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Abstract

Emerging spatial profiling technology has enabled high-plex molecular profiling in biological
tissues, preserving the spatial and morphological context of gene expression. Here we describe
expanding the chemistry for the Digital Spatial Profiling platform to quantify whole transcriptomes
in human and mouse tissues using a wide range of spatial profiling strategies and sample types.
We designed multiplexed in situ hybridization probe pools targeting the protein-coding genes in
the human and mouse transcriptomes, hereafter referred to as the human or mouse Whole
Transcriptome Atlas (WTA). We validated the human and mouse WTA using cell lines to
demonstrate concordance with orthogonal gene expression profiling methods in profiled region
sizes ranging from ~10-500 cells. By benchmarking against bulk RNAseq and fluorescence in situ
hybridization, we demonstrate robust transcript detection possible down to ~100 transcripts per
region. To assess the performance of WTA across tissue and sample types, we applied WTA to
biological questions in cancer, molecular pathology, and developmental biology. We show that
spatial profiling with WTA can detect expected spatial gene expression differences between tumor
and tumor microenvironment, identify spatial disease-specific heterogeneity in gene expression
in histological structures of the human kidney, and comprehensively map transcriptional programs
in anatomical substructures of nine organs in the developing mouse embryo. Digital Spatial
Profiling technology with the WTA assays provides a flexible method for spatial whole

transcriptome profiling applicable to diverse tissue types and biological contexts.

Introduction

The organization of tissues and organs is complex and spatial relationships between cells
and structures are key to their development, normal functioning, and pathophysiology. Recently,
several methods have emerged for multiplexed spatial profiling of RNA or proteins, leading to
discoveries in oncology, infectious disease, developmental biology, and other fields (Rao et al.

2021; Brady et al. 2021; Butler et al. 2021; Pelka et al. 2021; Jerby-Arnon et al. 2021; Desai et al.
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2020; Rendeiro et al. 2021; Merritt et al. 2020). Existing spatial gene expression platforms operate
at a range of plex and with differing profiling strategies. Sequencing-based methods capture
transcripts in an unbiased manner and are capable of whole transcriptome coverage. For
example, laser capture microdissection is a method for physically separating cells and structures
of interest within a tissue, which can then be subjected to a variety of molecular profiling methods
including RNAseq (Emmert-Buck et al. 1996; Espina et al. 2006). Other sequencing-based
methods such as Slide-Seq and Spatial Transcriptomics capture polyadenylated mRNAs across
pre-patterned barcoded spot arrays (Vickovic et al. 2019; Stahl et al. 2016; Stickels et al. 2021).
An advantage of these methods is that they can provide unbiased coverage of the transcriptome.
However, one disadvantage is that RNAseq via poly-A capture can be dominated by highly
expressed genes.

Imaging-based methods, such as multiplexed error-robust fluorescence in situ
hybridization (MERFISH), fluorescent in situ sequencing (FISSEQ), and Sequential barcoded
Fluorescence in situ Hybridization (seqFISH) (Chen et al. 2015; Lee et al. 2015; Xia et al. 2019),
use rounds of sequential hybridization and imaging to resolve transcripts at single cell or
subcellular resolution. Some imaging methods have demonstrated detection of up to 10,000
targets, but most experiments have been limited to lower plex in the hundreds of targets (Eng et
al. 2019; Xia et al. 2019).

Digital Spatial Profiling (DSP) is a recently developed platform for multiplexed spatial RNA
or protein expression profiling in user-defined regions of interest (Merritt et al. 2020). DSP relies
on affinity reagents (probes for RNA and antibodies for protein detection) attached to indexing
oligonucleotide tags with a UV-photocleavable linker. The probes or antibodies are hybridized to
a slide-mounted tissue sample that is also stained with fluorescent antibodies or probes to aid in
the identification of features of interest. The tissue is imaged using fluorescence microscopy and
UV light is projected onto the region to be profiled, called areas of illumination (AOIs), to release

the oligo tags from that region. The liberated tags are collected and counted using the nCounter®
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system or by next-generation sequencing (NGS). In the first demonstration of the DSP
technology, 44 proteins and 84 genes were multiplexed using nCounter, and 1,412 genes were
profiled by NGS readout (Merritt et al. 2020).

Here we report the expansion of the DSP RNA profiling technology to measure the
expression of >99.5% and >98.2% of protein-coding genes of the human or mouse transcriptome,
respectively, with a small number of very highly expressed genes intentionally removed to provide
better coverage of low expressing transcripts. For all annotated genes, we designed in situ
hybridization (ISH) probes with a barcoded UV-cleavable tag that can be read out by NGS. The
probes for each species were pooled to create the human and mouse Whole Transcriptome
Atlases (WTASs). In this study, we aim to characterize the technical performance of the human
and mouse WTA across a range of region sizes and profiling strategies, and demonstrate

applications in diverse tissue contexts.

Results
Design of multiplexed probes targeting the human and mouse whole transcriptomes

The human or mouse WTA consists of species-specific ISH probes designed to target the
protein-coding genes of the human or mouse transcriptome. The probes contain three functional
regions: an RNA-targeting region, a UV-photocleavable linker, and an indexing sequence
designed to be read out by NGS. The indexing sequence contains a Unique Molecular Identifier
(UMI), a barcode sequence that identifies the probe, and primer binding sequences for
amplification and subsequent readout by standard NGS workflows (Supplemental Fig. S1). The
probe identification barcodes were designed to have a minimum Hamming distance of 22 between
barcodes.

We designed 18,815 human and 20,175 mouse probes targeting >99.5% of annotated
protein-coding genes in human and >98.2% of annotated protein coding genes in mouse

(Supplemental Table S1). To reduce sequencing requirements and optimize readout efficiency
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by NGS, probes targeting mitochondrially encoded genes and an additional 10 human and 2
mouse highly expressed nuclear-encoded genes were intentionally removed (see Methods).
Mouse WTA also includes probes targeting 17 commonly used transgenes. We additionally
designed 139 negative control probes in human WTA and 210 negative control probes in mouse
WTA against synthetic sequences from the External RNA Controls Consortium (ERCC) set (Baker
et al. 2005). The ERCC sequences have the same properties as mammalian sequences but
without similarity to any known transcripts. This was confirmed by BLAST comparison to each
transcriptome for all selected negative sequences.

RNA-targeting regions range in size from 35-50 nucleotides and were selected based on
an iterative design process that considers thermodynamic profile, splice isoform coverage,
potential for cross-hybridization with other transcripts, and potential for intramolecular interactions
between probes within an assay (see Methods). Probes were synthesized individually and pooled,
and the pools were sequenced to ensure that 100% of designed probes were present and that
the coefficient of variation of probe concentration was less than 20%.

As WTA contains a single probe per gene, we assessed the consequences of this design
choice by comparing human WTA to a smaller probe pool targeting 1,812 human genes with 5
probes per target. We compared counts in matched 200 um AOIs in formalin-fixed paraffin
embedded (FFPE) tonsil tissue, and found that counts from the single WTA probe were well
correlated to the mean count of the five probes for the same target (median R = 0.83), as well as
a randomly selected single probe (median R = 0.73) (Supplemental Fig. S2). These results

validate that a single probe is generally sufficient to accurately quantify gene expression.

