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Abstract

Motivation: Data normalization is an essential step to reduce technical variation within and between arrays.

Due to the different karyotypes and the effects of X chromosome inactivation, females and males exhibit

distinct methylation patterns on sex chromosomes, thus it poses a significant challenge to normalise

sex chromosome data without introducing bias. Currently, existing methods do not provide unbiased

solutions to normalise sex chromosome data, usually, they just process autosomal and sex chromosomes

indiscriminately.

Results: Here, we demonstrate that ignoring this sex difference will lead to introducing artificial sex bias,

especially for thousands of autosomal CpGs. We present a novel two-step strategy (interpolatedXY) to

address this issue, which is applicable to all quantile-based normalisation methods. By this new strategy,

the autosomal CpGs are first normalised independently by conventional methods, such as funnorm or

dasen; then the corrected methylation values of sex chromosome linked CpGs are estimated as the

weighted average of their nearest neighbours on autosomes. The proposed two-step strategy can also

be applied to other non-quantile-based normalisation methods, as well as other array-based data types.

Moreover, we propose a useful concept: the sex explained fraction of variance, to quantitatively measure

the normalisation effect.

Availability: The proposed methods are available by calling the function ‘adjustedDasen’ or

‘adjustedFunnorm’ in the latest wateRmelon package (https://github.com/schalkwyk/wateRmelon), with

methods compatible with all the major workflows, including minfi.

Contact: xzhai@essex.ac.uk; lschal@essex.ac.uk

Supplementary information: Supplementary data are available at ...

1 Introduction

DNA methylation microarrays, such as Infinium HumanMethylation450

BeadChip (Bibikova et al., 2011) and Infinium MethylationEPIC

BeadChip (Moran et al., 2016), provide cost-effective and high-throughput

measurements of the methylation status over half a million CpG sites

across the genome will continue to be the first choice by most DNA

methylation related large cohort studies in the near future. Although

whole genome bisulfite sequencing (WGBS) is recognized as the gold

standard to measure the methylation patterns across the human genome,

the high costs and technical complexity still pose significant challenges

that prevent application to large-scale samples (Villicaña and Bell, 2021).

Data normalisation is an important prerequisite step to reduce unwanted

technical variation. Currently, several normalisation methods are available

for DNA methylation microarray samples. Among them, peak-based

correction (PBC) (Dedeurwaerder et al., 2011), Beta MIxture Quantile

normalization (BMIQ) (Teschendorff et al., 2013) and noob (Triche

et al., 2013) are all within-array normalization methods however they

do not reduce between-array variation. By contrast, dasen (Pidsley

et al., 2013) and funnorm (Fortin et al., 2014) are the two most widely

used between-array normalisation methods, which were reported to be

able of effectively reducing the variation between samples. Dasen in

the wateRmelon package utilises quantile normalisation to normalise

methylated and unmethylated intensities separately, and also addresses

Type I and Type II probes separately. Prior to the normalisation steps, there

are linear regression procedures in dasen to reduce the density distribution

difference between Type I and Type II probes (Pidsley et al., 2013).

The functional normalisation employed by funnorm is also an extension

to quantile normalisation that removes variation explained by a set of
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selected covariates. In funnorm, the covariates are set as the first two

principal components of the control probes, and linear regression is used

to determine the proportion of variation explained by the covariates (Fortin

et al., 2014).

Females have two copies of the X chromosome, while males have one

X chromosome and one Y chromosome. To compensate for the different

dosages of the X chromosome genes, one X chromosome in female cells is

randomly subjected to inactivation in each cell lineage, with most parts of

the inactive X being highly methylated (LYON, 1961; Sharp et al., 2011;

Cotton et al., 2015). As a result of this, the mean methylation values of

the X chromosomes between sexes are very different (McCarthy et al.,

2014; Wang et al., 2021; Grant et al., 2021). The distinct methylation

patterns of sex chromosomes between females and males raise a great

challenge to unbiasedly normalise sex chromosome data. The existing

between-array normalisation methods do not provide good solutions for

normalising sex chromosome data. For example, dasen ignores this issue

and normalises autosomes and sex chromosomes together, while funnorm

is designed to normalise male samples and female samples separately for

X chromosomes and Y chromosomes. Some DNA methylation related

studies simply remove those probes mapped to the X and Y chromosomes

prior to the normalisation step and do not include them in the downstream

analysis. All these strategies come with their own drawbacks, either

through losing some potentially interesting and biologically relevant

signals from sex chromosomes or by introducing systematic technical

differences between sexes.

