

1 **Machine learning modeling of protein-intrinsic features predicts**
2 **tractability of targeted protein degradation**
3

4 Wubing Zhang^{1,2,7}, Shourya S. Roy Burman^{3,4,7}, Jiaye Chen⁵, Katherine A. Donovan^{3,4}, Yang
5 Cao⁶, Boning Zhang^{1,2}, Zexian Zeng^{1,2}, Yi Zhang^{1,2}, Dian Li^{1,2}, Eric S. Fischer^{3,4,*}, Collin
6 Tokheim^{1,2,*}, X. Shirley Liu^{1,2,*}

7

8 ¹Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA

9 ²Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA

10 ³Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA

11 ⁴Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School,
12 Boston, MA 02115, USA

13 ⁵Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA

14 ⁶College of Life Sciences, Sichuan University, Chengdu, China

15 ⁷These authors contributed equally

16 *Corresponding author

17

18 Lead contact: X. Shirley Liu, Ph.D.
19 450 Brookline Ave, Boston, MA USA 02215
20 Ph: +1 617 632 2472
21 Fax: + 1 617 632 2444
22 xsliu@ds.dfcf.harvard.edu

23

24 Abstract

25 Targeted protein degradation (TPD) has rapidly emerged as a therapeutic modality to eliminate
26 previously undruggable proteins by repurposing the cell's endogenous protein degradation
27 machinery. However, the susceptibility of proteins for targeting by TPD approaches, termed
28 "degradability", is largely unknown. Recent systematic studies to map the degradable kinome
29 have shown differences in degradation between kinases with similar drug-target engagement,
30 suggesting yet unknown factors influencing degradability. We therefore developed a machine
31 learning model, MAPD (Model-based Analysis of Protein Degradability), to predict degradability
32 from protein features that encompass post-translational modifications, protein stability, protein
33 expression and protein-protein interactions. MAPD shows accurate performance in predicting
34 kinases that are degradable by TPD compounds (auPRC=0.759) and is likely generalizable to
35 independent non-kinase proteins. We found five features with statistical significance to achieve
36 optimal prediction, with ubiquitination potential being the most predictive. By structural modeling,
37 we found that E2-accessible ubiquitination sites, but not lysine residues in general, are particularly
38 associated with kinase degradability. Finally, we extended MAPD predictions to the entire
39 proteome to find 964 disease-causing proteins, including 278 cancer genes, that may be tractable
40 to TPD drug development.

41

42 **Introduction**

43 The most prevalent pathway for selective protein degradation in eukaryotic cells is the Ubiquitin-
44 Proteasome System (UPS), which degrades proteins that are covalently modified with ubiquitin^{1–}
45 ³. Ubiquitination is orchestrated in three steps by three enzymes. First, ubiquitin is activated by
46 covalent attachment to the active site of an E1 ubiquitin-activating enzyme. Second, the activated
47 ubiquitin is transferred from the E1 enzyme to an E2 ubiquitin-conjugating enzyme. Finally, the
48 proximity induced by an E3 ubiquitin ligase selectively binding to a substrate allows for the
49 covalent transfer of ubiquitin from the E2 enzyme to a lysine residue on the substrate. After
50 repeated rounds of this process, a poly-ubiquitin chain can be formed, which often directs the
51 substrate for degradation by the 26S proteasome⁴.

52

53 Targeted protein degradation (TPD) is a novel pharmacologic modality that selectively induces
54 degradation of a protein-of-interest (POI) by chemically repurposing the UPS^{5–7}. The TPD
55 molecules (degraders), epitomized by the molecular glues^{8,9} and PROteolysis TArgeting
56 Chimeras (PROTACs)^{5,10–13}, typically induce the *de novo* ternary complex formation between an
57 E3 ligase and a POI, leading to the ubiquitin transfer to available lysines and subsequent
58 degradation of the POI^{14–16}. Unlike traditional inhibitors that target the catalytic binding site on a
59 POI, degraders can induce protein degradation by binding to non-catalytic sites^{11,17,18}. Therefore,
60 previously undruggable proteins, such as transcription factors (TF), can be targeted by
61 degraders^{19,20}. For example, the FDA-approved immunomodulatory drugs (IMiDs) thalidomide,
62 pomalidomide, and lenalidomide^{21–28} induce degradation of transcription factors IKZF1 and IKZF3
63 by recruiting them to CRBN^{25,26,29–32}, the substrate recognition subunit of the E3 ubiquitin ligase
64 complex CUL4-RBX1-DDB-CRBN³³. Over the last two decades, the TPD field has grown
65 dramatically, with thousands of publicly available degraders developed for over 100 human
66 protein targets^{34,35}. Notably, degraders targeting androgen receptor^{36,37}, oestrogen receptor^{38–41},
67 BCL-XL^{42,43}, Ikaros/Aiolos (IKZF1/3)^{44–47}, Helios (IKZF2)^{44–46}, and GSPT1⁴⁸ have entered into

