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Abstract

Genetic variants, including mobile element insertions (MEIs), are known to impact the
epigenome. We hypothesized that the use of a genome graph, which encapsulates genetic
diversity, could reveal missing epigenomic signal. Given the contributions of mobile
elements to the evolution of primate innate immunity, we tested this in monocyte-derived
macrophages obtained from 35 individuals before and after Influenza virus infection.
After characterizing genetic variants in this cohort using linked-reads, including 5140 Alu,
316 L1, 94 SVAs and 48 ERVs, we incorporated them into a genome graph. Mapping
epigenetic data to this graph revealed 2.5%, 3.0% and 2.3% novel peaks for H3K4me1
and H3K27ac ChIP-seq and ATAC-seq respectively. Notably, using a genome graph also
modified quantitative trait loci estimates and we observed 375 polymorphic MEIs in active
epigenomic state. For example, we found an AluYh3 polymorphism whose chromatin
state changed after infection and that was associated with the expression of TRIM25, a
gene that restricts influenza RNA synthesis. Our results demonstrate that graph genomes
can reveal regulatory regions that would have been overlooked by other approaches.
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Introduction

Structural variants (SVs) contribute the largest number of variable nucleotides in
an individual [1], have larger effect sizes on gene expression [2] and are associated with
functionally relevant epigenetic differences between humans and chimpanzees [3]. A
particular class of SVs, mobile element insertions (MEIs), likely influences the epigenome
since fixed mobile elements are known to harbor transcription factor binding sites [4, 5]
and have contributed primate specific regulatory regions [6]. The epigenetic features that
occur on SVs are not immediately accessible when mapping to a linear and incomplete
reference genome [7, 8] but could potentially be accessed using a graph genome. Indeed,
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using the personal genome of a single individual we have shown previously that genome
graphs can recover epigenomic signal in genetically variable regions of the genome [9].
Genome graph approaches have also been used to find differential CpG methylation within
SVs in twelve medaka fish genomes [10].

Obtaining accurate maps of SVs with short read libraries can be challenging for several
reasons [11]. First, repeats are abundant in eukaryotic genomes and resolving variation
in these regions can be more difficult since read mapping is often ambiguous. Second,
mapping short reads reveals only the break points of insertions and does not provide
their actual sequence without assembling the reads into larger contigs. Third, short read
assembly algorithms cannot distinguish between highly similar sequences and tend to
collapse copy number variation. To mitigate these shortcomings, paired-end and linked
read libraries [12] have been developed. Linked read libraries go further than paired-end
libraries by labeling each read with a barcode that represent the DNA fragments from
which it originates. This provides long range positional information in regions of the
human genome that cannot be reached by short reads alone. Linked reads have been used
to genotype [13, 14, 15], identify SVs [16, 17, 18], detect MEI polymorphisms [19] and
assemble genomes [20, 21].

Given that mobile elements have been found to be co-opted in innate immunity [22],
we decided to study the impact on the epigenome of genetic variants and MEIs in the
response to Influenza virus (IAV) infection. Specifically, we used data obtained from
monocyte-derived macrophages from 35 individuals of African- or European-descent before
and after in-vitro IAV infection [23]. This included whole-genome sequence (WGS) data
together with H3K4me1, H3K27ac ChIP-seq, ATAC-seq and RNA-seq data to characterize
the transcriptome and the chromatin state. First, we developed a new approach to build
a genome graph that includes MEIs by resolving the sequence of insertions using locally
assembled linked reads (Fig S1). We validated the method by generating ChIP-seq and
ATAC-seq data from the NA12878 benchmark genome [24] following the protocols used in
Aracena et al. [23]. Next, we generated linked read data for the 35 individuals in the IAV
infected cohort and applied our new approach to build a graph that includes SNPs, indels
and MEIs. Using this genome graph, we showed we could identify regulatory sequences
that would have been missed otherwise.

Results

Adding MEIs to the NA12878 genome graph reveals additional epigenomic signal

We chose the NA12878 genome to develop and benchmark our approach since WGS,
linked reads and a haplotype resolved assembly were already available [24]. First, we
ran MELT and ERVcaller on paired-end WGS data to identify and genotype 2175 Alu,
351 LINE1, 106 SVA and 6 ERV insertions (Fig 1A). Of these calls, 66% (1738) were
previously observed by Ebert et al. [25]. MELT and ERVcaller could only predict the
breakpoints of MEIs and to obtain the sequence of these insertions, we developed a local
linked read assembly tool, which we called BarcodeAsm (Methods). By applying this
tool, we successfully assembled the sequences of 1054 Alu, 117 LINE1, 17 SVA and 35
ERV instances (Fig 1B), sometimes recovering both copies of homozygous insertions
corresponding to 963 loci (Fig 1A, right). We noted an excess of ERV annotations due
to a set of misannotated short sequences that appear with low frequency in the local
assembly windows. Next, to validate these assembled insertions, we aligned them against
the haplotype resolved assembly of NA12878 and calculated the proportion of their length
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that matched (Fig 1C). Despite expecting some errors in our local assembly and in the
de novo assembly, we found that 925 loci (96.1%) had a match over 95% of their length.
These matches were also equally distributed between the two haplotypes of the de novo

assembly, confirming the robustness of the approach.
Previously, we introduced an axis that orders reference genomes according to how

similar they are to the truth [9]. This axis ranged from the least accurate sequence (the
reference genome) to the most representative (the de novo assembly). As intermediate
stages along this axis, we now defined multiple genome graphs: a +SNVs graph containing
only SNVs, a +indels graph containing SNVs and indels, and a +MEIs graph containing
SNVs, indels and MEIs (Methods). We also created a de novo graph with all the variants
called in the NA12878 haplotype-resolved assembly. Next, we simulated 600 million
standard WGS reads from this de novo graph and aligned them to the genomes along this
axis. As expected, we observed that the number of true positive alignments increased as
the graphs became more complete (Fig 1D). The +SNVs graph (with 3.5× 106 SNVs)
correctly finds around 2.2× 105 more true alignments (+0.062 per SNV) compared to the
reference graph. The +indels graph (with 5.2× 105 indels), adds 3.3× 104 true alignments
(+0.063 per indel) over SNVs alone. The impact of SNVs and indels is similar because
most indels are short and allelic bias in indels overcomes SNVs only at longer lengths [26].
The +MEIs graph (with 963 MEIs) adds another 1.4× 104 true alignments (+14.5 per
MEI) on top of SNVs and indels, a much larger impact per variant as compared to SNVs
and short indels. Finally, the de novo graph outperforms our best genome by 1.4× 106