Here we first demonstrate that the existing normalisation methods

used to handle probes mapped on the X and Y chromosomes lead to

introducing artificial sex bias into the normalised data. Then, we present

a novel two-step strategy, which is designed to unbiasedly normalise both

autosome data and sex chromosome data, is applicable to all quantile-based

normalisation methods.

2 Materials and methods

2.1 Datasets

Two main datasets were used in this study. The first dataset includes 1195

individuals from the Understanding Society: UK Household Longitudinal

Survey (UKHLS). Details about this UKHLS dataset are described by

Gorrie-Stone et al. (Gorrie-Stone et al., 2019). In brief, DNA methylation

levels in whole blood within 489 male and 686 female healthy individuals

were measured by EPIC array. The UKHLS dataset is available under

request from the European Genome-phenome Archive under accession

EGAS00001002836 (https://www.ebi.ac.uk/ega/home). Since funnorm

was developed and tested on 450k array samples, in this study we produce

subsets from GSE142512 (Johnson et al., 2020) to evaluate funnorm.

GSE142512 includes 87 individuals with type 1 diabetes (T1D) and 87

individuals without T1D. The peripheral blood samples were collected

from the subjects between 1 and 5 time points, with DNA methylation

levels measured by either 450K or EPIC array, further details were

documented by Johnson et al. (Johnson et al., 2020). We randomly selected

16 450k samples (12 males and 4 females) from GSE142512 as the dataset

one which is used to evaluate the performance of funnorm on small size

dataset, and randomly selected 48 450k samples (23 males and 25 females)

as dataset two to test funnorm’s performance on relatively larger size

dataset. For reproducibility, the sample IDs in the two subset datasets are

listed in Supplementary Table 1. GSE142512 is publicly available from

Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/).

2.2 DNA methylation data process

The DNA methylation raw data (IDAT files) were read into R by either

using iadd2 function in bigmelon or read.metharray.exp function in minfi.

The methylation level of any given CpG locus is measured by its beta value

which is defined as: β = (M) / (M + U + 100), whereM is methylated

intensity and U is unmethylated intensity for a given CpG loci. Basic

quality control steps were performed to identify outliers, as recommended

by Gorrie-Stone et al. (Gorrie-Stone et al., 2019). Further, the reported

sexes of samples were checked against the predicted sexes from DNA

methylation data by using the estimateSex function in watermelon package

(Pidsley et al., 2013), which predicts sex by comparing the methylation

levels on sex chromosomes (Wang et al., 2021). The original dasen

normalisation is performed by calling the dasen function with default

settings in the watermelon package, the original funnorm normalisation is

performed by calling the preprocessFunnorm with default settings in the

minfi package (Fortin et al., 2016), which is actually applies noob method

(Triche et al., 2013) as a first step for background correction and then

perform the functional normalisation.

All analyses were performed using R 3.6.0 under Linux environment.

2.3 A two-step strategy to unbiasedly normalise DNA

methylation samples

The explicit procedures of the proposed new strategy to unbiasedly

normalise both autosomal CpGs and sex chromosome linked CpGs are

as follows:

1. Step one: normalise the autosomal CpGs by one of the conventional

normalisation methods, such as funnorm or dasen. It should be noted,

the probes mapped to sex chromosomes should not be included in this

step to avoid potential influence.

2. Step two: infer the corrected values of sex chromosome linked CpGs

by looking for their nearest neighbors on autosomes, this is achieved

by linear interpolation, here is the very efficient implementation:

a. Sort the corrected values of autosomal CpGs and build a function F

which reflects correspondence of the rank of a CpG to its corrected

value: Corrected_valuei = F (ranki).

b. Sort and get the ranks of autosomal CpGs based on their raw values.

c. Estimate the ranks of sex chromosome linked CpGs by linear

interpolation on the rank distribution from the procedure b.

d. Put the inferred ranks of sex chromosome linked CpGs into the

function F to get their final corrected values.