WTA data are reproducible and well correlated with RNAseq and RNA FISH in cell lines
We first benchmarked the performance of the human and mouse WTAs in homogeneous
FFPE cell pellet arrays (CPAs) to test reproducibility and compare to orthogonal methods of

measuring gene expression. Because DSP allows flexible selection of the areas of illumination
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on the tissue (AQIs), it is possible to profile regions of various sizes ranging from <10 cells to
thousands of cells. As there is a tradeoff between the number of cells profiled and signal, we
benchmarked the performance of WTA in AOIs ranging from 50-400 um diameter circles in human
and mouse FFPE CPAs containing 11 cell lines each (Fig. 1A). In cell pellets, 50 uym diameter
AOQls contained an average of 12 cells in human cell lines and 13 cells in mouse cell lines, while
400 ym diameter AOIs contained an average of 480 and 505 cells in human and mouse,
respectively. Counts were highly reproducible between two independent experiments for all cell
lines and AQI sizes tested (R = ~0.75 for 50 um AQIs, and ~0.95 for 400 um AOls for all genes)
for both human and mouse WTAs (Fig. 1B).

We asked whether we could correctly classify these cell lines based on WTA signal,
comparing to bulk RNAseq of the same set of cell lines. Bulk RNAseq data were either generated
for this study or acquired from publicly available data from the Cancer Cell Line Encyclopedia
(CCLE) project (Ghandi et al. 2019) (see Methods). Using all genes in the WTA panels, we found
that classification was 100% accurate at all AOI sizes. For all 11 human and 11 mouse cell lines,
the correct matching cell line had the highest correlation coefficient between WTA and bulk
RNAseq. Correlation coefficients with the matching cell line were ~0.7 in 50 ym diameter circle
AOIls and increased to >0.8 in 400 ym diameter circle AOls, and were similar for human and
mouse WTA (Fig. 1C). To test the effect of gene expression level on cell line classification, we
compared WTA counts to RNAseq subset to the lowest and highest quartile of expressed genes,
defined as genes >1 transcript per million (TPM) in RNAseq. Discrimination between the correct
matching and non-matching cell lines was maintained for the lowest quartile of expressed genes
in 200 um and 400 um AOIls, but was reduced for 50 um AOIls (Supplemental Fig. S2), suggesting
that very lowly expressed genes are not as well quantified in very small AOls.

We next tested whether we could accurately quantitate gene expression with WTA. For
these experiments, we used a mixed-proportion FFPE (human) or fixed frozen (mouse) CPA with

one cell line titrated into another in 10% increments. We selected 9 human genes and 8 mouse
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genes that are highly expressed in one cell line (>100 TPM in bulk RNAseq) and not expressed

in the other (<1 TPM in bulk RNAseq) (Supplemental Fig. S3). In the CPA, this creates a gradient

of gene expression levels across the different cell pellets that spans the range of very lowly to

very highly expressed genes. For each gene, WTA signal was compared to FISH signal using

RNAscope probes (Wang et al. 2012) (Fig. 1D). We found that WTA and FISH signals were highly

correlated for all genes tested, with an average Pearson correlation coefficient of 0.90 for human

and 0.93 for mouse (Fig. 1E, Supplemental Fig. S3). These results indicate that WTA can

accurately quantify gene expression across the biological range of gene expression.
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Figure 1. Human and mouse WTA data are reproducible and correlated with RNAseq and
RNA FISH. A. Representative image of the AOI size titration experiment. Circular AOIs 50 pm,
200 ym, and 400 um in diameter were placed on each cell line of an 11-core human or mouse
FFPE cell pellet array (human shown, stained with antibodies against CD3, CD45 and pan-
cytokeratin (PanCK), and SYTO13 nuclear stain). B. Reproducibility of WTA counts from two
replicate experiments. Left: scatterplots of log2-transformed raw counts from one representative
human or mouse cell line (HUT78 for human, 3T3 for mouse) at each AOI size from each replicate.
Negative control probes are shown in blue and target probes in black. Right: Pearson correlation
coefficients of log2-transformed raw counts between replicates for each cell line and AOI size. C.
Left: scatterplots of WTA counts vs RNAseq transcripts per million (TPM) from the same cell line
for one representative human or mouse cell line in a 200 um AOI. Right: Spearman’s correlation
of WTA counts compared to RNAseq of each cell line profiled in this experiment. For each AOI,
the matching cell line is shown in blue and all other cell lines in grey. D. Representative image of
the cell line titration experiment. Cell pellets contained one cell line titrated into the other at a
variable ratio. Cells were stained with RNAscope probes against two genes specifically expressed
in each of the two cell lines (ITGB4 expressed in H596 cells and MS4A1 expressed in SUDHL4
cells in the image shown). Grey circles show profiled AOls. E. Left: Representative scatterplot
comparing WTA counts for MS4A1 to RNAscope fluorescence intensity for the same gene across
cell pellets. Right: Spearman’s correlation of WTA counts compared to RNA FISH fluorescence

intensity for each gene profiled in this experiment.

Sensitivity, specificity, and limit of detection of WTA in different sized AOIls

We next investigated WTA’s sensitivity and specificity to detect gene expression above
background in different sized AOIls. We used the distribution of signal from the negative control
probes to estimate the background level of non-specific binding and set a limit of detection (LOD)

specific to each AOI. Counts from individual negative probes are moderately correlated between
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replicate experiments, suggesting that the variance in negative probe signal is due to both
sequence-specific and non-specific effects (Supplemental Fig. S4). Both target and negative
probe counts increase with AOIl area and scale with each other across different cell lines
(Supplemental Fig. S4), highlighting the importance of empirically measuring the non-specific
background for each AOI.

To determine a cutoff for calling a gene expressed, we calculated sensitivity and specificity
at different thresholds above background using genes with RNAseq TPM > 1 as the true set of
expressed genes. With an increasing threshold, specificity increases but sensitivity decreases;
discrimination improves with increasing AOI size and is similar between human and mouse WTA
(Fig. 2A). We found that selecting an LOD threshold of 2 standard deviations above the geometric
mean of negative probes reliably achieves a specificity of >95% at all ROI sizes and in both
panels. At this LOD threshold, sensitivity was 50% in 50 ym diameter-circle AOls, 68% in 200 ym
AOQIls, and 81% in 400 um AOQOIs for human WTA, and 48% in 50 ym AOls, 66% in 200 um AOls,
and 75% in 400 um AOIs for mouse WTA. Overall, we detect an average of ~6000 genes above
background per AOI in 50 um AOls, and ~9000 genes in 400 um AOls (Fig. 2B).

To determine the LOD of WTA relative to absolute transcript number, we integrated human
WTA FFPE CPA data with RNAscope experiments in which we counted the absolute number of
transcripts per cell for 20 genes in 11 cell lines (Fig. 2C and Supplemental Fig. S5) (Wang et al.
2012). These genes spanned a range of expression levels across different cell lines, from a mean
count of 0 to 45 transcripts per cell (corresponding to 0-1200 TPM in RNAseq) (Supplemental Fig
S5). Gene expression levels as measured by RNAscope were well correlated between replicate
experiments and well correlated with RNAseq for genes above 1 TPM. Below 1 TPM, all genes
had a mean expression of less than 1 transcript per cell (Supplemental Fig. S5).

WTA signal is linearly correlated with RNAseq and RNAscope above a certain gene
expression level, below which WTA does not detect signal (Fig. 2A and Supplemental Fig. S5).

To identify this limit of quantitation of WTA relative to absolute transcript number, we performed
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breakpoint analysis, which fits two line segments to the data and iteratively calculates the
breakpoint at which the model best fits the data. In 50 ym diameter AOIls containing an average
of 13 cells, we found that the breakpoint was ~2 transcripts per cell. In larger AOI sizes with >50
cells, the breakpoint was 0.5-0.6 transcripts per cell (Supplemental Fig. S5), representing the
lowest expression level that can be quantified by WTA.