68 clinical trials, and degraders targeting STAT3, BRD9, BTK, or TRK will also be tested in patients
69 soon⁴⁹. Despite these advances, it remains challenging to predict which proteins are susceptible
70 and which may be resistant to the TPD approaches.

71
72 Chemoproteomic profiling approaches have emerged as a systematic approach to survey protein
73 degradability⁵⁰. Rather than profiling expression of a single protein in response to a selective
74 degrader, these approaches use mass spectrometry to assess the proteome-wide response to
75 treatment with pan-targeting degraders⁵¹⁻⁵⁴. For example, our recent study profiled 91 multi-
76 kinase degraders to assess the degradability of more than 400 protein kinases, identifying more
77 than 200 kinases as degradable⁵¹. Using a library of pan-HDAC degraders, Xiong *et al.*
78 investigated the degradability of zinc-dependent HDACs⁵⁴. Together these broad-targeted
79 degrader profiling experiments have greatly expanded the known degradable proteome.
80 Unfortunately, chemoproteomic approaches to map degradability are inapplicable for most
81 proteins due to the absence of ligands required for target recruitment to the ligase machinery.
82 Thus, computational prediction of protein degradability offers a potentially practical alternative.

83
84 It is widely believed that stable ternary complexes are associated with effective and selective
85 target degradation^{15,16,53,55}. A series of computational methods have been introduced to model
86 PROTAC-mediated ternary complex formation⁵⁶⁻⁵⁹, which have facilitated the rational and efficient
87 optimization of PROTACs^{16,60}. However, several studies have shown that although some level of
88 binary target engagement and ternary complex formation are necessary for target recruitment
89 and ubiquitin transfer, they are not always sufficient for targeted protein degradation^{51-53,61}. We
90 propose that rather than drug-target interactions driving degradability, features intrinsic to the
91 protein targets could also heavily influence degradability of specific targets. For instance, while
92 ubiquitination is the initiation signal for proteasomal degradation⁶²⁻⁶⁵, the association between
93 protein degradability and known or potential ubiquitination (Ub) sites in the target protein is poorly

94 understood.

95

96 In this study, we developed a machine learning model, MAPD (Model-based Analysis of Protein
97 Degradability), to predict degradability from protein-intrinsic features (Fig. 1). MAPD shows
98 promising performance in predicting degradable kinases by multi-kinase degraders and
99 previously reported targets of PROTAC compounds. We found that a protein's endogenous
100 ubiquitination potential contributes the most to the degradability predictions. Structural analysis
101 via protein-protein docking revealed the particular importance of E2-accessible Ub sites in
102 determining degradability. Using MAPD, we have expanded our predictions to the human
103 proteome to map protein tractability to TPD approaches. Our results are available at
104 <http://mapd.cistrome.org/>, which could be a valuable resource for guiding target prioritization
105 towards tractable TPD targets.