true alignments since it represents even more SVs.
Having established that our genome graph recovers more true mappings, we looked

for MEIs that support active histone marks and chromatin accessibility signal. To mimic
the data obtained from [23], we used cells derived from NA12878 and generated three
replicates for H3K4me1, H3K27ac ChIP-seq and ATAC-seq (Methods). These data were
then mapped to the MEI graph and we called peaks using Graph Peak Caller [27]. We
observed 58 H3K4me1, 22 H3K27ac and 19 ATAC-seq peaks that overlapped MEIs in at
least one of the replicates (Fig 1E). Similarly to other peaks, roughly half were observed
in all three replicates. Most loci were covered on both the MEI and the reference allele
and a smaller subset were covered on only one of the alleles (Fig 1F). While the number
of events is small in a single genome, they show that using a graph we can profile the
chromatin in regions that are missing from the reference.

Linked reads recover the sequences of polymorphic MEIs in a cohort

We looked to extend the method and apply it to a cohort with the 35 individuals that
were exposed to IAV infection [23]. First, using MELT and ERVcaller on the WGS data,
we identified and genotyped 7362 Alu, 1344 LINE1, 649 SVA and 19 ERV insertion loci
(Fig 2A). Next, we generated linked read data from the same individuals and introduced
a population consensus approach before attempting to identify the final MEI sequence at
each locus with BarcodeAsm (Methods). Using this approach we were able to assemble
and annotate the insertions for 5140 Alu, 316 LINE1, 94 SVA and 48 ERV (Fig 2A,
right). The population consensus approach allowed us to recover a larger fraction (60%
versus 37%) of MEIs because the number of attempts to reassemble a locus is equal to
the frequency of the MEI allele in the cohort. Consequently, while singleton MEIs are
the most numerous, they are also the least likely to be assembled (Fig S2). As expected,
the length distributions of the consensus insertions identified include the Alu peak at
300 bp and a long tail associated with longer truncated and full length MEIs such as the
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LINE1 (Fig 2B-C). The resulting multiple sequence alignments showed few ambiguous
nucleotides, suggesting that the consensus insertions are representative of most samples
(Fig S3A). When we ordered mobile element families based on abundance (Fig 2D), we
observed unsurprisingly that AluY families were the most common amongst Alus and
that the L1HS sub-family was ranked highly [28, 29]. Similarly, the human specific SVA F
sub-family [30] was found to be the most abundant among SVA families in our dataset.

Next, we looked at the distance between insertions and the nearest exon, enhancer
and repetitive sequences in the reference genome (Methods). We found that 87 insertions,
mostly Alus, were within the bodies of exons (Fig 2E), which is notable since Alus are
associated with alternative transcription events [31]. We also observed 135 insertions
located within enhancers (Fig 2E) and that more than half of the insertions (2941) were
nested within a repetitive sequence (data not shown). Overall, the distribution of these
MEIs around exons, enhancers and other repeats is similar to those in the 1000 Genomes
Project [32] (Fig S3B-D). Lastly, we checked if the insertions that we reconstructed with
BarcodeAsm and their genotype would recapitulate the known African and European
ancestry structure of the cohort. We found two clusters in the principal component
analysis (Fig 2F) that were consistent with the genetic ancestry and what we see from
SNV calls from WGS data (Fig S4). Overall this confirms that we were able to recover a
high quality set of MEIs for our cohort together with their assembled sequences.

A genome graph increases the number of peak calls near immune genes and impacts QTL

estimates

We wanted to explore the extent to which a cohort genome graph would impact read
mapping and peak calling for epigenomic datasets. As expected [32], we observed more
variants in samples from African ancestry (Fig 3A). Combining all these variants, we
built a genome graph containing a total of 1.6× 107 SNVs, 1.1× 106 insertions, 1.3× 106

deletions and 5.6× 103 MEIs. We then mapped ChIP-seq and ATAC-seq datasets before
and after IAV infection [23] and observed a decrease in unmapped reads and an increase in
perfectly mapped reads that can reach up to 0.15% of reads in a data set (Fig 3B). Next,
we called peaks using either the reference genome or the cohort genome graph. Peaks
called with both approaches were called common peaks, while those called only in the
reference graph are ref-only and those called only in the cohort graph are graph-only.
Among H3K4me1 samples, we observed an average of 4700 (2.5%) graph-only peaks and
2200 (1.2%) ref-only peaks per sample (Fig 3C, S5A). The net increase in the number
of peaks is caused by additional mapped reads that push peaks above the significance
threshold. The fact that graph-only peaks are approximately twice as numerous as ref-only
is consistent with what was observed previously [9]. For H3K27ac, we counted 1800 (3.0%)
graph-only peaks and 1100 (1.9%) ref-only peaks (Fig S6A, S5B) on average. Among
ATAC-seq datasets, graph-only events averaged 4000 (2.3%) peaks in flu-infected samples
and ref-only events average 2400 (1.4%) peaks per sample (Fig S6B). In non-infected
samples, the same numbers and proportions are roughly halved (S5C). We suspect that
this is linked to cell death in flu-infected samples introducing cell-free DNA and more
background in the ATAC-seq library preparation. Consistent with this hypothesis, infected
samples show an excess of low quality peaks relative to non-infected samples (Fig S6E-F).

To confirm whether altered peaks were associated with sequence variants, we estimated
the influence of genotype on common and graph-only peaks by logistic regression on
SNPs and indels within the peaks while controlling for peak width (Table S1). We found
that the log-odds for a peak to be graph-only increased by 0.11 to 0.19 when SNPs
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were present and by 0.45 to 0.56 when indels were present. Overall this confirms that
indels have a stronger influence on peak calling as compared to SNPs. A similar analysis
could not be performed with MEIs because of the small numbers. This multi-sample
epigenomic dataset was also an opportunity to better understand how reliable the altered
peaks were compared to common peaks. We contrasted the population frequency of
graph-only, ref-only and common peaks with a peak replication cumulative distribution
curve (Methods). H3K4me1, H3K27ac and ATAC peak sets generated very similar curves,
with common peaks having the longest tails followed by graph-only and ref-only peaks,
with the curves expected by chance decaying the fastest (Fig 3D, S6C-D). Under the
random simulations, none of the peaks were observed in more than 20 datasets, but a
proportion of graph-only peaks were replicated in more than 40 datasets (each individual
has a non-infected and an infected dataset).

