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Abstract

The thickness and surface area of cortex are genetically distinct aspects of brain structure, and
may be affected differently by age. However, their potential to differentially predict age and
cognitive abilities has been largely overlooked, likely because they are typically aggregated into
the commonly used measure of volume. In a large sample of healthy adults (N=647, aged 18-88),
we investigated the brain-age and brain-cognition relationships of thickness, surface area, and
volume, plus five additional morphological shape metrics. Cortical thickness was the metric
most strongly associated with age cross-sectionally, as well as exhibiting the steepest
longitudinal change over time (subsample N=261, aged 25-84). In contrast, surface area was the
best single predictor of age-residualized cognitive abilities (fluid intelligence), and changes in
surface area were most strongly associated with cognitive change over time. These findings were
replicated in an independent dataset (N=1345, aged 18-93). Our results suggest that cortical
thickness and surface area make complementary contributions the age-brain-cognition triangle,

and highlight the importance of considering these volumetric components separately.
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Introduction

As the human brain ages, it undergoes a pronounced structural transformation. Even in the
absence of neuropathology, overall brain volume shrinks - from age six onwards into old age
(Bethlehem et al., 2021). This volume decline is associated with various physiological changes,
including grey-matter reductions caused largely by the regression of dendrites (see Dickstein et
al., 2007 for a review), and white-matter reductions stemming from axon demyelination
(Fotenos et al., 2005; Gunning-Dixon et al., 2009; Raz, 2005; Scheltens et al., 1995). There are
also morphological changes, with sulci for example becoming shallower (Burgmans et al., 2011;

Jin et al., 2018; Madan, 2021; Peters, 2007) and cortex becoming more curved (Deppe et al., 2014).

Traditionally, studies investigating human brain structure with Magnetic Resonance Imaging
(MRI) have relied largely on volumetric or thickness measures (see Oschwald et al., 2020 for a
review), which only capture a small proportion of the richness of age-related morphometric
changes (Ecker et al., 2010; Im et al., 2008). Indeed, the number of papers that include both the
term “aging” and “brain volume” (N=2715 in a PubMed search as of 01/06/2021) or “cortical
thickness” (N=597) far exceeds those investigating other aspects of morphology, such as “aging”
combined with “surface area” (N=125) or “curvature” (N=23). Even though several authors have
pointed out that volume is a product of cortical thickness and surface area (Norbom et al., 2021;
Storsve et al., 2014; Walhovd et al., 2016; Winkler et al., 2018), which in turn are two genetically
independent aspects of brain structure (Hofer et al., 2020; McKay et al., 2014; Panizzon et al.,
2009; van der Meer et al., 2020), the implication that thickness and area may have dissociable
causes (e.g., in ageing) and consequences (e.g., for cognition) have rarely been discussed,
especially in adult samples. Moreover, additional detailed morphometric shape measures (such
as curvature or sulcal depth) may provide further insight into brain development across the

adult lifespan and its relationship with cognitive performance.

In this paper, we explore multiple morphometric measures in two large adult-lifespan cohorts.
We show, firstly, that the most pronounced structural changes in the aging brain are the
decrease in apparent cortical thickness (see Walhovd et al., 2017 for the interpreation of MR-
derived cortical thickness) and increase in cortical curvature, in line with other studies (Deppe
et al., 2014; Hogstrom et al., 2013; Lemaitre et al., 2012). Secondly, we find that incorporating
multiple shape measures into a single model outperforms any individual metrics’ ability to
capture age-related and fluid cognitive differences. This paper’s main contribution, however,
lies in providing cross-sectional and longitudinal evidence of a double dissociation in two

independent, large-sample cohorts. Specifically, cortical thickness was more strongly associated
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with age than cortical surface area, while surface area was more strongly associated with
cognition (as indexed by fluid intelligence). This pattern was most apparent longitudinally, but
we also observed it cross-sectionally after adjusting for age. This double dissociation points to
possibly distinct underlying biological processes (discussed below), and supports recent calls to
investigate thickness and surface area separately (Winkler et al., 2018) as brain volume (a
product of cortical thickness and surface area) likely conflates and therefore masks these

differentiable effects.

Results

Cross-sectional results

We first calculated whole brain as well as regional correlations between each metric and age,
cognitive abilities (as indexed by fluid intelligence) and age-residualized cognitive abilities
Residualized cognitive scores allow one to separate concurrent age-related decline in cognitive
ability, thus providing an age-independent measure of cognition. Thickinthehead, which is a
measure of cortical thickness from the Mindboggle software, showed the strongest whole-brain-
age correlations (r = -.83). This was followed by curvature (r = +.77), fractal dimensionality (a
measure of cortical complexity; = -.65) and FreeSurfer’s standard cortical thickness (r = -.60), as
shown in Table 1 and plotted in Figure 1. Compared to the other metrics, surface area exhibited
the weakest age relationship (r = -.36). This order was reversed for age-residualized cognition.
Here, surface area was the strongest predictor (r = +0.21), while the two thickness metrics and
curvature did not show significant brain-cognition correlations after adjusting for age. The two
volume measures (FreeSurfer’s cortical volume, plus SPM’s cortical + subcortical volume)
predicted both age and age-residualized fluid-intelligence reasonably well (r ~ -.55 and o.20,
respectively), as would be expected since they are proportional to the product of cortical
thickness and surface area. Fractal dimensionality was also a good predictor of both age and

age-residualized cognition (rage= -0.65, Tcog = 0.19).

Age-residualized

Age Fluid Intelligence Fluid Intelligence
Metric Pearson’s P Pearson’s p Pearson’s P

T T T
Cortical Volume (FS) -.62 <.001 +.56 <.001 +.20 <.001
Cortical Thickness (FS) -.60 <.001 +.42 <.001 +.04 33
Surface Area (FS) -36 <.001 +.39 <.001 +.21 <.001
Thickinthehead (MB) -.83 <.001 +.59 <.001 +.04 34
Curvature (MB) +.77 <.001 -.56 <.001 -.034 39
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Sulcal Depth (MB) -38 <.001 +.51 <.001 +.07 .06
GM Volume (SPM) -.54 <.001 +.51 <.001 +.20 <.001
Fractal Dimensionality -.65 <.001 +.56 <.001 +.19 <.001

86  Table 1: whole brain correlations. GM = grey-matter. FS = FreeSurfer. SPM = Statistical Parametric
87  Mapping. MB = Mindboggle.
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Figure 1: whole brain -age, -fluid intelligence and -age-residualized fluid intelligence scatterplots of all
eight metrics. Black lines show linear fit, red lines show quadratic fit. The metric exhibiting the
strongest age relationship is Thickinthehead (a measure of cortical thickness), while surface area is
most strongly related to age-residualized cognitive abilities. GM = Grey Matter, FD = Fractal
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Figure 2: Cross-sectional whole brain correlations in Cam-CAN (A-D) and LCBC (E-H). While thickness
is associated with age (not age-residualized cognition), surface area captures age-residualized cognition

well (and age comparatively poorly).
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101  Next, we estimated a series of path models to assess the relationship between brain structure
102  and age, fluid intelligence and age-residualized fluid intelligence when both surface area and
103  cortical thickness are included in the same model. Path analysis is an extension of multiple
104  linear regressions, allowing researchers to assess the relationships between the predictor
105  variables rather than having several independent variables predict one dependent variable
106  (Streiner, 2005). Age and fluid intelligence were best captured by surface area and cortical
107  thickness, while age-residualized fluid intelligence was associated only with surface area (see
108  Figure 3). We validated this frequentist modelling approach with Bayesian model selection
109  (supplementary Figures 4-5). Overall, the whole-brain, cross-sectional analyses suggest that
110  cortical thickness and surface area differentially associated with age and age-residualized

111  cognitive abilities, respectively.

Surface Area Thickness Surface Area Thickness Surface Area Thickness
-0.27%%% (), 56%** (0.33%:k% /() 37H4% 0.21%** /0.01
Age Fluid Intelligence Age-residualized FldIn
112

113 Figure 3: Cam-CAN path model results. Both surface area and thickness are significantly associated with
114  age and fluid intelligence, while age-residualized fluid intelligence is captured by surface area only.

115  Our regional investigations further support the morphological dichotomy found in the whole
116  brain analyses. As shown in Figure 4, for cortical thickness, all 32 brain regions (the 64 DKT
117  regions averaged across the hemispheres) were significantly correlated with age (all correlations
118  were FDR corrected at alpha = 0.05), while no region predicted age-residualized fluid
119  intelligence (r < 0.07, prpr > 0.05; see supplementary tables 5-7). In contrast, for surface area, all
120  regions were significantly associated with age-residualized cognitive abilities (r > o0.11, prpr <
121  0.05). While regional surface area also correlated with age, the correlations were substantially

122 weaker than the brain-age correlations for cortical thickness.

123 Finally, in addition to the “area and thickness only” path models, we ran three “full models”
124  which each included all eight brain structure metrics to assess the metrics’ combined
125  associations with age and cognition. The total variance explained by these models was 76, 46
126  and 7 percent for age, fluid intelligence and age-residualized fluid intelligence, respectively —
127  almost double the variance explained by thickness and area alone (see supplementary Figure 3).

