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Abstract

Motivation: Data normalization is an essential step to reduce technical variation within and between arrays.
Due to the different karyotypes and the effects of X chromosome inactivation, females and males exhibit
distinct methylation patterns on sex chromosomes, thus it poses a significant challenge to normalise
sex chromosome data without introducing bias. Currently, existing methods do not provide unbiased
solutions to normalise sex chromosome data, usually, they just process autosomal and sex chromosomes
indiscriminately.

Results: Here, we demonstrate that ignoring this sex difference will lead to introducing artificial sex bias,
especially for thousands of autosomal CpGs. We present a novel two-step strategy (interpolatedXY) to
address this issue, which is applicable to all quantile-based normalisation methods. By this new strategy,
the autosomal CpGs are first normalised independently by conventional methods, such as funnorm or
dasen; then the corrected methylation values of sex chromosome linked CpGs are estimated as the
weighted average of their nearest neighbours on autosomes. The proposed two-step strategy can also
be applied to other non-quantile-based normalisation methods, as well as other array-based data types.
Moreover, we propose a useful concept: the sex explained fraction of variance, to quantitatively measure
the normalisation effect.

Availability: The proposed methods are available by calling the function ‘adjustedDasen’ or
‘adjustedFunnorm’ in the latest wateRmelon package (https://github.com/schalkwyk/wateRmelon), with
methods compatible with all the major workflows, including minfi.

Contact: xzhai@essex.ac.uk; Ischal@essex.ac.uk

Supplementary information: Supplementary data are available at ...

1 Introduction for DNA methylation microarray samples. Among them, peak-based
correction (PBC) (Dedeurwaerder et al., 2011), Beta MIxture Quantile
normalization (BMIQ) (Teschendorff et al., 2013) and noob (Triche
et al., 2013) are all within-array normalization methods however they

DNA methylation microarrays, such as Infinium HumanMethylation450
BeadChip (Bibikova et al., 2011) and Infinium MethylationEPIC

BeadChip (Moran et al., 2016), provide cost-effective and high-throughput

measurements of the methylation status over half a million CpG sites do not reduce between-array variation. By contrast, dasen (Pidsley

across the genome will continue to be the first choice by most DNA et al., 2013) and funnorm (Fortin ef al., 2014) are the two most widely

used between-array normalisation methods, which were reported to be

methylation related large cohort studies in the near future. Although
able of effectively reducing the variation between samples. Dasen in

whole genome bisulfite sequencing (WGBS) is recognized as the gold - ) e )
. the wateRmelon package utilises quantile normalisation to normalise
standard to measure the methylation patterns across the human genome, ) -
methylated and unmethylated intensities separately, and also addresses

the high costs and technical complexity still pose significant challenges
Type I and Type II probes separately. Prior to the normalisation steps, there

that prevent application to large-scale samples (Villicana and Bell, 2021).
are linear regression procedures in dasen to reduce the density distribution

Data normalisation is an important prerequisite step to reduce unwanted
difference between Type I and Type II probes (Pidsley et al., 2013).

technical variation. Currently, several normalisation methods are available ) . . .
The functional normalisation employed by funnorm is also an extension

to quantile normalisation that removes variation explained by a set of
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selected covariates. In funnorm, the covariates are set as the first two
principal components of the control probes, and linear regression is used
to determine the proportion of variation explained by the covariates (Fortin
etal.,2014).

Females have two copies of the X chromosome, while males have one
X chromosome and one Y chromosome. To compensate for the different
dosages of the X chromosome genes, one X chromosome in female cells is
randomly subjected to inactivation in each cell lineage, with most parts of
the inactive X being highly methylated (LYON, 1961; Sharp et al., 2011;
Cotton et al., 2015). As a result of this, the mean methylation values of
the X chromosomes between sexes are very different (McCarthy et al.,
2014; Wang et al., 2021; Grant et al., 2021). The distinct methylation
patterns of sex chromosomes between females and males raise a great
challenge to unbiasedly normalise sex chromosome data. The existing
between-array normalisation methods do not provide good solutions for
normalising sex chromosome data. For example, dasen ignores this issue
and normalises autosomes and sex chromosomes together, while funnorm
is designed to normalise male samples and female samples separately for
X chromosomes and Y chromosomes. Some DNA methylation related
studies simply remove those probes mapped to the X and Y chromosomes
prior to the normalisation step and do not include them in the downstream
analysis. All these strategies come with their own drawbacks, either
through losing some potentially interesting and biologically relevant
signals from sex chromosomes or by introducing systematic technical
differences between sexes.

