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Abstract  

Emerging spatial profiling technology has enabled high-plex molecular profiling in biological 

tissues, preserving the spatial and morphological context of gene expression. Here we describe 

expanding the chemistry for the Digital Spatial Profiling platform to quantify whole transcriptomes 

in human and mouse tissues using a wide range of spatial profiling strategies and sample types. 

We designed multiplexed in situ hybridization probe pools targeting the protein-coding genes in 

the human and mouse transcriptomes, hereafter referred to as the human or mouse Whole 

Transcriptome Atlas (WTA).  We validated the human and mouse WTA using cell lines to 

demonstrate concordance with orthogonal gene expression profiling methods in profiled region 

sizes ranging from ~10-500 cells. By benchmarking against bulk RNAseq and fluorescence in situ 

hybridization, we demonstrate robust transcript detection possible down to ~100 transcripts per 

region. To assess the performance of WTA across tissue and sample types, we applied WTA to 

biological questions in cancer, molecular pathology, and developmental biology. We show that 

spatial profiling with WTA can detect expected spatial gene expression differences between tumor 

and tumor microenvironment, identify spatial disease-specific heterogeneity in gene expression 

in histological structures of the human kidney, and comprehensively map transcriptional programs 

in anatomical substructures of nine organs in the developing mouse embryo. Digital Spatial 

Profiling technology with the WTA assays provides a flexible method for spatial whole 

transcriptome profiling applicable to diverse tissue types and biological contexts. 

 

Introduction 

The organization of tissues and organs is complex and spatial relationships between cells 

and structures are key to their development, normal functioning, and pathophysiology. Recently, 

several methods have emerged for multiplexed spatial profiling of RNA or proteins, leading to 

discoveries in oncology, infectious disease, developmental biology, and other fields (Rao et al. 

2021; Brady et al. 2021; Butler et al. 2021; Pelka et al. 2021; Jerby-Arnon et al. 2021; Desai et al. 
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2020; Rendeiro et al. 2021; Merritt et al. 2020). Existing spatial gene expression platforms operate 

at a range of plex and with differing profiling strategies. Sequencing-based methods capture 

transcripts in an unbiased manner and are capable of whole transcriptome coverage. For 

example, laser capture microdissection is a method for physically separating cells and structures 

of interest within a tissue, which can then be subjected to a variety of molecular profiling methods 

including RNAseq (Emmert-Buck et al. 1996; Espina et al. 2006). Other sequencing-based 

methods such as Slide-Seq and Spatial Transcriptomics capture polyadenylated mRNAs across 

pre-patterned barcoded spot arrays (Vickovic et al. 2019; Ståhl et al. 2016; Stickels et al. 2021). 

An advantage of these methods is that they can provide unbiased coverage of the transcriptome. 

However, one disadvantage is that RNAseq via poly-A capture can be dominated by highly 

expressed genes. 

Imaging-based methods, such as multiplexed error-robust fluorescence in situ 

hybridization (MERFISH), fluorescent in situ sequencing (FISSEQ), and Sequential barcoded 

Fluorescence in situ Hybridization (seqFISH) (Chen et al. 2015; Lee et al. 2015; Xia et al. 2019), 

use rounds of sequential hybridization and imaging to resolve transcripts at single cell or 

subcellular resolution. Some imaging methods have demonstrated detection of up to 10,000 

targets, but most experiments have been limited to lower plex in the hundreds of targets (Eng et 

al. 2019; Xia et al. 2019).   

Digital Spatial Profiling (DSP) is a recently developed platform for multiplexed spatial RNA 

or protein expression profiling in user-defined regions of interest (Merritt et al. 2020). DSP relies 

on affinity reagents (probes for RNA and antibodies for protein detection) attached to indexing 

oligonucleotide tags with a UV-photocleavable linker. The probes or antibodies are hybridized to 

a slide-mounted tissue sample that is also stained with fluorescent antibodies or probes to aid in 

the identification of features of interest. The tissue is imaged using fluorescence microscopy and 

UV light is projected onto the region to be profiled, called areas of illumination (AOIs), to release 

the oligo tags from that region. The liberated tags are collected and counted using the nCounter® 
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system or by next-generation sequencing (NGS). In the first demonstration of the DSP 

technology, 44 proteins and 84 genes were multiplexed using nCounter, and 1,412 genes were 

profiled by NGS readout (Merritt et al. 2020).  

Here we report the expansion of the DSP RNA profiling technology to measure the 

expression of >99.5% and >98.2% of protein-coding genes of the human or mouse transcriptome, 

respectively, with a small number of very highly expressed genes intentionally removed to provide 

better coverage of low expressing transcripts. For all annotated genes, we designed in situ 

hybridization (ISH) probes with a barcoded UV-cleavable tag that can be read out by NGS. The 

probes for each species were pooled to create the human and mouse Whole Transcriptome 

Atlases (WTAs). In this study, we aim to characterize the technical performance of the human 

and mouse WTA across a range of region sizes and profiling strategies, and demonstrate 

applications in diverse tissue contexts.  

 

Results 

Design of multiplexed probes targeting the human and mouse whole transcriptomes  

The human or mouse WTA consists of species-specific ISH probes designed to target the 

protein-coding genes of the human or mouse transcriptome. The probes contain three functional 

regions: an RNA-targeting region, a UV-photocleavable linker, and an indexing sequence 

designed to be read out by NGS. The indexing sequence contains a Unique Molecular Identifier 

(UMI), a barcode sequence that identifies the probe, and primer binding sequences for 

amplification and subsequent readout by standard NGS workflows (Supplemental Fig. S1). The 

probe identification barcodes were designed to have a minimum Hamming distance of ≥2 between 

barcodes. 

We designed 18,815 human and 20,175 mouse probes targeting >99.5% of annotated 

protein-coding genes in human and >98.2% of annotated protein coding genes in mouse 

(Supplemental Table S1). To reduce sequencing requirements and optimize readout efficiency 
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by NGS, probes targeting mitochondrially encoded genes and an additional 10 human and 2 

mouse highly expressed nuclear-encoded genes were intentionally removed (see Methods). 

Mouse WTA also includes probes targeting 17 commonly used transgenes. We additionally 

designed 139 negative control probes in human WTA and 210 negative control probes in mouse 

WTA against synthetic sequences from the External RNA Controls Consortium (ERCC) set (Baker 

et al. 2005). The ERCC sequences have the same properties as mammalian sequences but 

without similarity to any known transcripts. This was confirmed by BLAST comparison to each 

transcriptome for all selected negative sequences.  

RNA-targeting regions range in size from 35-50 nucleotides and were selected based on 

an iterative design process that considers thermodynamic profile, splice isoform coverage, 

potential for cross-hybridization with other transcripts, and potential for intramolecular interactions 

between probes within an assay (see Methods). Probes were synthesized individually and pooled, 

and the pools were sequenced to ensure that 100% of designed probes were present and that 

the coefficient of variation of probe concentration was less than 20%. 

As WTA contains a single probe per gene, we assessed the consequences of this design 

choice by comparing human WTA to a smaller probe pool targeting 1,812 human genes with 5 

probes per target. We compared counts in matched 200 μm AOIs in formalin-fixed paraffin 

embedded (FFPE) tonsil tissue, and found that counts from the single WTA probe were well 

correlated to the mean count of the five probes for the same target (median R = 0.83), as well as 

a randomly selected single probe (median R = 0.73) (Supplemental Fig. S2). These results 

validate that a single probe is generally sufficient to accurately quantify gene expression.  