128  Moreover, the fact that multiple morphometric measures provided partially complementary
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129  information about the outcome highlights the potential usefulness in assessing various
130  morphological shape measures when investigating the ageing brain and cognitive abilities. This
131  was further supported by regional brain-age and brain-cognition correlations (supplementary
132 Figure 8): for instance, while volume-age effects were most pronounced in the frontal regions,
133 depth-age effects were strongest in the temporal lobes. It is plausible that the focus on frontal
134  brain regions in the brain and cognitive aging literature (Greenwood, 2000; Jung & Haier, 2007)
135 is informed in part by the field’s traditional focus on brain volume, and that other aspects of

136  brain structure could point to more underappreciated regional effects.

137
Age Residualized Fluid Intelligence
Thickness Thickness
significant regional correlations significant regional correlations
r
0.2
| | _03
04
05
06
p<0.05, FDR corrected
Surface Area Surface Area
significant regional correlations significant regional correlations
r o
o
-0.25
-0.30
0.35
-0.40
p<0.05, FDR corrected p<0.05, FDR corrected
138

139  Figure 4: Significant regional age- and age-residualized fluid intelligence correlations. Correlations are
140  FDR corrected at alpha = 0.05. For cortical thickness, all 32 brain regions are significantly associated
141  with age, while none are associated with age-residualized cognitive abilities. For surface area, all regions
142 are correlated with age-residualized cognition. While regional surface area also correlated with age, the
143 correlations were substantially weaker than the brain-age correlations for cortical thickness.

144

145  Longitudinal results
146 Although cross-sectional analyses offer an interesting insight into age-related cognitive and

147  morphometric differences, longitudinal data are needed to truly assess how brain and cognitive
148  change (Oschwald et al., 2020). Doing so, we found that the change-change relationship
149  between surface area and cognition was significantly stronger than the change-change

150  relationship between volume and cognition as well as that between thickness and cognition.

151  After establishing metric and scalar invariance (described in supplementary section 7), we used

152  Latent Change Score Models (LCSM) to examine morphometric and cognitive change over time.
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153  The cognitive LCSM revealed significant change in cognition over time, as well as significant
154  variability in the rate of change (Table 2, variances). The effect size of change of fluid intelligence
155  was -0.04 (Cohen’s D, computed by dividing the mean change by the SD at time 1). The three
156  brain-structure LCSMs also showed evidence of change over time (Table 2, intercepts) and of
157  significant variability in the rate of change (Table 2, variances). Surface area, volume and
158  thickness all decreased between the first and the second scan. Surface area had the smallest
159  effect size (Cohen’s D = -0.02), with cortical thickness and volume exhibiting larger effects

160  (Cohen’s D of -0.12 and -o0.11, respectively).
161

Latent change score model results Cam-CAN

Estimate  SE z-value p Std.all Effect
size
Cattell Intercepts -0.633 0.289 -2.192 0.028 -0.145 -0.09
Variances 19.059 2.808 6.787 <.0001 1.000
Thickness Intercepts -0.012 0.002 -6.234 <.0001 -0.386 -0.12
Variances 0.001 0.000 7.229 <.0001 1.000
Surface Intercepts -5.680 1.632 -3.481 <.0001 -0.215 -0.02
Area Variances 695.026 197.495 3.519 <.0001 1.000
Volume Intercepts -50.550 5.887 -8.587 <.0001 -0.530 -0.11
Variances 9o080.25 1057.968 8.587 <.0001 1.000

162  Table 2: latent change score model results for change in Cattell, surface area, thickness and volume over
163  time. Effect size is calculated by dividing the mean change by the square root of the variance.

164
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166  Figure 5: In Cam-CAN, cortical thickness, surface area and fluid intelligence declined significantly
167  between time point 1 and time point 2 (average interval between the two time points = 1.33 years).
168  Next, to investigate the relationship between cognitive change and morphometric change, we
169 fit three second order latent change score models (2.LCSM), one for each brain structure metric.
170  We used full information maximum likelihood (FIML, Enders & Mansolf, 2018) with robust
171  standard errors to account for missing data. Results are shown in Table 3.
172
Data Model CFI r p
Cam-CAN Area - Cognition 0.972 0.23 <0.001
Thickness - Cognition 0.978 -0.022 0.71
Volume - Cognition 0.975 0.11 0.068
LCBC Area - Cognition 0.987 0.35 <0.001
Thickness - Cognition 0.994 0.21 <0.001
Volume - Cognition 0.921 0.15 <0.001
173 Table 3: Second order latent change score model results using FIML for missing data. Shows the
174  relationship between change in brain structure (volume, thickness, area) and change in cognition in
175  Cam-CAN and LCBC. In both datasets, change in surface area was most strongly associated with
176  cognitive change.
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177  All three models fit the data well: CFI srea = 0.972; CFI volume = 0.975; CFI thickness = 0.978; (further
178  model fit indices can be found in section 7 of the supplementary materials). After fitting the
179  models, we extracted and correlated the cognitive rates of change with the brain structural rates
180  of change. Change in surface area showed the largest effect (r = 0.23, p <.001), followed by (non-
181  significantly) volume (r=-o.11, p = 0.068) and cortical thickness (r=-0.022, p = 0.71). The Steiger’s-
182  Z tests (Steiger, 1980) in the R package psych can directly compare differences in correlation
183  strengths, accounting for the full correlation pattern among variables. Doing so revealed that
184  change in area was significantly more strongly associated with change in cognition than was

185  thickness or volume change (see Table 4).

Data Comparison r values N Z P

Cam-CAN Thickness / Area -0.022/0.23 362 3.34 0.001
Thickness / Volume -0.022/0.11 362 1.66 0.1
Volume / Area 0.11/0.23 362 1.77 0.04

LCBC Thickness / Area 0.21/0.35 722 2.89 0.001
Thickness / Volume  0.21/0.15 722 118 0.24
Volume / Area 0.15/0.35 722 4.06 0.001

186  Table 4: Steiger's Z Test results. P-value (two-tailed) of <o.05 suggests correlation coefficients are
187  significantly different from each other.

188  These results suggest that people whose surface area decreased more quickly also showed

189  steeper rates of cognitive decline; an effect not found for thickness or volume.

190  Note that the models shown above include observed (not latent) variables to ensure maximum
191  comparability between the LCBC and Cam-CAN models (in LCBC, it was not possible to derive
192  latent cognitive scores because only WASI sum scores were available). However, latent variable
193  Cam-CAN models (which we had run initially, before the replication study) show the same
194  pattern, with changes in surface area most strongly associated with changes in cognition
195  (r=0.44, p <o0.001). For these models, changes in volume were significantly associated with
196  changes in fluid intelligence (r=0.26, p = <0.001), while this relationship remained insignificant
197  for cortical thickness (r = 0.0047, p = 0.94). All longitudinal change score model results are

198  plotted in supplementary Figure 13.

199  Replication results
200 To examine whether our cross-sectional and longitudinal findings generalize to other cohorts,

201  we next (after finalizing the analyses in Cam-CAN) examined the same associations in an

202  independent sample, the LCBC data. Because of their widespread use and accessibility, we

11
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203  included the three FreeSurfer-derived metrics (thickness, area, volume) in our replication

204  analyses.

WASI Score IS WASI Score RN WASI Score NS

10 15 20 25 30 35 10 15 20 25 30 35 10 15 20 25 30 35
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205
206  Figure 6: The relationship between age, brain structure and cognition in LCBC.

207  Cross-sectionally, as shown in Figure 2 (E-H), thickness showed the strongest whole brain-age
208  correlation (R = -.78, p < 0.001), followed by volume (R = -0.64, p < 0.001) then surface area (R =
209  -0.34, p < 0.001). For age-residualized fluid intelligence, thickness had the weakest correlation
210 (R =0.077, p = 0.009), followed by surface area (R = 0.13, p = 0.001) and volume (0.15, p < 0.001;
211  and supplemental Table 3). As was the case in Cam-CAN, the frequentist path models and
212 Bayesian model selection revealed that the best models to predict age and fluid intelligence
213 were comprised of both surface area and thickness, while age-residualized fluid intelligence was

214  best captured by surface area alone (Figure 7).

Surface Area Thickness Surface Area Thickness Surface Area Thickness
L0.2%H% () 75k 0.22%%% /(.42%%+ 0.14**%* 0,05
Age FldIn Resid FldIn
R*=0.65 Ri=0.25 R2=0.026
215

216  Figure 7: LCBC path model results. Both surface area and thickness are significantly associated with age

217  and fluid intelligence, while age-residualized fluid intelligence is captured by surface area only.

218  Longitudinally, we found evidence of significant change over time for the three brain metrics
219  (Table 5, intercepts), and significant variability over time for the brain metrics and cognition
220  (Table 5, variances). A lack of mean cognitive decline can most likely be attributed to test-retest

221 effects, but still allows for investigation of individual differences in change.

