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Abstract

Targeted protein degradation (TPD) has rapidly emerged as a therapeutic modality to eliminate
previously undruggable proteins by repurposing the cell’s endogenous protein degradation
machinery. However, the susceptibility of proteins for targeting by TPD approaches, termed
“degradability”, is largely unknown. Recent systematic studies to map the degradable kinome
have shown differences in degradation between kinases with similar drug-target engagement,
suggesting yet unknown factors influencing degradability. We therefore developed a machine
learning model, MAPD (Model-based Analysis of Protein Degradability), to predict degradability
from protein features that encompass post-translational modifications, protein stability, protein
expression and protein-protein interactions. MAPD shows accurate performance in predicting
kinases that are degradable by TPD compounds (auPRC=0.759) and is likely generalizable to
independent non-kinase proteins. We found five features with statistical significance to achieve
optimal prediction, with ubiquitination potential being the most predictive. By structural modeling,
we found that E2-accessible ubiquitination sites, but not lysine residues in general, are particularly
associated with kinase degradability. Finally, we extended MAPD predictions to the entire
proteome to find 964 disease-causing proteins, including 278 cancer genes, that may be tractable

to TPD drug development.
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Introduction

The most prevalent pathway for selective protein degradation in eukaryotic cells is the Ubiquitin-
Proteasome System (UPS), which degrades proteins that are covalently modified with ubiquitin’-
3. Ubiquitination is orchestrated in three steps by three enzymes. First, ubiquitin is activated by
covalent attachment to the active site of an E1 ubiquitin-activating enzyme. Second, the activated
ubiquitin is transferred from the E1 enzyme to an E2 ubiquitin-conjugating enzyme. Finally, the
proximity induced by an E3 ubiquitin ligase selectively binding to a substrate allows for the
covalent transfer of ubiquitin from the E2 enzyme to a lysine residue on the substrate. After
repeated rounds of this process, a poly-ubiquitin chain can be formed, which often directs the

substrate for degradation by the 26S proteasome*.

Targeted protein degradation (TPD) is a novel pharmacologic modality that selectively induces
degradation of a protein-of-interest (POI) by chemically repurposing the UPS®7. The TPD
molecules (degraders), epitomized by the molecular glues®® and PROteolysis TArgeting
Chimeras (PROTACSs)>'%-"3  typically induce the de novo ternary complex formation between an
E3 ligase and a POI, leading to the ubiquitin transfer to available lysines and subsequent
degradation of the POI'#-'6, Unlike traditional inhibitors that target the catalytic binding site on a
POI, degraders can induce protein degradation by binding to non-catalytic sites'"'”'®. Therefore,
previously undruggable proteins, such as transcription factors (TF), can be targeted by
degraders'®2. For example, the FDA-approved immunomodulatory drugs (IMiDs) thalidomide,
pomalidomide, and lenalidomide?'-2¢ induce degradation of transcription factors IKZF1 and IKZF3
by recruiting them to CRBN?>26:29-32 the substrate recognition subunit of the E3 ubiquitin ligase
complex CUL4-RBX1-DDB-CRBN®. Over the last two decades, the TPD field has grown
dramatically, with thousands of publicly available degraders developed for over 100 human
protein targets3*%. Notably, degraders targeting androgen receptor®®®’, oestrogen receptor3—+1,

BCL-XL*43, |karos/Aiolos (IKZF1/3)*47 Helios (IKZF2)*“¢ and GSPT1% have entered into
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clinical trials, and degraders targeting STAT3, BRD9, BTK, or TRK will also be tested in patients
soon*®. Despite these advances, it remains challenging to predict which proteins are susceptible

and which may be resistant to the TPD approaches.

Chemoproteomic profiling approaches have emerged as a systematic approach to survey protein
degradability®®. Rather than profiling expression of a single protein in response to a selective
degrader, these approaches use mass spectrometry to assess the proteome-wide response to
treatment with pan-targeting degraders®-%4. For example, our recent study profiled 91 multi-
kinase degraders to assess the degradability of more than 400 protein kinases, identifying more
than 200 kinases as degradable®'. Using a library of pan-HDAC degraders, Xiong et al.
investigated the degradability of zinc-dependent HDACs%*. Together these broad-targeted
degrader profiling experiments have greatly expanded the known degradable proteome.
Unfortunately, chemoproteomic approaches to map degradability are inapplicable for most
proteins due to the absence of ligands required for target recruitment to the ligase machinery.

Thus, computational prediction of protein degradability offers a potentially practical alternative.

It is widely believed that stable ternary complexes are associated with effective and selective
target degradation' 165355 A series of computational methods have been introduced to model
PROTAC-mediated ternary complex formation®-5°, which have facilitated the rational and efficient
optimization of PROTACs'®€. However, several studies have shown that although some level of
binary target engagement and ternary complex formation are necessary for target recruitment
and ubiquitin transfer, they are not always sufficient for targeted protein degradation®'-536!. We
propose that rather than drug-target interactions driving degradability, features intrinsic to the
protein targets could also heavily influence degradability of specific targets. For instance, while
ubiquitination is the initiation signal for proteasomal degradation®-5, the association between

protein degradability and known or potential ubiquitination (Ub) sites in the target protein is poorly
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94  understood.

95

96 In this study, we developed a machine learning model, MAPD (Model-based Analysis of Protein
97  Degradability), to predict degradability from protein-intrinsic features (Fig. 1). MAPD shows
98 promising performance in predicting degradable kinases by multi-kinase degraders and
99 previously reported targets of PROTAC compounds. We found that a protein’s endogenous
100  ubiquitination potential contributes the most to the degradability predictions. Structural analysis
101  via protein-protein docking revealed the particular importance of E2-accessible Ub sites in
102  determining degradability. Using MAPD, we have expanded our predictions to the human
103 proteome to map protein tractability to TPD approaches. Our results are available at

104  hitp://mapd.cistrome.org/, which could be a valuable resource for guiding target prioritization

105 towards tractable TPD targets.
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106  Results

107  Kinase degradability is associated with features intrinsic to the target

108  Substantial efforts have been invested in the optimization of degraders for any particular target
109  with no guarantee that a successful compound will be found®”. Our previous chemoproteomic
110  study of the protein kinome indicates that drug-target engagement is insufficient to predict which
111 kinases can be degraded®', suggesting unexplained factors influencing protein degradability. In
112  this study, we explored factors intrinsic to POls that may influence their degradability by
113  comparing kinases that all have drug-target engagement, but differ in multi-kinase degrader-
114  induced degradation. We first selected highly- and lowly-degradable kinases based on the
115  number of multi-kinase degraders found to degrade each POI (Fig. 2a), with an additional
116  requirement of high frequency of detection in the underlying global proteomic experiments
117  (Extended Data Fig. 1a). We next collected protein features that may be predictive of kinase
118  degradability, including post-translational modifications (PTMs), protein stability, protein-protein
119  interaction (PPI), protein expression, etc. (Supplementary Table 1). Often features within a
120  category are highly correlated with each other, while features between categories tend to provide
121 independent information (Fig. 2b).