Here we first demonstrate that the existing normalisation methods
used to handle probes mapped on the X and Y chromosomes lead to
introducing artificial sex bias into the normalised data. Then, we present
a novel two-step strategy, which is designed to unbiasedly normalise both
autosome data and sex chromosome data, is applicable to all quantile-based
normalisation methods.

2 Materials and methods
2.1 Datasets

Two main datasets were used in this study. The first dataset includes 1195
individuals from the Understanding Society: UK Household Longitudinal
Survey (UKHLS). Details about this UKHLS dataset are described by
Gorrie-Stone et al. (Gorrie-Stone et al., 2019). In brief, DNA methylation
levels in whole blood within 489 male and 686 female healthy individuals
were measured by EPIC array. The UKHLS dataset is available under
request from the European Genome-phenome Archive under accession
EGAS00001002836 (https://www.ebi.ac.uk/ega/home). Since funnorm
was developed and tested on 450k array samples, in this study we produce
subsets from GSE142512 (Johnson et al., 2020) to evaluate funnorm.
GSE142512 includes 87 individuals with type 1 diabetes (T1D) and 87
individuals without T1D. The peripheral blood samples were collected
from the subjects between 1 and 5 time points, with DNA methylation
levels measured by either 450K or EPIC array, further details were
documented by Johnson et al. (Johnson et al., 2020). We randomly selected
16 450k samples (12 males and 4 females) from GSE142512 as the dataset
one which is used to evaluate the performance of funnorm on small size
dataset, and randomly selected 48 450k samples (23 males and 25 females)
as dataset two to test funnorm’s performance on relatively larger size
dataset. For reproducibility, the sample IDs in the two subset datasets are
listed in Supplementary Table 1. GSE142512 is publicly available from
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/).

2.2 DNA methylation data process

The DNA methylation raw data (IDAT files) were read into R by either
using iadd?2 function in bigmelon or read.metharray.exp function in minfi.
The methylation level of any given CpG locus is measured by its beta value
whichisdefinedas: 3 = (M) / (M + U + 100), where M is methylated
intensity and U is unmethylated intensity for a given CpG loci. Basic
quality control steps were performed to identify outliers, as recommended
by Gorrie-Stone et al. (Gorrie-Stone et al., 2019). Further, the reported
sexes of samples were checked against the predicted sexes from DNA
methylation data by using the estimateSex function in watermelon package
(Pidsley et al., 2013), which predicts sex by comparing the methylation
levels on sex chromosomes (Wang er al., 2021). The original dasen
normalisation is performed by calling the dasen function with default
settings in the watermelon package, the original funnorm normalisation is
performed by calling the preprocessFunnorm with default settings in the
minfi package (Fortin et al., 2016), which is actually applies noob method
(Triche et al., 2013) as a first step for background correction and then
perform the functional normalisation.

All analyses were performed using R 3.6.0 under Linux environment.

2.3 A two-step strategy to unbiasedly normalise DNA
methylation samples

The explicit procedures of the proposed new strategy to unbiasedly
normalise both autosomal CpGs and sex chromosome linked CpGs are
as follows:

1. Step one: normalise the autosomal CpGs by one of the conventional
normalisation methods, such as funnorm or dasen. It should be noted,
the probes mapped to sex chromosomes should not be included in this
step to avoid potential influence.

2. Step two: infer the corrected values of sex chromosome linked CpGs
by looking for their nearest neighbors on autosomes, this is achieved
by linear interpolation, here is the very efficient implementation:

a. Sort the corrected values of autosomal CpGs and build a function F'
which reflects correspondence of the rank of a CpG to its corrected
value: Corrected_value; = F (rank;).

b. Sortand get the ranks of autosomal CpGs based on their raw values.

c. Estimate the ranks of sex chromosome linked CpGs by linear
interpolation on the rank distribution from the procedure b.

d. Put the inferred ranks of sex chromosome linked CpGs into the
function F' to get their final corrected values.