12
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Latent change score model results LCBC

Estimate  SE z-value p Std.all Effect
size
WASI Intercepts -0.247 0.166 -1.488 0.137 -0.078 -0.051
Matrix Variances 10.069 1.246 8.080 <.0001 1.000
Thickness Intercepts -0.039 0.002 -19.815 <.0001 -1.039 -0.340
Variances 0.001 0.000 12.101 <.0001 1.000
Surface Intercepts -14.853 1.935 -7.678 <.0001 -0.412 -0.059
Area Variances 1301.028 187.252 20.513 <.0001 1.000
Volume Intercepts -130.745 8.885 -14.716 <.0001 -0.806 -0.15
Variances 26327.152  2368.341 11.116 <.0001 1.000

222 Table 5: LCBC data latent change score model results for change in WASI Matrix, surface area, thickness
223 and volume over time. Effect size is calculated by dividing the mean change by the square root of the

224 variance.

225

226  As shown in Table 3, the three 21.CMs fit the data well: CFI area = 0. 0.987; CFI volume = 0.921;
227  CFI thickness = 0.994 (further model fit indices can be found in the supplementary materials).
228  Change in all structural brain metrics was significantly associated with change in cognition with
229  surface area showing the largest effect (r = 0.35, p <.001), followed by thickness (r=0.22, p <.001)
230 then volume (r=o0.5, p=0.001). The Steiger’'s Z-Test revealed that the change-change
231  relationship between area and cognition was significantly stronger than that between volume

232 and cognition and thickness and cognition (see Table 4).

233 The LCBC longitudinal results replicated those found in Cam-CAN, further supporting the
234  finding that changes in surface area predict changes in cognition and that this relationship is
235  stronger than that between change in thickness and change in cognition. We therefore

236 successfully replicated Cam-CAN'’s cross-sectional and longitudinal findings.
237

238

239
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240

241  Discussion

242 A morphometric double dissociation

243 Across two independent cohorts, we found evidence of a morphometric double dissociation:
244 cortical thickness was more strongly associated with age than cortical surface area, both cross-
245  sectionally and longitudinally, whereas surface area was more strongly associated with
246  cognition (fluid intelligence); certainly longitudinally, and also cross-sectionally, after removing
247  age-related variance. Note that we are not claiming that cortical thickness plays no role in
248  cognition - it shows a longitudinal association with cognitive change in one of the two datasets
249  (albeit significantly smaller than that of surface area), and its cross-sectional association with
250  fluid intelligence was significant. The lack of cross-sectional association with age-residualized
251  fluid intelligence could be due to collider bias whereby cortical thickness is causally related to
252 both age and cognition and that any thickness-cognition effect disappears when removing age.
253 Our results do suggest, however, that surface area and thickness, which tend to be investigated
254  together through the aggregate measure of volume, may have dissociable causes (e.g., in ageing)

255  and consequences (e.g., for cognition).

256  Our findings align with previous studies that have pointed to a relationship between surface
257  area and cognition (Cox et al., 2018; Fjell et al., 2015; Gerrits et al., 2016) and support recent calls
258  to focus on the distinctness of cortical thickness and surface area, rather than assessing them
259  jointly through cortical volume (Winkler et al., 2018). Such a shift is not just of theoretical or
260 methodological importance: because surface area and cortical thickness are known to be
261  genetically distinct (Panizzon et al., 2009; Winkler et al., 2010) and to follow different
262  trajectories over the lifespan (Fjell et al., 2015; Hogstrom et al., 2013), combining them into

263  volume is likely to obscure important biological differences and mechanisms.

264  While we can, in the present study, only speculate on the biological basis of different
265  morphological metrics (and therefore their age/cognition dichotomy), evidence from animal
266  and histological studies point to a possibly relevant set of mechanisms. With age, the long
267  dendrites of pyramidal neurons have been shown to decrease rapidly across all layers of the
268  cortex (Jacobs et al., 2001; Nakamura et al., 1985; Panizzon et al., 2009) and especially in layer V
269 - the internal pyramidal layer - which contains the majority of large pyramidal neurons and is
270  therefore the thickest of the six cortical layers - at least after the age of 50 (de Brabander et al.,
271 1998). Thus, the steep declines in cortical thickness observed in the present study (and

272 elsewhere, e.g. Lemaitre et al., 2012; Chen et al., 2011) are likely in part due to dendritic shrinkage.
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273 Furthermore, our finding that cortical thickness is less strongly associated with cognitive
274  abilities than other measures of brain structure is also supported by animal research, showing
275  that rates of dendritic atrophy in rats did not differ between aged cognitive unpaired and aged

276  cognitive impaired animals (Allard et al., 2012)

277  What, if not dendritic atrophy, is driving cognitive differences and cognitive change, and why
278  might cognition be related to surface area? According to the radial unit hypothesis (Rakic, 2000)
279  while the development of cortical thickness is driven by the layers in the cortical columns (as
280  described above), the development of surface area is a product of the number of radial columns
281  perpendicular to the pial surface. This theory has been updated via the Supragranular Cortex
282  Expansion Hypothesis (Nowakowski et al.,, 2016), which postulates that specific cellular
283  mechanisms allow certain types of glial cells to migrate towards the pial surface during
284  development, thereby expanding the cortex, and that this process is, in turn, responsible for
285 many of the cognitive features unique to primates. This is further supported by analyses
286  suggesting that glial cells - and specifically glial-neural signalling - affect cognition (Chung et
287  al,, 2015). A plausible hypothesis therefore is that MR-derived surface area (at least partially)
288  picks up on these glial-dependent neural mechanisms - which likely originate in early

289  development - and thereby on cognitive difference and changes.

290  The shape of the ageing brain

291  Asecond contribution this paper makes is to characterize structural age-related differences and
292  changes across multiple morphological metrics. While there have been multiple robust studies
293  comparing different imaging metrics (Hutton et al., 2009; Im et al., 2008; Lovdén et al., 2013;
294  Pantazis et al., 2010; Shimony et al., 2016; Wang et al., 2019; Wierenga et al., 2014), few have
295  included the breadth of morphometry assessed here. Our approach, therefore, allowed us to
296  directly compare the magnitude of cortical age-related differences and changes across a range

297 of metrics.

298  The biggest age-related change (cross-sectionally and longitudinally) was that of cortical
299  thickness, followed (cross-sectionally) by curvature. This suggests that the most striking
300  structural transformation the human brain undergoes with age - at least of those detectable
301  with MRI - is that the cortex thins while also becoming more ‘curved’. The width and depth of
302  cortical sulci might influence the complexity metric, such that more atrophied brains might
303  exhibit an increase in gyral complexity but not a decrease in surface area (Narr, et al., 2004;

304  Lemaitre et al., 2012).
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305 We also show that combining shape measures outperforms any individual metrics’ ability to
306  capture age-related and cognitive differences: together, the eight morphometric metrics
307  assessed here explained almost double the variance compared to that captured by thickness and
308  surface area alone. Thus, the fact that multiple morphometric measures provided partially
309 complementary information about the outcome highlights the potential usefulness in assessing
310 various morphological shape measures when investigating the ageing brain and cognitive

311  abilities.

312  Methodological strengths and limitations

313  In addition to the large sample size and the assessment of multiple shape metrics, the
314  integration of cross-sectional and longitudinal data is of note. Recent reviews and commentaries
315  have pointed to the limitations of cross-sectional analyses when investigating brain-cognition
316  relationships in the ageing brain (see Oschwald 2020 for a discussion). While we agree that
317  collecting longitudinal data is almost always preferable, we acknowledge that it is not always
318  attainable. Our approach of integrating cross-sectional and longitudinal data, where the latter
319 largely confirmed the findings of the former, offers some validation of cross-sectional

320  approaches.

321  Another key strength of this paper is that we successfully replicated our cross-sectional and
322  longitudinal findings in an independent cohort. In doing so, we not only validated the apparent
323  existence of the morphological double dissociation, but showed that it is not subject to specific
324  features of the Cam-CAN data. Indeed, replicating our results despite important differences
325 between the two datasets increases the robustness of our findings considerably. For instance,
326  the cognitive tests differed (Cattell in Cam-CAN, WASI Matrix in LCBC), suggesting that surface
327  area captures the broader construct of fluid intelligence (rather than test-specific features).
328  Moreover, while the morphological metrics assessed in our initial Cam-CAN study offered an
329  intriguing description of the ageing brain, obtaining them required five separate processing
330 pipelines (FreeSurfer (Fischl, 2012), FreeSurfer Long (Reuter et al., 2012), Mindboggle (Klein et
331 al.,, 2017), SPM (Ashburner & Friston, 2000) and the Fractal Dimensionality Toolbox calcFD
332  (Madan & Kensinger, 2016)). The fact that our results replicated in canonical metrics (all of
333 which are part of the standard FreeSurfer output) might lower the threshold for future research

334  to, where appropriate, investigate surface area and cortical thickness separately.

335  The breadth of structural brain metrics reviewed in this paper also comes with some important
336 limitations. First, we were not able investigate the changes of several of the metrics which we

337  had assessed in our cross-sectional analyses. This is because the pipelines used to calculate these
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338  additional metrics (e.g. Mindboggle) are not yet optimised for longitudinal data. Particularly
339  curvature, which showed a very strong age effect cross-sectionally, would have been interesting
340  to explore longitudinally. Likewise, fractal dimensionality, which measures cortical complexity
341  and correlated strongly with age and cognition in our cross-sectional analyses, might be a

342  promising candidate for future longitudinal investigations.