 

WTA data are reproducible and well correlated with RNAseq and RNA FISH in cell lines 

We first benchmarked the performance of the human and mouse WTAs in homogeneous 

FFPE cell pellet arrays (CPAs) to test reproducibility and compare to orthogonal methods of 

measuring gene expression. Because DSP allows flexible selection of the areas of illumination 
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on the tissue (AOIs), it is possible to profile regions of various sizes ranging from <10 cells to 

thousands of cells. As there is a tradeoff between the number of cells profiled and signal, we 

benchmarked the performance of WTA in AOIs ranging from 50-400 μm diameter circles in human 

and mouse FFPE CPAs containing 11 cell lines each (Fig. 1A). In cell pellets, 50 μm diameter 

AOIs contained an average of 12 cells in human cell lines and 13 cells in mouse cell lines, while 

400 μm diameter AOIs contained an average of 480 and 505 cells in human and mouse, 

respectively. Counts were highly reproducible between two independent experiments for all cell 

lines and AOI sizes tested (R = ~0.75 for 50 μm AOIs, and ~0.95 for 400 μm AOIs for all genes) 

for both human and mouse WTAs (Fig. 1B).  

We asked whether we could correctly classify these cell lines based on WTA signal, 

comparing to bulk RNAseq of the same set of cell lines. Bulk RNAseq data were either generated 

for this study or acquired from publicly available data from the Cancer Cell Line Encyclopedia 

(CCLE) project (Ghandi et al. 2019) (see Methods). Using all genes in the WTA panels, we found 

that classification was 100% accurate at all AOI sizes. For all 11 human and 11 mouse cell lines, 

the correct matching cell line had the highest correlation coefficient between WTA and bulk 

RNAseq. Correlation coefficients with the matching cell line were ~0.7 in 50 μm diameter circle 

AOIs and increased to >0.8 in 400 μm diameter circle AOIs, and were similar for human and 

mouse WTA (Fig. 1C). To test the effect of gene expression level on cell line classification, we 

compared WTA counts to RNAseq subset to the lowest and highest quartile of expressed genes, 

defined as genes >1 transcript per million (TPM) in RNAseq. Discrimination between the correct 

matching and non-matching cell lines was maintained for the lowest quartile of expressed genes 

in 200 µm and 400 µm AOIs, but was reduced for 50 µm AOIs (Supplemental Fig. S2), suggesting 

that very lowly expressed genes are not as well quantified in very small AOIs.  

We next tested whether we could accurately quantitate gene expression with WTA. For 

these experiments, we used a mixed-proportion FFPE (human) or fixed frozen (mouse) CPA with 

one cell line titrated into another in 10% increments. We selected 9 human genes and 8 mouse 
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genes that are highly expressed in one cell line (>100 TPM in bulk RNAseq) and not expressed 

in the other (<1 TPM in bulk RNAseq) (Supplemental Fig. S3). In the CPA, this creates a gradient 

of gene expression levels across the different cell pellets that spans the range of very lowly to 

very highly expressed genes. For each gene, WTA signal was compared to FISH signal using 

RNAscope probes (Wang et al. 2012) (Fig. 1D). We found that WTA and FISH signals were highly 

correlated for all genes tested, with an average Pearson correlation coefficient of 0.90 for human 

and 0.93 for mouse (Fig. 1E, Supplemental Fig. S3). These results indicate that WTA can 

accurately quantify gene expression across the biological range of gene expression. 
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Figure 1. Human and mouse WTA data are reproducible and correlated with RNAseq and 

RNA FISH. A. Representative image of the AOI size titration experiment. Circular AOIs 50 μm, 

200 μm, and 400 μm in diameter were placed on each cell line of an 11-core human or mouse 

FFPE cell pellet array (human shown, stained with antibodies against CD3, CD45 and pan-

cytokeratin (PanCK), and SYTO13 nuclear stain). B. Reproducibility of WTA counts from two 

replicate experiments. Left: scatterplots of log2-transformed raw counts from one representative 

human or mouse cell line (HUT78 for human, 3T3 for mouse) at each AOI size from each replicate. 

Negative control probes are shown in blue and target probes in black. Right: Pearson correlation 

coefficients of log2-transformed raw counts between replicates for each cell line and AOI size. C. 

Left: scatterplots of WTA counts vs RNAseq transcripts per million (TPM) from the same cell line 

for one representative human or mouse cell line in a 200 μm AOI. Right: Spearman’s correlation 

of WTA counts compared to RNAseq of each cell line profiled in this experiment. For each AOI, 

the matching cell line is shown in blue and all other cell lines in grey. D. Representative image of 

the cell line titration experiment. Cell pellets contained one cell line titrated into the other at a 

variable ratio. Cells were stained with RNAscope probes against two genes specifically expressed 

in each of the two cell lines (ITGB4 expressed in H596 cells and MS4A1 expressed in SUDHL4 

cells in the image shown). Grey circles show profiled AOIs. E. Left: Representative scatterplot 

comparing WTA counts for MS4A1 to RNAscope fluorescence intensity for the same gene across 

cell pellets. Right: Spearman’s correlation of WTA counts compared to RNA FISH fluorescence 

intensity for each gene profiled in this experiment.  

 

Sensitivity, specificity, and limit of detection of WTA in different sized AOIs 

We next investigated WTA’s sensitivity and specificity to detect gene expression above 

background in different sized AOIs. We used the distribution of signal from the negative control 

probes to estimate the background level of non-specific binding and set a limit of detection (LOD) 

specific to each AOI. Counts from individual negative probes are moderately correlated between 
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replicate experiments, suggesting that the variance in negative probe signal is due to both 

sequence-specific and non-specific effects (Supplemental Fig. S4). Both target and negative 

probe counts increase with AOI area and scale with each other across different cell lines 

(Supplemental Fig. S4), highlighting the importance of empirically measuring the non-specific 

background for each AOI.  

To determine a cutoff for calling a gene expressed, we calculated sensitivity and specificity 

at different thresholds above background using genes with RNAseq TPM > 1 as the true set of 

expressed genes. With an increasing threshold, specificity increases but sensitivity decreases; 

discrimination improves with increasing AOI size and is similar between human and mouse WTA 

(Fig. 2A). We found that selecting an LOD threshold of 2 standard deviations above the geometric 

mean of negative probes reliably achieves a specificity of >95% at all ROI sizes and in both 

panels. At this LOD threshold, sensitivity was 50% in 50 μm diameter-circle AOIs, 68% in 200 μm 

AOIs, and 81% in 400 μm AOIs for human WTA, and 48% in 50 μm AOIs, 66% in 200 μm AOIs, 

and 75% in 400 μm AOIs for mouse WTA. Overall, we detect an average of ~6000 genes above 

background per AOI in 50 μm AOIs, and ~9000 genes in 400 μm AOIs (Fig. 2B).  

To determine the LOD of WTA relative to absolute transcript number, we integrated human 

WTA FFPE CPA data with RNAscope experiments in which we counted the absolute number of 

transcripts per cell for 20 genes in 11 cell lines (Fig. 2C and Supplemental Fig. S5) (Wang et al. 

2012). These genes spanned a range of expression levels across different cell lines, from a mean 

count of 0 to 45 transcripts per cell (corresponding to 0-1200 TPM in RNAseq) (Supplemental Fig 

S5). Gene expression levels as measured by RNAscope were well correlated between replicate 

experiments and well correlated with RNAseq for genes above 1 TPM. Below 1 TPM, all genes 

had a mean expression of less than 1 transcript per cell (Supplemental Fig. S5). 

WTA signal is linearly correlated with RNAseq and RNAscope above a certain gene 

expression level, below which WTA does not detect signal (Fig. 2A and Supplemental Fig. S5). 

To identify this limit of quantitation of WTA relative to absolute transcript number, we performed 
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breakpoint analysis, which fits two line segments to the data and iteratively calculates the 

breakpoint at which the model best fits the data. In 50 μm diameter AOIs containing an average 

of 13 cells, we found that the breakpoint was ~2 transcripts per cell. In larger AOI sizes with >50 

cells, the breakpoint was 0.5-0.6 transcripts per cell (Supplemental Fig. S5), representing the 

lowest expression level that can be quantified by WTA. 