106 **Results**

107 **Kinase degradability is associated with features intrinsic to the target**

108 Substantial efforts have been invested in the optimization of degraders for any particular target
109 with no guarantee that a successful compound will be found^{66,67}. Our previous chemoproteomic
110 study of the protein kinome indicates that drug-target engagement is insufficient to predict which
111 kinases can be degraded⁵¹, suggesting unexplained factors influencing protein degradability. In
112 this study, we explored factors intrinsic to POIs that may influence their degradability by
113 comparing kinases that all have drug-target engagement, but differ in multi-kinase degrader-
114 induced degradation. We first selected highly- and lowly-degradable kinases based on the
115 number of multi-kinase degraders found to degrade each POI (Fig. 2a), with an additional
116 requirement of high frequency of detection in the underlying global proteomic experiments
117 (Extended Data Fig. 1a). We next collected protein features that may be predictive of kinase
118 degradability, including post-translational modifications (PTMs), protein stability, protein-protein
119 interaction (PPI), protein expression, etc. (Supplementary Table 1). Often features within a
120 category are highly correlated with each other, while features between categories tend to provide
121 independent information (Fig. 2b).

122

123 To identify features associated with protein degradability, we compared highly- and lowly-
124 degradable kinases using a Wilcoxon rank-sum test. Compared to lowly-degradable kinases, the
125 highly-degradable kinases have a significantly higher proportion of lysine residues that have
126 reported ubiquitination events from the PhosphoSitePlus database⁶⁸ (hereafter referred to as
127 ubiquitination potential) ($p=5.2e-4$; Fig. 2c, S1b-c). The ubiquitination potential likely reflects a
128 protein's endogenous capacity to be ubiquitinated since the ubiquitination events are from cell
129 lines in the absence of degrader treatment⁶⁹. Notably, the percentage of lysine residues on POIs
130 are not significantly different (Extended Data Fig. 1d). Besides ubiquitination potential, mRNA
131 expression of a POI in the assayed cell lines is positively associated with protein degradability

132 (Fig. 2c, S1e), suggesting that profiling in more cell contexts might be advantageous.
133 Furthermore, we observed an enrichment of proteins with lower half-life in the highly-degradable
134 group (Fig. 2c, S1f). Given that protein half-life was not correlated with ubiquitination potential
135 (Extended Data Fig. 1g), this indicates an independent signal for predicting protein degradability.
136 Collectively, these results suggest that features intrinsic to protein targets might influence their
137 degradability.

138

139 **Development of Model-based Analysis of Protein Degradability (MAPD)**

140 We next sought to build a machine learning model, named Model-based Analysis of Protein
141 Degradability (MAPD), to combine multiple features associated with protein degradability into a
142 single score. Towards this end, we tested six commonly used machine learning methods,
143 including naive bayes (NB), k-nearest neighbor (KNN), logistic regression, linear-kernel support
144 vector machine (svmLinear), radial kernel support vector machine (svmRadial), and random forest
145 (RF). Because of the redundancy of protein-intrinsic features, we performed forward feature
146 selection for each method (Methods), which iteratively selects the best-performing features
147 (Supplementary Table 2) until the model performance plateaus⁷⁰. By evaluating performance
148 using cross-validation, the RF model outperformed other models with an area under the Precision-
149 Recall Curve (auPRC) of 0.759 (Fig. 3a) and area under the receiver operating characteristic
150 curves (auROC) of 0.773 (Extended Data Fig. 2a). Therefore, all further analyses are based on
151 the RF model implementation.

152

153 Five protein-intrinsic features were identified as important in the MAPD model, including
154 ubiquitination potential, phosphorylation potential, protein half-life, acetylation potential, and
155 protein length (Extended Data Fig. 2b), in order of importance. Next, we compared the
156 performance of MAPD to models that were trained on each individual feature using cross-
157 validation. Consistent with the highest importance of ubiquitination potential in MAPD, the model

158 trained on the ubiquitination potential showed the highest auPRC (0.584) and auROC (0.663)
159 among all other single-featured models (Fig. 3b, Extended Data Fig. 2c). Interestingly, the
160 combination of the three PTM features (ubiquitination, phosphorylation, and acetylation) seem to
161 achieve higher auPRC (0.659) and auROC (0.753) than ubiquitination potential alone ($p=0.058$,
162 Delong's test) (Fig. 3b, Extended Data Fig. 2c). This suggests that the general propensity of a
163 protein to be post-translationally modified might be predictive of protein degradability.