122

123  To identify features associated with protein degradability, we compared highly- and lowly-
124  degradable kinases using a Wilcoxon rank-sum test. Compared to lowly-degradable kinases, the
125  highly-degradable kinases have a significantly higher proportion of lysine residues that have
126  reported ubiquitination events from the PhosphoSitePlus database® (hereafter referred to as
127  ubiquitination potential) (p=5.2e-4; Fig. 2c, S1b-c). The ubiquitination potential likely reflects a
128  protein’s endogenous capacity to be ubiquitinated since the ubiquitination events are from cell
129 lines in the absence of degrader treatment®. Notably, the percentage of lysine residues on POls
130 are not significantly different (Extended Data Fig. 1d). Besides ubiquitination potential, mRNA

131 expression of a POI in the assayed cell lines is positively associated with protein degradability
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132  (Fig. 2c, Si1e), suggesting that profiling in more cell contexts might be advantageous.
133  Furthermore, we observed an enrichment of proteins with lower half-life in the highly-degradable
134  group (Fig. 2c, S1f). Given that protein half-life was not correlated with ubiquitination potential
135  (Extended Data Fig. 1g), this indicates an independent signal for predicting protein degradability.
136  Collectively, these results suggest that features intrinsic to protein targets might influence their
137  degradability.

138

139 Development of Model-based Analysis of Protein Degradability (MAPD)

140  We next sought to build a machine learning model, named Model-based Analysis of Protein
141 Degradability (MAPD), to combine multiple features associated with protein degradability into a
142  single score. Towards this end, we tested six commonly used machine learning methods,
143  including naive bayes (NB), k-nearest neighbor (KNN), logistic regression, linear-kernel support
144 vector machine (svmLinear), radial kernel support vector machine (svmRadial), and random forest
145  (RF). Because of the redundancy of protein-intrinsic features, we performed forward feature
146  selection for each method (Methods), which iteratively selects the best-performing features
147  (Supplementary Table 2) until the model performance plateaus’. By evaluating performance
148  using cross-validation, the RF model outperformed other models with an area under the Precision-
149  Recall Curve (auPRC) of 0.759 (Fig. 3a) and area under the receiver operating characteristic
150 curves (auROC) of 0.773 (Extended Data Fig. 2a). Therefore, all further analyses are based on
151  the RF model implementation.

152

153  Five protein-intrinsic features were identified as important in the MAPD model, including
154  ubiquitination potential, phosphorylation potential, protein half-life, acetylation potential, and
155 protein length (Extended Data Fig. 2b), in order of importance. Next, we compared the
156  performance of MAPD to models that were trained on each individual feature using cross-

157  validation. Consistent with the highest importance of ubiquitination potential in MAPD, the model
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158 trained on the ubiquitination potential showed the highest auPRC (0.584) and auROC (0.663)
159 among all other single-featured models (Fig. 3b, Extended Data Fig. 2c). Interestingly, the
160 combination of the three PTM features (ubiquitination, phosphorylation, and acetylation) seem to
161 achieve higher auPRC (0.659) and auROC (0.753) than ubiquitination potential alone (p=0.058,
162 Delong’s test) (Fig. 3b, Extended Data Fig. 2c). This suggests that the general propensity of a
163  protein to be post-translationally modified might be predictive of protein degradability.

164

165 MAPD shows good performance in predicting kinase degradability

166  To evaluate the robustness of MAPD, we assessed the degradability of the kinome, with the
167  predictions for training kinases collected from the 20-fold cross-validation to avoid inflating the
168  performance assessment. We first examined the degradability of kinases profiled in Donovan et
169  al® and found significantly higher MAPD scores of degradable kinases than other kinases
170  engaged by multi-kinase degraders (Extended Data Fig. 3a). This trend is also consistent for
171  specific degraders, such as TL12-186 and SK-3-91 (Extended Data Fig. 3a), although with less
172  significance due to the smaller number of POls in these datasets. Based on a threshold with the
173  best cross-validation accuracy, MAPD identified 382 highly-degradable kinase/kinase-related
174  proteins, covering 78.8% (171/217) experimentally degradable kinases®' (Fig. 4a). Consistent
175  with the low MAPD scores, the remaining 21.2% kinases have a low frequency of degradation
176  (Extended Data Fig. 3b). Furthermore, within all experimentally degraded kinases, MAPD scores
177  show considerable correlation with their frequency of degradation by multi-kinase degraders
178  (p=5.51e-6) (Fig. 4b), indicating the capability of MAPD in prioritizing highly-degradable targets.
179  We next examined the overlap of degradable targets from MAPD and curated protein targets with
180 reported PROTACs in databases (PROTAC-DB3** and PROTACpedia®). Although some
181 PROTAC targets were missed (Supplementary Table 3), MAPD successfully identified 77%
182  (50/65) of kinase targets (Fig. 4a), supporting its ability in distinguishing degradable kinases from

183  other kinases. In addition, MAPD recovered 14 PROTAC targets that were not identified by


https://paperpile.com/c/lfW1Vp/0xlc
https://paperpile.com/c/lfW1Vp/0xlc
https://paperpile.com/c/lfW1Vp/90kL
https://paperpile.com/c/lfW1Vp/rNI2
https://doi.org/10.1101/2021.09.27.462040
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462040; this version posted September 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

184  Donovan et al.®’ (Fig. 4a), which highlights how computational methods can be complementary
185  to high-throughput experimental approaches.

186

187 A binder of the target protein is required in the design of TPD molecules, so the propensity of a
188 POl to be bound by a small molecule, also called ligandability, is relevant to tractability of the POI
189 by TPD molecules. Here, we leveraged knowledge of existing small molecules to refine MAPD
190  predictions. A protein is considered ligandable if it has at least one ligand reported in PROTAC-
191  DB®*, PROTACpedia®, DrugBank’', ChEMBL"2 or SLCABPP (Ligandable Cysteine Database)”
192  (Extended Data Fig. 3d). Out of the 519 ligandable kinases, MAPD identified 350 degradable
193  kinases, including 74% (253/342) PROTACtable targets and 97 targets specifically identified by
194  MAPD (Fig. 4c). PROTACtable was introduced in a recent perspective article’* that qualitatively
195  assigned tractable TPD targets based on ligand records in ChEMBL and a rule-based approach
196  that only considers whether certain protein annotations are available. We observed a significantly
197  lower ubiquitination potential of PROTACtable-specific targets than MAPD-specific targets (Fig.
198  4d). For example, MAP3K4, a PROTACtable-specific target, has only one reported Ub site despite
199  being a particularly long protein with 103 lysines® (Fig. 4e). In contrast, the MAPD-specific target,
200 AGK, is extensively ubiquitinated despite its short length (Fig. 4e). Experimental data showed that
201  AGK was degraded sufficiently by multi-kinase degraders®' while MAP3K4 was not despite its
202 strong target engagement by a multi-kinase degrader®?. These examples highlight a potential
203 advantage of MAPD by quantitatively assessing protein degradability.

204

205 In total, MAPD identified 132 disease-relevant kinase targets, including 72 cancer genes in
206 OncoKB and 60 kinases associated with other diseases reported in the ClinVar database’>7®
207 (Extended Data Fig. 3e). These kinases could be prospective targets for development of
208  degraders (Supplementary Table 3). The most degradable kinases include targets with developed

209 PROTACs®**%, such as CDK2, PLK1, CDK6, CDK9 and CDK4, and other promising targets, such
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210 as TK1, CSNK1A1, CHEK1, MAPK8, and AURKB that are degraded by multi-kinase
211 degraders®'®? (Fig. 4f).