The above steps are ideally performed on raw signal intensities (M
and U) and on each probe type (IGrn, IRed and II in funnorm, I and II in
dasen) individually. After that, the normalised intensities can be converted
into beta values as: 8 = (M) / (M + U + 100). We name this strategy
as interpolatedX'Y. When dasen is used to normalise autosomal CpGs in
the first step, we call this new normalisation method as “interpolatedXY
adjusted dasen”. Similarly, “interpolatedXY adjusted funnorm” refers to
another new normalisation method in which the functional normalisation
is applied in the first step.

2.4 Performance evaluation for the interpolation approach

The proposed new approach infers the corrected values of sex chromosome
linked CpGs by linear interpolation on autosomal CpGs. To investigate
whether the inferred data is accurate and reliable, we need a gold standard
to evaluate the estimation accuracy. Females and males have very different
methylation patterns on sex chromosomes, that is the main reason that
we avoid normalising female samples and male samples together, with
autosomes and sex chromosomes treated indiscriminately. However, when
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the targeted dataset includes only unisexual samples (only females or only
males), then the sex chromosomes should be normalised together with
other autosomes.

Inspired by this, we designed single sex groups: one that includes
only female samples and the second that consists of only male samples.
Firstly, the two groups are both normalised by conventional methods (e.g.
dasen and funnorm) with the sex chromosomes being treated as general
autosomes, thus the corrected values of those sex chromosome linked CpGs
could serve as the golden references (i.e. expected values). Secondly, by
our proposed interpolation approach, we infer the corrected values of sex
chromosome linked CpGs by interpolating on the normalised values of the
autosomal CpGs. Lastly, the interpolated values are compared with their
corresponding reference values. Root mean squared error (RMSE), which
is sensitive to outliers, is used here to measure the deviations from the
inferred values to their expected values:

(€3]

where $3; is the methylation beta value of the i*" CpG, B; represents the
expected methylation beta value of the i*" CpG, m represents the total
number of CpGs studied.

2.5 Evaluation of the technical sex biases

The original dasen performs quantile normalisation with autosomal CpGs
and sex chromosome CpGs processed together even when the dataset to be
normalised is composed of both females and males. To investigate whether
such an approach would introduce artificial sex biases, we compared the
normalisation results of the UKHLS dataset generated by the original dasen
and the interpolatedXY adjusted dasen.

The human methylome is not constant but responsive to many internal
and external factors, such as genetic backgrounds and environmental
factors (Van Dongen et al., 2016). As a result, the overall variance of
the measured methylation values across all the CpG sites in the studied
population can be described as:

11 K —\2
Viotal = =— > (Bij - 5j> @

nmLi =
Where V;,:q; represents the total variance of the studied samples, n is the
total number of all samples, m is the total number of studied CpGs, ,Bij
represents the methylation beta value of the 5% CpG in the it sample,
573- represents the mean methylation beta value of the j** CpG across
all samples. Theoretically, we can then split the overall variance into the
following two parts:

n

1
V;fotal = Vin'ological + Vvtechnical = ; Z (sz) 3)

=1

The first part Vyio10gical Tepresents variance caused by meaningful
biological reasons, such as cell types, age, gender, health status and
other reasonable factors. The second part Viecnnical represents variance
resulting from technical issues, such as batch effect, random fluctuation
and other unknown issues.

Vbiological = Vcelltype + Vage + Vsem + Vothers (4)

Viechnical = Vbatch + Virandom + Vunknown (5)

Sex is one of the major biological factors which influences the
methylation status of many autosomal CpGs, as a result, hundreds
of autosomal CpGs have been reported showing significant different

methylation levels between sexes (McCarthy et al., 2014; Yousefi et al.,
2015; Grant et al., 2021). The fraction of variances which are explained
by sex can be deduced as follows:

Vsez

Fsex
‘/total

N females Vtotal,in,females + Nunates Viotal_in_males

(nfemale.s + nmales) Vvtotal

1—

6)

Ideally, a good normalisation method should be able to not only greatly
reduce the variances that are resulted from technical issues (Viechnical)s
but also need to keep variances which have meaningful biological reasons
(Vhiotogicat)- This means, after the normalisation process, the overall
variance should be reduced significantly while the sex explained fraction
of variance should be increased. In this paper, to study the potential sex
bias introduced by the mix normalisation method dasen, we compared
the mean variance and the fraction of sex explained variances of the
methylation values of CpGs after no normalisation (raw beta values), dasen
normalisation and interpolatedXY adjusted dasen normalisation within
the three chromosome groups (i.e. autosomes, X chromosomes and Y
chromosomes).