The above steps are ideally performed on raw signal intensities (M

and U) and on each probe type (IGrn, IRed and II in funnorm, I and II in

dasen) individually. After that, the normalised intensities can be converted

into beta values as: β = (M) / (M + U + 100). We name this strategy

as interpolatedXY. When dasen is used to normalise autosomal CpGs in

the first step, we call this new normalisation method as “interpolatedXY

adjusted dasen”. Similarly, “interpolatedXY adjusted funnorm” refers to

another new normalisation method in which the functional normalisation

is applied in the first step.

2.4 Performance evaluation for the interpolation approach

The proposed new approach infers the corrected values of sex chromosome

linked CpGs by linear interpolation on autosomal CpGs. To investigate

whether the inferred data is accurate and reliable, we need a gold standard

to evaluate the estimation accuracy. Females and males have very different

methylation patterns on sex chromosomes, that is the main reason that

we avoid normalising female samples and male samples together, with

autosomes and sex chromosomes treated indiscriminately. However, when
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the targeted dataset includes only unisexual samples (only females or only

males), then the sex chromosomes should be normalised together with

other autosomes.

Inspired by this, we designed single sex groups: one that includes

only female samples and the second that consists of only male samples.

Firstly, the two groups are both normalised by conventional methods (e.g.

dasen and funnorm) with the sex chromosomes being treated as general

autosomes, thus the corrected values of those sex chromosome linked CpGs

could serve as the golden references (i.e. expected values). Secondly, by

our proposed interpolation approach, we infer the corrected values of sex

chromosome linked CpGs by interpolating on the normalised values of the

autosomal CpGs. Lastly, the interpolated values are compared with their

corresponding reference values. Root mean squared error (RMSE), which

is sensitive to outliers, is used here to measure the deviations from the

inferred values to their expected values:

RMSE =

√√√√ 1

m

m∑

i=1

(
βi − β̂i

)
2

(1)

where βi is the methylation beta value of the ith CpG, β̂i represents the

expected methylation beta value of the ith CpG, m represents the total

number of CpGs studied.

2.5 Evaluation of the technical sex biases

The original dasen performs quantile normalisation with autosomal CpGs

and sex chromosome CpGs processed together even when the dataset to be

normalised is composed of both females and males. To investigate whether

such an approach would introduce artificial sex biases, we compared the

normalisation results of the UKHLS dataset generated by the original dasen

and the interpolatedXY adjusted dasen.

The human methylome is not constant but responsive to many internal

and external factors, such as genetic backgrounds and environmental

factors (Van Dongen et al., 2016). As a result, the overall variance of

the measured methylation values across all the CpG sites in the studied

population can be described as:

Vtotal =
1

n

1

m

n∑

i=1

m∑

j=1

(
βij − βj

)
2

(2)

Where Vtotal represents the total variance of the studied samples, n is the

total number of all samples, m is the total number of studied CpGs, βij

represents the methylation beta value of the jth CpG in the ith sample,

βj represents the mean methylation beta value of the jth CpG across

all samples. Theoretically, we can then split the overall variance into the

following two parts:

Vtotal = Vbiological + Vtechnical =
1

n

n∑

i=1

(Vi) (3)

The first part Vbiological represents variance caused by meaningful

biological reasons, such as cell types, age, gender, health status and

other reasonable factors. The second part Vtechnical represents variance

resulting from technical issues, such as batch effect, random fluctuation

and other unknown issues.

Vbiological = Vcelltype + Vage + Vsex + Vothers (4)

Vtechnical = Vbatch + Vrandom + Vunknown (5)

Sex is one of the major biological factors which influences the

methylation status of many autosomal CpGs, as a result, hundreds

of autosomal CpGs have been reported showing significant different

methylation levels between sexes (McCarthy et al., 2014; Yousefi et al.,

2015; Grant et al., 2021). The fraction of variances which are explained

by sex can be deduced as follows:

Fsex =
Vsex

Vtotal

= 1−

nfemalesVtotal_in_females + nmalesVtotal_in_males(
nfemales + nmales

)
Vtotal

(6)

Ideally, a good normalisation method should be able to not only greatly

reduce the variances that are resulted from technical issues (Vtechnical),

but also need to keep variances which have meaningful biological reasons

(Vbiological). This means, after the normalisation process, the overall

variance should be reduced significantly while the sex explained fraction

of variance should be increased. In this paper, to study the potential sex

bias introduced by the mix normalisation method dasen, we compared

the mean variance and the fraction of sex explained variances of the

methylation values of CpGs after no normalisation (raw beta values), dasen

normalisation and interpolatedXY adjusted dasen normalisation within

the three chromosome groups (i.e. autosomes, X chromosomes and Y

chromosomes).