Using genes with expression =21 expressed transcript per cell as measured by RNAscope
as the true set of expressed genes, we calculated WTA sensitivity and specificity for targets with
different absolute levels of gene expression. Specificity was high for all AOI sizes and ranged
from 94-97% (Supplemental Fig. S5). Highly expressed targets (>10 transcripts per cell) were
detected with a sensitivity of >80% in 50 ym diameter AOIs and 90-100% in larger AOls. On the
other extreme, very lowly expressed targets (1-2 transcripts per cell) were detected with a
sensitivity of ~75% in AOls with >500 cells and progressively less frequently detected in smaller
AQIs (Fig. 2D). By combining the average number of transcripts per cell with the number of cells
present in each AOI, we calculated sensitivity at different numbers of transcripts per AOI. At >100
transcripts per AOI, sensitivity was >70% (Fig. 2E). These results indicate that WTA can detect

and quantify genes expressed at ~100 transcripts per AOI in AOls ranging from 10-500 cells.

10
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Figure 2. WTA has high sensitivity and can detect genes at a range of expression levels
depending on AOI size. A. Left: Scatterplots comparing WTA counts to RNAseq for one
representative cell line at each AOI size, colored by whether the gene is detected above the
expression threshold in WTA and in RNAseq. Dashed lines indicate thresholds for calling a gene
“‘expressed” as 2 standard deviations above the geometric mean of negative probes for WTA, and
TPM >1 for RNAseq. TP = true positive, FP = false positive, TN = true negative, and FN = false
negative. Right: Receiver-operator curves demonstrating the sensitivity and specificity of WTA at
different expression thresholds using genes with RNAseq TPM >1 as the true set of expressed
genes. B. Number of genes per AOI above the expression threshold of 2 SD above the mean
negative probe count at each AOI size. C. Representative images of the experiment to determine
the sensitivity of human WTA relative to absolute transcript number. Left: RNAscope image of two
genes in one cell line of the 20 genes in 11 cell lines quantified in this experiment. Right: DSP

image of one cell line with an AQI size titration. D. Sensitivity of WTA at different AOI sizes for
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genes in different gene expression bins as measured by RNAscope. Genes = 1 transcript per cell
were considered expressed. E. Sensitivity of WTA for genes binned by transcripts per AOI,

calculated using transcripts per cell quantified by RNAscope and the number of cells in each AOI.

WTA is compatible with multiple sample types and mouse strains

For the initial demonstration of the DSP technology, FFPE samples were used (Merritt et
al. 2020). To expand the range of sample preparation types available for DSP, we designed and
tested protocols for the use of WTA on human fresh frozen (FF) and mouse fixed frozen (FxF)
samples (see Methods). To assess the performance of WTA on these additional sample types,
we placed matched 200 um diameter circular AOls on FFPE and FxF mouse CPAs and FFPE
and FF human tonsil tissue. The correlation of WTA counts was >0.8 comparing FFPE to either
FxF or FF, and the distribution of signal to background ratios across genes was similar between
sample preservation types (Supplemental Fig. S6). These results indicate that WTA results are
concordant between FFPE and fixed frozen mouse and fresh frozen human tissues.

Specifically for mouse samples, we asked whether mouse WTA can accurately quantify
gene expression in strains other than C57BL/6, which was used to generate the mouse reference
transcriptome to which the panel was designed. To this end, we profiled an FFPE tissue array
consisting of 7 different organs for each of 3 commonly used mouse strains (C57BL/6, BALB/c,
and NOD/ShiLt) (Supplemental Fig. S7). Although transcriptional differences exist between
strains due to true biological differences, these differences are known to be minimal (Breschi et
al. 2017). We placed 300 uym diameter circular AOls in similar regions of each tissue for each
mouse strain and compared the results from each strain across organs. The transcriptomes were
well correlated for all organs and pairs of strains, with correlation coefficients ranging from 0.7-
0.95. Clustering by gene expression showed that organs clustered together before mouse strains,

and gene expression patterns across tissues were similar in all three strains. These results
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suggest that despite small differences in the annotated transcriptomes, mouse WTA can be used

to characterize gene expression in multiple strains.

Whole transcriptome profiling of segmented regions reveals differences in spatial gene
expression between tumor and tumor microenvironment across a range of AOI sizes

One of the strengths of the DSP system is that users can profile regions defined by
morphology or expression of marker genes. The DSP instrument can segment a region of interest
based on antibody- or RNA FISH-based fluorescence signals, splitting a single selected region
into multiple AOIs (Fig. 3A). This feature enables different tissue compartments to be profiled
separately even if they are spatially adjacent, as UV cleavage time has been optimized such that
cross talk between regions is minimal (Merritt et al. 2020). We used this segmentation strategy to
separate tumor and the tumor microenvironment (TME) to test whether WTA can detect expected
differences in spatial gene expression in tissue. We also used this experiment as a model to
assess the impacts of technical experimental design features such as AOI size and sequencing
depth on WTA performance.

Two serial FFPE sections from colorectal cancer (CRC) and non-small cell lung cancer
(NSCLC) samples were labeled with fluorescent antibodies against pan-cytokeratin (PanCK) to
mark tumor, CD45 to mark immune cells broadly, and CD3 to mark T cells. After labeling the
tissue with these morphology markers, we selected regions of interest in different pathological
areas of the tissue: tumor and hyperproliferative regions in CRC samples and tumor and invasive
margin regions in NSCLC samples. Regions were segmented by fluorescent antibody signal into
tumor (PanCK+) and TME (PanCK-) AOIs (Fig. 3B).

To assess the effect of AOI size on WTA performance, we selected a range of circular
region sizes and binned the resulting segmented AOIs into 4 size bins by area, a metric that is
well correlated with cell count. Area bins ranged from “very small” (<2300 um? area, equivalent to

a 55 uym diameter circle and with an average of 20 cells) to “large” (>49,000 uym? area, equivalent
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to a 250 ym diameter circle and with an average of 920 cells) (Fig. 3B). WTA counts were well
correlated between large and smaller AOls: large AOls had a median Pearson correlation of 0.94
with each other and very small AOls had a median correlation of 0.71 with large AOIs (Fig. 3F,
Supplemental Fig. S8). An increasing number of genes were detected above background in larger
AOQls, with ~6000 genes detected per AOI in very small AOls and ~11,000 genes detected in large
AOls (Fig. 3D). Genes detected in small AOIs were generally a subset of genes detected in large
AOIs with very few genes detected only in small AOIs (Supplemental Fig. S8). Counts of the
genes encoding the proteins used as markers for segmentation were highly enriched in the
expected segment, and enrichments were similar for all AOI sizes (5-fold or greater median
expression in the expected segment type) (Supplemental Fig. S8). We also confirmed that
samples clustered by biological annotation (tumor type and tumor vs TME) regardless of AOI size
(Fig. 3E).

We compared gene expression of each segmented AOI with all bulk RNAseq datasets in
The Cancer Genome Atlas (TCGA) (Weinstein et al. 2013) to ask whether we could accurately
classify the tumor type. We found that our classification of tumor segments was 100% accurate
regardless of AOI size. All tumor segments correlated best with the expected tumor datasets in
TCGA: colon adenocarcinoma and rectal adenocarcinoma for the CRC samples and lung
adenocarcinoma for the NSCLC samples (Fig. 3E). Correlation coefficients increased with AOI
size, from ~0.6 in very small AQOIs to ~0.8 in large AOIs. As expected, TME segments generally
did not correlate best with the matching tumor types in TCGA. The TME likely does not make up
a substantial fraction of the tumors sequenced in the bulk TCGA datasets, highlighting the value
of segmentation for capturing gene expression profiles of less abundant cell types.