To understand the relevance of the newly identified peaks in the response to IAV,
we retrieved the ontological descriptions of genes within 10 Kbp of a peak (Methods).
As expected, we found that the genes near common peaks were functionally enriched
for immune biological processes (Fig S7). Notably, genes near graph-only peaks were
enriched for similar ontological terms (Fig S7 and Fig 3E). For example, 281, 203 and 249
genes related to “positive regulation of NF-kappaB” had graph-only peaks for H3K4me1,
H3K27ac and ATAC, respectively. Finally, the use of a genome graph could affect methods
to identify quantitative trait loci (QTLs), which aim to characterize the impact of genetic
variants [33]. To measure this, we mapped caQTLs (chromatin accessibility) and hQTLs
(H3K4me1 and H3K27ac histone modifications) using reference-based and graph-based
read count estimates (Methods). We measured changes in effect size and p-value and
found that while most QTLs remained the same, some do change. For example, when
mapping caQTLs, the estimated effect size changes by 1.4 or more for one QTL in 1000
and the observed p-value (as −log(p)) changes by 7.9 or more (Fig 3F). The mapping
of H3K4me1-QTLs and H3K27ac-QTLs is similarly affected (Fig S8). We checked the
genes that are nearby these top changing QTLs and found enrichment for mostly immune
pathways, which is consistent with the cell type (Fig S9). For example, the gene HLA-

DQA1 is near such changing QTLs for H3K4me1, H3K27ac and ATAC-seq. Therefore,
removing reference bias from the analysis of epigenomic data using genome graphs can
reveal novel peaks and improve QTL discovery.

Genome graphs measure epigenomic signal on MEIs

We wanted to focus next on the MEIs that were assembled and introduced in the cohort
genome graph. First, we took advantage of the genotypes of the individuals in the cohort
to see how specific read mapping was in these repetitive and polymorphic sequences. We
did this by aligning whole genome sequencing reads to the genome graph and regenotyping
the MEIs in each sample (Methods). Reassuringly, we find that the graph genotypes are
highly consistent with the calls made by MELT and ERVcaller (Fig 4A). When genotyping,
the graph recapitulates between 1274 to 1563 genotypes per sample and only misses 60 to
95 insertions. The graph also gains between 110 and 196 insertions per sample. These
gained genotypes are not necessarily false positives and could be explained by an increase
in sensitivity since the exact location and sequence of these polymorphisms were known a

priori with the graph genotyping algorithm but needed to be found de novo by MELT
and ERVcaller. Having confirmed that read mapping was reliable in MEIs, we extracted
H3K4me1, H3K27ac ChIP-seq and ATAC-seq peaks overlapping MEIs (Fig 4B, S10A-B).
The peaks were labeled either as reference peaks, biallelic peaks or MEI peaks (binomial
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test, Methods). Notably, we found 714 MEI peaks for H3K4me1, 191 for H3K27ac and
316 for ATAC-seq. As an additional negative control, we repeated the same with peaks in
MEI loci for which the samples were homozygous reference. We found that reads in these
peaks were overwhelmingly assigned to the reference allele (Fig S10C-E).

MEIs peaks for H3K4me1 and H3K27ac were mostly from AluY families or other Alu
elements (Fig 4C). L1 (L1HS, L1PA2) and ERV (LTR5 Hs) insertions also support a small
number of peaks. Furthermore, we detected 30 SVA insertions in open chromatin states
(Fig 4C). Notably, Chen et al. [34] found that SVA families become enriched in open
chromatin after influenza infection in macrophages and are variable between individuals
(Fig S11). Consistent with this, the overwhelming majority of ATAC-seq peaks that
lie on SVA insertions were detected in the infected condition (92 of 108 peaks, 85.2%).
Finally, we counted how many of these peaks were detected with the graph genome and
would have been missed by a traditional approach. In total, we tallied 366 H3K4me1,
161 H3k27ac, and 320 ATAC graph-only peaks (Fig 4D) on MEIs. All together, 22.0%
of H3K4me1 MEI peaks, 44.5% of H3K27ac MEI peaks and 44.0% of ATAC MEI peaks
were graph-only. On the other hand, MEIs rarely disrupt peaks in the reference graph
(Fig S10F). We show one Alu insertion in the graph that supports a H3K4me1 graph-only
peak (Fig 4E), and its linear surjection (Fig S12).

Cohort data reveals MEIs that act as potential enhancers

So far, we have focused on detecting single MEI alleles that support chromatin marks
in individual genomes. Next, we wanted to obtain an overview of MEIs at the level of
the entire cohort. In total, we identified 375 MEIs that carry at least one epigenomic
peak. Specifically, 218 MEIs support H3K4me1 peaks, 90 support H3K27ac peaks and 210
support ATAC peaks (Fig 5A), many of which were found in more than one sample (Fig
S13). Among the H3K4me1 MEI peaks, 58 were unique to flu-infected samples, 41 were
unique to non-infected samples and 119 were found in both conditions (Fig 5B). Peaks in
H3K27ac and ATAC-seq were also well balanced between the two conditions. Ordering
MEIs by allele frequency, shows variable levels of occupancy by peaks (Fig 5A, right side).

Next, we looked for MEIs that carry combinations of epigenomic marks that are
characteristic of enhancer sequences (Fig 5C). For example, 56 MEIs supported both
H3K4me1 and ATAC, a combination which suggests poised enhancers in open chromatin.
Similarly, 16 instances showed H3K27ac and ATAC and 26 insertions were marked by
H3K4me1, H3K27ac and ATAC, which is strong evidence for active enhancers in open
chromatin. There is a noticeable number of SVA elements showing ATAC peaks, second
only to Alu elements. We find that peaks on MEIs have a similar distribution relative
to exons, introns, genes and enhancers as compared to other peaks and quite distinct
from a random distribution (Fig 5D). Additionally, we find dozens of MEI loci that are
in the vicinity of genes associated with “viral processes”, “immune system processes”,
the “inflammatory response” and the “positive regulation of NF-kappaB” (Fig S14). For
example, an Alu insertion that supports H3K27ac peaks (Fig S15A) in 21 samples is
immediately upstream of CD300E, an immune-activating receptor gene [35]. This frequent
MEI peak is also located within DNase and transcription factor clusters (Fig S15B), which
is further evidence for active chromatin.