2.6 Artifactual sex differences

If the conventional mixed normalisation approaches do introduce
systematic artificial sex biases into the autosomal CpGs, then some
autosomal CpGs could be falsely sex-associated. Epigenome-wide
association studies (EWAS) are commonly used to systematically assess
the association between DNA methylation levels at genetic loci across
the genome and a phenotype of interest. In this study, we apply EWAS
to identify sex-associated CpG sites and then compare the EWAS results
resulted from different preprocess approaches.

To perform EWASs for sex, the champ.dmp function in champ
package (Tian et al., 2017), which utilises linear regression and F'-test
to identify differentially methylated positions is applied in this study
to identify sex-associated CpGs. After Bonferroni multiple comparison
correction, those CpG sites with p-value less than 0.05 were selected as
significantly sex-associate. For simplicity and better comparison, we do not
include age, cell type proportions and other covariates within the EWAS:s.

2.7 Comparison of the original funnorm and the
interpolatedXY adjusted funnorm

Funnorm is reported to be suitable for normalising methylation data with
substantial global differences. The main difference between the original
funnorm and the proposed interpolatedXY adjusted funnorm is how to
normalise the methylation values of sex chromosome linked CpGs. The
original funnorm is designed to normalise X chromosomes separately and
differently with Y chromosomes, as well as processes female samples and
male samples separately. In contrast, the interpolatedXY adjusted funnorm
does not require prior sex annotations and process both genders equally,
which generates the corrected values of sex chromosome linked CpGs by
interpolation on the normalised values of autosomal CpGs.

To compare the normalisation effects on sex chromosome data between
the original funnorm and the adjusted funnorm, we studied both the density
distributions and the variances of the methylation values of CpG sites after
no normalisation (raw beta values), funnorm normalisation and adjusted
funnorm normalisation within three chromosome groups (i.e. autosomes,
X chromosomes and Y chromosomes) in two 450k datasets. The first
dataset (dataset one) includes 12 male samples and 4 female samples,
while the second dataset (dataset two) contains 23 male samples and 25
female samples.
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Fig. 1: Difference between interpolated values and expected values within the
adjusted funnorm. RMSEs are grouped in four categories: male X chromosomes,
female X chromosomes, male Y chromosomes and female Y chromosomes. Female
samples are in red colour and male samples are in blue colour. Dots represent X
chromosomes, while triangles represent Y chromosomes.
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Fig. 2: Variance comparisons in the UKHLS dataset. Boxplots comparing the
variance of methylation beta values with three different pre-processing methods
(i.e. no normalisation, dasen normalisation and adjusted dasen normalisation) in
autosomes (A), X chromosomes (B) and Y chromosomes (C). Females and males
are dealt with separately.

3 Results
3.1 Estimation using the interpolation approach

We first investigated the performance of the interpolation approach
employed by the interpolatedXY adjusted funnorm method. The
deviations from the inferred values by the interpolation approach to their
corresponding reference values are measured by RMSE. As it can be seen
from Figure 1, the resulting RMSEs are all very small, especially for those
in both X chromosomes and male Y chromosomes: the mean RMSE of X
chromosome linked CpGs is 1.15e-05 (sd=8.7e-06) in females and is 1.1 1e-
05 (sd=4.8e-06) in male samples, while the mean RMSE of estimations for
male Y chromosomes is 6.61e-06 (sd=3.2e-06). Though the RMSEs of Y
chromosome linked CpGs in females are slightly higher (mean=8.98e-04,
5d=6.0e-04), they are still very subtle. With the knowledge that females do
notcarry Y chromosomes, and those observed signal intensities result from
background noises and non-specific hybridization, there is no need to look
much into the methylation values of female Y chromosomes. In the same
way, we could observe similar performances of the interpolation approach
employed by the interpolatedXY adjusted dasen method (Supplementary
Figure 1).

In summary, the above results demonstrate the proposed interpolation
approach provides accurate and robust estimations for the corrected values
of sex chromosome linked CpGs.