343  Conclusion
344  In this paper, we found cross-sectional and longitudinal evidence for a brain-cognition double

345  dissociation: two morphological metrics, surface area and cortical thickness, which tend to be
346  investigated together through grey matter volume, are differentially associated with age and
347  fluid intelligence: while thickness is strongly associated with age, it has weak associations with
348  change in fluid intelligence - a pattern that is reversed for surface area, which captures

349  cognitive change and difference well, and age relatively poorly. We therefore recommend that
350 rather than using grey matter volume as the default measure, researchers should choose

351  structural brain metrics depending on the question under investigation. Doing so will allow us
352  to advance our understanding of the functional significance of these dissociable aspects of

353  brain morphology.

354 Methods

355 Initial Cohort

356  Participants

357  Participants were drawn from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN)
358  study, which has been described in more detail elsewhere (Shafto et al., 2014; Taylor et al., 2017).
359 708 healthy adults (359 women, 349 men) from the larger cohort were scanned, with
360  approximately 100 people in each decade (age range 18-88, Mean=53.4, Standard Deviation (sd)
361 =18.62). We used calendar age (years) as a measure of participants’ age. Cognitive ability was
362 measured using the Cattell Culture Fair test of fluid intelligence (Cattell, 1971). For an age-
363 independent measure of cognition, we calculated age-residualized fluid intelligence scores by
364  regressing the Cattell raw scores on age (see Borgeest et al., 2019). Residuals adjust for age-
365  expected declines, allowing, for example, an 8o-year-old person with a relatively low absolute

366  score to be considered cognitively healthier than a younger individual with a higher score.

367 A subset of participants (N=261) was scanned twice, with an average interval between the first
368 and the second scan of 1.33 years (sd = 0.66). Additionally, a (partially separate) subset of

369  participants (N=233) completed the Cattell test twice with an average interval between the two
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370  cognitive tests of 6.0 years (sd = 0.67). Two waves of both brain and cognitive data were available

371  for us participants.

372  Imaging data acquisition and pre-processing

373  Ti- and T2-weighted 1 mm isotropic magnetic resonance imaging scans were available for 647
374  participants (Taylor et al., 2017). To ensure the quality of the image segmentations, we adapted
375 arecently developed supervised learning tool (Klapwijk et al., 2019), which led us to exclude six
376  participants due to low-quality segmentations. Our quality control process is described further
377  the supplementary materials. In order to investigate (cross-sectional) brain morphology in as
378 much detail as possible, we examined a total of eight brain metrics: in addition to three
379  FreeSurfer-derived measures of cortical volume, thickness and surface area (derived from a
380  standard FreeSurfer recon-all pipeline), we examined grey-matter volume derived from SPM 12
381  (voxel-based morphometry which includes sub-cortical grey-matter too, while FreeSurfer
382  includes only cortical estimates) and four additional morphological measures: from Mindboggle
383  (see Klein et al. 2017 for more detail) we derived sulcal depth, curvature and “thickinthehead”
384  (arecently developed cortical thickness measure that avoids FreeSurfer’s reconstruction-based
385 limitations); and from the calcFD toolbox (Madan & Kensinger, 2016) we calculated fractal
386  dimensionality as a measure of cortical complexity. To extract reliable brain structure estimates
387 from the longitudinal subsample, images were automatically processed with FreeSurfer’s
388 longitudinal stream (Reuter et al., 2012). This yielded co-registered measures of volume, cortical
389  thickness and surface area for the two waves. Note that we did not explore the other
390 morphological metrics longitudinally because the Mindboggle and calcFD pipeline are not
391  currently optimised for longitudinal data (see discussion). Brain regions were defined according
392  to the Desikan-Killiany-Tourville (DKT) protocol, which yields 62 brain regions (Klein &
393  Tourville, 2012).

394

395  Cross-sectional analyses

396  All analyses were carried out using R (R Core Team, 2013), and the code used for this paper is

397  available on the Open Science Framework (https://osf.io/n6b4j/).

398  First, we calculated whole brain as well as regional correlations between each metric and age,
399  fluid intelligence and age-residualized fluid intelligence. Regional correlations were FDR
400 corrected at alpha = 0.05. Next, we estimated a series of path models to assess which
401  combination of whole brain metrics best predicted age, fluid intelligence and age-residualized
402  fluid intelligence. We then examined the robustness of our frequentist modelling approach with

403  a Bayesian modelling framework (see supplementary materials).
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404  Longitudinal analyses

405  To assess neural and fluid intelligence change between time point 1 and time point 2, we fit a
406  series of longitudinal structural equation models for each longitudinal FreeSurfer metric (whole
407  brain volume, thickness and surface area) and fluid intelligence. Before assessing cognitive
408 change, we also tested for longitudinal measurement invariance (Widaman et al., 2010).
409  Additionally, as the second Cattell test was completed online by approximately half of the
410  participants, versus pencil and paper by the other half, we investigated whether these two
411  groups differed in their measurement properties by assessing metric invariance (constraining

412 factor loadings) and scalar invariance (constraining intercepts).

413  To understand whether cognitive change was correlated with morphometric change, and if so,
414  whether this relationship differed for the different cortical metrics, we extracted and estimated
415  the rates of cognitive and brain structure change in a series of second order latent change score
416  models (Ferrer et al., 2008; Ferrer & McArdle, 2010; McArdle & Hamagami, 2001; McArdle &
417  Nesselroade, 2003). Second order latent change score models (2LCSM) first estimate latent
418  factors at each time point, and then estimate latent change over time. Steiger’s Z-Tests were
419  performed to assess whether the change-change relationships differed significantly between the
420  different metrics (Steiger, 1980). Given that properties of the data, obtaining latent cognitive
421  scores was not possible in the replication sample (see below), so we also ran the models with
422  observed variables only within Cam-CAN to ensure maximal comparability between the two
423  sets of analyses. We ran models on participants with at least one cognitive score (N=362) using
424  full information maximum likelihood (FIML, which assumes data are missing-at-random,

425  Enders & Mansolf, 2018, and enables robust standard errors to account for missingness).

426  Replication Cohort
427  To assess the robustness of our results, we investigated whether our core findings replicated in

428  a second, independent dataset. To this end, we analysed data from the Centre for Lifespan

429  Changes in Brain and Cognition at the University of Oslo (LCBC; https://www.oslobrains.no/),
430  which is part of the European Lifebrain project (Walhovd et al., 2018) together with Cam-CAN
431  and other publicly available datasets. The LCBC data consist of a collection of studies, which
432 have been described elsewhere (Walhovd et al., 2016). Briefly, our analyses included 1236 adults
433  aged 18-93 years (median = 37, sd = 20.64). We used WASI Matrix (raw scores) as our measure
434 of fluid intelligence because it is most similar to the Cattell task assessed in Cam-CAN.
435  FreeSurfer-derived cortical thickness, volume and surface area served as our morphological
436  measures (for details on cross-sectional and longitudinal image acquisition and pre-processing

437  see (Walhovd et al., 2016)). At least two waves of cognitive and/or neural data were available for
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438 389 participants. Where participants had more than two waves, we selected their first and last
439  time point, maximizing the interval between waves as well as the data similarity between
440 samples. This allowed us to include the largest possible number of participants in our
441  longitudinal analyses while maintaining two-wave models comparable to those described in
442  Cam-CAN. The mean interval between the two waves so defined was 5.18 years (min = 0.73, max

443  =10.0, sd = 2.59 years).

444  Our analysis pipeline mirrored that described above: cross-sectionally, whole brain correlations
445  were followed by frequentist path models and Bayesian model selection analyses.
446  Longitudinally, LCSMs assessed cognitive and neural change separately; and we ran a series
447  2LCSMs to investigate the relationship between cognitive change and neural change. The FIML
448  models included 722 participants. Note that it was not possible to derive latent cognitive factor
449  scores for the longitudinal models as individual WASI scores were not available, so the LCBC
450  longitudinal models used observed cognitive variables (but were otherwise identical to Cam-
451  CAN models). The LCSM data and analyses are described in more detail in the supplementary

452  material.