Finally, since Alu polymorphisms could alter gene transcript levels [36], we asked if any
MEIs were eQTLs for expressed genes. We mapped MEI-eQTLs and found 18 MEIs in the
flu-infected condition and 34 MEIs in the non-infected condition that were associated with
gene expression (FDR lower than 5× 10−2, Methods). In total, there are also 354 MEIs
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that are ca/hQTLs for at least one mark or condition (Fig S16). Of the MEI-eQTLs, 3
have a supporting caQTL or hQTL in the flu-infected condition and 9 in the non-infected
condition (Table S2). In particular, in the flu-infected condition, we detected an AluYh3
MEI that is an eQTL for DGKE and TRIM25, a gene that restricts influenza RNA
synthesis [37], and is also a QTL for 2 H3K4me1 peaks, 2 H3K27ac peaks and 3 ATAC
peaks (Table S3). We show the average read depth at this locus in flu-infected samples
that carry the MEI (Fig 6A), the flu-infected samples that do not carry the MEI (Fig
6B), in non-infected samples that carry the MEI (6C) and in non-infected samples that
do not carry the MEI (Fig 6D). The more traditional linear projection of the average read
depth at this locus confirms that the signal is higher in flu-infected samples that carry
the MEI when using an accurate genome graph (Fig 6E-F). Overall, this MEI exists in a
flu-specific active chromatin state, is associated with TRIM25 and DGKE gene expression
and would have been missed with the linear reference genome.

Discussion

We have constructed a genome graph to encapsulate the genetic diversity of a cohort
of 35 individuals by re-sequencing their genome with linked-reads. These data allowed
us to reliably discover and phase SNVs, small indels and a large number of MEIs; the
latter through the development of a local assembly method. We note that, because of
the limitations of the linked-read technology, the MEIs included were skewed towards the
shorter insertions and missed a significant portion of larger events. Indeed, out of the
1344 L1 polymorphisms detected in the cohort, 1048 (78%) could not be assembled and
integrated into the genome graph. We anticipate that long read technologies [25] will be
needed to construct more complete genome graphs that represent even more complex SVs.

We showed that our cohort genome graph improves read mapping for epigenomic
data. This lead to a net increase in the number of peak calls, which are replicated across
samples and occur in functionally interesting loci such as in the vicinity of immune genes.
In addition, we showed that using a genome graph had an impact on the discovery of
histone and chromatin accessibility QTLs in polymorphic regions. However, these new
results were restricted to regions where sequence variants were added the graph, which
based on our current approach remain relatively small (SNPs, indels and short MEIs).
Therefore, the gains were mostly associated smaller epigenomic features such as narrow
histone marks or chromatin accessibility. We anticipate that adding larger and more
complex structural variations to the graph, such as segmental duplications, will reveal
even more epigenomic features that are present but difficult to measure using traditional
approaches.

Furthermore, we used the cohort genome graph to re-genotype 5598 MEIs using short
read WGS data and reliably assign epigenomic signal to MEI alleles. While rare, we
sometimes observed heterozygous MEIs where the majority of the epigenomic signal was
either on the insertion or the reference allele, revealing homologous loci that are in different
chromatin states. This shows that genome graphs can be exploited to search for epigenomic
signal that is specific to alleles in a cohort of individuals. Meanwhile, current methods that
measure allelic specific signal are limited in their ability to represent complex structural
variants or relate genomes within a population to one another. Therefore, genome graphs
could prove a powerful framework to study the chromatin state of polymorphic structural
variants in a large number of genomes.

Finally, with the recent completion of the first full human genome [38], there is a
general appreciation of the need to use a new baseline for genomic and epigenomic analysis,
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including graph genomes that can capture genetic diversity. The Human Pangenome
Reference Consortium is making great strides towards this goal [39] and new approaches
are needed to demonstrate the benefits of these richer references. Once a human pan-
genome graph is developed from a set of high quality and diverse genome assemblies, a
more comprehensive set of structural variants will become easily accessible. The hope is
that similar analyses as was done here could be employed on a multitude of cell types and
phenotypes to identify functionally relevant SVs without the challenges associated with
the construction of cohort-specific genome graphs.

Methods

ATAC-seq and ChIPmentation library preparation

ATAC-Seq library preparation was performed according to the Omni-ATAC protocol
[40]. 50,000 GM12878 cultured cells were resuspended in 1 ml of cold ATAC-seq resus-
pension buffer (RSB; 10 mM Tris-HCl pH 7.4, 10 mM NaCl, and 3 mM MgCl2 in water).
Cells were centrifuged at 500 g for 5 min in a pre-chilled (4 ◦C) fixed-angle centrifuge.
After centrifugation, supernatant was aspirated and cell pellets were then resuspended in
50 µl of ATAC-seq RSB containing 0.1% IGEPAL, 0.1% Tween-20, and 0.01% digitonin
by pipetting up and down three times. This cell lysis reaction was incubated on ice for 3
min. After lysis, 1 ml of ATAC-seq RSB containing 0.1% Tween-20 (without IGEPAL and
digitonin) was added, and the tubes were inverted to mix. Nuclei were then centrifuged
for 10 min at 500 rcf in a pre-chilled (4 ◦C) fixed-angle centrifuge. Supernatant was
removed and nuclei were resuspended in 50 µL transposition mix (2x TD Buffer, 100 nM
final transposase, 16.5 µL PBS, 0.5 µL 1% digitonin, 0.5 µL 10% Tween-20, 5 µL H2O
). Transposition reactions were incubated at 37 ◦C for 30 min in a thermomixer with
shaking at 1000 rpm. Reactions were cleaned up with Zymo DNA Clean and Concentrator
5 columns. Primers (i5 and i7) were added by amplification (12 cycles) using NEBNext
2x MasterMix. Sequencing of the ATAC-Seq libraries was performed on the Illumina
NovaSeq 6000 system using 100-bp paired-end sequencing.