Using genes with expression ≥1 expressed transcript per cell as measured by RNAscope 

as the true set of expressed genes, we calculated WTA sensitivity and specificity for targets with 

different absolute levels of gene expression. Specificity was high for all AOI sizes and ranged 

from 94-97% (Supplemental Fig. S5). Highly expressed targets (>10 transcripts per cell) were 

detected with a sensitivity of >80% in 50 μm diameter AOIs and 90-100% in larger AOIs. On the 

other extreme, very lowly expressed targets (1-2 transcripts per cell) were detected with a 

sensitivity of ~75% in AOIs with >500 cells and progressively less frequently detected in smaller 

AOIs (Fig. 2D). By combining the average number of transcripts per cell with the number of cells 

present in each AOI, we calculated sensitivity at different numbers of transcripts per AOI. At >100 

transcripts per AOI, sensitivity was >70% (Fig. 2E). These results indicate that WTA can detect 

and quantify genes expressed at ~100 transcripts per AOI in AOIs ranging from 10-500 cells. 
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Figure 2. WTA has high sensitivity and can detect genes at a range of expression levels 

depending on AOI size. A. Left: Scatterplots comparing WTA counts to RNAseq for one 

representative cell line at each AOI size, colored by whether the gene is detected above the 

expression threshold in WTA and in RNAseq. Dashed lines indicate thresholds for calling a gene 

“expressed” as 2 standard deviations above the geometric mean of negative probes for WTA, and 

TPM >1 for RNAseq. TP = true positive, FP = false positive, TN = true negative, and FN = false 

negative. Right: Receiver-operator curves demonstrating the sensitivity and specificity of WTA at 

different expression thresholds using genes with RNAseq TPM >1 as the true set of expressed 

genes. B. Number of genes per AOI above the expression threshold of 2 SD above the mean 

negative probe count at each AOI size. C. Representative images of the experiment to determine 

the sensitivity of human WTA relative to absolute transcript number. Left: RNAscope image of two 

genes in one cell line of the 20 genes in 11 cell lines quantified in this experiment. Right: DSP 

image of one cell line with an AOI size titration. D. Sensitivity of WTA at different AOI sizes for 
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genes in different gene expression bins as measured by RNAscope. Genes ≥ 1 transcript per cell 

were considered expressed. E. Sensitivity of WTA for genes binned by transcripts per AOI, 

calculated using transcripts per cell quantified by RNAscope and the number of cells in each AOI. 

 

WTA is compatible with multiple sample types and mouse strains 

For the initial demonstration of the DSP technology, FFPE samples were used (Merritt et 

al. 2020). To expand the range of sample preparation types available for DSP, we designed and 

tested protocols for the use of WTA on human fresh frozen (FF) and mouse fixed frozen (FxF) 

samples (see Methods). To assess the performance of WTA on these additional sample types, 

we placed matched 200 μm diameter circular AOIs on FFPE and FxF mouse CPAs and FFPE 

and FF human tonsil tissue. The correlation of WTA counts was >0.8 comparing FFPE to either 

FxF or FF, and the distribution of signal to background ratios across genes was similar between 

sample preservation types (Supplemental Fig. S6). These results indicate that WTA results are 

concordant between FFPE and fixed frozen mouse and fresh frozen human tissues.  

 Specifically for mouse samples, we asked whether mouse WTA can accurately quantify 

gene expression in strains other than C57BL/6, which was used to generate the mouse reference 

transcriptome to which the panel was designed. To this end, we profiled an FFPE tissue array 

consisting of 7 different organs for each of 3 commonly used mouse strains (C57BL/6, BALB/c, 

and NOD/ShiLt) (Supplemental Fig. S7). Although transcriptional differences exist between 

strains due to true biological differences, these differences are known to be minimal (Breschi et 

al. 2017). We placed 300 μm diameter circular AOIs in similar regions of each tissue for each 

mouse strain and compared the results from each strain across organs. The transcriptomes were 

well correlated for all organs and pairs of strains, with correlation coefficients ranging from 0.7-

0.95. Clustering by gene expression showed that organs clustered together before mouse strains, 

and gene expression patterns across tissues were similar in all three strains. These results 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.09.29.462442doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462442
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

suggest that despite small differences in the annotated transcriptomes, mouse WTA can be used 

to characterize gene expression in multiple strains.  

 

Whole transcriptome profiling of segmented regions reveals differences in spatial gene 

expression between tumor and tumor microenvironment across a range of AOI sizes 

One of the strengths of the DSP system is that users can profile regions defined by 

morphology or expression of marker genes. The DSP instrument can segment a region of interest 

based on antibody- or RNA FISH-based fluorescence signals, splitting a single selected region 

into multiple AOIs (Fig. 3A). This feature enables different tissue compartments to be profiled 

separately even if they are spatially adjacent, as UV cleavage time has been optimized such that 

cross talk between regions is minimal (Merritt et al. 2020). We used this segmentation strategy to 

separate tumor and the tumor microenvironment (TME) to test whether WTA can detect expected 

differences in spatial gene expression in tissue. We also used this experiment as a model to 

assess the impacts of technical experimental design features such as AOI size and sequencing 

depth on WTA performance.  

Two serial FFPE sections from colorectal cancer (CRC) and non-small cell lung cancer 

(NSCLC) samples were labeled with fluorescent antibodies against pan-cytokeratin (PanCK) to 

mark tumor, CD45 to mark immune cells broadly, and CD3 to mark T cells. After labeling the 

tissue with these morphology markers, we selected regions of interest in different pathological 

areas of the tissue: tumor and hyperproliferative regions in CRC samples and tumor and invasive 

margin regions in NSCLC samples. Regions were segmented by fluorescent antibody signal into 

tumor (PanCK+) and TME (PanCK-) AOIs (Fig. 3B).  

To assess the effect of AOI size on WTA performance, we selected a range of circular 

region sizes and binned the resulting segmented AOIs into 4 size bins by area, a metric that is 

well correlated with cell count. Area bins ranged from “very small” (<2300 μm2 area, equivalent to 

a 55 μm diameter circle and with an average of 20 cells) to “large” (>49,000 μm2 area, equivalent 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.09.29.462442doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462442
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

to a 250 μm diameter circle and with an average of 920 cells) (Fig. 3B). WTA counts were well 

correlated between large and smaller AOIs: large AOIs had a median Pearson correlation of 0.94 

with each other and very small AOIs had a median correlation of 0.71 with large AOIs (Fig. 3F, 

Supplemental Fig. S8). An increasing number of genes were detected above background in larger 

AOIs, with ~6000 genes detected per AOI in very small AOIs and ~11,000 genes detected in large 

AOIs (Fig. 3D). Genes detected in small AOIs were generally a subset of genes detected in large 

AOIs with very few genes detected only in small AOIs (Supplemental Fig. S8). Counts of the 

genes encoding the proteins used as markers for segmentation were highly enriched in the 

expected segment, and enrichments were similar for all AOI sizes (5-fold or greater median 

expression in the expected segment type) (Supplemental Fig. S8). We also confirmed that 

samples clustered by biological annotation (tumor type and tumor vs TME) regardless of AOI size 

(Fig. 3E).  

We compared gene expression of each segmented AOI with all bulk RNAseq datasets in 

The Cancer Genome Atlas (TCGA) (Weinstein et al. 2013) to ask whether we could accurately 

classify the tumor type. We found that our classification of tumor segments was 100% accurate 

regardless of AOI size. All tumor segments correlated best with the expected tumor datasets in 

TCGA: colon adenocarcinoma and rectal adenocarcinoma for the CRC samples and lung 

adenocarcinoma for the NSCLC samples (Fig. 3E). Correlation coefficients increased with AOI 

size, from ~0.6 in very small AOIs to ~0.8 in large AOIs. As expected, TME segments generally 

did not correlate best with the matching tumor types in TCGA. The TME likely does not make up 

a substantial fraction of the tumors sequenced in the bulk TCGA datasets, highlighting the value 

of segmentation for capturing gene expression profiles of less abundant cell types. 