2.6 Artifactual sex differences

If the conventional mixed normalisation approaches do introduce

systematic artificial sex biases into the autosomal CpGs, then some

autosomal CpGs could be falsely sex-associated. Epigenome-wide

association studies (EWAS) are commonly used to systematically assess

the association between DNA methylation levels at genetic loci across

the genome and a phenotype of interest. In this study, we apply EWAS

to identify sex-associated CpG sites and then compare the EWAS results

resulted from different preprocess approaches.

To perform EWASs for sex, the champ.dmp function in champ

package (Tian et al., 2017), which utilises linear regression and F -test

to identify differentially methylated positions is applied in this study

to identify sex-associated CpGs. After Bonferroni multiple comparison

correction, those CpG sites with p-value less than 0.05 were selected as

significantly sex-associate. For simplicity and better comparison, we do not

include age, cell type proportions and other covariates within the EWASs.

2.7 Comparison of the original funnorm and the

interpolatedXY adjusted funnorm

Funnorm is reported to be suitable for normalising methylation data with

substantial global differences. The main difference between the original

funnorm and the proposed interpolatedXY adjusted funnorm is how to

normalise the methylation values of sex chromosome linked CpGs. The

original funnorm is designed to normalise X chromosomes separately and

differently with Y chromosomes, as well as processes female samples and

male samples separately. In contrast, the interpolatedXY adjusted funnorm

does not require prior sex annotations and process both genders equally,

which generates the corrected values of sex chromosome linked CpGs by

interpolation on the normalised values of autosomal CpGs.

To compare the normalisation effects on sex chromosome data between

the original funnorm and the adjusted funnorm, we studied both the density

distributions and the variances of the methylation values of CpG sites after

no normalisation (raw beta values), funnorm normalisation and adjusted

funnorm normalisation within three chromosome groups (i.e. autosomes,

X chromosomes and Y chromosomes) in two 450k datasets. The first

dataset (dataset one) includes 12 male samples and 4 female samples,

while the second dataset (dataset two) contains 23 male samples and 25

female samples.
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Fig. 1: Difference between interpolated values and expected values within the

adjusted funnorm. RMSEs are grouped in four categories: male X chromosomes,

female X chromosomes, male Y chromosomes and female Y chromosomes. Female

samples are in red colour and male samples are in blue colour. Dots represent X

chromosomes, while triangles represent Y chromosomes.
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Fig. 2: Variance comparisons in the UKHLS dataset. Boxplots comparing the

variance of methylation beta values with three different pre-processing methods

(i.e. no normalisation, dasen normalisation and adjusted dasen normalisation) in

autosomes (A), X chromosomes (B) and Y chromosomes (C). Females and males

are dealt with separately.

3 Results

3.1 Estimation using the interpolation approach

We first investigated the performance of the interpolation approach

employed by the interpolatedXY adjusted funnorm method. The

deviations from the inferred values by the interpolation approach to their

corresponding reference values are measured by RMSE. As it can be seen

from Figure 1, the resulting RMSEs are all very small, especially for those

in both X chromosomes and male Y chromosomes: the mean RMSE of X

chromosome linked CpGs is 1.15e-05 (sd=8.7e-06) in females and is 1.11e-

05 (sd=4.8e-06) in male samples, while the mean RMSE of estimations for

male Y chromosomes is 6.61e-06 (sd=3.2e-06). Though the RMSEs of Y

chromosome linked CpGs in females are slightly higher (mean=8.98e-04,

sd=6.0e-04), they are still very subtle. With the knowledge that females do

not carry Y chromosomes, and those observed signal intensities result from

background noises and non-specific hybridization, there is no need to look

much into the methylation values of female Y chromosomes. In the same

way, we could observe similar performances of the interpolation approach

employed by the interpolatedXY adjusted dasen method (Supplementary

Figure 1).

In summary, the above results demonstrate the proposed interpolation

approach provides accurate and robust estimations for the corrected values

of sex chromosome linked CpGs.