212

213  MAPD predicts proteome-wide degradability

214 We hypothesized that MAPD might also predict the degradability of non-kinase proteins. To test
215  this, we collected 65 non-kinase targets with publicly available degraders reported in PROTAC
216  databases®*-*°. These PROTAC targets had significantly higher MAPD scores than other drug
217  targets from DrugBank’' (Fig. 5a). To further corroborate this finding, we collected a list of TFs,
218  such as lkaros (IKZF1) and Aiolos (IKZF3), that are frequently degraded by thalidomide analog
219  (IMiD)-based degraders®?%'. The MAPD scores of these TFs showed significant correlation with
220 their observed frequency of degradation (p=0.022) (Fig. 5b). Additional TFs have also been
221  targeted by TPD molecules®®’”78 such as degraders for AR3®798! and ER®2-% that have entered
222  into clinical trials. With the exception of BCL6 which has few reported Ub sites, MAPD correctly
223  predicts the high degradability of most TF PROTAC targets (Fig. 5¢). Taken together, these
224  results indicate that MAPD is generalizable to POls outside of the kinome.

225

226  Given the robust performance of MAPD, we next applied MAPD proteome-wide to systematically
227  score all proteins outside of the kinome. MAPD predicted 2,648 degradable targets out of 4,137
228 ligandable non-kinase proteins (Extended Data Fig. 4a,b), which was two-fold more than
229 PROTACtable’ (Fig. 5d). The MAPD-specific targets again had significantly higher levels of
230 ubiquitination potential than the PROTACtable-specific targets (Fig. 4e). We further identified 832
231  disease-relevant non-kinase targets that are amenable to TPD (Extended Data Fig. 4c and
232  Supplementary Table 4). Of these, 206 proteins are considered as oncogenic genes by OncoKB
233  and 626 proteins are associated with other human diseases reported in the ClinVar database ”>"®
234  (Extended Data Fig. 4c). The top predicted degradable targets include known PROTAC targets,

235 such as MDM2 and BCL-XL (BCL2L1), and other potentially degradable targets. DHFR, one of

10


https://paperpile.com/c/lfW1Vp/0xlc+EfrD
https://paperpile.com/c/lfW1Vp/90kL+rNI2
https://paperpile.com/c/lfW1Vp/g8Lt
https://paperpile.com/c/lfW1Vp/jSns+0xlc
https://paperpile.com/c/lfW1Vp/QwwF+ZDgW+AAQx
https://paperpile.com/c/lfW1Vp/705V+m9eW+qhd1+JKnH
https://paperpile.com/c/lfW1Vp/ypLo+yhoB+ZvSp+hE9x+tDsg
https://paperpile.com/c/lfW1Vp/EcNA
https://paperpile.com/c/lfW1Vp/IxOb+XsSg
https://doi.org/10.1101/2021.09.27.462040
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.27.462040; this version posted September 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

236 the top-ranking targets, has been successfully degraded by a hydrophobic tagging probe
237  consisting of a hydrophobic moiety Boc3Arg and a DHFR non-covalent binding ligand TMP?’.
238 RHOA, RHOB, and RHOC are also predicted to be degradable, which have been previously
239  reported to be degraded by F-box-intracellular single-domain antibodies®. These results suggest
240  potential opportunity for future TPD efforts (Fig. 5f).

241

242  The E2-accessibility of Ub sites is associated with protein degradability

243  Given that ubiquitination potential was the most important feature in MAPD, we hypothesized that
244  structural properties of Ub sites could be informative of protein degradability. To test this
245  hypothesis, we first grouped Ub sites according to their structural properties (Supplementary
246  Table 4) such as secondary structure, relative solvent accessibility, or flexibility (as defined by B-
247  factor)®. We then examined the association between protein degradability and the number of Ub
248  sites in each group using a Wilcoxon z-statistic. Among annotated secondary structures, the
249  number of Ub sites in loop regions showed modestly higher association with protein degradability
250 relative to the total number of Ub sites (Extended Data Fig. 5a). However, neither relative solvent
251  accessibility nor flexibility of Ub sites improved the association with protein degradability
252  (Extended Data Fig. 5b,c). These data suggest that local structural properties of a Ub site provide
253 limited information for predicting protein degradability.

254

255  We next investigated the property of Ub sites that facilitates the transfer of ubiquitin from the
256  attached E2 enzyme to the POI in degrader-mediated ternary complexes. We reasoned that
257  quantifying the accessibility of Ub sites to the E2 enzyme might be predictive of protein
258  degradability. As most degraders in the chemoproteomics study were based on the CRBN
259  substrate receptor, we examined this hypothesis by computationally docking 251 target kinases
260  with experimental structures onto CRBN—IMID (Extended Data Fig. 6a). We examined the 200

261  top-scoring structural models for each POl and removed those where it was not feasible to fit a
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262 PROTAC (Extended Data Fig. 6b). Due to the high flexibility of the CUL4 arm, the attached E2
263  can transfer ubiquitin to any site in a broad ubiquitination zone®, hence all Ub sites in the spatial
264  quadrant facing the E2 were considered accessible to the E2 (Fig. 6a, Extended Data Fig. 6c).
265  We then defined E2 accessibility as the fraction of top-scoring models in which the Ub site was
266  accessible to the E2 enzyme (Fig. 6a, Extended Data Fig. 6¢c, Supplementary Table 4). In
267  comparison to the total number of Ub sites in the structure of the POI, the E2-accessible Ub sites
268 showed a more significant positive association with protein degradability (Fig. 6b, Extended Data
269  Fig. 7a). In contrast, the number of E2-accessible lysine residues on the POIs does not show
270  significant association with their degradability (Extended Data Fig. 7a,b). Together, these results
271  suggest that lysines with detected ubiquitination events are more amenable to TPD. To further
272  assess whether E2-accessibility was independently useful, we randomly shuffled reported Ub
273  sites among all available lysine residues within a protein. Consistent with our initial finding, E2-
274  accessible Ub sites were significantly more associated with protein degradability than expected
275  based on the total number of Ub sites in each protein (p=0.0064; Fig. 6¢).

276

277  We observed an overall positive correlation between the total number of Ub sites and E2
278  accessible Ub sites on kinases (Fig. 6d), and noticed some POls with outlier levels of E2-
279  accessible and total Ub sites. For example, CDK1 had a high fraction of E2-accessible Ub sites
280 (Fig. 6d, Extended Data Fig. 7c), consistent with its frequent degradation by multi-kinase
281  degraders®'. Therefore, we hypothesize that similar proteins, such as GRK2, GRK6, and STK26,
282  are promising targets for developing future TPD drugs if they had drug-target engagement (Fig.
283  6d). In contrast, some kinases, such as VRK1, ZAP70, NEK7, and MAPK14, had a low number
284  of E2-accessible Ub sites, despite having a high number of total Ub sites (Fig. 6d). As expected,
285 these kinases have significantly lower frequency of degradation by CRBN-recruiting multi-kinase
286  as measured by Donovan et al.®' (Fig. 6e).