164

165 **MAPD shows good performance in predicting kinase degradability**

166 To evaluate the robustness of MAPD, we assessed the degradability of the kinome, with the
167 predictions for training kinases collected from the 20-fold cross-validation to avoid inflating the
168 performance assessment. We first examined the degradability of kinases profiled in Donovan *et*
169 *al.*⁵¹ and found significantly higher MAPD scores of degradable kinases than other kinases
170 engaged by multi-kinase degraders (Extended Data Fig. 3a). This trend is also consistent for
171 specific degraders, such as TL12-186 and SK-3-91 (Extended Data Fig. 3a), although with less
172 significance due to the smaller number of POIs in these datasets. Based on a threshold with the
173 best cross-validation accuracy, MAPD identified 382 highly-degradable kinase/kinase-related
174 proteins, covering 78.8% (171/217) experimentally degradable kinases⁵¹ (Fig. 4a). Consistent
175 with the low MAPD scores, the remaining 21.2% kinases have a low frequency of degradation
176 (Extended Data Fig. 3b). Furthermore, within all experimentally degraded kinases, MAPD scores
177 show considerable correlation with their frequency of degradation by multi-kinase degraders
178 ($p=5.51e-6$) (Fig. 4b), indicating the capability of MAPD in prioritizing highly-degradable targets.
179 We next examined the overlap of degradable targets from MAPD and curated protein targets with
180 reported PROTACs in databases (PROTAC-DB³⁴ and PROTACpedia³⁵). Although some
181 PROTAC targets were missed (Supplementary Table 3), MAPD successfully identified 77%
182 (50/65) of kinase targets (Fig. 4a), supporting its ability in distinguishing degradable kinases from
183 other kinases. In addition, MAPD recovered 14 PROTAC targets that were not identified by

184 Donovan *et al.*⁵¹ (Fig. 4a), which highlights how computational methods can be complementary
185 to high-throughput experimental approaches.

186

187 A binder of the target protein is required in the design of TPD molecules, so the propensity of a
188 POI to be bound by a small molecule, also called ligandability, is relevant to tractability of the POI
189 by TPD molecules. Here, we leveraged knowledge of existing small molecules to refine MAPD
190 predictions. A protein is considered ligandable if it has at least one ligand reported in PROTAC-
191 DB³⁴, PROTACpedia³⁵, DrugBank⁷¹, ChEMBL⁷² or SLCABPP (Ligandable Cysteine Database)⁷³
192 (Extended Data Fig. 3d). Out of the 519 ligandable kinases, MAPD identified 350 degradable
193 kinases, including 74% (253/342) PROTACtable targets and 97 targets specifically identified by
194 MAPD (Fig. 4c). PROTACtable was introduced in a recent perspective article⁷⁴ that qualitatively
195 assigned tractable TPD targets based on ligand records in ChEMBL and a rule-based approach
196 that only considers whether certain protein annotations are available. We observed a significantly
197 lower ubiquitination potential of PROTACtable-specific targets than MAPD-specific targets (Fig.
198 4d). For example, MAP3K4, a PROTACtable-specific target, has only one reported Ub site despite
199 being a particularly long protein with 103 lysines⁶⁸ (Fig. 4e). In contrast, the MAPD-specific target,
200 AGK, is extensively ubiquitinated despite its short length (Fig. 4e). Experimental data showed that
201 AGK was degraded sufficiently by multi-kinase degraders⁵¹ while MAP3K4 was not despite its
202 strong target engagement by a multi-kinase degrader⁵². These examples highlight a potential
203 advantage of MAPD by quantitatively assessing protein degradability.

204

205 In total, MAPD identified 132 disease-relevant kinase targets, including 72 cancer genes in
206 OncoKB and 60 kinases associated with other diseases reported in the ClinVar database^{75,76}
207 (Extended Data Fig. 3e). These kinases could be prospective targets for development of
208 degraders (Supplementary Table 3). The most degradable kinases include targets with developed
209 PROTACs^{34,35}, such as CDK2, PLK1, CDK6, CDK9 and CDK4, and other promising targets, such

210 as TK1, CSNK1A1, CHEK1, MAPK8, and AURKB that are degraded by multi-kinase
211 degraders^{51,52} (Fig. 4f).