Table 1. The fraction of variance explained by sex in the UKHLS dataset with

no normalisation (raw), dasen normalisation, interpolatedXY adjusted dasen

normalisation and interpolatedXY adjusted funnorm normalisation.

Fraction of variance

explained by sex (%)
Raw Dasen

Adjusted

dasen

Adjusted

funnorm

Autosomes 0.34 0.57 0.45 0.46

X chromosome 73.18 77.24 77.57 76.93

Y chromosome 85.34 87.64 87.50 88.82

3.2 Artificial sex biases are introduced into autosomal

CpGs by the conventional mixed normalisation method

The first round of the UKHLS dataset (Gorrie-Stone et al., 2019) includes

1175 whole blood samples whose DNA methylation levels were measured

using the EPIC array. After quality control, 685 female samples and 486

male samples were kept for this analysis. To study the normalisation

effects, the variance of beta values with three different pre-processing

methods (no-normalisation, dasen and interpolatedXY adjusted dasen) are

compared within three different chromosome groups (i.e. autosomes, X

chromosomes and Y chromosomes) separately. As shown in Figure 2, both

dasen and adjusted dasen significantly (Wilcoxon signed-rank test, p-value

less than 2.2e-16) reduce the variance in all three chromosome groups.

For instance, the mean variance of autosomes in both sexes decreased

from around 0.0025 in non-normalised beta values to about 0.0018 after

either dasen or adjusted dasen normalisation. The beta values density

plots also demonstrate that both dasen and adjusted dasen greatly reduce

the distribution variation (e.g. Supplementary Figure 2). However, the

difference in normalisation effects between dasen and adjusted dasen is

not significant from the variance level.

Table 1 describes the sex explained fraction of variance between three

methods in three chromosome categories. We can see that the sex explained

variance in sex chromosomes by the three methods all exceeds 70%,

while it accounts to only around 0.5% in autosomes. That is in line

with our expectation, as sex is a dominant factor causing difference in

methylation levels of sex chromosomes, while the majority of autosomal

CpGs are not influenced by sex. Interestingly, the sex explained fraction

of variance of raw beta values in autosomes is 0.34%, it rises to 0.45%

after normalising by the adjusted dasen, indicating the adjusted dasen

method retained the meaningful biological difference when reducing

technical variances (Figure 2A). However, the sex explained variance is

much higher (0.57%) by normalising with the original dasen, cthe an we

conclude that the original dasen is better than the adjusted dasen to retain

meaningful biological difference? On the contrary, these results indicate

the original dasen has introduced artificial sex bias into to the normalised

data. Combining the facts that only autosomal CpGs were included to

compute the variance, and the difference in normalising the autosomal

CpGs between the two methods is that the correction of autosomal CpGs

is affected by the enrolling of sex chromosome data within the original

dasen procedures, but not influenced within the adjusted dasen method.

We can conclude that the observed higher fraction (sex explained fraction

of variance in autosomes) with the original dasen normalisation is partly

driven by the involvement of sex chromosome data, and this higher figure

(i.e. than the adjusted dasen) indicates that technical sex biases have been

introduced into to autosomal CpGs by the original dasen.

3.3 Confirmation of the introduced sex biases

We performed EWASs of sex based on autosomal beta values of UKHLS

samples with three different pre-processing: no normalisation, dasen

normalisation and interpolatedXY adjusted dasen normalisation. The
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Fig. 3: EWAS results of UKHLS dataset. A. The Venn diagram shows the number of unique and shared saDMPs between three approaches: no normalisation (raw), dasen

normalisation and adjusted dasen normalisation. B. The Euler diagram describes the number of unique and shared saDMPs between dasen normalisation and adjusted dasen

normalisation, with the three bar plots showing the number of CpGs which have higher methylation values in females (red) or males (blue) in three categories separately.

identified number of sex significant (Bonferroni p-value less than 0.05)

differentially methylated positions (saDMPs) are shown in Figure 3.

As illustrated in the Venn diagram (Figure 3A), there are 10,778

CpG sites been identified as saDMPs in the raw data, with 96.7% of

them (10,427) also been captured after adjusted dasen normalisation. In

addition, compared to raw data, the adjusted dasen approach enables

the identification of another 4,201 saDMPs. Once again, these results

demonstrate that while the adjusted dasen greatly reduces the variation of

beta values (Figure 2A), it preserves the meaningful biological differences.