453
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Borgeest et al. (2021): Supplementary Materials

1. Descriptive Statistics

Cam-CAN N Mean SD Median Min Max Skew  Kurtosis
Age 641 54.04 18.56 54.00 18.00 88.00 -0.05 -1.15
WB Volume 641 7114.64 899.87 1703419 930.07 4939.80 0.36 -0.17
WB Area 641 3177.87 320.97 3157.00 2442.25 4445.75 0.38 0.09
WB Thickness 641 2.66 0.12 2.67 2.19 2.98 -0.50 0.87
Cattell 622 3105 6.74 33.00 11.00 44.00 -0.56 -0.16
Table 1: Descriptive statistics for Cam-CAN data
LCBC N Mean SD Median Min Max Skew  Kurtosis
Age 1236  41.55 20.32 31.95 18.0 93.35 0.71 -1.02
WB Volume 188 7453.09 853.41 744181 890.39 5092.91 0.14 -0.41
WB Area 188 2630.76 246.85 2618.33 1859.63 3300.62 0.15 -0.32
WB Thickness 199 2.60 0.1 2.61 2.09 2.01 -0.38 -0.03
Wasi Matrix Raw 1234 27.67 4.64 20.00 6.00 35.00 -.69 4.06
Table 2: Descriptive statistics for LCBC data
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Figure 1: Correlation matrix of the eight brain structure metrics. Note that surface area and thickness are correlated r
=0.16
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Figure 2: Results of Principal Component Analysis

2. Imaging data acquisition and pre-processing

We based our quality control process on the supervised learning tool ‘Qoala-T" developed by
Klapwijk et al., which was originally developed for child and adolescent samples (see manual,
20193, and manuscript, 2019b). First, we manually rated the quality of 12% of our FreeSurfer pre-
processed Cam-CAN scans, thereby surpassing the proportion of 10% as recommended by the
Qoala-T authors. These scans later served as input for Qoala-T, so the algorithm would learn to
distinguish between scan qualities suitable or unsuitable for further analyses. Second, following
the manual ratings, we used Qoala-T’s publicly available quality control tool to assess the quality
of all T1 CamCAN images. This resulted in six participants being excluded from the sample (age

32 - 71, median = 59).
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We have uploaded a detailed rating procedure to this project’s OSF page (link here) as we hope

that it will help other researchers implement versions of this semi-automatic quality control

procedure for large adult lifespan samples.

2 Whole Brain Correlations

Correlation CamCAN LCBC
R p R D
Age Volume -.62 <.0001 -.64 <.0001
Thickness -.6 <.0001 -.78 <.0001
Area -.36 <.0001 -.34 <.0001
Fluid Intelligence =~ Volume .56 <.0001 41 <.0001
Thickness 42 <.0001 45 <.0001
Area 39 <.0001 28 <.0001
Age-residualized Volume 0.2 <.0001 15 <.0001
FldIn Thickness .039 33 .077 .0009
Area 0.21 <.0001 13 <.0001
Table 3: Comparing whole brain correlations in CamCAN and LCBC data
Metric Model R-Squared  F-Statistic p BIC
Cortical Linear 0.38 399.7 <0.001 5270.861
Volume Quadratic*  0.39 206.2 <0.001 5269.154
Cortical Linear * 0.36 366.2 <0.001 5291.885
Thickness Quadratic 0.37 184.2 <0.001 5296.544
Surface Area Linear * 0.13 96.94 <0.001 5491.733
Quadratic 0.13 48.56 <0.001 5497.909
Thickinthehead Linear* 0.71 1538 <0.001 4796.678
Quadratic 0.71 768.2 <0.001 4802.762
Curvature Linear 0.60 955.2 <0.001 4996.165
Quadratic*  0.63 532.4 <0.001 4959.439
Sulcal Depth Linear * 0.14 106.2 <0.001 5483.685
Quadratic 0.14 53.17 <0.001 5489.911
Grey Matter Linear * 0.30 269.4 <0.001 5356.77
Volume (SPM)  Quadratic 0.30 135.2 <0.001 5361.933
Fractal Linear * 0.42 467.6 <0.001 5230.34
Dimensionality Quadratic 0.42 234.1 <0.001 5235.915

Table 4: Comparing linear and quadratic model fit for the metric-age correlations in CamCAN. The best fitting model

(with lower BIC) is marked with *.
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3 Frequentist modelling approach

We examined whether the different metrics of brain structure provided unique and
complementary information about age and cognitive ability. To do so, we ran frequentist path
models and Bayesian model selection framework in which cortical thickness and surface area
predicted either age, fluid intelligence or age-adjusted fluid intelligence (ignoring volume since
this is the product of thickness and surface area). These revealed that the best model of age and
fluid intelligence required both surface area and thickness (Figure 1 A-B). In contrast, individual
differences in (age-residualized) fluid intelligence were best captured by surface area alone
(Figure 1 C). These models explained 44, 29 and 4 percent of the variance of age, fluid
intelligence and age-residualized fluid intelligence, respectively. The Bayesian model selection

- which led to identical conclusions - is plotted in the supplementary materials.

The full models that included all 8 metrics are depicted in Figure 1 D-F. The total variance
explained by these models was 76, 46 and 7 percent for age, fluid intelligence and age-
residualized fluid intelligence, respectively — almost double the variance explained by thickness
and area alone. Moreover, the fact that multiple morphometric measures provided partially
complementary information about the outcome highlights the potential usefulness in assessing
various morphological shape measures when investigating the ageing brain and cognitive
abilities. As was the case for the first set of models, the Bayesian model selection arrived at the
same conclusions as the frequentist model selection (see supplementary materials): For age, the
best model included Thickness, Thickinthehead, Curvature, TGM and Surface Area. Fluid
intelligence was best captured by Thickinthehead, Curvature, TGM, Surface Area, Thickness
and FD. Finally, the best model for age-residualized fluid intelligence included Fractal
Dimensionality and Thickness. Interestingly, when FD was not included in the models, the best
model for age-residualized fluid intelligence included surface area only, suggesting that surface

area and FD capture similar variance.
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Figure 3: CamCAN path model results. Models A-C were for the area and thickness only, models D-F included all eight
brain structure metrics.

4 Bayesian model selection
We validated our frequentist modelling approach with a Bayesian modelling framework

(Rouder et al., 2012) using Bayesian regression. As before in this cohort (Gadie et al., 2017), we

/1
used the default, symmetric Cauchy prior with width of "2 which translates toa 50% confidence

that the true effect will lie between —0.707 and 0.707. Doing so yields a Bayes factor for all
possible subsets of predictors, thus yielding the model that optimally balances parsimony

(excluding unnecessary predictors) with prediction power.

All Bayesian models confirmed the frequentist ones. For age, the best model was comprised of
Thickinthehead, Curvature, TGM, Surface Area and Thickness (Figure 2). Fluid intelligence was
best captured by Curvature, TGM, Surface Area, Thickness, FD and Volume (Figure 3). Finally,

age-residualized fluid intelligence was best predicted by FD and Thickness (Figure 4).
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Figure 4: Bayesian model selection framework, predicting Age in CamCAN. Compares the best model (top row) to the
next five best fitting models.
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Figure 5: Bayesian model selection framework, predicting fluid intelligence in CamCAN. Compares the best model (top
row) to the next five best fitting models.
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Figure 6: Bayesian model selection framework, predicting age-residualized fluid intelligence in CamCAN. Compares
the best model (top row) to the next five best fitting models.

5 Regional results

In Cam-CAN, after looking at whole brain correlations between the eight metrics and age, fluid
intelligence and age-residualized fluid intelligence, we investigated regional correlations.
Regions were assigned 62 labels following the Desikan-Killiany-Tourville (DKT) protocol in the
Mindboggle pipeline (Klein et al., 2018). We then averaged across both hemispheres. Results are
shown in Tables 4-6 and plotted in Figures 4-6. Note that data for the entorhinal, banks superior

temporal and temporal pole was only available for Thickinthehead and Volume.

Our regional investigations further supported the morphological dichotomy found in the whole
brain analyses. For cortical thickness, all 32 brain regions (averaged across the hemispheres)
were significantly correlated with age (all correlations were FDR corrected at alpha = 0.05),
while not a single region predicted age-residualized fluid intelligence (Figure 3 and Tables 4-6
in supplementary materials). In contrast, for surface area, all regions were significantly
associated with age-residualized fluid intelligence. While regional surface area also correlated
with age, the correlations were substantially weaker than the brain-age correlations for cortical

thickness.
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The precentral gyrus was the region with the strongest age effects in five out of eight metrics:
curvature (r=.74), thickness (r=-.66), thickinthehead (r=-.87), volume (r=-.71), TGM (r=.-66).

More regional results are shown in Tables 4-6 and Figures 4-6 in the supplementary materials.