We further examined whether we could detect the expected biological differences between 

tumor and TME in AOIs of different sizes. Immune-related pathways, such as interleukin signaling 

and tumor necrosis factor signaling, were enriched in TME, while pathways related to cell motility, 

proliferation, and cancer-associated signaling were enriched in tumors (Supplemental Fig. S8). 
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Pathway analysis results were well correlated between AOIs of the same type and between large 

and small AOIs (Fig 3F). We next performed cell type deconvolution with SpatialDecon, an 

algorithm for estimating abundance of cell types defined by single cell sequencing in spatial gene 

expression data (Danaher et al. 2022). We used gene expression profiles of immune and stroma 

cells to characterize the immune cell content of tumor and TME segments. As expected, tumor 

segments had a very low estimated abundance of immune cells relative to TME for all AOI sizes 

(Supplemental Fig. S8), highlighting the ability of segmentation to separate cell types. Cell type 

deconvolution results were more variable between individual AOIs in all size bins, but correlation 

decreased with size to a similar degree as other metrics (Fig. 3F). These results demonstrate the 

robustness of the WTA for biological characterization across a wide range of AOI sizes. 

In addition to AOI size, we also assessed the impact of sequencing depth on WTA data. 

All AOIs were deeply sequenced and reads were subsampled in silico from a read depth of 5 raw 

reads/μm2 to 300 raw reads/μm2. Five replicates of the subsampling were performed at each read 

depth. As expected, increasing read depth corresponds to a lower fraction of unique UMIs, 

indicating higher sequencing saturation of the libraries (Supplemental Fig. S9). Small AOIs 

reached higher saturation at lower read depths than larger AOIs, consistent with lower starting 

molecular complexity in these samples. For each subsampled dataset, we compared the number 

of genes detected and correlations of counts, pathway enrichment results, cell type deconvolution 

results, and differential expression results to the highest sequencing depth. For most metrics and 

AOI sizes, results were well correlated at all but the lowest sequencing depths and stabilized by 

100 raw reads/μm2, corresponding to a sequencing saturation of ~50%. Correlation of cell type 

deconvolution results did continue to improve with higher read depth, especially in small AOIs, 

suggesting that robust deconvolution might benefit from higher sequencing saturation 

(Supplemental Fig. S9).  
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Figure 3. Effect of AOI size and sequencing depth on biological conclusions from 

segmented tumors and tumor microenvironment. A. Left: Representative images of the 

colorectal cancer (CRC) and non-small cell lung cancer (NSCLC) samples. Tumor, invasive 

margin, and hyperproliferative regions are highlighted. Slides were stained with antibodies against 

PanCK, CD3, and CD45. Right: Enlarged region of the CRC image to highlight the size titration 

and segmentation strategy. Circular regions of interest were automatically segmented into 

PanCK+ tumor (orange) and PanCK- immune (blue) compartments. B. Scatterplot of AOI area vs 
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number of nuclei with points colored by the area bins used in the analyses in this figure. Very 

small: <2300 μm2, small: 2300-7850 μm2, mid: 7850-49,000 μm2, large: >49,000 μm2. C. Number 

of genes detected per AOI for tumor and immune compartments in each AOI size bin, colored as 

in B. D. Principal component analysis (PCA) of variation between samples using genes detected 

above background in >20% of AOIs. PCA1 vs PCA2 is plotted with points colored by tumor type 

and shaped by segment type. E. Spearman’s correlation of WTA counts from each AOI with all 

RNAseq datasets in the TCGA database. AOIs are ordered by area on the x-axis, and each point 

is a pairwise comparison with a dataset in TCGA. All genes in common between each pair of 

datasets were used in the correlation. Points are colored by tumor type in TCGA: colon 

adenocarcinoma (blue), rectal adenocarcinoma (green), lung adenocarcinoma (red), and lung 

squamous cell carcinoma (orange). All other tumor types are colored in grey. AOIs are labeled by 

area bin. F. Correlation of counts, single-sample Gene Set Enrichment Analysis (ssGSEA) 

enrichment, and cell type deconvolution between AOIs. For each of the three output metrics, 

Spearman’s correlations were calculated between each AOI, and averaged within different AOI 

size bins compared to the largest AOI sizes. AOIs are split into groups based on segment type 

(tumor or immune). G. Left: Spearman’s correlation of counts for each subsampled read depth 

and AOI size relative to counts at 300 reads/μm2. Right: Number of genes detected above 

background for each subsampled read depth and AOI size. 

 

Profiling transcriptomes of anatomical structures in normal kidney and kidney disease 

To demonstrate the capability of WTA to integrate the transcriptome with annotated histological 

and pathological features of a tissue, we asked how the transcriptome is altered in anatomically 

distinct regions of the kidney with diabetic kidney disease (DKD). The kidney nephron has a 

complex structure that includes the glomerulus, a cluster of specialized cells that forms the 

filtration barrier, and the tubule, which reabsorbs water and small molecules and has different 

functions along its length. The effects of DKD on the glomeruli have been well studied, such as a 
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loss of glomerular filtration, inflammation, and immune cell infiltration (Reidy et al. 2014; Thomas 

et al. 2015). However, DKD affects all parts of the kidney. Therefore, we used WTA to profile the 

transcriptome of three nephron substructures: the glomeruli, the proximal convoluted tubules, and 

the distal convoluted tubules. 

We profiled three normal and four DKD FFPE human kidney samples. To identify and 

discriminate kidney structures, three fluorescently labeled antibodies targeting epithelia (PanCK), 

immune cells (CD45), and podocytes (WT1) in glomeruli were used. Glomeruli and tubules were 

identified morphologically and polygon-shaped AOIs were drawn to capture each structure. 

Tubules were segmented based on the PanCK signal into proximal (PanCK-) and distal 

tubules/collecting duct (PanCK+) (Fig. 4A). Within each sample, individual glomeruli were 

annotated by a pathologist for severity of disease-related changes using both the fluorescence 

images and hematoxylin and eosin (H&E) images of serial sections. The data were collected from 

both relatively healthy and more abnormal glomeruli in both normal and DKD samples (Fig. 4B).  

Overall, we profiled 231 AOIs that passed quality filters, across which we detected and 

quantified 16,084 genes. AOIs clustered by region and by disease status more closely than by 

patient (Fig. 4C, Supplemental Fig. S10). In normal kidneys, we identified over 6000 significantly 

differentially expressed genes between glomeruli and tubules, and over 8000 differentially 

expressed genes between proximal and distal tubules. We found a strong concordance between 

genes differentially expressed in our study and those differentially expressed between cell types 

in kidney single-cell RNAseq (Young et al. 2018) (Supplemental Fig. S10). Furthermore, we 

validated example genes differentially expressed in each structure with publicly available antibody 

staining from the Human Protein Atlas (Uhlén et al. 2015), and saw excellent concordance of 

spatial localization (Fig. 4D). 

At the pathway level, differentially expressed pathways between glomeruli, proximal, and 

distal tubules recapitulated known aspects of kidney biology. For example, pathways specifically 

enriched in proximal tubules included anion and amino acid transporters, which are known to be 
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highly expressed in proximal tubules, while bicarbonate transporters were enriched in both 

proximal and distal tubules. Pathways enriched in glomeruli include nephrin and SEMA3A 

signaling, which are key proteins expressed in cells of the glomerular filtration membrane (Reidy 

and Tufro 2011; Martin and Jones 2018) (Supplemental Fig. S10).  

With DKD, we observed 2400 differentially expressed genes across the different kidney 

substructures compared to normal kidney samples. For most genes dysregulated with disease, 

expression changes were correlated across the different anatomical structures, but some 

structure-specific genes were altered with disease (Fig. 4E). For example, the gene PCOLCE2 is 

only expressed in glomeruli and is substantially downregulated with disease. Expression of this 

gene has been observed in glomerular podocytes, a specialized cell that forms the glomerular 

filtration barrier, and lower expression correlates with loss of renal function in chronic kidney 

disease patients (Ju et al. 2013). Similarly, aquaporin genes such as AQP2 and AQP3 are strongly 

downregulated in the distal tubules with disease. This family of genes encodes water channels 

necessary for concentration of urine by the kidneys and is specifically expressed in tubules 

(Nielsen et al. 1999). These results indicate that DKD can cause loss of substructure-specific and 

cell type-specific gene expression critical for normal kidney function.  