We found a total of 32,929 saDMPs after the original dasen

normalization, which is more than three times the number with no

normalisation or 2.25 times the number with adjusted dasen normalisation.

Even so, 1,600 CpGs which are identified by both no normalisation and

adjusted dasen normalization, are missed by the original dasen method.

When comparing the dasen and adjusted dasen (Figure 3B), there are

12,021 saDMPs shared between the two methods. Interestingly, among

the 20,908 dasen specific saDMPs, 96.0% of them (20,070) have higher

methylation values in males than that in females. On the contrary, 2,318

out of the 2,607 adjusted dasen specific saDMPs (88.9%) show higher

methylation values in females than males. Again, with the fact that the

interpolatedXY adjusted dasen only differs from the original dasen by not

enrolling sex chromosome data when normalising the autosomal data, the

above results suggest the original dasen did introduce artificial sex biases

into autosomal CpGs by making the methylation values of many CpGs

slightly higher in male samples and lower in female samples. This explains

why nearly all the dasen specific saDMPs have higher methylation values

in male samples, and there are more than two thousand CpG sites which

have higher methylation values in female samples that were identified as

significant saDMPs by the adjusted dasen approach but missed by the

original dasen.

3.4 InterpolatedXY adjusted funnorm provides better

normalisation results for sex chromosome linked CpGs

than the original funnorm

Since the original funnorm has two different designs to deal with different

size datasets, we compared the normalisation effects between the original

funnorm and the interpolatedXY adjusted funnorm in two datasets. The

adjusted funnorm does not differ from the original funnorm in normalising

the autosomal CpGs, so the corrected values of autosome data from the two
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Fig. 4: Comparisons in methylation beta value density distributions for dataset

one. The three columns list results from raw data (left column), funnorm normalised

data (middle column) and the adjusted funnorm normalised data (right column). The

three rows show density distributions of autosomal CpGs (first row), X chromosome

linked CpGs (second row) and Y chromosome linked CpGs (third row). Red lines

represent females and blue lines represent males.

Table 2. The fraction of variance explained by sex in the dataset one (n=16) with

no normalisation (raw), funnorm normalisation and interpolatedXY adjusted

funnorm normalisation.

Fraction of variance

explained by sex (%)
Raw Funnorm

Adjusted

funnorm

Autosomes 9.48 10.93 10.93

X chromosome 92.68 82.82 92.99

Y chromosome 91.48 97.09 93.89
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methods are the same, we can thus observe identical results for autosomal

CpGs by the two methods (Figure 4B and 4C, Table 2, Supplementary

Figure 3B and 3C, Supplementary Table 2).

For the X chromosome linked CpGs, when applied to small datasets,

whose number of female samples or male samples is less than ten, such as

dataset one, funnorm is designed to normalise female X chromosomes and

male X chromosomes together by the functional normalisation. Compared

to the non-normalised raw beta values, the density distributions of the

corrected data generated by funnorm turn out to be much discordant in both

female samples and male samples (e.g. Figure 4E). On the contrary, after

the adjusted funnorm normalisation, the density distributions become more

consistent in both sexes (Figure 4F). We can also observe the same trends

from the bar plots in Figure 5B, the original funnorm greatly increases

the variance in both sex groups, while the adjusted funnorm keeps the

variance low. Furthermore, the sex explained fraction of variance reduced

to 82.8% by the original funnorm, which is 92.7% in raw data and 93.0%

after the adjusted funnorm normalisation (Table 2). Taken together, the

above results indicate that the original funnorm is actually adding technical

variation into the methylation data of X chromosomes for those small

sample size datasets.

When applied to larger datasets, such as in the case of dataset

two, funnorm performs separate functional normalisations on female

X chromosomes and male X chromosomes, with the underlying

consideration that females and males have very different methylation

patterns on X chromosomes. When comparing the normalisation effects

between the original funnorm and the adjusted funnorm based on dataset

two, we did not observe any significant differences in the methylation

profiles of X chromosomes (Supplementary Figure 3, Supplementary

Figure 4 and Supplementary Table 2).