Age Residualized Fluid Intelligence
Thickness Thickness

significant regional correlations significant regional correlations

3%

p<0.05, FDR corrected

r

- 0.8

04
0.0

-04
— -0.8

p<0.05, FDR corrected
Surface Area Surface Area
significant regional correlations

significant regional correlations

r- 08 r- 08
04 04
0.0 0.0
-04 -0.4
- -0.8

s

p<0.05, FDR corrected p<0.05, FDR corrected

Figure 7: Significant regional age- and age-residualized fluid intelligence correlations. Correlations are FDR corrected
at alpha = 0.05. Shows a double dissociation, whereby cortical thickness predicts age and not cognition, and vice versa
for surface area. Note that grey indicates non-significant or missing regions.
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Figure 8: regions most strongly associated with age. Shows a large variability, with volume showing pre-frontal age effects
while, for instance, sulcal depth effects are focused in the temporal lobes.
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Fractal Curvature  Thickness Thickinthh Volume TGM Depth Area
Dim. ead

ROI r p r p r p r p r p r p r p r p
bankssts NA NA NA NA NA NA -0.783 <.001 -0.496 <.001 NA NA NA NA NA NA
caudal anterior cingulate -0.285 <.001 0.589 <001 -0.353 <.001 -0.649 <.001 -0.366 <.001 -0.443 <.001l 0.131 0.002 -0.216  <.001
caudal middle frontal -0.479 <.001 0.673 <.001 -0.569 <.001 -0.772 <.001 -0.501 <.001 -0.557 <.001 -0.118 0.005 -0.233  <.001
corpus callosum -0.207 <.001  0.451 <.001 -0.239 <.001 -0.609 <.001 -0.361 <.001 -0.536 <.001 -0.033 0.494 -0.91 <.001
cuneus -0.037 0.349 -0.036 0365 -0.159 <.001 -0.357 <.001 0.016 0.685 -0.35 <.001 -0.008 0.894 -0.009 0.843
entorhinal NA NA NA NA NA NA -0.313 <.001 -0.264 <.001 NA NA NA NA NA NA
fusiform -0.38 <.001  0.492 <.001 -0.305 <.001 -0.683 <.001 -0374 <.001 -0.461 <.001 -0.298 <.001 -0.306 <.001
inferior parietal -0.555 <.001  0.671 <.001 -0.585 <001 -0.747 <.001 -0.558 <.001 -0.524 <.001 -0.298 <.001 -0.347 <.001
inferior temporal -0.27 <.001  0.475 <.001 -0.209 <.001 -0.646 <.001 -0.293 <.001 -0.431 <.001 -0.216 <.001 -0.268 <.001
insula -0.242  <.001 0.63 <.001 -0.536 <.001 -0.71 <.001 -0.423 <.001 -0.49 <.001 0.018 0.769 -0.004 0.929
isthmus cingulate -0352 <.001 0.523 <.001 -0.423 <.001 -0.76 <.001 -0.405 <.001 -0.387 <.001 -0.048 0303 -0.165 <.001
lateral occipital -0.414 <.001  0.519 <.001 -0.297 <.001 -0.647 <.001 -0.329 <.001 -0.467 <.001 -0176 <.001 -0.254 <.001
lateral orbitofrontal -0389 <.001 0.396 <.001 -0.2 <.001 -0.627 <.001 -0.491 <.001 -0.502 <.001 -0.226 <.001 -0.386 <.001
lingual -0.256 <.001 0.506 <.001 -0.321 <.001 -0.65 <.001 -0343 <.001 -0.567 <.001 -0.14 0.001 -0.201  <.001
medial orbitofrontal -0.239 <.001 0335 <.001 -0.296 <.001 -0.55 <.001 -0.443 <.001 -0.541 <.001 -0.002 0.972 -0.226  <.001
middle temporal -0.446 <.001 0.637 <.001 -0.534 <.001 -0.818 <.001 -0.544 <.001 -0.513 <.001 -0.284 <.001 -0.401  <.001
paracentral -0.463 <.001  0.459 <.001 -0.578 <001 -0.663 <.001 -0.605 <.001 -0.564 <.001 -0.039 0.409 -0.161 <.001
parahippocampal -0116 0.003 0.226 <.001 -0.149 <.001 -0.45 <.001 -0354 <.001 -0.433 <.001 -0.062 0.17 -0.232  <.001
pars opercularis -0.487 <.001 0.637 <.001 -0.6 <001 -0.826 <.001 -0.597 <.001 -0.617 <.001 -0.063 0.17 -0.333  <.001
pars orbitalis -0.397 <.001 0.252 <.001 -0.6 <.001 -0.826 <.001 -0.459 <.001 -0.523 <.001 -0.077 0.085 -0.365 <.001
pars triangularis -0.508 <.001 0.564 <.001 -0581 <.001 -0.797 <.001 -0.599 <.001 -0.525 <.001 -0.124 0.003 -0.354 <.001
pericalcarine -0118 0.003 0.487 <.001 -0.049 0.213 -0.604 <.001 -0.389 <.001 -0.46 <001 -0.015 0.775 -0.055 0178
postcentral -0.469 <.001 0.632 <.001 -0.494 <.001 -0.773 <.001 -0.609 <.001 -0.591 <.001 -0.218 <.001 -0.055 0.178
posterior cingulate -0.45 <.001 0.595 <.001 -0.459 <.001 -0.706 <.001 -0.529 <.001 -0.522 <.001 0169 <.001 -0341 <.001
precentral -0.526 <.001 0.744 <.001 -0.659 <.001 -0.867 <.001 -0.706 <.001 -0.658 <.001 -0.105 0.014 -0.205 <.001
precuneus -0.487 <001 0.663 <001 -0.559 <.001 -0.731 <.001 -0.526 <.001 -0.408 <.001 0.052 0.259 -0.266 <.001
rostral anterior cingulate -0316 <.001 0.379 <.001 -0.248 <.001 -0.597 <.001 -0.36  <.001 -0.53 <.001 -0.017 0.769 -0.227 <.001
rostral middle frontal -0.546 <.001 0.597 <.001 -0.512 <.001 -0.674 <.001 -0.583 <.001 -0.56 <.001 -0.265 <.001 -0.398 <.001
superior frontal -0.544 <.001 0.709 <.001 -0.653 <.001 -0.759 <.001 -0.611 <.001 -0.523 <.001 0.001 0.972 -0313  <.001
superior parietal -0.514 <.001 0.505 <.001 -0.491 <.001 -0.62 <.001 -0.562 <.001 -0.614 <.001 -0.071 0.114 -0.298 <.001
superior temporal -0.446  <.001 0.701 <.001 -0.616 <.001 -0.62 <.001 -0.609 <.001 -0.582 <.001 -0.288 <.001 -0.332 <.001
supramarginal -0.527 <.001 0.735 <.001 -0.651 <.001 -0.814 <.001 -0.532 <.001 -0.529 <.001 -0.131 0.002 -0.266 <.001
temporal pole NA NA NA NA NA NA -0.469 <.001 -0.065 0.1 NA NA NA NA NA NA
transverse temporal -0.441 <.001 0.554 <.001 -0.403 <.001 -0.772 <.001 -0.523 <.001 -0.555 <.001  -0.39 <.001 -0.251  <.001

Table 5: Regional age correlations in Cam-CAN. All p-values are FDR corrected at alpha = 0.05.
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Fractal Dim. Curvature Thickness Thickinthhe Volume TGM Depth Area
ad