Table 1. The fraction of variance explained by sex in the UKHLS dataset with
no normalisation (raw), dasen normalisation, interpolatedXY adjusted dasen
normalisation and interpolatedXY adjusted funnorm normalisation.

Fraction of variance Adjusted Adjusted
. aw Dasen

explained by sex (%) dasen funnorm

Autosomes 0.34 0.57 0.45 0.46

X chromosome 73.18 77.24 71.57 76.93

Y chromosome 85.34 87.64 87.50 88.82

3.2 Artificial sex biases are introduced into autosomal
CpGs by the conventional mixed normalisation method

The first round of the UKHLS dataset (Gorrie-Stone et al., 2019) includes
1175 whole blood samples whose DNA methylation levels were measured
using the EPIC array. After quality control, 685 female samples and 486
male samples were kept for this analysis. To study the normalisation
effects, the variance of beta values with three different pre-processing
methods (no-normalisation, dasen and interpolatedXY adjusted dasen) are
compared within three different chromosome groups (i.e. autosomes, X
chromosomes and Y chromosomes) separately. As shown in Figure 2, both
dasen and adjusted dasen significantly (Wilcoxon signed-rank test, p-value
less than 2.2e-16) reduce the variance in all three chromosome groups.
For instance, the mean variance of autosomes in both sexes decreased
from around 0.0025 in non-normalised beta values to about 0.0018 after
either dasen or adjusted dasen normalisation. The beta values density
plots also demonstrate that both dasen and adjusted dasen greatly reduce
the distribution variation (e.g. Supplementary Figure 2). However, the
difference in normalisation effects between dasen and adjusted dasen is
not significant from the variance level.

Table 1 describes the sex explained fraction of variance between three
methods in three chromosome categories. We can see that the sex explained
variance in sex chromosomes by the three methods all exceeds 70%,
while it accounts to only around 0.5% in autosomes. That is in line
with our expectation, as sex is a dominant factor causing difference in
methylation levels of sex chromosomes, while the majority of autosomal
CpGs are not influenced by sex. Interestingly, the sex explained fraction
of variance of raw beta values in autosomes is 0.34%, it rises to 0.45%
after normalising by the adjusted dasen, indicating the adjusted dasen
method retained the meaningful biological difference when reducing
technical variances (Figure 2A). However, the sex explained variance is
much higher (0.57%) by normalising with the original dasen, cthe an we
conclude that the original dasen is better than the adjusted dasen to retain
meaningful biological difference? On the contrary, these results indicate
the original dasen has introduced artificial sex bias into to the normalised
data. Combining the facts that only autosomal CpGs were included to
compute the variance, and the difference in normalising the autosomal
CpGs between the two methods is that the correction of autosomal CpGs
is affected by the enrolling of sex chromosome data within the original
dasen procedures, but not influenced within the adjusted dasen method.
We can conclude that the observed higher fraction (sex explained fraction
of variance in autosomes) with the original dasen normalisation is partly
driven by the involvement of sex chromosome data, and this higher figure
(i.e. than the adjusted dasen) indicates that technical sex biases have been
introduced into to autosomal CpGs by the original dasen.

3.3 Confirmation of the introduced sex biases

We performed EWASs of sex based on autosomal beta values of UKHLS
samples with three different pre-processing: no normalisation, dasen
normalisation and interpolatedXY adjusted dasen normalisation. The
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Fig. 3: EWAS results of UKHLS dataset. A. The Venn diagram shows the number of unique and shared saDMPs between three approaches: no normalisation (raw), dasen

normalisation and adjusted dasen normalisation. B. The Euler diagram describes the number of unique and shared saDMPs between dasen normalisation and adjusted dasen

normalisation, with the three bar plots showing the number of CpGs which have higher methylation values in females (red) or males (blue) in three categories separately.

identified number of sex significant (Bonferroni p-value less than 0.05)
differentially methylated positions (saDMPs) are shown in Figure 3.

As illustrated in the Venn diagram (Figure 3A), there are 10,778
CpG sites been identified as saDMPs in the raw data, with 96.7% of
them (10,427) also been captured after adjusted dasen normalisation. In
addition, compared to raw data, the adjusted dasen approach enables
the identification of another 4,201 saDMPs. Once again, these results
demonstrate that while the adjusted dasen greatly reduces the variation of
beta values (Figure 2A), it preserves the meaningful biological differences.