For the Y chromosome linked CpGs, the original funnorm does not

use the functional normalisation as it does on other chromosomes, such

as autosomes. Instead, only quantile normalisation is employed by the

original funnorm to normalise the Y chromosome data, and with female

samples and male samples processed separately. This may explain why

the sex explained variance within the original funnorm is much higher

(i.e. 97.7%) than that in the raw data (i.e. 88.5%) and adjusted funnorm

(i.e. 89.1%) (Supplementary Table 2). We can also observe similar trend

from Table 2. These results suggest the separate normalisation strategy

employed by the original funnorm will increase the difference between

the two sex groups, and thus introduce artificial technical bias.

3.5 Comparison between the interpolatedXY adjusted

funnorm and interpolatedXY adjusted dasen

We have demonstrated that the fraction of variance explained by sex is

very useful to measure the normalisation effects for different methods and

have also shown that the adjusted the dasen and the adjusted funnorm

are both superior than their original versions. Then we compared their

normalisation effects on a large healthy population: the UKHLS dataset

(n=1171). The results are shown in Table 1, the first obvious observation

is that both the adjusted dasen and the adjusted funnorm clearly increased

the fraction of variance explained by sex in all chromosome groups

(i.e. autosomes, X chromosome and Y chromosome) than the raw data,

demonstrating that the use of either normalisation method is beneficial

and worthwhile. As compared to the two adjusted normalisation methods,

we can see their effects are comparable in the studied dataset (Table

1): the adjusted funnorm marginally outperforms the adjusted dasen in

normalising the autosome data (0.46% vs. 0.45%) and Y chromosome

data (88.82% vs. 87.5%), while the adjusted dasen is slightly better in

normalising the X chromosome data (77.57% vs. 76.93%).
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Fig. 5: Variance comparisons in the dataset one. Boxplots comparing the variance

of methylation beta values with three different pre-processing methods (i.e. no

normalisation, dasen normalisation and adjusted dasen normalisation) in autosomes

(A), X chromosomes (B) and Y chromosomes (C). Females and males are dealt with

separately.
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Fig. 6: A simplified schematic diagram illustrates the difference in the

normalisation process between the original dasen and the interpolatedXY

adjusted dasen. The original dasen normalises autosomes and sex chromosomes

together, the mean methylation values of most X chromosome linked CpGs in

females are higher than nearly half of the autosomal CpGs, whereas the values of the

corresponding locus in males are relatively very low, thus the quantile normalisation

algorithm employed by dasen to make all studied samples fit into a same distribution

creating a systematic shift for many autosomal CpGs in two sexes. The adjusted

dasen manages to avoid such an issue by doing quantile normalisation in autosomes

separately and independently with sex chromosomes, and infer the corrected values

of sex chromosomes by interpolating on autosomes. Red denotes female sample and

blue denotes male sample, the long bar represents sorted autosomal CpGs and the

short bar represents sorted X chromosome linked CpGs.

4 Discussion

We have described a two-step sex-unbiased data normalisation strategy

for normalising DNA methylation microarray samples, which can be

applied into almost all quantile-based normalisation methods, such as

dasen and funnorm. By this strategy, the autosomal CpGs are normalised

independently and separately from the sex chromosome CpGs, while the

corrected values of sex chromosomes CpGs are estimated as the weighted

average of the corrected methylation values of their nearest neighbour

atusosomal CpGs.

The two steps are necessary. Since the average methylation levels

of CpGs on X chromosome in females are very different from that in

males, normalising them together with the autosomal CpGs, especially

by the quantile-based methods, will introduce technical biases for both
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autosomes and sex chromosomes. By comparing the normalisation effects

of the original dasen and the interpolatedXY adjusted dasen, we confirmed

that the technical sex biases were introduced into the autosomal CpGs by

the mix normalisation approach (original dasen)–with the sex explained

fraction of variance in autosomes rising to 0.57% from 0.44% in the

adjusted dasen normalised data. We further propose a rational explanation

for this: within the quantile normalisation steps in dasen, there are

procedures to sort and return ranks for all the probes, as the mean

methylation values of the most X chromosome linked CpGs in females are

higher than nearly half of the autosomal CpGs, whereas the methylation

values of the corresponding positions in males are relatively low, thus the

quantile normalisation algorithm used to make all studied samples fit into a

same distribution creating a systematic negative shift for many autosomal

CpGs (their methylation values are lower than most X chromosome

linked CpGs) in females and a systematic positive shift for those CpGs

in males. As a result of this, when we perform EWAS to look for

autosomal sex-associated CpGs, the original dasen approach identified

more than two times the number as identified by the adjusted dasen or non-

normalised data. Moreover, 96.0% of the dasen specific saDMPs show

higher methylation values in male samples than in female samples, by

contrast, the majority of the 2,607 CpGs missed by the original dasen but

identified by the adjusted dasen have higher methylation values in female

samples than male samples.