ROI r p r p r p r p r P r P r P r p
bankssts NA NA NA NA NA NA 0.5674 <.001 0.444 o NA NA NA NA NA NA
caudal anterior cingulate 0.2698 <.001 -0.417 <.001 0.1704 <.001 0.4147 <.001 0.3295 <.001 0.4097 <.001 -0.0778 0.0635  0.2379 <.001
caudal middle frontal 0.3771 <.001 -0.471 <.001 0.4006 <.001 0.5299 <.001  0.4446 <.001 0.4864 <.001 01249  0.0033  0.2622 <.001
corpus callosum 0.215 <.001 -0.2576 <.001 0.1928 <.001 0.3885 <.001 0.346 <.001 0.4828 <.001 0.0748 0.072 0.2375 <.001
cuneus 01092  0.0064 -0.0358 0.371 0.1683 <.001 0.3039 <.001 0.0715 0.0733 0.3672 <.001 0.0789  0.0622  0.0963 0.0158
entorhinal NA NA NA NA NA NA 0.193 <.001 = 0.2084 <.001 NA NA NA NA NA NA
fusiform 0.3402 <.001 -0.3918 <.001 0.228 0.492 <.001 0.3851 <.001 0.4307 <.001 0.2932 <.001 0.3356 <.001
inferior parietal 0.4256 <.001 -0.4731 <.001 0.4092 0.5132 <.001 0.4706 <.001 0.46 <.001 0.2483 <.001 0.3238 <.001
inferior temporal 0.2339 <.001 -0.3343 <.001 0.1356 <.001 0.4609 <.001 0.3132 <.001 0.4296 <.001 0.2008 <.001 0.2904 <.001
insula 0.2481 <.001 -0.4877 <.001 0.4297 0.5285 <.001 0.4425 <.001 0.4822 <.001 0.0743 0.072 0.1121 0.0051
isthmus cingulate 0.3602 <.001 -0.3941 <.001 0.2673 0.5197 <.001 0.4097 <.001 0.4044 <.001 0.0888  0.0367 0.2608 <.001
lateral occipital 0.3459 <.001 -0.3806 <.001 0.2138 0.4512 <.001 0.333 <.001 0.4508 <.001 0.1978 <.001 0.2771 <.001
lateral orbitofrontal 0.3265 <.001 -0.3219 <.001 0.1324 0.001 0.4521 <.001 0.4797 <.001 0.4834 <.001 0.1785 <.001 0.4013 <.001
lingual 0.2588 <.001 -0.395 <.001 0.2754 o 0.4362 <.001 0.3567 <.001 0.5064 <.001 0.1386 0.0012 0.2481 <.001
medial orbitofrontal 0.2589 <001  -0.2022  <.001 0.206 ) 0.3608 <.001 0.409 <001  0.4988  <.001 01313  0.0022  0.2646 <.001
middle temporal 0.3497 <.001 -0.4748 <.001 0.3663 o 0.5803 <.001 0.474 <.001 0.4836 <.001 0.2195 <.001 0.3872 <.001
paracentral 0.3923 <.001 -0.3062 <.001 0.4319 o 0.4234 <.001 0.5066 <.001 0.4851 <.001 0.0934  0.0208 0.2189 <.001
parahippocampal 0.0971 0.015 -0.2133 <.001 0.0967 0.0158 0.3032 <.001 0.3136 <.001 0.4221 <.001 0.096 0.0262 0.2378 <.001
pars opercularis 0.3566 <.001 -0.4324 <.001 0.4052 o 0.5762 <.001 0.4932 <.001 0.5221 <.001 0.1024 0.0176 0.3045 <.001
pars orbitalis 0.3343 <.001 -0.1666 <.001 0.4052 o 0.5762 <.001 0.4301 <.001 0.4901 <.001 0.0484 0.2331 0.3523 <.001
pars triangularis 0.4014 <.001 -0.4317 <.001 0.3947 <.001 0.5717 <.001 0.5055 <.001 0.5126 <.001 0.1776 <.001 0.3417 <.001
pericalcarine 0.1584 <.001 -0.3028 <.001 0.0817 0.0407  0.3864 <.001 0.3562 <.001 0.4512 <.001 0.1093 0.0111 0.1201 0.0027
postcentral 0.3729 <.001 -0.3886 <.001 0.3695 <.001 0.54 <.001 0.5282 <.001 0.5172 <.001 0.2284 <.001 0.1201 0.0027
posterior cingulate 0.3972 <.001 -0.4792 <.001 0.27 <.001 0.4584 <.001 0.484 <.001 0.4692 <.001 -0.0528  0.1995 0.3768 <.001
precentral 0.4311 <.001 -0.5043 <.001 0.5033 <.001 0.6068 <.001 0.5988 <.001 0.5486 <.001 0.1299 0.0023 0.2782 <.001
precuneus 0.4034 <.001 -0.4873 <.001 0.4185 <.001 0.4999 <.001 0.4739 <.001 0.3961 <.001 0.0232 0.5615 0.296 <.001
rostral anterior cingulate 0.2956 <.001 -0.3167 <.001 0.1279 0.0014 0.4072 <.001 0.3444 <.001 0.5039 <.001 0.0574  0.1668 0.2567 <.001
rostral middle frontal 0.4321 <.001  -0.4144  <.001 0.333 <.001 0.4428 <.001 0.5018 <.001 0.5364 <.001 0.249 <.001 0.3703 <.001
superior frontal 0.4081 <.001 -0.4722 <.001 0.4384 <.001 0.5096 <.001 0.5343 <.001 0.4952 <.001 0.0893  0.0367 0.343 <.001
superior parietal 0.392 <.001 -0.4086 <.001 0.3547 <.001 0.4109 <.001 0.4642 <.001 0.5267 <.001 0.084 0.0477  0.2766 <.001
superior temporal 0.3721 <.001 -0.5254 <.001 0.4633 <.001 0.4109 <.001 0.5332 <.001 0.5393 <.001 0.2944 <.001 0.3448 <.001
supramarginal 0.4267 <.001 -0.5117 <.001 0.4574 <.001 0.5694 <.001 0.4669 <.001 0.4851 <.001 0.2104 <.001 0.2766 <.001
temporal pole NA NA NA NA NA NA 0.3933 <.001 0.189 0.0029 NA NA NA NA NA NA
transverse temporal 0.4103 <.001 -0.4615 <.001 0.3054 <.001 0.5635 <.001 0.4785 <.001 0.5139 <.001 0.3651 <.001 0.283 <.001

Table 6: Regional fluid intelligence correlations in Cam-CAN. All p-values are FDR corrected at alpha = 0.05.
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Fractal Dim. Curvature Thickness Thickinthhe Volume TGM Depth Area
ad

ROI r p r p r p r p r P r P r p r p
bankssts NA NA NA NA NA NA 0.0464  0.7974 0.1451 <0.05 NA NA NA NA NA NA
caudal anterior cingulate 0.1172 0.0071 -0.0261 0.8393 -0.0568  0.5147 0.0107 0.8935 0.1166 0.0039 0.1592 <0.05 0.0295  0.4757 0.1229 0.0024
caudal middle frontal 01048 0.0123 -0.0134 0.9842 0.0432 0.602 0.0303 0.8031 01667  <0.05 0.1471 <0.05  0.0924 0.0374 0.1657 <0.05
corpus callosum 0.1153 0.0071 0.0681  0.3866 = 0.0553 0.5147 0.0031 0.9507 = 0.1504 <0.05 0.1203 <0.05 0.0568 0.1715 0.1548 <0.05
cuneus 0.094 0.0249 -0.0273 0.8393 0.039 0.602 0.0725 0.6909  0.0858 0.0316 0.1504 <0.05 0.0866  0.0491 0.1114 0.0056
entorhinal NA NA NA NA NA NA -0.0025 0.9507  0.1ll4  0.0057 NA NA NA NA NA NA
fusiform 0.1311 0.004 -0.0691  0.3866 0.029 0.6909 0.0312 0.8031 0.19 <0.05 0171 <0.05 0.103 0.0222 0.1878 o
inferior parietal 0.0929  0.0253 -0.0094 0.9842  0.0337 0.6181 0.0219 0.8935 0.143 <0.05 0.1683 <0.05 0.0739  0.0902  0.1392 <0.05
inferior temporal 0.0773 0.0568 -0.0068 0.9842  0.0207  0.7455 0.0467  0.7974 0.1625 <0.05 0.1638 <0.05 0.1029 0.0222 0.1504 <0.05
insula 0.1365 0.0032 -0.0634 0.3866 0.1065 0.2351 0.0814 0.6909  0.2199 <0.05 0.195 <0.05 0.1255 0.0052 0.1579 <0.05
isthmus cingulate 0.1782 <0.05 -0.0477 0.4806  0.0139 0.7787  0.0256 0.8881  0.1898 <0.05 0.1937 <0.05 0.0629 0.1434 0.1956 o
lateral occipital 0.1047 0.0123  -0.0067 0.9842  0.0195 0.7455 0.0229 0.8935  0.1566 <0.05 0.1941 <0.05 0.1244  0.0052  0.1569 <0.05
lateral orbitofrontal 0.1215 0.0071 -0.0813 0.3866 0.0415 0.602 0.0654 0.6909  0.2129 <0.05 0.219 <0.05 0.0613 0.1434 0.1971 o
lingual 0.1367 0.0032 -0.0562  0.4117 0.0921 0.325 0.0316 0.8031 0.1713 <0.05 0.1418 <0.05 0.0447 0.2813 0.1506 <0.05
medial orbitofrontal 0.1477 0.0021 0.0305 0.8121 0.0341 0.6181 0.0113 0.8935 0.1634 <0.05 0.1834 <0.05 0.1904 o 0.1619 <0.05
middle temporal 0.0895 0.0298 -0.0535 0.4307  0.0377 0.602 0.0494  0.7974  0.1596 <0.05 0.158 <0.05 0.062 0.1434 0.1697 <0.05
paracentral 0.1171 0.0071 -0.0154 0.9842 0.06 0.5147 0.009 0.9025  0.1445 <0.05 0.1381 <0.05 0.1009  0.0222  0.1484 <0.05
parahippocampal 0.0472  0.2376 -0.0684 0.3866 0.0156 0.7727 0.0037  0.9507 0.1075 0.0075 0.1613 <0.05 0.0626 0.1434 0.1099 0.006
pars opercularis 0.0729  0.0702  -<0.05 0.9842  0.0231 0.7455 0.0372  0.7974 0.1335 0.001 0.1245 0.002 0.1008  0.0222 0.1258 0.002
pars orbitalis 0.1144 0.0071 0.003 0.9842  0.0231 0.7455 0.0372  0.7974  0.1926 <0.05 0.2176 <0.05 0.0241  0.5474 0.1737 0
pars triangularis 0.1166 0.0071  -0.0571  0.4117 0.0374 0.602 0.056 0.7974 0.1519 <0.05 0.2034 <0.05 0.1347 0.0037 0.1539 <0.05
pericalcarine 0.1115 0.0081 0.0694 0.3866  0.0607 0.5147 -0.0171  0.8935 0.1275 0.0017 0.166 <0.05 0.1321 0.004 0.1113 0.0056
postcentral 0.0824  0.0451  0.0496 0.476 0.0492 0.602 0.0415  0.7974  0.1488 <0.05 0.138 <0.05 0.1241 0.0052 0.1113 0.0056
posterior cingulate 0.1405 0.0032 -0.1061 0.2342 -0.0092  0.8456 0.0173 0.8935 0.1852 <0.05 0.1733 <0.05 0.0898  0.0419 0.202 o
precentral 0.1151 0.0071 -0.0146 0.9842 = 0.0778 0.3985 0.0532 0.7974 0.1731 <0.05 0.1482 <0.05 0.1022 0.0222 0.1955 o
precuneus 0.116 0.0071  -0.0423  0.5621 0.0687 0.5147 0.0315 0.8031 0.1649 <0.05 01831 <0.05 0.0791 0.0736 0.1589 <0.05
rostral anterior cingulate 0.1306 0.004 -0.0643 0.3866 0.0155 0.7727 0.0429  0.7974 0.1442 <0.05 0.1765 <0.05 0.0709 0.102 0.1286 0.0016
rostral middle frontal 01155  0.0071 -0.0024 0.9842  0.0019  0.9625 0.0126  0.8935 = 0.1746 <0.05  0.2204  <0.05 01347 0.0037 01671 <0.05
superior frontal 0.0926 0.0253 0.0068  0.9842 0.0197 0.7455 0.0198 0.8935 0.1833 <0.05 0.2126 <0.05 0.1392 0.0036 0.1958 o
superior parietal 0.0794 0.052 -0.0048  0.9842 0.0433 0.602 0.0114 0.8935 0.1177 0.0037 0.117 0.0035 0.074 0.0902 0.1054 0.0082
superior temporal 0.1117 0.0081 -0.059 0.4117 0.0787  0.3985 0.0114 0.8935 0.1808 <0.05 0.1569 <0.05 0.1452 0.0027 0.1891 o
supramarginal 0.117 0.0071  -0.0045 0.9842 = 0.0453 0.602 0.0408  0.7974  0.1592 <0.05 0.1725 <0.05 0.1519 0.0021 0.1475 <0.05
temporal pole NA NA NA NA NA NA 0.0795 0.6909 = 0.0942  0.0188 NA NA NA NA NA NA
transverse temporal 0.1582 ocom 0_9 69 0.2342 0.0612 0.5147 0.0695 0.6909 01677 <0.05 0.1158 0.0037 01282 0.005 0.1478 <0.05