287
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288  Finally, we created an interactive web platform (http:/mapd.cistrome.org), which incorporates

289  protein-intrinsic features, MAPD predictions, E2 accessibility of Ub sites in select proteins,
290 ligandability, and disease associations. This platform could enable rational prioritization of
291  degradable targets for developing degraders by the TPD community. Moreover, we implemented
292  MAPD as a R package (https://github.com/liulab-dfci/MAPD), which allows researchers to extend
293  our analysis when more chemoproteomic profiling data and/or protein features are available in
294  the future.

295

296

297
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298 Discussion

299  Despite the growth in the number of targeted protein degraders, it remains challenging to predict
300 which proteins are tractable to this approach. In this study, we investigated the degradability of
301  kinases and their correlation with features intrinsic to protein targets. By developing a machine
302 learning model, MAPD (Model-based Analysis of Protein Degradability), we identified five features
303 predictive of kinase degradability, including the ubiquitination potential, acetylation potential,
304 phosphorylation potential, protein half-life and protein length. Systematic benchmarking indicates
305 that MAPD can well predict kinase degradability and is also applicable to proteins outside of the
306 kinome. By integrating MAPD predictions and ligand information of POls, we prioritized disease-
307  associated degradable proteins as TPD drug targets.

308

309 Ternary complex formation is thought to be the most important factor in determining the
310  degradability of protein targets3°5-5°. However, our analysis found that protein degradability can
311 also be heavily influenced by protein-intrinsic features, especially the protein’s endogenous
312 ubiquitination potential. By modeling the structural relationship between target proteins and E2
313 enzyme, we found that protein degradability is highly correlated with the availability of E2-
314  accessible Ub sites. Thus, checking the protein-intrinsic features, especially the availability of E2-
315  accessible Ub sites, might be crucial for selecting protein targets or E3 recruiters before a TPD
316  drug discovery project.

317

318  Our study has several limitations. First, our analysis revealed protein-intrinsic features, such as
319  ubiquitination potential and protein half-life, associated with protein degradability, but it remains
320 to be answered how they influence protein degradability. Second, although our model had the
321  potential to identify degradable non-kinase targets, it showed biased predictions for some proteins
322 (e.g., BRD4, BCL6, HDAC®6, and HDAC3) with poorly detected Ub sites or missing feature data.

323  Therefore, a careful consideration of feature data is important when interpreting the prediction
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324  results. Lastly, while E2-accessible Ub sites are important in determining protein degradability,
325 we didn’t incorporate this feature into MAPD. One reason is that most proteins don’t have
326 experimentally solved protein structure with known ligandable pockets, which is required for
327  protein docking models. The release of highly accurate predicted protein structures generated
328  with AlphaFold may offer a great opportunity for researchers to address this problem in the
329  future®.

330

331 Our study also reveals several research directions deserving future study to advance the field.
332  First, computational and experimental studies investigating why certain lysines seem more
333  susceptible to ubiquitination than others could improve the predictions for degradability by MAPD.
334  Second, more extensive proteomic profiling of protein-intrinsic features and induced protein
335 degradation by multi-target degraders in disease-relevant cell lines or tissues could facilitate the
336 understanding of cell-type-specific protein degradability and further accelerate the development
337 of TPD drugs for diseases. Finally, we envision that future computational methods will not only
338 improve the prediction of protein degradability, but also predict the functional consequence of
339 degradation of disease-causing proteins.

340

341

342
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Figures

Machine learning predicts tractability of targeted protein degradation
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Fig. 1 | Study overview.

The ubiquitin-proteasome system can be repurposed by a PROTAC (Proteolysis Targeting
Chimera) or other small molecule to degrade a protein of interest (POI). However, it remains to
be answered which proteins are amenable to this approach (left). Here, we associated kinase
degradability with protein-intrinsic features spanning protein expression, post-translational
modifications, protein length, protein-protein interactions, protein stability, and protein half-life to
identify predictive factors (middle). Based on the predictive features, we developed a machine

learning model to predict protein degradability (right).
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648 Fig. 2 | Kinase degradability is associated with features intrinsic to the target. a, Dot plot
649 showing the frequency of degradation and maximal degradation of protein kinases induced by
650 multi-kinase degraders from the Donovan et al. study. Orange dots represent the kinases with
651  high degradability, and light blue dots represent the kinases with low degradability. b, Pairwise
652 Spearman’s correlation of 42 protein-intrinsic features spanning protein stability, post-
653 translational modification (PTM), protein-protein interaction (PPI), protein length, protein half-life,
654  protein expression, protein detectability and others. ¢, Bar diagram showing the association
655  between degradability of kinases and their features. The x-axis shows the abbreviated name of

656  protein-intrinsic features (see Supplementary Table 1 for full details), and the y-axis shows the
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657  Wilcoxon z-statistics indicating the association between protein degradability and each protein-
658 intrinsic feature (*=FDR<0.05).

659

660

661
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663 Fig. 3 | Development of Model-based Analysis of Protein Degradability (MAPD). a, Precision-
664  Recall curves that show the performance of six machine learning models based on 20-fold cross-
665 validation. RF indicates the random forest model, svymRadial indicates the radial-kernel support
666 vector machine model, NB indicates the naive bayes model, Logistic indicates the logistic
667  regression model, svmLinear indicates the linear kernel support vector machine model, and KNN
668 indicates the k-nearest neighbor model. b, Precision-Recall curves that show the performance of
669  MAPD and models trained on individual features or combination of features. ‘PTMs’ indicates the
670 model trained on the combination of ubiquitination potential (Ubiquitination_2), acetylation
671 potential (Acetylation_1), and phosphorylation potential (Phosphorylation_2). ‘Ubiquitination_2’
672 indicates the model trained on ubiquitination potential. ‘Hela_Halflife’ indicates the model trained
673  on a single feature describing half-life in Hela cells from Zecha et al. ‘Length’ indicates the model
674  trained on protein length. ‘Phosphorylation_2’ indicates the model trained on phosphorylation

675  potential.
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Fig. 4 | MAPD shows good performance in predicting kinase degradability. a, Venn diagram

showing the overlap between kinases degraded by multi-kinase degraders from Donovan et al.,

PROTAC targets reported in PROTAC databases (including PROTAC-DB and PROTACpedia),

and degradable kinases identified by MAPD. b, Scatter plot showing the Spearman correlation

between MAPD scores and frequency degradation of all degradable kinases from Donovan et al.