We found a total of 32,929 saDMPs after the original dasen
normalization, which is more than three times the number with no
normalisation or 2.25 times the number with adjusted dasen normalisation.
Even so, 1,600 CpGs which are identified by both no normalisation and
adjusted dasen normalization, are missed by the original dasen method.
When comparing the dasen and adjusted dasen (Figure 3B), there are
12,021 saDMPs shared between the two methods. Interestingly, among
the 20,908 dasen specific saDMPs, 96.0% of them (20,070) have higher
methylation values in males than that in females. On the contrary, 2,318
out of the 2,607 adjusted dasen specific saDMPs (88.9%) show higher
methylation values in females than males. Again, with the fact that the
interpolatedXY adjusted dasen only differs from the original dasen by not
enrolling sex chromosome data when normalising the autosomal data, the
above results suggest the original dasen did introduce artificial sex biases
into autosomal CpGs by making the methylation values of many CpGs
slightly higher in male samples and lower in female samples. This explains
why nearly all the dasen specific saDMPs have higher methylation values
in male samples, and there are more than two thousand CpG sites which
have higher methylation values in female samples that were identified as
significant saDMPs by the adjusted dasen approach but missed by the
original dasen.

3.4 InterpolatedXY adjusted funnorm provides better
normalisation results for sex chromosome linked CpGs
than the original funnorm

Since the original funnorm has two different designs to deal with different
size datasets, we compared the normalisation effects between the original
funnorm and the interpolatedXY adjusted funnorm in two datasets. The
adjusted funnorm does not differ from the original funnorm in normalising
the autosomal CpGs, so the corrected values of autosome data from the two

raw funnorm adjusted funnorm
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Fig. 4: Comparisons in methylation beta value density distributions for dataset
one. The three columns list results from raw data (left column), funnorm normalised
data (middle column) and the adjusted funnorm normalised data (right column). The
three rows show density distributions of autosomal CpGs (first row), X chromosome
linked CpGs (second row) and Y chromosome linked CpGs (third row). Red lines
represent females and blue lines represent males.

Table 2. The fraction of variance explained by sex in the dataset one (n=16) with
no normalisation (raw), funnorm normalisation and interpolatedXY adjusted
funnorm normalisation.

Fraction of variance Funnorm Adjusted
explained by sex (%) funnorm
Autosomes 9.48 10.93 10.93
X chromosome 92.68 82.82 92.99
Y chromosome 91.48 97.09 93.89
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methods are the same, we can thus observe identical results for autosomal
CpGs by the two methods (Figure 4B and 4C, Table 2, Supplementary
Figure 3B and 3C, Supplementary Table 2).

For the X chromosome linked CpGs, when applied to small datasets,
whose number of female samples or male samples is less than ten, such as
dataset one, funnorm is designed to normalise female X chromosomes and
male X chromosomes together by the functional normalisation. Compared
to the non-normalised raw beta values, the density distributions of the
corrected data generated by funnorm turn out to be much discordant in both
female samples and male samples (e.g. Figure 4E). On the contrary, after
the adjusted funnorm normalisation, the density distributions become more
consistent in both sexes (Figure 4F). We can also observe the same trends
from the bar plots in Figure 5B, the original funnorm greatly increases
the variance in both sex groups, while the adjusted funnorm keeps the
variance low. Furthermore, the sex explained fraction of variance reduced
to 82.8% by the original funnorm, which is 92.7% in raw data and 93.0%
after the adjusted funnorm normalisation (Table 2). Taken together, the
above results indicate that the original funnorm is actually adding technical
variation into the methylation data of X chromosomes for those small
sample size datasets.

When applied to larger datasets, such as in the case of dataset
two, funnorm performs separate functional normalisations on female
X chromosomes and male X chromosomes, with the underlying
consideration that females and males have very different methylation
patterns on X chromosomes. When comparing the normalisation effects
between the original funnorm and the adjusted funnorm based on dataset
two, we did not observe any significant differences in the methylation
profiles of X chromosomes (Supplementary Figure 3, Supplementary
Figure 4 and Supplementary Table 2).