We further examined whether we could detect the expected biological differences between
tumor and TME in AQIs of different sizes. Immune-related pathways, such as interleukin signaling
and tumor necrosis factor signaling, were enriched in TME, while pathways related to cell motility,

proliferation, and cancer-associated signaling were enriched in tumors (Supplemental Fig. S8).
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Pathway analysis results were well correlated between AOIs of the same type and between large
and small AOIs (Fig 3F). We next performed cell type deconvolution with SpatialDecon, an
algorithm for estimating abundance of cell types defined by single cell sequencing in spatial gene
expression data (Danaher et al. 2022). We used gene expression profiles of immune and stroma
cells to characterize the immune cell content of tumor and TME segments. As expected, tumor
segments had a very low estimated abundance of immune cells relative to TME for all AOI sizes
(Supplemental Fig. S8), highlighting the ability of segmentation to separate cell types. Cell type
deconvolution results were more variable between individual AOIs in all size bins, but correlation
decreased with size to a similar degree as other metrics (Fig. 3F). These results demonstrate the
robustness of the WTA for biological characterization across a wide range of AOI sizes.

In addition to AOI size, we also assessed the impact of sequencing depth on WTA data.
All AOIs were deeply sequenced and reads were subsampled in silico from a read depth of 5 raw
reads/um? to 300 raw reads/um?. Five replicates of the subsampling were performed at each read
depth. As expected, increasing read depth corresponds to a lower fraction of unique UMls,
indicating higher sequencing saturation of the libraries (Supplemental Fig. S9). Small AOls
reached higher saturation at lower read depths than larger AOls, consistent with lower starting
molecular complexity in these samples. For each subsampled dataset, we compared the number
of genes detected and correlations of counts, pathway enrichment results, cell type deconvolution
results, and differential expression results to the highest sequencing depth. For most metrics and
AOI sizes, results were well correlated at all but the lowest sequencing depths and stabilized by
100 raw reads/um?, corresponding to a sequencing saturation of ~50%. Correlation of cell type
deconvolution results did continue to improve with higher read depth, especially in small AOls,
suggesting that robust deconvolution might benefit from higher sequencing saturation

(Supplemental Fig. S9).
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Figure 3. Effect of AOI size and sequencing depth on biological conclusions from

segmented tumors and tumor microenvironment. A. Left: Representative images of the

colorectal cancer (CRC) and non-small cell lung cancer (NSCLC) samples. Tumor, invasive

margin, and hyperproliferative regions are highlighted. Slides were stained with antibodies against

PanCK, CD3, and CD45. Right: Enlarged region of the CRC image to highlight the size titration

and segmentation strategy. Circular regions of interest were automatically segmented into

PanCK+ tumor (orange) and PanCK- immune (blue) compartments. B. Scatterplot of AOI area vs

16


https://doi.org/10.1101/2021.09.29.462442
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.29.462442; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

number of nuclei with points colored by the area bins used in the analyses in this figure. Very
small: <2300 um?, small: 2300-7850 um?, mid: 7850-49,000 uym?, large: >49,000 um?. C. Number
of genes detected per AOI for tumor and immune compartments in each AOI size bin, colored as
in B. D. Principal component analysis (PCA) of variation between samples using genes detected
above background in >20% of AOIls. PCA1 vs PCA2 is plotted with points colored by tumor type
and shaped by segment type. E. Spearman’s correlation of WTA counts from each AOI with all
RNAseq datasets in the TCGA database. AOIs are ordered by area on the x-axis, and each point
is a pairwise comparison with a dataset in TCGA. All genes in common between each pair of
datasets were used in the correlation. Points are colored by tumor type in TCGA: colon
adenocarcinoma (blue), rectal adenocarcinoma (green), lung adenocarcinoma (red), and lung
squamous cell carcinoma (orange). All other tumor types are colored in grey. AOls are labeled by
area bin. F. Correlation of counts, single-sample Gene Set Enrichment Analysis (ssGSEA)
enrichment, and cell type deconvolution between AQOIs. For each of the three output metrics,
Spearman’s correlations were calculated between each AOI, and averaged within different AOI
size bins compared to the largest AOI sizes. AOls are split into groups based on segment type
(tumor or immune). G. Left: Spearman’s correlation of counts for each subsampled read depth
and AOI size relative to counts at 300 reads/um?. Right: Number of genes detected above

background for each subsampled read depth and AQOI size.

Profiling transcriptomes of anatomical structures in normal kidney and kidney disease

To demonstrate the capability of WTA to integrate the transcriptome with annotated histological
and pathological features of a tissue, we asked how the transcriptome is altered in anatomically
distinct regions of the kidney with diabetic kidney disease (DKD). The kidney nephron has a
complex structure that includes the glomerulus, a cluster of specialized cells that forms the
filtration barrier, and the tubule, which reabsorbs water and small molecules and has different

functions along its length. The effects of DKD on the glomeruli have been well studied, such as a
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loss of glomerular filtration, inflammation, and immune cell infiltration (Reidy et al. 2014; Thomas
et al. 2015). However, DKD affects all parts of the kidney. Therefore, we used WTA to profile the
transcriptome of three nephron substructures: the glomeruli, the proximal convoluted tubules, and
the distal convoluted tubules.

We profiled three normal and four DKD FFPE human kidney samples. To identify and
discriminate kidney structures, three fluorescently labeled antibodies targeting epithelia (PanCK),
immune cells (CD45), and podocytes (WT1) in glomeruli were used. Glomeruli and tubules were
identified morphologically and polygon-shaped AOIs were drawn to capture each structure.
Tubules were segmented based on the PanCK signal into proximal (PanCK-) and distal
tubules/collecting duct (PanCK+) (Fig. 4A). Within each sample, individual glomeruli were
annotated by a pathologist for severity of disease-related changes using both the fluorescence
images and hematoxylin and eosin (H&E) images of serial sections. The data were collected from
both relatively healthy and more abnormal glomeruli in both normal and DKD samples (Fig. 4B).

Overall, we profiled 231 AOIls that passed quality filters, across which we detected and
quantified 16,084 genes. AQOIs clustered by region and by disease status more closely than by
patient (Fig. 4C, Supplemental Fig. S10). In normal kidneys, we identified over 6000 significantly
differentially expressed genes between glomeruli and tubules, and over 8000 differentially
expressed genes between proximal and distal tubules. We found a strong concordance between
genes differentially expressed in our study and those differentially expressed between cell types
in kidney single-cell RNAseq (Young et al. 2018) (Supplemental Fig. S10). Furthermore, we
validated example genes differentially expressed in each structure with publicly available antibody
staining from the Human Protein Atlas (Uhlén et al. 2015), and saw excellent concordance of
spatial localization (Fig. 4D).

At the pathway level, differentially expressed pathways between glomeruli, proximal, and
distal tubules recapitulated known aspects of kidney biology. For example, pathways specifically

enriched in proximal tubules included anion and amino acid transporters, which are known to be
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highly expressed in proximal tubules, while bicarbonate transporters were enriched in both
proximal and distal tubules. Pathways enriched in glomeruli include nephrin and SEMA3A
signaling, which are key proteins expressed in cells of the glomerular filtration membrane (Reidy
and Tufro 2011; Martin and Jones 2018) (Supplemental Fig. S10).

With DKD, we observed 2400 differentially expressed genes across the different kidney
substructures compared to normal kidney samples. For most genes dysregulated with disease,
expression changes were correlated across the different anatomical structures, but some
structure-specific genes were altered with disease (Fig. 4E). For example, the gene PCOLCEZ2 is
only expressed in glomeruli and is substantially downregulated with disease. Expression of this
gene has been observed in glomerular podocytes, a specialized cell that forms the glomerular
filtration barrier, and lower expression correlates with loss of renal function in chronic kidney
disease patients (Ju et al. 2013). Similarly, aquaporin genes such as AQP2 and AQP3 are strongly
downregulated in the distal tubules with disease. This family of genes encodes water channels
necessary for concentration of urine by the kidneys and is specifically expressed in tubules
(Nielsen et al. 1999). These results indicate that DKD can cause loss of substructure-specific and
cell type-specific gene expression critical for normal kidney function.