Loss of glomerular podocytes and increased immune cell infiltration are known to be 

hallmarks of DKD. We recapitulated this phenotype using cell type deconvolution with the 

SpatialDecon algorithm using gene expression signatures from published kidney single cell RNA 

sequencing data (Young et al. 2018). We observed a marked loss of podocytes in glomeruli and 

increased abundance in almost all types of immune cells in all substructures (Fig. 4F, 

Supplemental Fig. S10). Interestingly, we identified that the loss of podocytes was heterogeneous 

across individual glomeruli. Even within diseased or normal samples, pathologically abnormal 

glomeruli had a more profound loss of podocytes and higher levels of immune infiltration 

compared to glomeruli with fewer pathological features. In particular, the abundance of B cells, 

natural killer cells, and mononuclear phagocytes increased in diseased kidneys but the increase 
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was significantly higher in more severely pathologically abnormal glomeruli (Fig. 4F, 

Supplemental Fig. S10). This spatial heterogeneity was observed within individual diseased 

kidneys (Fig. 4G), indicating that some glomeruli are more affected by disease despite close 

physical proximity. In total, these results demonstrate the feasibility of whole transcriptome 

profiling of specific organ substructures to detect spatially variable disease-related abnormalities. 

 

 

Figure 4. Spatial heterogeneity in gene expression changes associated with diabetic 

kidney disease in human kidneys. A. Left: Representative fluorescence images of normal and 

diabetic human kidneys. Tissues were stained with antibodies against PanCK, WT1, and CD45. 

Right: Example images from normal kidney highlighting the AOI strategy. Glomeruli were profiled 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2022. ; https://doi.org/10.1101/2021.09.29.462442doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462442
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

using polygon-shaped AOIs, and tubules were automatically segmented in proximal tubules 

(PanCK-) and distal tubules (PanCK+). B. Individual glomeruli in each kidney sample were 

annotated by degree of pathology. A representative H&E image (left) and fluorescence image 

(right) from the same region of a diabetic kidney specimen are shown. Glomeruli with higher 

degree of abnormality are circled in grey and labeled “A”, while those that are more normal are 

circled in white and labeled “N”. C. Principal component analysis of variation between samples 

using genes detected above background in >1% of AOIs. PCA1 vs PCA2 is plotted, with 

substructure indicated by color and disease status indicated by shape. D. Boxplots of counts in 

all AOIs of three example genes differentially expressed between kidney substructures with 

corresponding antibody staining images from the Human Protein Atlas 

(https://www.proteinatlas.org/) (Uhlén et al. 2015). E. Left: Heatmap of most differentially 

expressed genes between normal and DKD in glomeruli, distal tubules, and proximal tubules. All 

genes are significant at FDR <0.05 and a fold change of >1.5. Genes are annotated by the 

structure in which they were significantly differentially expressed, or “multiple” for the genes 

significant in more than one structure. Columns and rows are clustered by hierarchical clustering 

and the data are scaled by row. Right: Boxplot of normalized counts for two example genes in 

normal and DKD glomeruli, proximal tubules, and distal tubules. F. Left: Results of cell type 

deconvolution of glomeruli using single-cell expression data from (Young et al. 2018). Data are 

displayed as stacked barplots with each bar as a single AOI and the estimated proportion of each 

cell type colored, and faceted by disease status. Right: Boxplots of proportions of two example 

cell types with significantly different proportions in normal and DKD glomeruli (t-test Bonferroni-

corrected p-value <0.05), colored by whether the glomerulus was annotated as pathologically 

abnormal or healthy. MNP = mononuclear phagocyte, DC = dendritic cells. G. Pie charts overlaid 

over the fluorescence image of a single kidney showing the proportion of different glomerulus and 

immune cell types for each glomerulus profiled in a representative disease sample. Each plot is 

outlined based on pathological annotation: abnormal glomeruli (blue), healthy glomeruli (red). 
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Identifying organ substructure-specific transcriptomes in the developing mouse embryo 

One anticipated use of WTA is to catalog spatial gene expression profiles in histological structures 

and anatomical regions across organs. To demonstrate the utility of WTA for building spatial organ 

atlases, we profiled whole transcriptomes of different organs and organ substructures in a 

developing mouse embryo. A single fixed-frozen E13.5 mouse embryo was sectioned along the 

sagittal plane. Six sections spanning the embryo were stained with antibodies against TRP63 

(epithelial marker) and β3 tubulin (neuronal microtubule marker) and hybridized with mouse WTA 

probes (Fig. 5A). 

AOIs were selected in 9 organs across the 6 sections (heart, lung, metanephros, 

pancreas, midgut, duodenum, stomach, esophagus, and trachea). Within each organ, freeform 

polygon-shaped AOIs were drawn to capture morphologically distinct substructures using 

anatomical features identified using both the fluorescence image and an H&E-stained serial 

section (Fig. 5B, Supplemental Fig. S11). For example, in the developing heart, we placed AOIs 

in the ventricle wall, atrium wall, trabeculae, conductive fibers, and valves. In the stomach, 

esophagus, duodenum, and midgut, we selected AOIs in the epithelial, neural, and mesenchymal 

layers. 

Overall, we profiled the whole transcriptome of 347 AOIs across the nine organs and 2-5 

substructures per organ. We identified 17,662 genes expressed above background, indicating 

that in diverse tissues nearly the entire transcriptome is detectable by WTA. Examining the spatial 

expression of cell-type-specific marker genes showed the expected patterns; for example, the 

epithelial marker Epcam is expressed in epithelial AOIs in all tissues while the mesenchymal 

marker Mest is highly expressed in the mesenchyme and heart but not in the epithelial AOIs. We 

observed that genes known to be highly expressed in specific tissues were restricted to the 

expected tissue, but still show spatial variability within a tissue. For example, the lung transcription 

factor Nkx2-1 was expressed in the lung and trachea epithelium, as has been previously reported 
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(Minoo et al. 1999), and the kidney transcription factor Pax2 was specifically expressed in AOIs 

in the metanephros cortex (Bouchard et al. 2002; Minoo et al. 1999). The spatial expression 

pattern of these tissue or substructure-specific genes matched the observed expression pattern 

by colorimetric RNA ISH of E14.5 mouse embryos (Visel et al. 2004; Diez-Roux et al. 2011), 

validating the WTA results (Fig. 5B).  

Clustering AOIs by gene expression reveals that heart AOIs cluster separately from the 

other organs, and that for the non-heart AOIs similar substructures cluster together first, and then 

by organ. Epithelial AOIs form one cluster, as do mesenchymal and neuron AOIs. Within each 

substructure, both common and tissue-specific genes can be identified. Across the epithelial 

AOIs, shared highly expressed genes include known epithelial markers Cdh1 and Krt18. Among 

tissue-specific epithelial genes, Trp63 was expressed only in the epithelium of the esophagus and 

trachea, matching the expression pattern of the TRP63 antibody morphology marker used in this 

study (Fig. 5C).  

As most of the organs profiled have an epithelial and mesenchymal region, we identified 

genes differentially expressed between organs in these two cell types (Fig. 5D). Organ-specific 

genes were nearly non-overlapping between epithelium and mesenchyme, highlighting the value 

of capturing substructure-specific transcriptomes over bulk organ gene expression profiling. 

Amongst the top organ-specific genes include key developmental transcription factors: Nkx6-1, a 

critical regulator of pancreas β cell development (Aigha and Abdelalim 2020), was uniquely 

expressed in the pancreas epithelium; Cdx2, an intestine-specific transcription factor necessary 

for intestine differentiation (Gao et al. 2009), was expressed in the duodenum and midgut 

epithelium; and Barx1, which is necessary for stomach differentiation (Kim et al. 2005), was 

localized to the stomach mesenchyme.  