For the Y chromosome linked CpGs, the original funnorm does not
use the functional normalisation as it does on other chromosomes, such
as autosomes. Instead, only quantile normalisation is employed by the
original funnorm to normalise the Y chromosome data, and with female
samples and male samples processed separately. This may explain why
the sex explained variance within the original funnorm is much higher
(i.e. 97.7%) than that in the raw data (i.e. 88.5%) and adjusted funnorm
(i.e. 89.1%) (Supplementary Table 2). We can also observe similar trend
from Table 2. These results suggest the separate normalisation strategy
employed by the original funnorm will increase the difference between
the two sex groups, and thus introduce artificial technical bias.

3.5 Comparison between the interpolatedXY adjusted
funnorm and interpolatedXY adjusted dasen

We have demonstrated that the fraction of variance explained by sex is
very useful to measure the normalisation effects for different methods and
have also shown that the adjusted the dasen and the adjusted funnorm
are both superior than their original versions. Then we compared their
normalisation effects on a large healthy population: the UKHLS dataset
(n=1171). The results are shown in Table 1, the first obvious observation
is that both the adjusted dasen and the adjusted funnorm clearly increased
the fraction of variance explained by sex in all chromosome groups
(i.e. autosomes, X chromosome and Y chromosome) than the raw data,
demonstrating that the use of either normalisation method is beneficial
and worthwhile. As compared to the two adjusted normalisation methods,
we can see their effects are comparable in the studied dataset (Table
1): the adjusted funnorm marginally outperforms the adjusted dasen in
normalising the autosome data (0.46% vs. 0.45%) and Y chromosome
data (88.82% vs. 87.5%), while the adjusted dasen is slightly better in
normalising the X chromosome data (77.57% vs. 76.93%).
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Fig. 5: Variance comparisons in the dataset one. Boxplots comparing the variance
of methylation beta values with three different pre-processing methods (i.e. no
normalisation, dasen normalisation and adjusted dasen normalisation) in autosomes
(A), X chromosomes (B) and Y chromosomes (C). Females and males are dealt with

separately.
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Fig. 6: A simplified schematic diagram illustrates the difference in the
normalisation process between the original dasen and the interpolatedXY
adjusted dasen. The original dasen normalises autosomes and sex chromosomes
together, the mean methylation values of most X chromosome linked CpGs in
females are higher than nearly half of the autosomal CpGs, whereas the values of the
corresponding locus in males are relatively very low, thus the quantile normalisation
algorithm employed by dasen to make all studied samples fit into a same distribution
creating a systematic shift for many autosomal CpGs in two sexes. The adjusted
dasen manages to avoid such an issue by doing quantile normalisation in autosomes
separately and independently with sex chromosomes, and infer the corrected values
of sex chromosomes by interpolating on autosomes. Red denotes female sample and
blue denotes male sample, the long bar represents sorted autosomal CpGs and the
short bar represents sorted X chromosome linked CpGs.

4 Discussion

We have described a two-step sex-unbiased data normalisation strategy
for normalising DNA methylation microarray samples, which can be
applied into almost all quantile-based normalisation methods, such as
dasen and funnorm. By this strategy, the autosomal CpGs are normalised
independently and separately from the sex chromosome CpGs, while the
corrected values of sex chromosomes CpGs are estimated as the weighted
average of the corrected methylation values of their nearest neighbour
atusosomal CpGs.

The two steps are necessary. Since the average methylation levels
of CpGs on X chromosome in females are very different from that in
males, normalising them together with the autosomal CpGs, especially
by the quantile-based methods, will introduce technical biases for both
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autosomes and sex chromosomes. By comparing the normalisation effects
of the original dasen and the interpolated XY adjusted dasen, we confirmed
that the technical sex biases were introduced into the autosomal CpGs by
the mix normalisation approach (original dasen)-with the sex explained
fraction of variance in autosomes rising to 0.57% from 0.44% in the
adjusted dasen normalised data. We further propose a rational explanation
for this: within the quantile normalisation steps in dasen, there are
procedures to sort and return ranks for all the probes, as the mean
methylation values of the most X chromosome linked CpGs in females are
higher than nearly half of the autosomal CpGs, whereas the methylation
values of the corresponding positions in males are relatively low, thus the
quantile normalisation algorithm used to make all studied samples fitinto a
same distribution creating a systematic negative shift for many autosomal
CpGs (their methylation values are lower than most X chromosome
linked CpGs) in females and a systematic positive shift for those CpGs
in males. As a result of this, when we perform EWAS to look for
autosomal sex-associated CpGs, the original dasen approach identified
more than two times the number as identified by the adjusted dasen or non-
normalised data. Moreover, 96.0% of the dasen specific saDMPs show
higher methylation values in male samples than in female samples, by
contrast, the majority of the 2,607 CpGs missed by the original dasen but
identified by the adjusted dasen have higher methylation values in female
samples than male samples.