Loss of glomerular podocytes and increased immune cell infiltration are known to be
hallmarks of DKD. We recapitulated this phenotype using cell type deconvolution with the
SpatialDecon algorithm using gene expression signatures from published kidney single cell RNA
sequencing data (Young et al. 2018). We observed a marked loss of podocytes in glomeruli and
increased abundance in almost all types of immune cells in all substructures (Fig. 4F,
Supplemental Fig. S10). Interestingly, we identified that the loss of podocytes was heterogeneous
across individual glomeruli. Even within diseased or normal samples, pathologically abnormal
glomeruli had a more profound loss of podocytes and higher levels of immune infiltration
compared to glomeruli with fewer pathological features. In particular, the abundance of B cells,

natural killer cells, and mononuclear phagocytes increased in diseased kidneys but the increase
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was significantly higher in more severely pathologically abnormal glomeruli (Fig. 4F,
Supplemental Fig. S10). This spatial heterogeneity was observed within individual diseased
kidneys (Fig. 4G), indicating that some glomeruli are more affected by disease despite close

physical proximity. In total, these results demonstrate the feasibility of whole transcriptome

profiling of specific organ substructures to detect spatially variable disease-related abnormalities.
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Figure 4. Spatial heterogeneity in gene

normal  DKD

expression changes associated with diabetic

kidney disease in human kidneys. A. Left: Representative fluorescence images of normal and

diabetic human kidneys. Tissues were stained with antibodies against PanCK, WT1, and CD45.

Right: Example images from normal kidney highlighting the AOI strategy. Glomeruli were profiled
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using polygon-shaped AOIs, and tubules were automatically segmented in proximal tubules
(PanCK-) and distal tubules (PanCK+). B. Individual glomeruli in each kidney sample were
annotated by degree of pathology. A representative H&E image (left) and fluorescence image
(right) from the same region of a diabetic kidney specimen are shown. Glomeruli with higher
degree of abnormality are circled in grey and labeled “A”, while those that are more normal are
circled in white and labeled “N”. C. Principal component analysis of variation between samples
using genes detected above background in >1% of AOIs. PCA1 vs PCA2 is plotted, with
substructure indicated by color and disease status indicated by shape. D. Boxplots of counts in
all AQOIs of three example genes differentially expressed between kidney substructures with
corresponding  antibody  staining images from the Human Protein  Atlas
(https://www.proteinatlas.org/) (Uhlén et al. 2015). E. Left: Heatmap of most differentially
expressed genes between normal and DKD in glomeruli, distal tubules, and proximal tubules. All
genes are significant at FDR <0.05 and a fold change of >1.5. Genes are annotated by the
structure in which they were significantly differentially expressed, or “multiple” for the genes
significant in more than one structure. Columns and rows are clustered by hierarchical clustering
and the data are scaled by row. Right: Boxplot of normalized counts for two example genes in
normal and DKD glomeruli, proximal tubules, and distal tubules. F. Left: Results of cell type
deconvolution of glomeruli using single-cell expression data from (Young et al. 2018). Data are
displayed as stacked barplots with each bar as a single AOI and the estimated proportion of each
cell type colored, and faceted by disease status. Right: Boxplots of proportions of two example
cell types with significantly different proportions in normal and DKD glomeruli (t-test Bonferroni-
corrected p-value <0.05), colored by whether the glomerulus was annotated as pathologically
abnormal or healthy. MNP = mononuclear phagocyte, DC = dendritic cells. G. Pie charts overlaid
over the fluorescence image of a single kidney showing the proportion of different glomerulus and
immune cell types for each glomerulus profiled in a representative disease sample. Each plot is

outlined based on pathological annotation: abnormal glomeruli (blue), healthy glomeruli (red).
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Identifying organ substructure-specific transcriptomes in the developing mouse embryo
One anticipated use of WTA is to catalog spatial gene expression profiles in histological structures
and anatomical regions across organs. To demonstrate the utility of WTA for building spatial organ
atlases, we profiled whole transcriptomes of different organs and organ substructures in a
developing mouse embryo. A single fixed-frozen E13.5 mouse embryo was sectioned along the
sagittal plane. Six sections spanning the embryo were stained with antibodies against TRP63
(epithelial marker) and 3 tubulin (neuronal microtubule marker) and hybridized with mouse WTA
probes (Fig. 5A).

AOQOIs were selected in 9 organs across the 6 sections (heart, lung, metanephros,
pancreas, midgut, duodenum, stomach, esophagus, and trachea). Within each organ, freeform
polygon-shaped AOIls were drawn to capture morphologically distinct substructures using
anatomical features identified using both the fluorescence image and an H&E-stained serial
section (Fig. 5B, Supplemental Fig. S11). For example, in the developing heart, we placed AOIs
in the ventricle wall, atrium wall, trabeculae, conductive fibers, and valves. In the stomach,
esophagus, duodenum, and midgut, we selected AOls in the epithelial, neural, and mesenchymal
layers.

Overall, we profiled the whole transcriptome of 347 AQIs across the nine organs and 2-5
substructures per organ. We identified 17,662 genes expressed above background, indicating
that in diverse tissues nearly the entire transcriptome is detectable by WTA. Examining the spatial
expression of cell-type-specific marker genes showed the expected patterns; for example, the
epithelial marker Epcam is expressed in epithelial AOls in all tissues while the mesenchymal
marker Mest is highly expressed in the mesenchyme and heart but not in the epithelial AOls. We
observed that genes known to be highly expressed in specific tissues were restricted to the
expected tissue, but still show spatial variability within a tissue. For example, the lung transcription

factor Nkx2-1 was expressed in the lung and trachea epithelium, as has been previously reported
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(Minoo et al. 1999), and the kidney transcription factor Pax2 was specifically expressed in AOls
in the metanephros cortex (Bouchard et al. 2002; Minoo et al. 1999). The spatial expression
pattern of these tissue or substructure-specific genes matched the observed expression pattern
by colorimetric RNA ISH of E14.5 mouse embryos (Visel et al. 2004; Diez-Roux et al. 2011),
validating the WTA results (Fig. 5B).

Clustering AOIs by gene expression reveals that heart AOls cluster separately from the
other organs, and that for the non-heart AOls similar substructures cluster together first, and then
by organ. Epithelial AOIs form one cluster, as do mesenchymal and neuron AOls. Within each
substructure, both common and tissue-specific genes can be identified. Across the epithelial
AOQls, shared highly expressed genes include known epithelial markers Cdh7 and Krt18. Among
tissue-specific epithelial genes, Trp63 was expressed only in the epithelium of the esophagus and
trachea, matching the expression pattern of the TRP63 antibody morphology marker used in this
study (Fig. 5C).

As most of the organs profiled have an epithelial and mesenchymal region, we identified
genes differentially expressed between organs in these two cell types (Fig. 5D). Organ-specific
genes were nearly non-overlapping between epithelium and mesenchyme, highlighting the value
of capturing substructure-specific transcriptomes over bulk organ gene expression profiling.
Amongst the top organ-specific genes include key developmental transcription factors: Nkx6-1, a
critical regulator of pancreas (B cell development (Aigha and Abdelalim 2020), was uniquely
expressed in the pancreas epithelium; Cdx2, an intestine-specific transcription factor necessary
for intestine differentiation (Gao et al. 2009), was expressed in the duodenum and midgut
epithelium; and Barx1, which is necessary for stomach differentiation (Kim et al. 2005), was
localized to the stomach mesenchyme.