¢, Venn diagram showing the overlap between degradable kinases identified by MAPD,

PROTACtable kinases, and ligandable kinases. d, Box plot showing ubiquitination potential
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684  (proportion of lysine residues with reported ubiquitination events in the PhosphoSitePlus) of
685 MAPD-specific targets and PROTACtable-specific targets. e, Lollipop diagram showing the
686  reported Ub sites in MAP3K4 (PROTACtable-specific target) and AGK (MAPD-specific target).
687  The number in the circles indicates the number of references for each Ub site in PhosphoSitePlus
688  and the blank circle indicates that only one reference is available. The blue text near the circle
689 indicates the location of the Ub site. f, Heatmap showing annotations of the top 50 predicted
690 degradable kinases, with MAPD scores shown at the bottom. ‘PROTACdb’ and ‘PROTACpedia’
691  indicate whether a kinase has a developed degrader reported in the respective databases. The
692  ‘Multi-kinase degrader’ indicates whether a protein is degraded by the multi-kinase degrader.
693 ‘DrugBank’ indicates whether a protein has FDA approved drug recorded in the DrugBank
694 database. ‘ChEMBL’ indicates whether a protein has ligands recorded in the ChEMBL database.
695  ‘Electrophiles’ indicate whether a protein has ligandable cysteines from the SLCABPP
696  (Streamlined Cysteine Activity-Based Protein Profiling). The ‘OncoKB’ indicates whether a protein
697 is considered as a cancer gene in the OncoKB database. The ‘ClinVar’ indicates whether the
698  protein is associated with a disease in the ClinVar database (****=p<0.0001).
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Fig. 5 | MAPD predicts degradability proteome-wide. a, Box plot showing the MAPD scores of
non-kinase PROTAC targets from PROTAC databases (including PROTAC-DB and
PROTACpedia) and other non-kinase drug targets from DrugBank. b, Scatter plot showing the
MAPD scores and the frequency of degradation of IMiD targets by CRBN-recruiting degraders
from Donovan et al. ¢, Ranked dot plot showing the MAPD scores of human transcriptional factors
(TF). TFs with reported degraders are labeled on the figure. The histogram at right shows the
distribution of MAPD scores of all human TFs and the red dashed line shows the threshold for
identifying degradable proteins by MAPD. d, Venn diagram showing the overlap of degradable
non-kinase proteins between MAPD predictions and PROTACtable genome. e, Box plot showing
the ubiquitination potential (proportion of lysines with reported ubiquitination events in the

PhosphoSitePlus) in MAPD-specific targets and PROTACtable genome-specific targets. f,
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712  Heatmap showing annotations of the top 30 predicted degradable non-kinase proteins, with
713  MAPD scores shown at the bottom. ‘PROTACdb’ and ‘PROTACpedia’ annotations indicate
714  whether a kinase has a developed degrader reported in the respective databases. The ‘Multi-
715  kinase degrader indicates whether a protein is degraded by the multi-kinase degrader.
716  ‘DrugBank’ indicates whether a protein has FDA approved drug recorded in the DrugBank
717  database. ‘ChEMBL’ indicates whether a protein has ligands recorded in the ChEMBL database.
718  ‘Electrophiles’ indicate whether a protein has ligandable cysteines from the SLCABPP
719  (Streamlined Cysteine Activity-Based Protein Profiling). ‘OncoKB’ indicates whether a protein is
720  considered as a cancer gene in the OncoKB database. ‘ClinVar’ indicates whether the protein is
721 associated with a disease in ClinVar database (****=p<0.0001).
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724  Fig. 6 | E2-accessibility of Ub sites is associated with protein degradability. a, Diagram
725  showing how to estimate accessibility of lysine/Ub sites to E2 enzyme in degrader-induced ternary

726  complex. The model of CDK1 (4Y72) was docked to the CRBN-Lenalidomide structure (PDB:
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727  5FQD), which is shown as an example. The E3 ubiquitin ligase complex consists of CRBN, DDB1,
728  CUL4A, and CUL4B, shown in green, pink, light gray and gray, respectively. The CDK1 is the
729  target protein, shown in yellow. The RBX1 fragment (shown in orange) was used to estimate the
730  position of the E2 enzyme and corresponding ubiquitination zone in the target protein. Lysine/Ub
731 sites in the ubiquitination zone were estimated by drawing two planes with respect to the position
732  of CRBN and the target kinase. The sites lying in the quadrant facing the putative position of the
733  E2, estimated by the placement of RBX1 are considered accessible. The predicted E2-accessible
734  and E2-inaccessible lysine residues are highlighted in blue and red, respectively. For each target
735  protein, 200 top-scoring feasible models are selected for evaluating the accessibility of lysine
736  residues to E2 enzyme. For each Ub site, the fraction of feasible models with the site in the
737  ubiquitination zone was estimated as its E2 accessibility. b, Box plot showing the association of
738  kinase degradability with total number of Ub sites (left) and E2-accessible Ub sites (right) in the
739  kinases. The E2-accessible Ub sites (E2 accessibility >=0.5) were defined as the Ub sites lying
740  in the ubiquitination zone of more than 50% feasible models. ¢, Density plot showing the null
741  distribution of Wilcoxon z-statistics generated by shuffling Ub sites among all lysine residues for
742 10,000 times. The red dashed line indicates the observed Wilcoxon z-statistic representing the
743  association between protein degradability and the number of E2-accessible Ub sites (E2
744  accessibility >=0.5). d, Dot plot showing the total number of resolved Ub sites and the number of
745  E2-accessible Ub sites (E2 accessibility >=0.5). e, Box plot showing the number CRBN-recruiting
746  degraders that degrade kinases with high (>1) and low (<=1) level of E2-accessible Ub sites. All
747  kinases involved in this analysis have at least two reported Ub sites, which reduces the
748  confounding effect derived from the difference in the total number of Ub sites.

749
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Extended Data Fig. 1 | Kinase degradability is associated with features intrinsic to the
target. Related to Fig. 2. a-f, Box plot showing difference between high-degradability and low-
degradability kinases for (a) frequency of detection in the chemoproteomic data from Donovan et
al. study, (b) proportion of lysines with at least one reported ubiquitination event in the
PhosphoSitePlus, (c) proportion of lysines with at least two reported ubiquitination events in the
PhosphoSitePlus, (d) fraction of lysine residues, (e) mRNA expression in the MOLT4 cell line,
and (f) protein half-life in Hela cells. g, Heatmap showing the pairwise Spearman correlation of
the four protein-intrinsic features. h, Heatmap of Wilcoxon z statistics indicating the association
between protein degradability and protein-intrinsic features of kinases in each family. The x-axis
shows the abbreviated name of protein-intrinsic features (see Supplementary Table 1 for full

details). The y-axis shows the kinase family with the number of highly-degradable (H) and lowly-
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763  degradable (L) kinases shown in the label. The color shows the Wilcoxon z-statistics indicating
764  the association between protein degradability and each protein-intrinsic feature (ns=p>0.05,
765  *=p<0.05, **=p<0.01, ***=p<0.001).
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Extended Data Fig. 2 | Development of Model-based Analysis of Protein Degradability
(MAPD). Related to Fig. 3. a, ROC curves (receiver operating characteristics curves) showing the
performance of six machine learning models in predicting kinase degradability based on 20-fold
cross-validation. b, Importance of five features in the MAPD revealed by mean decrease accuracy
metric that measures how much accuracy the model losses by excluding each feature from the
model. ¢, ROC curves (receiver operating characteristics curves) showing the performance of

MAPD and models trained on a subset of features based on 20-fold cross-validation.
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Extended Data Fig. 3 | MAPD shows good performance in predicting kinase degradability.

Related to Fig. 4. a, Box plot showing the MAPD scores of degraded kinases compared to other

engaged kinases by each multi-kinase degrader (‘All’ indicates all degraders from Donovan et al.

study). b, Box plot showing the frequency of degradation of degradable kinases identified by both

MAPD and Donovan et al. and other experimentally degradable kinases (Donovan et al. specific).