Estimation of the corrected values for sex chromosomes CpGs by
looking at their nearest neighbours on autosomes is made both possible
and reliable by the fact that DNA methylation microarrays simultaneously
measure over half a million CpG sites across the genome, and only a
relatively small portion (i.e. 2.3% in EPIC and 2.4% in 450K) is mapped
on the sex chromosomes. Here in this study, we have demonstrated that the
linear interpolation approach provides both accurate and robust estimations
for the sex chromosome data, with the mean RMSE less than 1.2e-5.

Funnorm is favoured for normalising methylation data with substantial
global differences, such as cancer samples (Fortin et al., 2014). With
the consideration that females and males have distinct methylation
patterns for sex chromosomes, funnorm has very explicit rules to
normalise X chromosomes and Y chromosomes differently. Within the
functional normalisation in funnorm, there is a regression step to infer
the explainable technical variants based on control probes. The authors
may have considered the regression models would be less accurate
in the circumstance of only few samples, so funnorm is designed to
perform functional normalisations on female X chromosomes and male X
chromosomes together when the number of either female samples or male
samples is less than ten. Our results in Section 3.4 have clearly shown that
such a mix normalisation approach is destructive to the methylation profiles
of X chromosomes in both females and males. Though to do functional
normalisation on females and males separately is a way to avoid such an
issue, it may also introduce potential systematic technical bias between
the two separate groups.

For the Y chromosome linked CpGs, the original funnorm does
not actually perform the functional normalisation as it does on other
chromosomes, instead it performs only quantile normalisations on
Y chromosomes, and processes female samples and male samples
separately. As the proposed interpolatedXY adjusted funnorm could
provide near-perfect estimations for corrected values generated by
functional normalisation, it could be particularly useful for studies that
focus on sex chromosomes DNA methylation data, especially when
the methylation difference between the studied groups that are known
to be very different. Moreover, by the adjusted funnorm method, the
corrected values of sex chromosome linked CpGs are produced by linear
interpolating on the distribution of autosomal CpGs, so in theory they are
more comparable with the autosomal CpGs.

In this paper, we not only present a novel two-step strategy to
unbiasedly normalise DNA methylation microarray samples, but also
provide a useful concept-—the fraction of variance explained by sex,
to quantitively measure the normalisation effect. Sex is an important
biological factor that not only determines the methylation status of
sex chromosomes, but also influences many autosomal CpGs. A good
candidate normalisation method should not only be able to greatly
reduce the technical variation between samples, but also should preserve
the meaningful variation that has biological reasons (e.g. sex). Even
though quantile normalisation has been widely employed by several DNA
methylation normalisation methods, such as SWAN (Maksimovic et al.,
2012), dasen (Pidsley et al., 2013) and funnorm (Fortin et al., 2014). There
are still concerns about whether the use of between-array normalisation
methods could bring enough benefits to counterbalance the potential
impairment of data quality (Dedeurwaerder et al., 2013). Here, in this
study, we demonstrated that the interpolatedXY adjusted dasen and the
the interpolatedXY adjusted funnorm are two good normalisation method
candidates, they are able to not only greatly reduce technical variation but
also retain the meaningful biological difference, which will be very useful
for large cohort EWAS projects.

We believe that the proposed novel two-step strategy may have wider
application outside of DNA methylation microarrays and could even be
applied in more broader technologies such as RNA-Seq.

5 Conclusion

The proposed two-step strategy of interpolatedXY provides an excellent
solution to normalise autosomal data and sex chromosome data without
bias. The two steps are necessary and reliable. With the introducing of
the interpolatedXY, the adjusted dasen and the adjusted funnorm both
show superior performance than their original versions, and the normalised
data are much better than the non-normalised raw data to highlight the
meaningful biological difference.
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