As developmental transcription factors were among the most differentially expressed
genes across organs and organ substructures, we next asked whether our data could recapitulate

the known developmental specification of the digestive system in mid-gestation embryos. Around
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E13, the transcription factors Sox2, Gata4, Pdx1, and Cdx2 are localized in an overlapping pattern
from anterior to posterior in the developing esophagus, stomach, and intestine and are necessary
for proper specification of those tissues. For example, Sox2 is expressed in the developing
esophagus and stomach, while Cdx2 is expressed in the intestine. Loss of Cdx2 in the intestine
leads to the misexpression of Sox2 in that tissue and the ectopic expression of stomach and
esophageal markers (Kumar et al. 2019; Willet and Mills 2016). Our data accurately recapitulated
this known pattern of transcription factor expression across tissues and revealed spatial patterns
within each tissue (Fig. 5E). All four transcription factors were predominantly located to the
epithelium in each tissue, and Pdx7 is more highly expressed in the liver proximal section of the
duodenum than the distal section. Furthermore, we examined the expression of pro-intestinal
targets of Cdx17 in digestive system AOls (Raghoebir et al. 2012). Several canonical Cdx2 targets,
such as Cdh17, were expressed in the same spatial pattern as Cdx7, which is limited to the
intestinal epithelium. However, others were expressed more broadly or more narrowly, such as
Hnf1a and Hnf4a, which were also expressed in stomach epithelium, and Heph, which was also
expressed in the intestinal mesenchyme, suggesting more complex regulation governing the
expression of these genes (Fig. 5F). Overall, these results demonstrate the capacity of WTA to
reveal the complex spatial gene expression patterns governing key cell fate decisions during

embryonic development.
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Figure 5. Spatial profiling of transcriptional programs during organogenesis in a mid-
gestation mouse embryo. A. Left: Schematic and representative image of the fixed-frozen E13.5
mouse embryo profiled. Sections were labeled with antibodies against TRP63 (magenta) and 3
tubulin (yellow). Autofluorescence is shown in green. Right: Example images of each organ
profiled showing the AOI profiling strategy. Freeform polygon AOIls capture anatomical
substructures of each organ. B. Expression of marker genes for specific organs and cell types in
an example section compared to ISH images of the same genes in E14.5 mouse embryos from
the GenePaint database (https://gp3.mpg.de/, Diez-Roux et al. 2011; Visel et al. 2004). Tissue,
tissue substructure, or normalized scaled WTA count for five genes is plotted over the shape of
each AOI. C. Heatmap showing scaled expression of the 2000 most variable genes across the
dataset. Columns and rows are clustered by hierarchical clustering and columns are annotated
by organ and organ substructure. D. Heatmaps showing scaled expression of the top 50 most
differentially expressed genes in epithelium (left) and mesenchyme (right). All genes shown are
significant at Bonferroni-corrected p-value < 0.01. Columns and rows are clustered by hierarchical
clustering and columns annotated by organ. E. Left: Schematic of key transcription factor
expression in stomach and gut development (adapted from (Willet and Mills 2016)). Right:
Expression of the same transcription factors plotted on example AOIs from a representative
section. F. Heatmap showing scaled expression of Cdx2 and Cdx2 target genes from (Gao et al.
2009) in esophagus, stomach, duodenum, and midgut AOls. Columns and rows are clustered by

hierarchical clustering and columns are annotated by organ and organ substructure.

Discussion

The Whole Transcriptome Atlas is a high-plex in situ hybridization method for spatial
transcriptome profiling using the Digital Spatial Profiling platform. Here we describe the design,
performance, and applications of the human and mouse WTAs, which comprise >18,000

multiplexed probes targeting the protein-coding genes of the human or mouse transcriptome. We
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show that WTA data is reproducible and concordant with orthogonal gene expression profiling
methods and can quantify genes with low, medium, and high expression levels depending on the
size of the profiled region. Furthermore, the applications of WTA to human disease biology and
mouse developmental biology demonstrate that whole transcriptome data enables
comprehensive pathway-level spatial analyses.

DSP technology allows flexible and customizable region selection that can trace the
boundaries of anatomical or biological structures or groups of specific cells. As a result, a wide
range of AOI sizes and types are possible, from a minimum region size of 5 ym x 5 ym to a
maximum of 660 ym x 785 uym (Bergholtz et al. 2021). Smaller regions have the advantage of
less heterogeneity and higher spatial resolution, but as with other existing spatial gene expression
methods profiling smaller regions results in lower sensitivity. To define these tradeoffs, we
benchmarked the sensitivity of WTA using differently sized AOIs in homogeneous cell pellets,
which have the advantage of not being confounded by spatial variation such that data can be
directly compared with bulk RNAseq. We find that in AOls with ~100 cells, we detect ~70% of the
genes observed in bulk RNAseq, a high sensitivity given that that bulk RNAseq is based on tens
to hundreds of thousands of cells as input. Using RNAscope, we demonstrate that WTA sensitivity
is equivalent to <1 transcript/cell in AOIs of at least 100 cells, with ~100 transcripts required per
AOQI for robust detection. In tumor tissue, this sensitivity corresponds to detecting ~6000 genes in
small AOls with <20 cells, and >10,000 genes in large AOIs with hundreds of cells. As expected,
there is a tradeoff between WTA signal and AOI size: more genes detected above background,
better coverage of low expressing genes, and higher reproducibility in larger AOls. However, we
demonstrate that WTA counts from small AOls still correlate well with orthogonal gene expression
methods, and that the results of downstream analyses such as clustering, differential expression,
and pathway enrichment are relatively robust to AOI size. These findings will enable researchers

to devise a profiling strategy that is suited to address their specific experimental question.
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Transcriptome-scale spatial data enables a wide range of pathway-level downstream
analyses. With WTA, we detect expected pathways enrichment in the glomeruli and tubules of
human kidneys, and also demonstrate robust detection and spatial localization of the key
transcription factors and their target genes in mouse organogenesis. Furthermore, methods such
as cell type deconvolution allow the integration of gene expression signatures from single-cell
RNAseq data with spatial data, enabling the localization of specific cell types in space (Danaher
et al. 2022). In this work, we demonstrate heterogeneity in cell type loss in diabetic kidney disease
that can be linked to pathological annotation of the tissue. The integration of scRNAseq and WTA
spatial analysis has been demonstrated in other contexts as well, including in pancreatic ductal
adenocarcinoma to reveal that a malignant cell type identified by scRNAseq was spatially
associated with higher immune infiltrations (Hwang et al.).

The development of a whole transcriptome panel for both human and mouse enables a
wide range of translational, clinical, and basic biology research. For example, researchers have
used WTA to identify focal changes in gene expression in kidney allograft rejection (Salem et al.
2022), determine cell types affected by SARS-CoV-2 infection in the olfactory epithelium (Khan
et al. 2021), characterize functional gene expression differences across a heterogenous central
nervous system tumor (Dottermusch et al. 2021), and assess structure-specific responses to
treatment in prostate hyperplasia (Joseph et al. 2022). To promote these broad research
applications, we have shown that WTA is compatible with a variety of tissue types and sample
preservation methods (FFPE, fresh frozen, and fixed frozen). Moreover, we demonstrate
successful WTA experiments in diverse normal and diseased human tissue, and in a wide range
of tissues in adult and developing mice. One limitation of an ISH-based technology is that new
probes must be designed to target each transcriptome of interest. However, we show that mouse
WTA is compatible with the most commonly used mouse strains despite small differences in
transcript sequence. In addition, WTA can be supplemented with custom-designed probes

targeting additional transcripts of interest. For example, Delorey et al. used human WTA with an
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additional 26 probes designed against SARS-CoV-2 transcripts to create a spatial atlas of gene
expression in different anatomical substructures and levels of virus infection in COVID-19 infected
lungs (Delorey et al. 2021). Similarly, custom probes can be added to WTA to quantitate different
transcript isoforms and non-coding RNAs, as WTA does not use poly-adenylated transcript
capture.