¢, Venn diagram showing the overlap between ligandable kinases from PROTAC databases

(PROTAC-DB and PROTACpedia), DrugBank, ChEMBL, and SLCABPP. d, Pie chart showing

the number of degradable kinases (with/without ligand) and undegradable kinases from MAPD

predictions. e, Venn diagram showing the overlap between degradable kinases identified by

MAPD, oncogenic kinases reported in the OncoKB, and kinases associated with other human

disease reported in the ClinVar database.
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787
788 Extended Data Fig. 4 | MAPD predicts degradability proteome-wide. Related to Fig. 5. a,

789  Venn diagram showing the overlap of ligandable non-kinase proteins from PROTAC databases
790 (PROTAC-DB and PROTACpedia), DrugBank, ChEMBL, and SLCABPP. b, Pie chart showing
791 the number of degradable non-kinase proteins (with/without ligand) and undegradable non-kinase
792  proteins from MAPD predictions. ¢, Venn diagram showing the overlap between degradable non-
793  kinase proteins predicted by MAPD and disease-causing proteins reported in the OncoKB and
794  ClinVar database.
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797 Extended Data Fig. 5 | Local structural properties of a Ub site are not informative for
798 predicting protein degradability. a, Bar plot showing the Wilcoxon z-statistics that indicate the
799  association between protein degradability and Ub sites in each specific secondary structure. The
800  “All” indicate the total resolved Ub sites in protein structures. b, Heatmap showing the Wilcoxon
801  z-statistics that indicate the association between protein degradability and Ub sites in each
802  specific range of relative solvent accessibility (RSA). The x-axis indicates the minimum RSA of
803 each range, and the y-axis indicates the maximum RSA of each range. ¢, Heatmap showing the
804  Wilcoxon z-statistics that indicate the association between protein degradability and Ub sites in
805 each specific range of b-factor (flexibility). The x-axis indicates the minimum b-factor of each

806 range, and the y-axis indicates the maximum b-factor of each range.
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807
808 Extended Data Fig. 6 | Assessment of E2 accessibility of Ub sites. Related to Fig. 6. a,

809  Diagram showing the protein—protein docking process. All kinases were first aligned at their ATP
810  binding pocket to a reference kinase, CDK2 (1AQ1). Next, the aligned kinases were positioned in

811 an arbitrary (but similar) orientation around the ligand-binding pocket of CRBN-Lenalidomide
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812  structure (PDB: 5FQD). Here, CDK1 (4Y72) is shown as an example. Local docking was
813  performed, and the 200 top-scoring models were selected for further evaluation. b, For every
814  docked model, the feasibility of ternary complex formation with a PROTAC was tested by aligning
815  CDK2 with a multi-kinase inhibitor (TAE) and checking whether a free path for a linker exists. As
816  multiple linkers of different lengths and rigidities were involved, a broad cylinder was used to
817  estimate all linker conformations. ¢, For models where it was feasible to build a ternary complex
818 with a PROTAC, Ub sites in the ubiquitination zone were estimated by drawing two planes with
819  respect to the position of CRBN and the target kinase. The sites lying in the quadrant facing the
820 putative position of the E2, estimated by the placement of RBX1 are considered accessible. For
821  each Ub site, the fraction of feasible models with the site in the ubiquitination zone was used as

822  a probability to measure its E2 accessibility.
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Extended Data Fig. 7 | E2-accessibility of Ub sites is associated with protein degradability.
Related to Fig. 6. a, Smooth line showing the association between protein degradability and the
number of E2-accessible Ub sites/lysine residues (E2 accessibility greater than a certain
threshold). The x-axis shows the threshold of E2 accessibility for selecting E2-accessible
lysine/Ub sites, and the y-axis shows the Wilcoxon z-statistics indicating the association between
kinase degradability and the number of lysine/Ub sites with a E2 accessibility greater than a
certain threshold. A positive Wilcoxon z-statistic indicates the positive association between protein
degradability and the number of lysine/Ub sites, while a negative Wilcoxon z-statistic indicates
the negative association between protein degradability and lysine/Ub sites. The salmon arrow

points to the association between kinase degradability and the total number of Ub sites, while the
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834  red arrow points to the association between kinase degradability and the number of E2-accessible
835 Ub sites (accessible to E2 in more than 50% docking models). b, Box plot showing the association
836  of kinase degradability with total number of lysine residues (left) and E2-accessible lysine
837  residues (right) in the kinase targets. The E2-accessible lysine residues (E2 accessibility >=0.5)
838  were defined as the lysine residues lying in the ubiquitination zone of more than 50% feasible
839 models. ¢, Docking model of the ternary complex of CRL4°RBN and the target kinase CDK1.
840  Overlay of CUL4A (PDB: 4A0K) and CUL4B (4A0L) superimposed on DDB1 WD repeat beata-
841  propeller B (4A0K), with CRBN (5FQD) superimposed DDB1 WD repeat beta-propellers A and C
842  demonstrates high flexibility of the CUL4 arm of the E3 ligase. The RBX1 fragment was used to
843  estimate the position of the E2 enzyme and corresponding ubiquitination zone in the target protein
844  CDK1. The model of CDK1 (4Y72) docked to CRBN is shown in yellow, and the predicted E2-
845  accessible and E2-inaccessible Ub sites are highlighted in blue and red, respectively.

846

847
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848 Supplementary Tables

849 Table 1: A list of protein-intrinsic features.

850 Table 2: Forward feature selection result for each model.

851 Table 3: MAPD predictions, ligandability, and disease associations of human proteins.
852  Table 4: Accessibility of Ub sites to the E2 enzyme in kinase docking models.

853
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854  Materials and Methods

855 Kinase degradability data

856  We collected 151 quantitative proteomics data measuring the changes of protein abundance in
857  response to treatment of 85 unique multi-kinase degraders (degraders with allosteric linkers are
858 excluded)'. We used the limma package to perform differential protein expression analysis
859  comparing the degrader treated samples with the DMSO treated samples. For each protein, we
860 calculated the frequency of degradation as the number of experiments in which the protein is
861  significantly down-regulated (FC (fold change)>1.25 and p-value<0.01). Furthermore, to
862  aggregate the results of multiple replicates for each degrader, we aggregated log2FC from
863 replicate experiments using Stouffer's Z-score and corresponding p-values using Fisher's
864  method. We then counted the number of unique degraders that can degrade each protein
865  (Stouffer's Z-score< log2(1.5) and Fisher’s p-value<0.01). We collected 5 KiNativ profiling data
866 and 2 KinomeScan data from published studies®'-%2, which profiled target engagement of five
867  multi-kinase degraders, including TL12-186, SK-3-91, SB1-G-187, DB0646, and WH-10417-
868  099°'°2, A KinomeScan score smaller than 15 or a KiNativ score greater than 35 indicate strong
869  drug-target engagement.

870

871 Definition of high-degradability and low-degradability kinases

872  We defined highly-degradable kinases as those degraded by at least five different multi-kinase
873  degraders (50 kinases), and lowly-degradable kinases that were engaged by at least one multi-
874  kinase degrader, quantified in more than 10% underlying global proteomic experiments, but not
875 degraded (76 kinases). The high-degradable kinases and low-degradable kinases are used
876  throughout the study to investigate the association between protein degradability and protein-
877  intrinsic features.