ChIPmentation library preparation was performed on 5 million cross-linked cells (1%
formaldehyde). After cell lysis, sonication of nuclei was performed on a BioRuptor UCD-
300 targeting 150-500 bp size. Immunoprecipitation and library preparation for the histone
marks H3K27ac and H3K4me1 was performed following the Auto-ChIPmentation protocol
for Histones (Diagenode inc, Denville, USA) according to the manufacturer’s indications.
Sequencing of the ChIPmentation libraries was performed on the Illumina NovaSeq 6000
system using 100-bp paired-end sequencing.

Whole genome sequencing with linked reads and genotyping

High molecular weight DNA was extracted using the MagAttract HMW kit from
Qiagen and quantified using the Qubit dsDNA HS assay kit (ThermoFisher) for 35
samples. In order to generate the linked read libraries 1ng of HMW DNA was loaded
on a 10x Chromium device using 10x Genome Sequencing Solution v2 reagents (10X
Genomics). Illumina compatible libraries were prepared as per the 10x Genomics protocol
and loaded as one library per lane on the Illumina HiSeqX instrument for 150bp paired-end
sequencing. SNVs and indels were called using the longranger pipeline.
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Locally assembling linked reads with BarcodeAsm

For the purpose of locally assembling linked reads, we wrote BarcodeAsm [41]. The
inputs to BarcodeAsm are a BED file describing the regions to be locally assembled and a
BAM file that was aligned with lariat [17]. This BAM file must be provided twice, once
sorted by position and once sorted by barcode (with bxtools).

BarcodeAsm uses the position sorted BAM file to identify barcodes that are present
in the target assembly window. Then it moves to the barcode sorted BAM file to retrieve
all the reads that are tagged by the previously identified barcodes.

BarcodeAsm also allows filtering reads recovered from outside the local window (800 bp
for Alus, 8000 bp for other TEs) by mapping quality. We introduced this feature because
we expect reads that belong to novel transposable element insertions to be unmapped or
mapped to the wrong copy, have very low mapping quality, or be multi-mapped.

Next, the fermi-lite [42] library assembles the resulting collection of reads and
creates a unitig graph, from which the contigs associated with the assembly window are
extracted. Finally, BarcodeAsm aligns the contigs to the local window with minimap2

[43]. A select set of fermi-lite assembly parameters and minimap2 alignment parameters
are exposed via the command line and can be adjusted to each application.

Reassembling transposable element insertions

ERVcaller [44] and MELT [45] were used to genotype novel insertions of Alu, LINE1,
SVA, and ERV transposable elements using short reads. To further recover potential
insertions within the same type of reference repeats (nested TE insertions), candidate
nested insertions that were detected in other public datasets were not removed. For each
genotype, local genomic windows were centered on the insertion site. These windows
are 800 bp in length for the short Alu elements and 8 Kbp for the longer transposable
elements. To optimize the outcomes of the assembly, BarcodeAsm was run separately
on the short (≈ 300 bp) and long insertions (> 300 bp) with different parameters. For
Alus, a minimum read overlap of 30 bp, a maximum mapping quality of 10 (as assigned
by lariat), and a minimum k-mer frequency of 2 were required. For the larger MEIs, a
minimum read overlap of 35, a maximum mapping quality of 20, and a minimum k-mer
frequency of 8 were used instead. These parameters were found through a grid search
approach and are expected to vary with different data sets.

For the NA12878 benchmark, the SRA accession numbers ERR174324, ERR174325 to
ERR174341 were merged in order to genotype MEIs. MEIs were assembled from the public
NA12878 linked reads hosted at https://support.10xgenomics.com/genome-exome/

datasets/2.0.0/NA12878_WGS. Insertions were extracted directly from the BarcodeAsm
output using scripts/alignment to vcf.py to create a VCF file.

For the larger cohort, a consensus sequence approach was used to take advantage
of multiple MEI copies in the population (see BarcodeAsm/scripts/). Here, contigs
that contain insertions are selected but not immediately used to recover an insertion.
Instead, scripts/msa.py generates a multiple alignment using MUSCLE and calculates
a consensus contig for a particular locus across samples. This consensus contig is aligned
back to the local window to call the consensus insertion and to create a multi-sample
VCF file using scripts/extract consensus.py. For NA12878, the assembled contigs
were validated by matching them against its haplotype resolved de novo assembly [24]
using minimap2 -H [43] and selecting the haplotype with the best mapping quality.
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Annotating assembled insertions

To annotate the insertions (without any flanking sequences), we used RepeatMasker
with the Dfam [46] database and the longest annotation was selected for each insertion. For
each assembled TE polymorphism, the distance to the nearest enhancer in the GeneHancer
annotation [47] and the distance to the nearest exon in the GENCODE annotation [48]
were calculated. The same was done with the MEIs from the 1000 Genome Project [32]
and with an equal number of random positions sampled uniformly from the genome. The
population structure of the MEI genotypes were compared to the population structure of
WGS variants by running principal component analysis with SNPRelate [49].

Creating and benchmarking genome graphs

The genomes graphs were generated with vg construct [26] on VCF file containing
SNVs, indels and MEIs. For the benchmark genome graph, the NA12878 Platinum
callset [50] was merged with the MEI VCF file. For the cohort genome graph, SNPs and
indels were called using the LongRanger pipeline [21] independently for each sample were
merged with the population MEIs to create a multi-sample VCF file. A Nextflow script to
generate the genome graphs from these inputs and the b37 reference genome is found in
pop graph.nf. The sensitivity and specificity of the resulting genome graphs was checked
by aligning a matching but separate WGS data set of the same samples (downsampling
the merged read set by 5x in the case of NA12878) and removing non-specific alignments
with vg filter -r 0.90 -fu -m 1 -q 10 -D 999. After, the assembled MEI snarls
were genotyped with vg call -m2,4 [51] and the graph genotypes were compared to
ERV and MELT genotypes.

