Figure 4: The macroecological laws plotted only for strains be-
longing to species which harbor more than one strain. The red points in A,
corresponding to the two strains of F. prausnitzii in host ao, are clear outliers,
as expected given the partial strain replacement event these strains underwent.
While the slope of the Taylor’s Law exponent increased from 1.63 to 1.85 when
considering only these strains, the power law scaling of the variance in abun-
dance with the mean still holds. Similarly, the Gamma AFD still provides a
good approximation to the true (rescaled) strain AFDs.
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Supplementary Figure 5: One sample, SRR9224093, was removed from our
analysis due to a possible mislabelling or contamination, which was noticed
while performing this analysis. This sample was labelled to have come from
host ae. Here, each blue dot represents πBT between each sample from that
host and a reference sample from host ae (the earliest sample detected for that
species in this host). Only those species with more than three samples are
plotted. SRR9224093 (orange dot) shows anomalously high πBT compared to
other samples. In particular, πBT approaches πBH only for this sample across
multiple species, indicating that the genetic content of this sample is as different
from the others in this host as a sample chosen from a random other individual
would be. The consistent elevation of πBT across multiple species at only this
sample suggests this sample may have been mislabelled, or else may have been
partially contaminated. S4
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