878

879 Protein-intrinsic features
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880  We built more than 42 protein-intrinsic features spanning post-translational modifications (PTM)®8,
881  protein stability generated from GPS (global protein stability) profiling®-4, protein half-life%%,
882  protein-protein interactions® %, protein expression, protein detectability®!:1%:1%1 " protein length,
883  and others.

884

885  Post-translational modification (PTM) features. We collected all available post-translational

886  modification (PTM) sites from the PhosphoSitePlus database (02/17/2021)%8. PhosphoSitePlus
887 includes three types of supports for each PTM site, including LT_LIT (the number of publications
888  supporting the site), MS_LIT (the number of mass spec studies supporting the site), and MS_CST
889  (the number of mass spec studies performed by Cell Signaling Technology supporting the site).
890 We generated two features related to each type of PTM. The first feature (e.g., Ubiquitination_1)
891  refers to the fraction of relevant amino acid residues in a protein (e.qg., lysine residues) that have
892  a corresponding reported PTM site (e.g., Ub site), which only needs the support of a single
893 reference for each PTM site (LT_LIT+MS_LIT+MS_CST >0). The second feature (e.g.,
894  Ubiquitination_2) is calculated in the same manner, except requires each PTM site to be
895  supported by at least two studies (LT_LIT>1 | MS_LIT>1 | MS_CST >1). We also included the
896 fraction of each likely modified amino acid as additional features, such as LysRatio indicating the
897  fraction of lysine residue in a protein.

898

899  Protein half-life and protein stability features. We downloaded protein half lives in seven different

900 celltypes (B cells, NK cells, Monocytes, Hepatocytes, neurons, Hela, and NIH3T3) from published
901  studies®%". We additionally collected seven global protein stability (GPS) profiling data from three
902  studies® % which include the stability of full-length proteins in HEK293T cell lines treated with
903 DMSO, MLN4924, dominant negative CRL4, or dominant negative CRL3 and stability of N-
904 terminome and C-terminome peptides of human proteome. All protein half-life data and GPS data

905 were cross-referred for imputing the missing data. The imputation was done by using the
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906 impute.knn function (k-nearest neighbor) with default parameters in the impute R package.
907

908 Protein-protein interaction and protein complex. We downloaded protein-protein interactions (PPI)

909 from the STRING database®® and retrieved the high-confidence PPIs using an arbitrary cutoff of
910 experimental score>100 and combined_score>200. The degree of each protein in the PPI
911  network was calculated as an estimation of likelihood of the protein interacting with others.
912  Additionally, curated protein complex annotations were downloaded from the CORUM database®®
913 and the number of distinct protein complexes associated with each protein was taken as the
914  estimation of likelihood of a protein being complexed in vivo.

915

916  Gene and protein expression data. We downloaded RNA-seq data of MOLT4 from the GEO

917  (GSE79253)'%2. RNA expression values were normalized as logarithm Transcripts Per Million
918 (TPM). We retrieved quantitative proteomics data of MOLT4 cell lines from Donovan et al., 2020
919  study®'. Relative protein abundances were log normalized and centered with a median value of
920  zero per sample. The missing values in the proteomic data were imputed using the impute.knn
921  function (k-nearest neighbor) from the impute R package, with CCLE proteomic data as
922  reference'®.

923

924  Protein detectability. We took the frequency of detection of proteins in Donovan et al. proteomic

925 datasets as the estimation of protein detectability by mass spectrometry®'.

926

927  Other features. We retrieved 20381 reviewed human protein sequences and their length from the
928  UniProtKB database (2021_01). We downloaded Intrinsically disordered regions (IDRs) from the
929 MobiDB database'®, which includes manually curated annotations and predicted disorder
930 regions. We ranked the IDR annotations based on the four types of evidence, including curated-

931 disorder-priority,  derived-missing_residues-th_90,  derived-mobile_residues-th_90, and
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932  prediction-disorder-mobidb_lite. For each protein, duplicate IDRs were removed for downstream
933 analysis.

934

935 Pairwise correlation of protein-intrinsic features

936 We computed pairwise spearman correlation of protein-intrinsic features and clustered the
937 features based on the correlation matrix using hierarchical clustering with Euclidean distance
938 measure and complete linkage. The data are visualized using the ComplexHeatmap R
939 package'.

940

941  Association between protein degradability and features intrinsic to protein targets

942 We tested each feature’s difference in 50 high degradability kinases and 76 low degradability
943  kinases using the wilcox.test function in R and computed the Z-statistic using the wilcoxonZ
944  function in the rcompanion R package. We used the same method to test the association between
945  protein degradability and protein-intrinsic features in each kinase family.

946

947  Model-based Analysis of Protein Degradability (MAPD)

948  We sought to build a classification model to predict protein degradability from intrinsic protein
949 features. We tried six different machine learning models, including linear-kernel SVM (kernlab),
950 radial-kernel SVM (kernlab), random forest (randomForest), K-nearest neighbors, logistic
951 regression (LiblineaR), and naive bayes (naivebayes). For each model, we performed feature
952  selection and then selected the best model trained on a set of best-performing features.

953

954  Forward feature selection. We performed recursive forward feature selection for six machine

955 learning methods separately. In each iteration, we add a feature which improves the model
956 performance most. The performance is computed as the area under Precision-Recall Curve

957 (auPRC) based on 20-fold cross-validation. This process is stopped when the addition of a new
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958 feature does not further improve the performance.
959

960 Feature importance. We evaluated the importance of features in MAPD using the varlmp function

961 in the caret R package'®>'%, which computes the feature importance on permuted out-of-bag
962 samples based on mean decrease in the accuracy.
963

964  Performance evaluation. To evaluate the performance of each model involved in the study, we

965  collected prediction scores of all proteins from cross validation and computed the area under the
966  Receiver Operating Characteristic curve (auROC) using the roc function from the pROC
967 package'®” and Precision-Recall curve (auPRC) using the pr.curve from the PRROC package in
968 R'%,

969

970 Single feature evaluation. For each individual feature, we trained a logistic model. For the

971  combination of features, we trained random forest models. Finally, we compared the model
972  performance based on 20-fold cross validation.
973

974  Final model training for predictions outside of the kinome. We used the caret package for

975  parameter tuning and final model training. We evaluated the model tuning parameters based on
976 leave-one-out cross-validation (method = “LOOCV” in the trainControl function), with the F1 score
977  as performance metric (metric = “F” in the train function, summaryFunction = prSummary in the
978 trainControl function). With the optimal parameters (mtry = 2), we trained a final random forest
979  model including 20,000 trees (ntree = 20,000) with 5 minimum node sizes (nodesize = 5).