Table 7: Regional age-residualized fluid intelligence correlations in Cam-CAN. All p-values are FDR corrected at alpha = o.05.
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Figure 9: Significant regional age correlation for each metric. FDR corrected at alpha = 0.05.
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Figure 10: Significant regional fluid intelligence correlation for each metric. FDR corrected at
alpha = 0.05.
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Age-Residualized Fluid Intelligence
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Figure 11: Significant regional age-residualized fluid intelligence correlation for each metric. FDR
corrected at alpha = 0.05.

15


https://doi.org/10.1101/2021.09.30.462545
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.30.462545; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

6 Longitudinal results

First, to assess whether Cattell test type (online versus pen/paper) made a difference, we
tested for metric invariance and scalar invariance in the wave two cognitive data. This led to
negligible drops in model fit (ACFI = 0.008 and 0.004 for metric and scalar invariance,
respectively, Cheung & Rensvold, 2002), suggesting that assuming pencil and paper vs
computer-based testing had equal measurement properties did not adversely affect the
measurement of fluid intelligence. For all further analysis, this grouping factor was therefore
ignored. Second,to ensure comparability of cognitive scores across Time 1 and Time 2, we
tested for longitudinal measurement invariance (Widaman, Ferrer & Conger, 2010). We found
that imposing invariance did not meaningfully decrease model fit (ACFI = 0.002; Cheung &
Rensvold, 2002), suggesting longitudinal measurement invariance is tenable, and we were able
to proceed to interpret change scores in the latent factor. Following the above inspections, we

used Latent Change Score Models (LCSM) to examine morphometric and cognitive change

over time.
Time N Mean Minimum Maximum SD Skewness Excess
kurtosis
Age T1 261 54.97 19.25 89 18.17 -0.02 -1.16
T2 261 56.32 21.25 91.58 18.2 -0.03 -118
Cattell (sum Ti 215 32.50 12 44 6.06 -0.39 -0.10
score) T2 215 30.42 10 44 6.65 -0.76 0.80
Surface Area T1 261 2527.43 1896.25 3299.01 256.81  0.22 -0.22
T2 261 2521.75 1898.46 3297.51 255.73  0.23 -0.21
Cortical T1 261 2.61 2.28 2.89 0.1 -0.19 0.45
Thickness T2 261 2.6 2.29 2.91 0.1 -0.19 0.3
Volume T1 261 7175.41 5417.15 9412.12 822.25 0.44 -0.05
T2 261 7124.88 5342.85 9311.37 824.73 0.42 -0.05

Table 8: Cam-CAN raw scores and descriptive statistics for age, Cattell and longitudinal brain
structure metrics

Cam-CAN Model Fit Indices
Metric Model ye P RMSEA [go % CI]  CFI SRMR Yuan-Bentler
scaling factor
Thickness FIML 5.275 0.072  0.039 [0.000, 0.992 0.026 0.763
0.072]
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Surface FIML 4.228 0.121 0.033, [0.000, 0.997 0.015 0.721

Area 0.079]

Volume FIML 3.655 0.161 0.028 [0.000, 0.995 0.014 1.468
0.065]

Table 9: Second order latent change score model fit indices Cam-CAN.

Model Fit Indices
Metric ye P RMSEA[go% CI] CFI  SRMR Yuan-Bentler
scaling factor
Thickness 13.605 0.001  0.090 [0.050, 0.135] 0.993 0.038 1.070
Surface 2.418 0.298  0.033, [0.000, 0.999 0.007 1.001
Area 0.079]
Volume 47.648 0.000  0.178 [0.133, 0.227] 0.975 0.034 0.845

Table 10: Second order latent change score model fit indices LCBC.
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Figure 12: changes in volume, cortical thickness, surface area and fluid intelligence between time point 1 and time point 2 in
LCBC sample.
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Figure 13: correlations of cognitive change and neural change in Cam-CAN (A-F) and LCBC (G-J). Shows that change
in surface area is most strongly associated with cognitive change. Models A-C include latent cognitive variables, which
were not possible to derive from the LCBC data, where we used observed cognitive scores instead. To compare like-for-
like models, we include Cam-CAN observed variable models here, too (D-F). Note that the shaded dots are the models’
missingness estimates.
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Power Analyses, Morphometric Double Dissociation
Sophia Borgeest
23/09/2021

Intro

Here we use R’s pwr package to run power analyses on the brain-age and brain-cognition relationship for
volume, thickness and surface area. These include estimated correlation coeffcients, based on well-powered
findings in the literature.

Age

First, let’s run power analyses based on whole brain-age effect sizes (correlation coeffcients) found in the
literature. We use this well-powered study as a source of reference (see Table 1 for whole brain - age correlation
coeffcients):

https://www.sciencedirect.com/science/article/pii/S01974580100032107casa_ token=1UY7YAgJKZsAAAAA:
FCrWz1X7TEWi5IKjsFmzGBYMzKnVknQ8 X2iBUn3xqqdd-R3wUlpPnHEOasgn0XUZ175R4JtpXdvV

As a reminder, CamCAN has a sample size of N = 647, LCBC has N = 1345.

# Volume - age
pwr.r.test(n = NULL, r = -0.34, sig.level = 0.01 , power = 0.80)

##

#it approximate correlation power calculation (arctangh transformation)
##

#i# n = 95.65769

## r=0.34

## sig.level = 0.01

## power = 0.8

#it alternative = two.sided

# Thickness — age
pwr.r.test(n = NULL, r = -0.62, sig.level = 0.01 , power = 0.80)

##

## approximate correlation power calculation (arctangh transformation)
##

## n = 24.86422

## r = 0.62

## sig.level = 0.01

## power = 0.8

## alternative = two.sided

# Surface area - age
pwr.r.test(n = NULL, r = -0.57, sig.level = 0.01 , power = 0.80)

##

## approximate correlation power calculation (arctangh transformation)
##

## n = 30.46847

#it r = 0.57

## sig.level = 0.01

## power = 0.8
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## alternative = two.sided

Fluid intelligence

For volume and thickness, we use correlation coeffcients from this study (see Figure 3): https://www.
sciencedirect.com/science/article/pii/S105381192030063X

# Volume - fluid intelligence
pwr.r.test(n = NULL, r = -0.68, sig.level = 0.01 , power = 0.80)

#i#

## approximate correlation power calculation (arctangh transformation)
#i#t

#i#t n = 19.67695

#it r = 0.68

## sig.level = 0.01

## power = 0.8

## alternative = two.sided

# Thickness - fluid intelligence
pwr.r.test(n = NULL, r = -0.69, sig.level = 0.01 , power = 0.80)

##

H# approximate correlation power calculation (arctangh transformation)
##

## n = 18.93792

## r = 0.69

## sig.level = 0.01

#i# power = 0.8

## alternative = two.sided

# Surface area - fluid intelligence
pwr.r.test(n = NULL, r = -0.4, sig.level = 0.01 , power = 0.80)

##

#it approximate correlation power calculation (arctangh transformation)
##

## n = 67.60322

## r=20.4

## sig.level = 0.01

## power = 0.8

#H# alternative = two.sided

Age-residualized fluid intelligence

Because very few studies have age-residualized cognitive abilities, no reliable, well-powered correlation
coeffcients were availble in the literature. We therefore did not run a priori power analyses for these
correlations.
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