To evaluate the impact of the genome graphs on alignment, a WGS read set was
simulated from the diploid assembly of NA12878. To achieve this, a genome graph was
created from hg19 using the structural variant sequences called by the authors directly
from the chromosome scale assembly. Paired-end reads were simulated using vg sim from
this graph with a fragment size of 2000 bp, to ensure that we can access at least some of
the long copy number variants that have low mappability. First, this read set was aligned
to the hg19 reference graph. Then, the alignment of the simulated reads was repeated on
increasingly complete genome graphs, first by including only SNVs, then indels and lastly
MEIs. Finally, the simulated reads were aligned to the NA12878 de novo genome graph,
which is the true genome by construction. The previous alignments are compared against
this last alignment using vg gamcompare.

Evaluating the impact of genome graphs on peaks

In parallel, ChIP-seq and ATAC-seq data was aligned to the reference graph to obtain
reference peaks. The reference peaks were intersected with the graph peaks, and categorized
into common peaks, graph-only and ref-only peaks. Common peaks are unaltered peaks
that are found with both the reference and cohort genome graph. Graph-only peaks and
ref-only peaks are altered peaks that are only found in the cohort graph or the reference
graph respectively. A logistic regression model including peak width, the presence of
an indel and the presence of a SNP was fitted using cv.glnmnet (see peak variants.R)
[52]. The number of common and altered peaks were balanced by subsampling common
peaks. We report the cross-validation mean coefficients and median AUC. To summarize
the population properties of peaks, curves were generated for common, graph-only and
ref-only peaks (see Rscripts/peak replication.R). The width of each peak was fixed
to 200 bp and the proportion of samples that have a peak at the same location was
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calculated. The resulting curve is the inverse cumulative distribution of peak frequencies.
A permutation simulation was performed to obtain the inverse cumulative distribution
that is expected from random overlaps. In the simulation, a new peak set of the same size
is randomly sampled for each individual from the set of all peaks and the overlaps are
used to recompute the inverse cumulative distribution. The simulation was run 100 times
and the average inverse cumulative distribution is reported.

QTL mapping

We filtered to exclude non-autosomal and non-biallelic variants. Additionally, we
removed SNPs and MEIs that had a call rate of <90% across all samples, that deviated
from Hardy–Weinberg equilibrium at p < 10−5, and with minor allele frequency less than
5%. This resulted in 7,383,243 SNPs and 1222 MEIs used for QTL mapping. We used
the R package MatrixeQTL [53] to examine the associations between SNP genotypes and
chromatin accessibility, H3K4me1 and H3K27ac histone marks using both graph and
reference read counts. We also mapped MEI-eQTLs to find association between mobile
element insertion genotypes and gene expression counts (derived from alignments to the
reference genome with STAR [54]). In each case, we calculated age and batch corrected
expression matrices. Here, batch is a categorical variable. We calculated normalization
factors to scale the raw library sizes using calcNormFactors in edgeR (v 3.28.1) [55]
and used the voom function in limma (v 3.42.2) [56] to apply these factors to estimate
the mean-variance relationship and convert raw read counts to logCPM values. We then
fit a model using mean-centered age and admixture, removing batch effects using ComBat

from the sva Bioconductor package [57]. We then regressed out age effects, resulting in the
age and batch corrected expression matrices used as inputs for MatrixeQTL. To increase
the power to detect cis-QTL, we accounted for unmeasured-surrogate confounders by
performing principal component analysis (PCA) on the age and batch corrected expression
matrices. The number of PCs chosen for each data type empirically led to the identification
of the largest QTL in each condition and are reported in Table S4.

Mapping was performed combining individuals in order to increase power, thus, we
included the first eigenvector obtained from a PCA on the SNP data as a covariate in
our linear model in order to account for population structure. Local associations (i.e.,
putative cis QTL) were tested against all SNPs and MEIs located within the peak or gene
or 100 Kbp upstream and downstream of each peak or gene. We recorded the strongest
association (minimum p-value) for each peak/gene, which we used as statistical evidence
for the presence of at least one QTL for that peak/gene. We permuted the genotypes ten
times, re-performed the linear regressions, and recorded the minimum p-value for each
peak/gene for each permutation. We used the R package qvalue [58] to estimate FDR.
In all cases, we assume that alleles affect phenotype in an additive manner.

Functional enrichment analysis

To find if peaks are enriched in functional pathways, the names of genes that are within
10 Kbp of a peak were compiled into gene sets (see pathways.R). A gene may appear
only once in a gene set, even if it is nearby several peaks. This was done separately for
the flu-infected and non-infected conditions and for common and graph-only H3K4me1,
H3K27ac and ATAC peaks. Peaks that occur only in one sample within a condition
were excluded. In a separate but similar analysis, we compiled gene sets that are within
10 Kbp of a peak that is under the control of a QTL, separately for H3K4me1-QTLs,
H3K27ac-QTLs and ca-QTLs, and separately in the infected and non-infected condition.
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Then, gene sets were checked for functional enrichment [59, 60] in Biological Process Gene
Ontology (GO:BP) terms with gprofiler2 [61]. We also calculated the gene ratio of
enriched terms, which is the share of genes in the list associated with a GO term.

Evaluating peaks on genome graphs

H3K27ac, H3K4me1 ChIP-seq and ATAC-seq libraries were aligned to the genome
graphs and peaks were called with Graph Peak Caller [27] to obtain graph peaks. All the
snarls in the genome graph were genotyped with vg call -m2,4 in order to partition the
reads between the reference and alternative alleles in peaks that overlap a polymorphism.
This information is available in the AD (alternate allele depth) and DP (site depth) tags
in the VCF output. As before, non-specific alignments were removed. This approach was
validated by listing peaks that overlap polymorphic loci in homozygous reference samples
to create a negative control peak set, which should not show any coverage on the alternate
allele.

Since the MEI allele is longer than the reference allele, we scaled down read counts
(see Rscripts/allele support.R) on the longer allele according to:

Ca,adjusted = Ca

2LR

2LR + La

where Ca denotes the read count on the long allele, LR the read length and La the length
of the long allele.