980

981 Prediction

982  We predicted the degradability of all human proteins using the final random forest model. For

983  kinases included in the training, we took the average prediction scores collected from three
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984  repeated 20-fold cross-validation. Based on the cross-validation, we chose a cutoff (0.2327) that
985 leads to the highest F1 score. A protein is predicted to be degradable if it has a MAPD score
986  greater than the cutoff. To account for potential biases from missing feature data, we scored the
987 feature completeness for each protein using a weighted sum score with the formula: C =
988 Yiervarlmp(x) xI,(x). The F variable represents the feature set, and x represents each feature
989 in the feature set. The function varimp(x) denotes the scaled feature importance of x and the
990 indicator function I,(x) denotes whether x is from actual data (1 = actual, 0 = imputed). The C
991  represents the feature completeness, with a 0-1 range. A score of 1 indicates all features are from
992  actual data, and a score of 0 indicates all features are imputed.
993
994 Degradable proteins
995  We collected PROTAC targets with reported degraders in the PROTAC-DB (2021-05-27) and/or
996 the PROTACpedia (2021-07-08)%**3. For evaluation purposes, the targets from Donovan et al.
997  study were removed from the PROTAC databases (including PROTAC-DB and PROTACpedia).
998  This resulted in 65 kinases and 65 proteins outside of the kinome. From Donovan et al. study, we
999  collected 217 kinases degraded by at least one multi-kinase degrader as ‘degraded’ and all the
1000 others detected in the same datasets as ‘not degraded’®'. We collected 1,336 PROTACtable
1001  targets, including the Clinical Precedence targets, Discovery Opportunity targets, and Literature
1002 Precedence targets from the PROTACtable genome’™. We collected 24 IMiD targets from
1003  published studies®? and assessed their frequency of degradation by 68 CRBN-recruiting multi-
1004  kinase degraders from Donovan et al. study®'.
1005
1006  Protein family
1007  We downloaded the human kinase/kinase-related proteins from four different resources, including
1008  KinMap, KinBase, Donovan et al. study, and a review article’®""". We collected 1,626 human

1009 transcriptional factors from a review article’.
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1010

1011 Protein ligandability

1012  We downloaded the cysteine reactivity data from the SLCABPP”® and assessed protein
1013  ligandability using the number of compounds with a competition ratio greater than 4. Besides, we
1014  collected protein ligands from the ChEMBL (2021-07-23) and DrugBank database’’-’2. For any
1015  proteins degraded by a multi-kinase degrader or with a ligand recorded in the ChEMBL (2021-07-
1016  283), DrugBank, or SLCABPP, we considered it as a ligandable target.

1017

1018  Protein-disease associations

1019  We considered a protein as a cancer driver if it is an oncogene reported in the OncoKB or it is
1020 predicted as an oncogene by 20/20+ algorithm. 20/20+ analysis was performed on the aggregated
1021  pan-cancer dataset with default parameters. Genes with an oncogene score greater than 0.5 are
1022  considered oncogenes. To annotate potential protein targets associated with other human
1023  diseases, we also downloaded the variant-disease association from the ClinVar database’®
1024  (2021-04-20). For quality control, we removed annotations of likely loss-of-function variants,
1025 including indel, deletion, insertion, and microsatellite, as well as some uncertain annotations with
1026 key words like ‘conflicting’, ‘protective’, ‘uncertain’, ‘benign’, and ‘not’. This resulted in 3,415
1027  proteins associated with human diseases reported in the ClinVar database.

1028

1029  Structural properties of lysine residues and Ub sites

1030  We downloaded protein structures of human models or homology models from PDB''2, SWISS-
1031  MODEL'®, and ModPipe''4. The detailed data cleaning and processing have been described in
1032  Tokheim et al. study''®. Protein structures were analyzed using the DSSP program® in bio3d R
1033  package''®, which returns the solvent accessibility and secondary structure of each residue.
1034

1035 Protein-protein docking
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1036 We downloaded protein structures of 323 kinases from the PDB. In cases where multiple
1037  structures were available, the largest structure was chosen. They were aligned to CDK2 (PDB:
1038 1AQ1)'", a reference kinase, to ensure that the kinase domain was present. 251 kinase
1039  structures were alignable with root-mean-square deviation less than 3.5 A near the ATP-binding
1040  pocket. Next, the aligned kinases were positioned in an arbitrary (but similar) orientation around
1041  the ligand-binding pocket of CRBN-Lenalidomide structure (PDB: 5FQD)'. Using Rosetta
1042  v.3.12'"® and RosettaDock v.4.0'"°, we performed 5,000 independent local docking with different
1043  starting points and perturbation of 3 A and 8° (all options listed below). Models were evaluated by
1044  the interface score metric (I_sc) and the 200 lowest-scoring models were selected for further
1045  evaluation.

1046

1047 E2 accessibility of lysine residues

1048  We assessed the accessibility of solvent-exposed lysine residues to the E2 enzyme by calculating
1049 the fraction of protein-protein docking models among the 200 lowest-scoring models that could fit
1050 a PROTAC and in which the lysine residues are in the ubiquitination zone of the E2 enzyme. All
1051 lysines with any atom having >2.5 A2 exposed surface area were considered solvent exposed.
1052  The ability of the ternary complex to fit a PROTAC was assessed by aligning CDK2 with CDK4
1053 inhibitor (PDB: 1GIJ)'? to the kinase and calculating if there was a free path available between
1054  the N3 atom Lenalidomide and C26 atom of the CDK4 inhibitor to build a linker. If a cylinder of
1055  radius 1 A and length <14 A could be constructed between the aforementioned atoms with less
1056 than 2 protein backbone or compound atoms (except neighboring atoms) inside the cylinder, we
1057  estimated that there exists a free path to build a linker, and hence fit the PROTAC. To assess
1058  which lysine residue lie within the ubiquitination zone of the E2, we constructed two planes to split
1059  up space into quadrants. The ‘vertical’ plane passes through half the distance between the CRBN
1060 edge facing the kinase and the center-of-mass of the kinase. The ‘horizontal’ plane is

1061  approximately perpendicular to the vertical plane and passes through the center-of-mass of the
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1062 kinase. The lysine residues lying in the quadrant facing the putative position of the E2 are
1063 considered accessible. Finally, if the lysine residue was more than 60 A away from the
1064 Lenalidomide or the C«—Cg vector points in the direction opposite of the putative E2 site, the
1065 residue was considered inaccessible.

1066

1067  Association between protein degradability and characteristics of Ub sites

1068  We first counted each protein’s lysine residues/Ub sites in different secondary structures (coil,
1069  strand, and loop), and then tested whether there is a difference between highly-degradable and
1070 lowly-degradable kinases using the Wilcoxon z-statistics. Similarly, we assessed the associations
1071 between kinase degradability and the number of lysine residues/Ub sites with a specific range of
1072  solvent accessibility or B-factor. A positive Wilcoxon z-statistic indicates the positive correlation
1073  between kinase degradability and the number of Ub sites/lysine residues in the proteins.

1074  We also tested the association between kinase degradability and the number of E2-accessible
1075  Ub sites/lysine residues (E2 accessibility greater than a specific threshold) in each protein. To
1076  further demonstrate the specific importance of E2-accessible Ub sites, we randomly shuffled the
1077  Ub sites among all lysine residues and re-evaluated the association between kinase degradability
1078 and the number of E2-accessible Ub sites in each kinase. We generated a null distribution by
1079 repeating the shuffling process for 10,000 times and calculated the p-value by counting the
1080 percentage of shuffling that led to a higher Wilcoxon z-statistic than the observed Wilcoxon z-
1081  statistic.

1082
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1083 Data and software availability

1084 The R package is stored on github: https://github.com/liulab-dfci’/MAPD. The source code for
1085 reproducible data analysis is stored on github: https://github.com/liulab-dfci/Degradability2021. All

1086 relevant data and results are accessible at http://mapd.cistrome.org.

1087
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