As developmental transcription factors were among the most differentially expressed 

genes across organs and organ substructures, we next asked whether our data could recapitulate 

the known developmental specification of the digestive system in mid-gestation embryos. Around 
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E13, the transcription factors Sox2, Gata4, Pdx1, and Cdx2 are localized in an overlapping pattern 

from anterior to posterior in the developing esophagus, stomach, and intestine and are necessary 

for proper specification of those tissues. For example, Sox2 is expressed in the developing 

esophagus and stomach, while Cdx2 is expressed in the intestine. Loss of Cdx2 in the intestine 

leads to the misexpression of Sox2 in that tissue and the ectopic expression of stomach and 

esophageal markers (Kumar et al. 2019; Willet and Mills 2016). Our data accurately recapitulated 

this known pattern of transcription factor expression across tissues and revealed spatial patterns 

within each tissue (Fig. 5E). All four transcription factors were predominantly located to the 

epithelium in each tissue, and Pdx1 is more highly expressed in the liver proximal section of the 

duodenum than the distal section. Furthermore, we examined the expression of pro-intestinal 

targets of Cdx1 in digestive system AOIs (Raghoebir et al. 2012). Several canonical Cdx2 targets, 

such as Cdh17, were expressed in the same spatial pattern as Cdx1, which is limited to the 

intestinal epithelium. However, others were expressed more broadly or more narrowly, such as 

Hnf1a and Hnf4a, which were also expressed in stomach epithelium, and Heph, which was also 

expressed in the intestinal mesenchyme, suggesting more complex regulation governing the 

expression of these genes (Fig. 5F). Overall, these results demonstrate the capacity of WTA to 

reveal the complex spatial gene expression patterns governing key cell fate decisions during 

embryonic development. 
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Figure 5. Spatial profiling of transcriptional programs during organogenesis in a mid-

gestation mouse embryo. A. Left: Schematic and representative image of the fixed-frozen E13.5 

mouse embryo profiled. Sections were labeled with antibodies against TRP63 (magenta) and β3 

tubulin (yellow). Autofluorescence is shown in green. Right: Example images of each organ 

profiled showing the AOI profiling strategy. Freeform polygon AOIs capture anatomical 

substructures of each organ. B. Expression of marker genes for specific organs and cell types in 

an example section compared to ISH images of the same genes in E14.5 mouse embryos from 

the GenePaint database (https://gp3.mpg.de/, Diez-Roux et al. 2011; Visel et al. 2004). Tissue, 

tissue substructure, or normalized scaled WTA count for five genes is plotted over the shape of 

each AOI. C. Heatmap showing scaled expression of the 2000 most variable genes across the 

dataset. Columns and rows are clustered by hierarchical clustering and columns are annotated 

by organ and organ substructure. D. Heatmaps showing scaled expression of the top 50 most 

differentially expressed genes in epithelium (left) and mesenchyme (right). All genes shown are 

significant at Bonferroni-corrected p-value < 0.01. Columns and rows are clustered by hierarchical 

clustering and columns annotated by organ. E. Left: Schematic of key transcription factor 

expression in stomach and gut development (adapted from (Willet and Mills 2016)). Right: 

Expression of the same transcription factors plotted on example AOIs from a representative 

section. F. Heatmap showing scaled expression of Cdx2 and Cdx2 target genes from (Gao et al. 

2009) in esophagus, stomach, duodenum, and midgut AOIs. Columns and rows are clustered by 

hierarchical clustering and columns are annotated by organ and organ substructure. 

 

Discussion 

The Whole Transcriptome Atlas is a high-plex in situ hybridization method for spatial 

transcriptome profiling using the Digital Spatial Profiling platform. Here we describe the design, 

performance, and applications of the human and mouse WTAs, which comprise >18,000 

multiplexed probes targeting the protein-coding genes of the human or mouse transcriptome. We 
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show that WTA data is reproducible and concordant with orthogonal gene expression profiling 

methods and can quantify genes with low, medium, and high expression levels depending on the 

size of the profiled region. Furthermore, the applications of WTA to human disease biology and 

mouse developmental biology demonstrate that whole transcriptome data enables 

comprehensive pathway-level spatial analyses.  

 DSP technology allows flexible and customizable region selection that can trace the 

boundaries of anatomical or biological structures or groups of specific cells. As a result, a wide 

range of AOI sizes and types are possible, from a minimum region size of 5 µm x 5 µm to a 

maximum of 660 µm × 785 µm (Bergholtz et al. 2021). Smaller regions have the advantage of 

less heterogeneity and higher spatial resolution, but as with other existing spatial gene expression 

methods profiling smaller regions results in lower sensitivity. To define these tradeoffs, we 

benchmarked the sensitivity of WTA using differently sized AOIs in homogeneous cell pellets, 

which have the advantage of not being confounded by spatial variation such that data can be 

directly compared with bulk RNAseq. We find that in AOIs with ~100 cells, we detect ~70% of the 

genes observed in bulk RNAseq, a high sensitivity given that that bulk RNAseq is based on tens 

to hundreds of thousands of cells as input. Using RNAscope, we demonstrate that WTA sensitivity 

is equivalent to <1 transcript/cell in AOIs of at least 100 cells, with ~100 transcripts required per 

AOI for robust detection. In tumor tissue, this sensitivity corresponds to detecting ~6000 genes in 

small AOIs with <20 cells, and >10,000 genes in large AOIs with hundreds of cells. As expected, 

there is a tradeoff between WTA signal and AOI size: more genes detected above background, 

better coverage of low expressing genes, and higher reproducibility in larger AOIs. However, we 

demonstrate that WTA counts from small AOIs still correlate well with orthogonal gene expression 

methods, and that the results of downstream analyses such as clustering, differential expression, 

and pathway enrichment are relatively robust to AOI size. These findings will enable researchers 

to devise a profiling strategy that is suited to address their specific experimental question.  
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Transcriptome-scale spatial data enables a wide range of pathway-level downstream 

analyses. With WTA, we detect expected pathways enrichment in the glomeruli and tubules of 

human kidneys, and also demonstrate robust detection and spatial localization of the key 

transcription factors and their target genes in mouse organogenesis. Furthermore, methods such 

as cell type deconvolution allow the integration of gene expression signatures from single-cell 

RNAseq data with spatial data, enabling the localization of specific cell types in space (Danaher 

et al. 2022). In this work, we demonstrate heterogeneity in cell type loss in diabetic kidney disease 

that can be linked to pathological annotation of the tissue. The integration of scRNAseq and WTA 

spatial analysis has been demonstrated in other contexts as well, including in pancreatic ductal 

adenocarcinoma to reveal that a malignant cell type identified by scRNAseq was spatially 

associated with higher immune infiltrations (Hwang et al.).  

The development of a whole transcriptome panel for both human and mouse enables a 

wide range of translational, clinical, and basic biology research. For example, researchers have 

used WTA to identify focal changes in gene expression in kidney allograft rejection (Salem et al. 

2022),  determine cell types affected by SARS-CoV-2 infection in the olfactory epithelium (Khan 

et al. 2021), characterize functional gene expression differences across a heterogenous central 

nervous system tumor (Dottermusch et al. 2021), and assess structure-specific responses to 

treatment in prostate hyperplasia (Joseph et al. 2022). To promote these broad research 

applications, we have shown that WTA is compatible with a variety of tissue types and sample 

preservation methods (FFPE, fresh frozen, and fixed frozen). Moreover, we demonstrate 

successful WTA experiments in diverse normal and diseased human tissue, and in a wide range 

of tissues in adult and developing mice. One limitation of an ISH-based technology is that new 

probes must be designed to target each transcriptome of interest. However, we show that mouse 

WTA is compatible with the most commonly used mouse strains despite small differences in 

transcript sequence. In addition, WTA can be supplemented with custom-designed probes 

targeting additional transcripts of interest. For example, Delorey et al. used human WTA with an 
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additional 26 probes designed against SARS-CoV-2 transcripts to create a spatial atlas of gene 

expression in different anatomical substructures and levels of virus infection in COVID-19 infected 

lungs (Delorey et al. 2021).  Similarly, custom probes can be added to WTA to quantitate different 

transcript isoforms and non-coding RNAs, as WTA does not use poly-adenylated transcript 

capture.  