Further, peaks were binned according to the partitioning of reads between the reference
and alternative alleles using a two sided binomial test with α = 0.05. Peaks that were
skewed towards the MEI allele (p-value ≤ α/2) are placed in the MEI support bin. Peaks
that show roughly equal read coverage on both alleles (p-value ≥ α/2) are labeled as
biallelic. When reads are skewed towards the reference allele (p-value ≤ α/2), the peak
belongs to the reference support bin. We also counted the MEIs that support combinations
of marks to support their functional relevance [62, 63, 64, 65].
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Figure 1: Adding MEIs to the NA12878 genome graph reveals additional epigenomic signal. A) The
number of MEI breakpoints detected using ERVcaller and MELT and the full-length MEIs recovered by
BarcodeAsm. B) The reassembled families ordered by frequency in the NA12878 genome. Homozygous
insertions that are assembled twice are double counted. C) The spans of MEI contigs that could be
matched and confirmed in the haplotype resolved assembly of NA12878. D) Change in the number of
true positive alignments relative to the previous genome in increasingly complete genomes of NA12878,
starting with the reference as the baseline. E) Proportion and number of peaks on MEI (full line) that
were called at least once, twice and three times in the replicates. Proportion also shown for all peaks
(dashed lined). F) MEI and reference allele coverage at the peak calls that overlap MEIs, stratified by
locus (color) and replicate (shape).
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Figure 2: BarcodeAsm recovers the sequences of polymorphic MEIs in a cohort. A) The number and
family of MEIs genotyped from short read sequencing data using ERVcaller and MELT in the entire
cohort. The lengths of assembled MEIs B) below 800 bp and C) above 800 bp. D) The reassembled
families ordered by frequency in the cohort. E) Number of MEIs inserted in enhancers or exons. F) The
observed population structure in MEI genotypes as projected by principal component analysis.
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Figure 3: Genome graphs with millions of variants impact downstream results. A) Number of SNVs,
insertions, deletions and MEIs in the cohort graph for each sample. B) Changes in the distribution
of read mapping quality when using a cohort genome graph relative to the reference genome. Each
point is an individual sample. C) The number of H3K4me1 altered (graph-only, ref-only) and unaltered
(common) peaks between the cohort and the reference genome graphs, stratified between flu-infected and
non-infected (NI) read sets. D) Inverse cumulative distributions describing how many peaks are observed
in more than a number of samples. Curves that are expected by chance are also shown (dashed lines). E)
Immune related gene ontology descriptions of genes within 10 Kbp of graph-only peaks. One gene may
contribute multiple descriptions. F) Distributions showing caQTL effect size and p-value estimates that
changed by a minimum amount between the genome graph and the reference. First and second vertical
lines mark the 99th and 99.9th percentiles.
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Figure 4: Genome graphs measure epigenomic signal on MEIs. A) Assembled MEIs that were regenotyped
using the cohort genome graph. Graph genotypes are compared to the previous genotypes that were
called with ERVcaller and MELT. B) Partitioning of reads between the reference and alternative allele in
peaks that overlap heterozygous or homozygous MEIs. C) TE families that support peaks in at least
one sample. Singletons not shown. D) Number of graph-only peaks that overlap MEIs in each sample,
with total number across genomes annotated at the top. E) A graph region that represents a MEI locus.
The black nodes represent the reference sequence and the red nodes represent the Alu insertion carried
by some samples. The numbers show the average number of H3K4me1 reads that were mapped to each
nucleotide over the span of the node. Nodes are at most 32 bp long.
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Figure 5: Cohort data reveals MEIs that act as potential enhancers. A) Summary of MEIs (rows) that
support H3K4me1, H3K27ac and ATAC peaks in the cohort samples (columns). Occupancy is the ratio
between samples that support peaks on the MEI (N - red) and those that carry the MEI (N - blue). B)
Venn diagrams showing MEI peaks that are shared between flu-infected and non-infected conditions. C)
Upset plot describing the number of MEIs that support a combination of H3K4me1, H3K27ac and ATAC
peaks, annotated by transposable element class. D) The annotated positions of genome-wide peaks and
MEI peaks in the genome, with uniformly and randomly sampled genome positions for comparison. Peaks
near genes are within 10 Kbp of a gene boundary.
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Figure 6: Example of flu-specific and genotype-specific peak on an MEI. A) Average H3K27ac read depth
in the locus of an AluYh3 MEI-eQTL in flu-infected samples that carry the insertion, B) in flu-infected
samples that do not carry the MEI, C) in non-infected samples that carry the MEI and D) in non-infected
samples that do not carry the MEI. The read depths of homozygous nodes were halved before averaging.
Reads below a MAPQ of 10 were not counted. E) A genome browser view of the read depth after
projecting alignments onto the linear genome, contrasting the alignments to the graph genome and the
reference genome. F) Nearby genes that are associated with this MEI-eQTL (DGKE, TRIM25). The
grey strips denote the position of the MEI.
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Supplementary Tables

Peak snp indel width intercept AUC

H3K4me1 0.11 0.55 −0.72 2.44 0.91
H3K27ac 0.12 0.56 −0.78 2.72 0.92
ATAC 0.19 0.45 −0.87 2.70 0.90

Table S1: Relative influence of peak width (100bp), SNPs and indels on the log-odds of a peak being
found only with the cohort graph genome.

MEI-eQTL Condition Marks Gene Beta FDR

chr1:160047665 NI H3K4me1, ATAC ENSG00000177807 1.02 4.10× 10−2

chr5:1812640 NI H3K4me1 ENSG00000171421 0.17 2.48× 10−3

chr5:78442870 Flu H3K4me1 ENSG00000152409 0.26 4.01× 10−2

chr7:128209146 NI H3K4me1, ATAC ENSG00000242588 0.15 1.13× 10−3

chr7:128217333 NI ATAC ENSG00000242588 0.16 3.87× 10−4

chr8:42039896 NI H3K4me1, H3K27ac, ATAC ENSG00000070718 0.15 4.12× 10−3

chr11:47806640 NI H3K27ac ENSG00000030066 0.28 3.99× 10−7

chr11:47806640 NI H3K27ac ENSG00000252874 0.41 1.06× 10−2

chr12:124066475 NI H3K4me1, ATAC ENSG00000111364 −0.19 1.13× 10−3

chr14:92586933 NI H3K4me1 ENSG00000183648 −0.08 4.44× 10−2

chr14:92586933 Flu H3K4me1 ENSG00000165934 −0.15 9.45× 10−4

chr15:41100318 NI H3K4me1, H3K27ac, ATAC ENSG00000166140 −0.11 9.58× 10−3

chr17:54947569 Flu H3K4me1, H3K27ac, ATAC ENSG00000153933 0.91 9.56× 10−16

chr17:54947569 Flu H3K4me1, H3K27ac, ATAC ENSG00000214226 0.44 9.69× 10−9

chr17:54947569 Flu H3K4me1, H3K27ac, ATAC ENSG00000121060 0.24 2.13× 10−8

chr20:13704145 NI H3K4me1, ATAC ENSG00000101247 0.14 3.69× 10−4

Table S2: MEI-eQTLs that support epigenomic marks and are associated with gene expression at a false
discovery rate below 5× 10−2 in the flu-infected or the non-infected condition.