Spatial gene and protein expression profiling with DSP has enabled discoveries in many
research fields including oncology, immunology, neuroscience, and infectious disease. WTA
expands the capabilities of DSP RNA profiling from 1,400 genes to the whole transcriptome level
and enables high-plex spatial profiling of both human and mouse tissues. Future research will
combine spatial whole transcriptome profiling with complex annotations and with sample
timepoints to provide high-dimensional profiles of development, disease progression, and other

biological processes.

Methods

Design of the Whole Transcriptome Atlas probes

The NCBI RefSeq reference transcriptomes for human (GRCh38.p13) and mouse (GRCm38.p6,
C57BL/6) were used for design of human and mouse WTA, respectively. The genes targeted for
design included all protein-coding genes with a few exceptions. Human protein-coding genes
were determined based on the HUGO Gene Nomenclature Committee (HGNC) and designed
according to the available RefSeq transcripts. Mouse protein-coding genes were determined
based on Mouse Genome Informatics (MGI) and designed according to the available RefSeq
transcripts. For mouse genes, we also considered the current status of genes in NCBI RefSeq
and did not include those with poor status (Suppressed, Provisional, Model, or Inferred). Notably,
1450 protein-coding genes that exist in the MGI database had no available mRNA transcripts in

RefSeq at the time of design. By comparison, that number in human was only 31 and included a
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few genes that should have been characterized as loci and not protein-coding entities (ex.
PCDHG@, TRD).

In order to provide the best sensitivity for lower-expressing transcripts, we elected to
remove the top 10 most highly expressed genes in TCGA across tumor types from the human
WTA (ACTB, ACTG1, EEF1A1, EEF2, FTL, GAPDH, PSAP, RPL3, TPT1, and UBC). A similar
assessment was performed for mouse genes according to (Séllner et al. 2017) but as most of the
genes identified were organ-specific, we opted to instead remove genes based on empirical data
using our assay. Those genes were Gm20594 and Eeflal. Eef1a1 is the mouse homolog of
human EEF1A1 we prospectively removed for the same rationale, and Gm20594 is the human
ortholog of MTRNR2L7, which has homology to mitochondrial rRNA and thus could yield very
high counts. In both human and mouse WTA, mitochondrially-encoded transcripts were removed
as they are also very highly expressed.

The probe design process begins with an exhaustive evaluation of all possible contiguous
35-50 nucleotide sequence windows for each mRNA target. This large pool of possible probe
candidates is first filtered for intrinsic characteristics including melting temperature, GC content,
secondary structure, and runs of poly-nucleotides. Probes satisfying these parameters are further
screened for homology to the full transcriptome of the parent organism utilizing the Basic Local
Alignment Search Tool (BLAST) from the National Center for Biotechnology Information (NCBI).
Preference was given to probes with absence of homology to off-target genes in the
corresponding transcriptome, covering known protein coding transcripts, lying within coding
regions, and maximizing the coverage of the isoform repertoire. Targeting of a transcript was
judged based on 295% sequence identity to the probe target. Previous work has found that
selecting probes that are 95-100% identical to the intended target and filtering out probes that are
275-85% in homology and that possess 215-17 MCB (Maximum Contiguous Bases) confer
excellent specificity to the intended target (Militon et al. 2007; Kane 2000; Rimour et al. 2005).

Final panel candidates are further screened for intermolecular interactions with other probes in
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the candidate pool including potential probe-probe hybridization as well as minimizing common
sequences between probes.

For both human and mouse WTA, negative control probes were designed against
synthetic sequences from the External RNA Controls Consortium (ERCC) set (Baker et al. 2005).
Negative control probes were designed to have similar GC and T, properties as target probes
and are subject to the same intermolecular interaction screening. The final probe pool consists of
18,815 probes for human WTA and 20,175 probes for mouse WTA, including 139 negative control
probes for human and 210 negative control probes for mouse. These probes target 19,505 and
21,596 annotated genes for human and mouse, of which 19,128 and 21,040 are protein-coding
respectively. Due to high homology in some gene families, 636 human probes and 656 mouse
probes target more than one gene (Supplemental Table S1).

Probes contain an indexing sequence separated from the RNA-targeting region by a UV-
photocleavable linker (Supplemental Fig. S1). The indexing sequence contains a 12-nucleotide
barcode identifying the RNA-targeting sequence, a 14-nucleotide random UMI, and primer binding
sites for the amplification of tags and addition of P5 and P7 adaptors for lllumina NGS. The RNA
ID barcodes were designed to have a minimum Hamming distance of 22 between barcodes.

For the RNA FISH comparison experiments and the CRC and NSCLC experiments, an
early version of the human WTA probe pool was used that differed slightly from the final
commercially available version used for all other experiments. For these experiments, probes
were filtered to only include those in the commercially available pool before any analyses were

performed.

Sample preparation for DSP
Sample preparation was performed as described in the NanoString GeoMx RNA-NGS slide
preparation manuals. Maximum sample size for imaging on the DSP instrument is 36.2 mm long

by 14.6 mm wide (Bergholtz et al. 2021). Samples were processed on a Leica Bond RX or RXm
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automated stainer (Leica Biosystems) or manually. For FFPE samples, freshly cut 5 pm sections
were mounted on positively charged slides, baked, deparaffinized, washed in ethanol, and
washed in PBS or Leica Bond Wash Solution. Targets were retrieved in Tris-EDTA pH 9.0 in a
pressure cooker (manual protocol) or Leica BOND Epitope Retrieval Solution (automated
protocol) for 10 min at 85°C (cell pellets), 10 min at 100°C (tonsil), or 20 min at 100°C (human
CRC, human NSCLC, human kidney, and mouse tissue arrays), and washed in PBS or Bond
Wash Solution. Samples were digested with 0.1 mg/mL proteinase K for 5 min (cell pellets) or 1
pg/mL for 15 min (tissues) at 37°C and washed with PBS. For fresh frozen human tonsil samples,
5 um sections were mounted on positively charged slides and fixed overnight in 10% NBF.
Antigen retrieval, digestion, and washes were performed as described for FFPE except that the
proteinase K digestion was at room temperature. Fixed frozen mouse cell pellets (Acepix
Biosciences) were fixed in 4% PFA overnight at 4°C, embedded in OCT, and snap frozen. Fixed
frozen mouse embryos (Acepix Biosciences) were fixed in 10% NBF overnight at room
temperature, embedded in OCT, and snap frozen. For both cell pellets and embryos, 10 um OCT
embedded sections were washed in PBS, washed in ethanol, and antigen retrieval was performed
for 15 min at 85°C (embryo) or 10 min at 85°C (cell pellets). Digestion and washes were performed
as for FFPE.

All samples were incubated overnight at 37°C with human or mouse WTA following the
NanoString GeoMx RNA-NGS slide preparation manual at a probe concentration of 4 nM per
probe in 2x SSC with 2.5% dextran sulfate, 0.2% BSA, 100 pg/mL salmon sperm DNA, and 40%
formamide. During incubation, slides were covered with HybriSlip Hybridization Covers (Grace
BioLabs). After incubation, coverslips were removed by soaking in 2x SSC + 0.1% Tween-20.
Two 25 min stringent washes were performed in 50% formamide in 2x SSC at 37°C to remove
unbound probe, and samples were washed in 2x SSC. For antibody morphology marker staining,
samples were incubated in blocking buffer for 30 min at room temperature in a humidity chamber,

and then incubated with 100 um SYTO13 and the relevant fluorescently conjugated antibodies
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(Supplemental Table S2) for 1-2 hours. Samples were washed in 2x SSC and loaded on the

GeoMx DSP instrument.