 Spatial gene and protein expression profiling with DSP has enabled discoveries in many 

research fields including oncology, immunology, neuroscience, and infectious disease. WTA 

expands the capabilities of DSP RNA profiling from 1,400 genes to the whole transcriptome level 

and enables high-plex spatial profiling of both human and mouse tissues. Future research will 

combine spatial whole transcriptome profiling with complex annotations and with sample 

timepoints to provide high-dimensional profiles of development, disease progression, and other 

biological processes. 

 

Methods 

Design of the Whole Transcriptome Atlas probes 

The NCBI RefSeq reference transcriptomes for human (GRCh38.p13) and mouse (GRCm38.p6, 

C57BL/6) were used for design of human and mouse WTA, respectively. The genes targeted for 

design included all protein-coding genes with a few exceptions. Human protein-coding genes 

were determined based on the HUGO Gene Nomenclature Committee (HGNC) and designed 

according to the available RefSeq transcripts. Mouse protein-coding genes were determined 

based on Mouse Genome Informatics (MGI) and designed according to the available RefSeq 

transcripts. For mouse genes, we also considered the current status of genes in NCBI RefSeq 

and did not include those with poor status (Suppressed, Provisional, Model, or Inferred). Notably, 

1450 protein-coding genes that exist in the MGI database had no available mRNA transcripts in 

RefSeq at the time of design. By comparison, that number in human was only 31 and included a 
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few genes that should have been characterized as loci and not protein-coding entities (ex. 

PCDHG@, TRD).  

In order to provide the best sensitivity for lower-expressing transcripts, we elected to 

remove the top 10 most highly expressed genes in TCGA across tumor types from the human 

WTA (ACTB, ACTG1, EEF1A1, EEF2, FTL, GAPDH, PSAP, RPL3, TPT1, and UBC). A similar 

assessment was performed for mouse genes according to (Söllner et al. 2017) but as most of the 

genes identified were organ-specific, we opted to instead remove genes based on empirical data 

using our assay. Those genes were Gm20594 and Eef1a1. Eef1a1 is the mouse homolog of 

human EEF1A1 we prospectively removed for the same rationale, and Gm20594 is the human 

ortholog of MTRNR2L7, which has homology to mitochondrial rRNA and thus could yield very 

high counts. In both human and mouse WTA, mitochondrially-encoded transcripts were removed 

as they are also very highly expressed.  

The probe design process begins with an exhaustive evaluation of all possible contiguous 

35-50 nucleotide sequence windows for each mRNA target. This large pool of possible probe 

candidates is first filtered for intrinsic characteristics including melting temperature, GC content, 

secondary structure, and runs of poly-nucleotides. Probes satisfying these parameters are further 

screened for homology to the full transcriptome of the parent organism utilizing the Basic Local 

Alignment Search Tool (BLAST) from the National Center for Biotechnology Information (NCBI). 

Preference was given to probes with absence of homology to off-target genes in the 

corresponding transcriptome, covering known protein coding transcripts, lying within coding 

regions, and maximizing the coverage of the isoform repertoire. Targeting of a transcript was 

judged based on ≥95% sequence identity to the probe target. Previous work has found that 

selecting probes that are 95-100% identical to the intended target and filtering out probes that are 

≥75-85% in homology and that possess ≥15-17 MCB (Maximum Contiguous Bases) confer 

excellent specificity to the intended target (Militon et al. 2007; Kane 2000; Rimour et al. 2005). 

Final panel candidates are further screened for intermolecular interactions with other probes in 
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the candidate pool including potential probe-probe hybridization as well as minimizing common 

sequences between probes.  

For both human and mouse WTA, negative control probes were designed against 

synthetic sequences from the External RNA Controls Consortium (ERCC) set (Baker et al. 2005). 

Negative control probes were designed to have similar GC and Tm properties as target probes 

and are subject to the same intermolecular interaction screening. The final probe pool consists of 

18,815 probes for human WTA and 20,175 probes for mouse WTA, including 139 negative control 

probes for human and 210 negative control probes for mouse. These probes target 19,505 and 

21,596 annotated genes for human and mouse, of which 19,128 and 21,040 are protein-coding 

respectively. Due to high homology in some gene families, 636 human probes and 656 mouse 

probes target more than one gene (Supplemental Table S1).  

Probes contain an indexing sequence separated from the RNA-targeting region by a UV-

photocleavable linker (Supplemental Fig. S1). The indexing sequence contains a 12-nucleotide 

barcode identifying the RNA-targeting sequence, a 14-nucleotide random UMI, and primer binding 

sites for the amplification of tags and addition of P5 and P7 adaptors for Illumina NGS. The RNA 

ID barcodes were designed to have a minimum Hamming distance of ≥2 between barcodes. 

For the RNA FISH comparison experiments and the CRC and NSCLC experiments, an 

early version of the human WTA probe pool was used that differed slightly from the final 

commercially available version used for all other experiments. For these experiments, probes 

were filtered to only include those in the commercially available pool before any analyses were 

performed. 

 

Sample preparation for DSP 

Sample preparation was performed as described in the NanoString GeoMx RNA-NGS slide 

preparation manuals. Maximum sample size for imaging on the DSP instrument is 36.2 mm long 

by 14.6 mm wide (Bergholtz et al. 2021). Samples were processed on a Leica Bond RX or RXm 
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automated stainer (Leica Biosystems) or manually. For FFPE samples, freshly cut 5 µm sections 

were mounted on positively charged slides, baked, deparaffinized, washed in ethanol, and 

washed in PBS or Leica Bond Wash Solution. Targets were retrieved in Tris-EDTA pH 9.0 in a 

pressure cooker (manual protocol) or Leica BOND Epitope Retrieval Solution (automated 

protocol) for 10 min at 85ºC (cell pellets), 10 min at 100ºC (tonsil), or 20 min at 100ºC (human 

CRC, human NSCLC, human kidney, and mouse tissue arrays), and washed in PBS or Bond 

Wash Solution. Samples were digested with 0.1 mg/mL proteinase K for 5 min (cell pellets) or 1 

µg/mL for 15 min (tissues) at 37ºC and washed with PBS. For fresh frozen human tonsil samples, 

5 µm sections were mounted on positively charged slides and fixed overnight in 10% NBF. 

Antigen retrieval, digestion, and washes were performed as described for FFPE except that the 

proteinase K digestion was at room temperature. Fixed frozen mouse cell pellets (Acepix 

Biosciences) were fixed in 4% PFA overnight at 4ºC, embedded in OCT, and snap frozen. Fixed 

frozen mouse embryos (Acepix Biosciences) were fixed in 10% NBF overnight at room 

temperature, embedded in OCT, and snap frozen. For both cell pellets and embryos, 10 µm OCT 

embedded sections were washed in PBS, washed in ethanol, and antigen retrieval was performed 

for 15 min at 85ºC (embryo) or 10 min at 85ºC (cell pellets). Digestion and washes were performed 

as for FFPE.  

 All samples were incubated overnight at 37ºC with human or mouse WTA following the 

NanoString GeoMx RNA-NGS slide preparation manual at a probe concentration of 4 nM per 

probe in 2x SSC with 2.5% dextran sulfate, 0.2% BSA, 100 μg/mL salmon sperm DNA, and 40% 

formamide. During incubation, slides were covered with HybriSlip Hybridization Covers (Grace 

BioLabs). After incubation, coverslips were removed by soaking in 2x SSC + 0.1% Tween-20. 