QTL Effect size FDR

chr17:54947569 — H3K4me1, H3K27ac, ATAC — AluYh3

TRIM25 - Flu 0.239 2.13× 10−8

DGKE - Flu 0.912 9.56× 10−16

H3K4me1:chr17:54944305-54949599 - Flu 0.435 1.68× 10−5

H3K4me1:chr17:54952157-54958631 - Flu 0.114 2.79× 10−2

H3K27ac:chr17:54945079-54949298 - Flu 0.507 8.85× 10−7

H3K27ac:chr17:54956812-54958346 - Flu 0.646 6.95× 10−5

ATAC:chr17:54946838-54948880 - Flu 0.923 3.85× 10−12

ATAC:chr17:54945058-54946521 - Flu 0.466 1.67× 10−8

ATAC:chr17:54952726-54958278 - Flu 0.252 1.15× 10−5

chr11:47806640 — H3K27ac — AluYh7

NUP160 - NI 0.278 3.99× 10−7

Table S3: Summary of MEI-QTLs listing the regressed features (peaks within 10 Kbp or gene), the
biological condition, the effect size, and the false discovery rate. Each entry describes the
insertion coordinate, the marks supported by the MEI and the TE family.
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Analysis Condition Regressed PCs
caQTL Non-infected 1 to 3

Flu-infected 1 to 3
H3K27acQTL Non-infected 1

Flu-infected 1
H3K4me1QTL Non-infected 1 to 2

Flu-infected 1 to 4
eQTL Non-infected 4

Flu-infected 4
Table S4: Number of principal components performed on age and gene expression included in each QTL

discovery analysis in order to correct for age and batch effects.

Supplementary Figures
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Figure S1: A) DNA fragments that are associated with barcodes (yellow, blue, green). B) Throughout
the sequencing library protocol and alignment to the reference genome with lariat, the short reads remain
associated with the barcode of the source fragment. We enumerate the barcodes observed around an
insertion site. C) We assemble the reads tagged by the previously enumerated barcodes site with fermi-lite
to obtain a contig that covers the insertion (red). D) We realign the contig back to the genomic locus to
identify the boundaries of the inserted sequence. E) We augment the genome graph with a bubble that
represents the assembled insertion.
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Figure S2: Population frequency of the A) genotyped and B) assembled MEIs in the cohort.
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Figure S3: A) Number of ambiguous nucleotides per sequence in consensus insertions. The distributions
of insertions in the genome around B) exons, C) enhancers and D) other repeats.
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Figure S5: Frequency of altered peak calls as percentages of all peaks in the sample.
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Figure S6: A) B) The number of altered (graph-only, ref-only) and unaltered (common) peaks between
the cohort and the reference genome graphs for H3K27ac and ATAC-seq. C) D) Inverse cumulative
distributions describing how many H3K27ac and ATAC-seq peaks are observed in more than a number of
samples E) Q-value distribution of ATAC peaks in flu-infected and non-infected samples. F) The shift
function of the two distributions, describing the difference in q-values at the same quantiles.
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Figure S7: Functional enrichment of genes that are within 10 Kbp of H3K4me1, H3K27ac and ATAC
common and altered (graph-only) peaks. We show only the enriched gene ontology terms that relate to
immunity and viral infection. The gene ratio is the share of genes that are associated with a GO term.
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Figure S8: ATAC, H3K4me1, H3K27ac quantitative trait loci are estimated using counts derived from
reference and cohort graph alignments in flu-infected and non-infected conditions. We show the fraction
of QTLs (y-axis) for which the p-values or effect sizes change by a minimum amount (x-axis). The first
line marks the 99th percentile and the second line marks the 99.9th percentile.
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Figure S9: Gene ontology enrichment of genes located within 10 Kbp of peaks associated with hQTLs or
caQTLs that change when using a genome graph. Only ca/hQTLs with p-value and effect size changes in
the 99.9th percentile were selected. H3K27ac Flu and NI ca/hQTL showed little or no enrichment due a
smaller number of ca/hQTLs.
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Figure S10: A) B) Partitioning of reads between the reference allele and the alternative allele in peaks
that overlap heterozygous or homozygous MEIs in H3K27ac and ATAC-seq. The number of peaks with
MEI, biallelic and reference read support is summarized in the table. C) D) E) The same for loci where
the samples are known to be homozygous for the reference allele. F) The number of ref-only peaks that
overlap MEIs.
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Figure S11: Distribution of enrichment levels of reassembled families within accessible chromatin regions
(ATAC) in infected (red) and non-infected (black) samples. SVA families tend become more enriched in
accessible chromatin after infection and are highly variable between individuals. Enrichment levels were
calculated using methods described by Xun Chen et al [34].
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Figure S12: Linear surjection of the example locus (top) versus the reference alignment (bottom) in a Alu
polymorphic locus. Note that the actual read pileup is deformed by the surjection to the linear reference.
Reads with a MAPQ below 10 have been filtered out. This peak is graph-only in five non-infected samples
(AF04, AF08, AF16, EU13, EU47).
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Figure S13: The number times we observe a given MEI and biallelic peak in the cohort at the same locus
in A) H3K4me1, B) H3K27ac and C) ATAC-seq.
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Figure S14: Top ranking GO terms related to immunity and viral infection of genes that are within 10
Kbp of MEI peaks.
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Figure S15: A) Alu mobile element insertion that supports a H3K27ac peak. B) This insertion is
immediately upstream of the CD300E gene, and is within a DNase cluster and a ChIP-seq transcription
factor cluster. Vertical line marks the site of insertion.
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Figure S16: Number of MEIs that are ca/hQTLs in infected and non-infected macrophages.
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