Fluorescent in situ hybridization with RNAscope

ISH was performed using the RNAscope LS Multiplex Fluorescent Reagent kit (ACD) using a
Leica Bond RX or RXm automated stainer according to the manufacturer’s instructions. Antigen
retrieval was performed for 15 min at 88°C, and digestions were performed with ACD protease
for 15 min at 40°C. A list of probes used is in Supplemental Table S2. Probes were visualized
with TSA plus Cy3, Cy5, or Opal620.

RNAscope spot counting was performed as previously described (Merritt et al. 2020).
Briefly, slides were imaged using the Nikon Eclipse TE2000-E microscope at 40x magnification.
Images were captured with Nikon Elements commercial software. For imaging, z stacks at 0.5
um steps were taken from the top to bottom focal planes of each cell pellet. Exposure time was
set manually to have maximal signal for the lowest expressing cell line while remaining non-
saturated for the highest expressing cell line. Maximum z-projection images were created with
Nikon Elements software across all channels. QuPath software (https:/qupath.github.io/) was
used to quantify the number of RNAscope spots and cells imaged per field of view using the
method and scripts described in (Merritt et al. 2020).

For the comparison of total RNAscope fluorescence intensity with WTA counts, the mean
pixel intensity of each AOI for each relevant channel in the DSP 20x scan image was extracted

and multiplied by total AOI area to get total fluorescence intensity.

DSP experiments
DSP experiments were performed according to the NanoString GeoMx-NGS DSP Instrument
manual and as previously described (Merritt et al. 2020; Bergholtz et al. 2021). Briefly, slides were

imaged in four fluorescence channels (FITC/525 nm, Cy3/568 nm, Texas Red/615 nm, Cy5/666
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nm) to visualize morphology markers, and regions of interest were selected for collection. For the
CRC/NSCLC and the kidney experiment, regions of interest were segmented based on the
expression of morphology markers using the DSP auto-segmentation tool with manually tuned
settings. AOIs were illuminated and released tags were collected into 96-well plates as previously

described.

Next-generation sequencing and sequencing data analysis

Library preparation for NGS was performed according to the NanoString GeoMx-NGS Readout
Library Prep manual. Briefly, the DSP aspirate was dried and resuspended in 10 uL DEPC-treated
water, and 4 uL were used in a PCR reaction. NanoString SeqCode primers were used to amplify
the tags and add lllumina adaptor sequences and sample demultiplexing barcodes. PCR products
were pooled either in equal volumes or in proportion relative to AOI size, depending on the
experiment, and purified with 2 rounds of AMPure XP beads (Beckman Coulter). Libraries were
sequenced on an lllumina NextSeq 550, NextSeq 2000, or NovaSeq 6000 according to the
manufacturer’s instructions, with at least 27x27 paired end reads.

FASTQ files were processed using the NanoString GeoMx NGS Pipeline v2.0 or v2.2.
Briefly, reads were trimmed to remove low quality bases and adapter sequences. Paired end
reads were aligned and stitched, and the barcode and UMI sequences were extracted. Barcodes
were matched to known probe barcodes with maximum 1 mismatch allowed. Reads matching the
same barcode were deduplicated by UMI. The number of raw reads was highly linearly correlated
with the number of unique UMIls at all AOI sizes, suggesting largely uniform library amplification
(Supplemental Fig S9). However, to correct for any PCR amplification bias, all analyses in this

study use UMI deduplicated counts.

RNAseq experiments
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For the comparison to cell line RNAseq, in-house RNAseq data was generated for all of the mouse
cell lines used in the comparison and 5 of 11 human cell lines (Daudi, H596, HEL, HUT78, and
HS578T). Purified total RNA for each cell line was purchased from Acepix Biosciences. RNAseq
libraries were prepared using the TruSeq Stranded mRNA Library Prep kit (lllumina) following the
manufacturer’s instructions and using 100-125 ng of RNA per cell line as input. Libraries were
sequenced on an lllumina NextSeq 550 with 75x75 paired end reads.

Sequencing reads were mapped to the human RefSeq transcriptome GRCh38.p13 or the
mouse reference transcriptome GRCm38.p6 using Salmon v1.3.0 with default parameters (Patro
et al. 2017). Transcript-level counts were collapsed to gene-level counts using tximport v3.13
(Soneson et al. 2015).

Comparison of our in-house human cell line RNAseq data to publicly available RNAseq
data from the Cancer Cell Line Encyclopedia Project (CCLE) (Ghandi et al. 2019) showed that
our data was highly correlated with the CCLE data, and that WTA correlations and sensitivity were
very similar using our data and the CCLE data. As there was CCLE RNAseq data available for all
of the human cell lines profiled by WTA, the CCLE data was used for all of the comparisons to

human WTA shown in Figure 1 and Figure S2.

Data analysis and visualization

Count data was processed and normalized using either the NanoString DSPDA software
v2.2 or v2.3, the GeoMxTools R package v1.0
(https://bioconductor.org/packages/release/bioc/html/GeomxTools.html), or similar in house data
processing scripts. AOls with fewer than 5000 raw reads or a sequencing saturation <45% (mouse
embryo experiment) or <50% (all other experiments) were filtered out of the analysis. For the
negative probes, we performed outlier testing and removed outlier probes from the analysis before
collapsing counts. All other targets have just one probe per target and therefore were not filtered

for outliers or collapsed. A negative probe was called an outlier if it met one of two criteria. First,
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if the average count of a probe across all segments was <10% of the average count of all negative
probes the probe was removed from all segments. Second, if the probe was called an outlier by
the Grubb’s test with alpha = 0.01, it was removed from that segment. If the probe was an outlier
by the Grubb’s test in 220% of segments, it was removed from all segments. The geometric mean
of the remaining probes was calculated to collapse the negative probes to a single count value.

The limit of detection (LOD) above which a gene was called “detected” was defined as 2
standard deviations above the geometric mean of negative probes. For the analyses of the kidney
and mouse embryo data, genes were filtered to only those above LOD in >1% of AOls and counts
were normalized by Q3 normalization after removal of genes consistently below LOD. For the
CRC/NSCLC differential expression, ssGSEA, and cell type deconvolution analyses, genes were
filtered to only those above LOD in >15% of AOIs and counts were normalized by Q3
normalization after removal of genes. For all other datasets and analyses, genes were not filtered
and raw deduplicated counts were used.

For the CRC/NSCLC sequencing subsampling analysis, raw FASTQ files were
subsampled to the desired read depths using seqtk (https://github.com/lh3/seqtk). Five replicates
of the subsampling were performed at each read depth level and all subsamples were run through
the NGS data processing pipeline independently. For analyses where sequencing read depth was
compared, AOls were not filtered for sequencing saturation. For analyses where only one read
depth is presented, the 150 reads/um? level was used and AOls with <50% sequencing saturation
were removed from the analysis.

All statistical analyses and data visualizations were performed in R or using the DSPDA
software v2.3. Differential expression was performed using a linear mixed effect model with slide
and DSP instrument as random effect variables, and p-values were corrected for multiple
hypothesis testing. ssGSEA was performed using the GSVA R package (Hanzelmann et al.
2013). Cell type deconvolution was performed using the SpatialDecon R package (Danaher et al.

2022).
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