Estimation of the corrected values for sex chromosomes CpGs by

looking at their nearest neighbours on autosomes is made both possible

and reliable by the fact that DNA methylation microarrays simultaneously

measure over half a million CpG sites across the genome, and only a

relatively small portion (i.e. 2.3% in EPIC and 2.4% in 450K) is mapped

on the sex chromosomes. Here in this study, we have demonstrated that the

linear interpolation approach provides both accurate and robust estimations

for the sex chromosome data, with the mean RMSE less than 1.2e-5.

Funnorm is favoured for normalising methylation data with substantial

global differences, such as cancer samples (Fortin et al., 2014). With

the consideration that females and males have distinct methylation

patterns for sex chromosomes, funnorm has very explicit rules to

normalise X chromosomes and Y chromosomes differently. Within the

functional normalisation in funnorm, there is a regression step to infer

the explainable technical variants based on control probes. The authors

may have considered the regression models would be less accurate

in the circumstance of only few samples, so funnorm is designed to

perform functional normalisations on female X chromosomes and male X

chromosomes together when the number of either female samples or male

samples is less than ten. Our results in Section 3.4 have clearly shown that

such a mix normalisation approach is destructive to the methylation profiles

of X chromosomes in both females and males. Though to do functional

normalisation on females and males separately is a way to avoid such an

issue, it may also introduce potential systematic technical bias between

the two separate groups.

For the Y chromosome linked CpGs, the original funnorm does

not actually perform the functional normalisation as it does on other

chromosomes, instead it performs only quantile normalisations on

Y chromosomes, and processes female samples and male samples

separately. As the proposed interpolatedXY adjusted funnorm could

provide near-perfect estimations for corrected values generated by

functional normalisation, it could be particularly useful for studies that

focus on sex chromosomes DNA methylation data, especially when

the methylation difference between the studied groups that are known

to be very different. Moreover, by the adjusted funnorm method, the

corrected values of sex chromosome linked CpGs are produced by linear

interpolating on the distribution of autosomal CpGs, so in theory they are

more comparable with the autosomal CpGs.

In this paper, we not only present a novel two-step strategy to

unbiasedly normalise DNA methylation microarray samples, but also

provide a useful concept-–the fraction of variance explained by sex,

to quantitively measure the normalisation effect. Sex is an important

biological factor that not only determines the methylation status of

sex chromosomes, but also influences many autosomal CpGs. A good

candidate normalisation method should not only be able to greatly

reduce the technical variation between samples, but also should preserve

the meaningful variation that has biological reasons (e.g. sex). Even

though quantile normalisation has been widely employed by several DNA

methylation normalisation methods, such as SWAN (Maksimovic et al.,

2012), dasen (Pidsley et al., 2013) and funnorm (Fortin et al., 2014). There

are still concerns about whether the use of between-array normalisation

methods could bring enough benefits to counterbalance the potential

impairment of data quality (Dedeurwaerder et al., 2013). Here, in this

study, we demonstrated that the interpolatedXY adjusted dasen and the

the interpolatedXY adjusted funnorm are two good normalisation method

candidates, they are able to not only greatly reduce technical variation but

also retain the meaningful biological difference, which will be very useful

for large cohort EWAS projects.

We believe that the proposed novel two-step strategy may have wider

application outside of DNA methylation microarrays and could even be

applied in more broader technologies such as RNA-Seq.

5 Conclusion

The proposed two-step strategy of interpolatedXY provides an excellent

solution to normalise autosomal data and sex chromosome data without

bias. The two steps are necessary and reliable. With the introducing of

the interpolatedXY, the adjusted dasen and the adjusted funnorm both

show superior performance than their original versions, and the normalised

data are much better than the non-normalised raw data to highlight the

meaningful biological difference.
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