Two 25 min stringent washes were performed in 50% formamide in 2x SSC at 37°C to remove 

unbound probe, and samples were washed in 2x SSC. For antibody morphology marker staining, 

samples were incubated in blocking buffer for 30 min at room temperature in a humidity chamber, 

and then incubated with 100 µm SYTO13 and the relevant fluorescently conjugated antibodies 
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(Supplemental Table S2) for 1-2 hours. Samples were washed in 2x SSC and loaded on the 

GeoMx DSP instrument.  

 

Fluorescent in situ hybridization with RNAscope 

ISH was performed using the RNAscope LS Multiplex Fluorescent Reagent kit (ACD) using a 

Leica Bond RX or RXm automated stainer according to the manufacturer’s instructions. Antigen 

retrieval was performed for 15 min at 88°C, and digestions were performed with ACD protease 

for 15 min at 40°C. A list of probes used is in Supplemental Table S2. Probes were visualized 

with TSA plus Cy3, Cy5, or Opal620.  

 RNAscope spot counting was performed as previously described (Merritt et al. 2020). 

Briefly, slides were imaged using the Nikon Eclipse TE2000-E microscope at 40x magnification. 

Images were captured with Nikon Elements commercial software. For imaging, z stacks at 0.5 

µm steps were taken from the top to bottom focal planes of each cell pellet. Exposure time was 

set manually to have maximal signal for the lowest expressing cell line while remaining non-

saturated for the highest expressing cell line. Maximum z-projection images were created with 

Nikon Elements software across all channels. QuPath software (https://qupath.github.io/) was 

used to quantify the number of RNAscope spots and cells imaged per field of view using the 

method and scripts described in (Merritt et al. 2020). 

 For the comparison of total RNAscope fluorescence intensity with WTA counts, the mean 

pixel intensity of each AOI for each relevant channel in the DSP 20x scan image was extracted 

and multiplied by total AOI area to get total fluorescence intensity.  

 

DSP experiments 

DSP experiments were performed according to the NanoString GeoMx-NGS DSP Instrument 

manual and as previously described (Merritt et al. 2020; Bergholtz et al. 2021). Briefly, slides were 

imaged in four fluorescence channels (FITC/525 nm, Cy3/568 nm, Texas Red/615 nm, Cy5/666 
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nm) to visualize morphology markers, and regions of interest were selected for collection. For the 

CRC/NSCLC and the kidney experiment, regions of interest were segmented based on the 

expression of morphology markers using the DSP auto-segmentation tool with manually tuned 

settings. AOIs were illuminated and released tags were collected into 96-well plates as previously 

described. 

 

Next-generation sequencing and sequencing data analysis 

Library preparation for NGS was performed according to the NanoString GeoMx-NGS Readout 

Library Prep manual. Briefly, the DSP aspirate was dried and resuspended in 10 uL DEPC-treated 

water, and 4 µL were used in a PCR reaction. NanoString SeqCode primers were used to amplify 

the tags and add Illumina adaptor sequences and sample demultiplexing barcodes. PCR products 

were pooled either in equal volumes or in proportion relative to AOI size, depending on the 

experiment, and purified with 2 rounds of AMPure XP beads (Beckman Coulter). Libraries were 

sequenced on an Illumina NextSeq 550, NextSeq 2000, or NovaSeq 6000 according to the 

manufacturer’s instructions, with at least 27x27 paired end reads. 

 FASTQ files were processed using the NanoString GeoMx NGS Pipeline v2.0 or v2.2. 

Briefly, reads were trimmed to remove low quality bases and adapter sequences. Paired end 

reads were aligned and stitched, and the barcode and UMI sequences were extracted. Barcodes 

were matched to known probe barcodes with maximum 1 mismatch allowed. Reads matching the 

same barcode were deduplicated by UMI. The number of raw reads was highly linearly correlated 

with the number of unique UMIs at all AOI sizes, suggesting largely uniform library amplification 

(Supplemental Fig S9). However, to correct for any PCR amplification bias, all analyses in this 

study use UMI deduplicated counts.  

 

RNAseq experiments 
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For the comparison to cell line RNAseq, in-house RNAseq data was generated for all of the mouse 

cell lines used in the comparison and 5 of 11 human cell lines (Daudi, H596, HEL, HUT78, and 

HS578T). Purified total RNA for each cell line was purchased from Acepix Biosciences. RNAseq 

libraries were prepared using the TruSeq Stranded mRNA Library Prep kit (Illumina) following the 

manufacturer’s instructions and using 100-125 ng of RNA per cell line as input. Libraries were 

sequenced on an Illumina NextSeq 550 with 75x75 paired end reads.  

 Sequencing reads were mapped to the human RefSeq transcriptome GRCh38.p13 or the 

mouse reference transcriptome GRCm38.p6 using Salmon v1.3.0 with default parameters (Patro 

et al. 2017). Transcript-level counts were collapsed to gene-level counts using tximport v3.13 

(Soneson et al. 2015). 

Comparison of our in-house human cell line RNAseq data to publicly available RNAseq 

data from the Cancer Cell Line Encyclopedia Project (CCLE) (Ghandi et al. 2019) showed that 

our data was highly correlated with the CCLE data, and that WTA correlations and sensitivity were 

very similar using our data and the CCLE data. As there was CCLE RNAseq data available for all 

of the human cell lines profiled by WTA, the CCLE data was used for all of the comparisons to 

human WTA shown in Figure 1 and Figure S2.  

 

Data analysis and visualization 

 Count data was processed and normalized using either the NanoString DSPDA software 

v2.2 or v2.3, the GeoMxTools R package v1.0 

(https://bioconductor.org/packages/release/bioc/html/GeomxTools.html), or similar in house data 

processing scripts. AOIs with fewer than 5000 raw reads or a sequencing saturation <45% (mouse 

embryo experiment) or <50% (all other experiments) were filtered out of the analysis. For the 

negative probes, we performed outlier testing and removed outlier probes from the analysis before 

collapsing counts. All other targets have just one probe per target and therefore were not filtered 

for outliers or collapsed. A negative probe was called an outlier if it met one of two criteria. First, 
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if the average count of a probe across all segments was <10% of the average count of all negative 

probes the probe was removed from all segments. Second, if the probe was called an outlier by 

the Grubb’s test with alpha = 0.01, it was removed from that segment. If the probe was an outlier 

by the Grubb’s test in ≥20% of segments, it was removed from all segments. The geometric mean 

of the remaining probes was calculated to collapse the negative probes to a single count value.  

The limit of detection (LOD) above which a gene was called “detected” was defined as 2 

standard deviations above the geometric mean of negative probes. For the analyses of the kidney 

and mouse embryo data, genes were filtered to only those above LOD in >1% of AOIs and counts 

were normalized by Q3 normalization after removal of genes consistently below LOD. For the 

CRC/NSCLC differential expression, ssGSEA, and cell type deconvolution analyses, genes were 

filtered to only those above LOD in >15% of AOIs and counts were normalized by Q3 

normalization after removal of genes. For all other datasets and analyses, genes were not filtered 

and raw deduplicated counts were used.  

 For the CRC/NSCLC sequencing subsampling analysis, raw FASTQ files were 

subsampled to the desired read depths using seqtk (https://github.com/lh3/seqtk). Five replicates 

of the subsampling were performed at each read depth level and all subsamples were run through 

the NGS data processing pipeline independently. For analyses where sequencing read depth was 

compared, AOIs were not filtered for sequencing saturation. For analyses where only one read 

depth is presented, the 150 reads/μm2 level was used and AOIs with <50% sequencing saturation 

were removed from the analysis.  

All statistical analyses and data visualizations were performed in R or using the DSPDA 

software v2.3. Differential expression was performed using a linear mixed effect model with slide 

and DSP instrument as random effect variables, and p-values were corrected for multiple 

hypothesis testing. ssGSEA was performed using the GSVA R package (Hänzelmann et al. 

2013). Cell type deconvolution was performed using the SpatialDecon R package (Danaher et al. 

2022). 
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