212

213 **MAPD predicts proteome-wide degradability**

214 We hypothesized that MAPD might also predict the degradability of non-kinase proteins. To test
215 this, we collected 65 non-kinase targets with publicly available degraders reported in PROTAC
216 databases^{34,35}. These PROTAC targets had significantly higher MAPD scores than other drug
217 targets from DrugBank⁷¹ (Fig. 5a). To further corroborate this finding, we collected a list of TFs,
218 such as Ikaros (IKZF1) and Aiolos (IKZF3), that are frequently degraded by thalidomide analog
219 (IMiD)-based degraders^{32,51}. The MAPD scores of these TFs showed significant correlation with
220 their observed frequency of degradation ($p=0.022$) (Fig. 5b). Additional TFs have also been
221 targeted by TPD molecules^{20,77,78}, such as degraders for AR^{38,79-81} and ER⁸²⁻⁸⁶ that have entered
222 into clinical trials. With the exception of BCL6 which has few reported Ub sites, MAPD correctly
223 predicts the high degradability of most TF PROTAC targets (Fig. 5c). Taken together, these
224 results indicate that MAPD is generalizable to POIs outside of the kinome.

225

226 Given the robust performance of MAPD, we next applied MAPD proteome-wide to systematically
227 score all proteins outside of the kinome. MAPD predicted 2,648 degradable targets out of 4,137
228 ligandable non-kinase proteins (Extended Data Fig. 4a,b), which was two-fold more than
229 PROTACtable⁷⁴ (Fig. 5d). The MAPD-specific targets again had significantly higher levels of
230 ubiquitination potential than the PROTACtable-specific targets (Fig. 4e). We further identified 832
231 disease-relevant non-kinase targets that are amenable to TPD (Extended Data Fig. 4c and
232 Supplementary Table 4). Of these, 206 proteins are considered as oncogenic genes by OncoKB
233 and 626 proteins are associated with other human diseases reported in the ClinVar database^{75,76}
234 (Extended Data Fig. 4c). The top predicted degradable targets include known PROTAC targets,
235 such as MDM2 and BCL-XL (BCL2L1), and other potentially degradable targets. DHFR, one of

236 the top-ranking targets, has been successfully degraded by a hydrophobic tagging probe
237 consisting of a hydrophobic moiety Boc3Arg and a DHFR non-covalent binding ligand TMP⁸⁷.
238 RHOA, RHOB, and RHOC are also predicted to be degradable, which have been previously
239 reported to be degraded by F-box-intracellular single-domain antibodies⁸⁸. These results suggest
240 potential opportunity for future TPD efforts (Fig. 5f).

241

242 **The E2-accessibility of Ub sites is associated with protein degradability**

243 Given that ubiquitination potential was the most important feature in MAPD, we hypothesized that
244 structural properties of Ub sites could be informative of protein degradability. To test this
245 hypothesis, we first grouped Ub sites according to their structural properties (Supplementary
246 Table 4) such as secondary structure, relative solvent accessibility, or flexibility (as defined by B-
247 factor)⁸⁹. We then examined the association between protein degradability and the number of Ub
248 sites in each group using a Wilcoxon z-statistic. Among annotated secondary structures, the
249 number of Ub sites in loop regions showed modestly higher association with protein degradability
250 relative to the total number of Ub sites (Extended Data Fig. 5a). However, neither relative solvent
251 accessibility nor flexibility of Ub sites improved the association with protein degradability
252 (Extended Data Fig. 5b,c). These data suggest that local structural properties of a Ub site provide
253 limited information for predicting protein degradability.

254

255 We next investigated the property of Ub sites that facilitates the transfer of ubiquitin from the
256 attached E2 enzyme to the POI in degrader-mediated ternary complexes. We reasoned that
257 quantifying the accessibility of Ub sites to the E2 enzyme might be predictive of protein
258 degradability. As most degraders in the chemoproteomics study were based on the CRBN
259 substrate receptor, we examined this hypothesis by computationally docking 251 target kinases
260 with experimental structures onto CRBN–IMiD (Extended Data Fig. 6a). We examined the 200
261 top-scoring structural models for each POI and removed those where it was not feasible to fit a

262 PROTAC (Extended Data Fig. 6b). Due to the high flexibility of the CUL4 arm, the attached E2
263 can transfer ubiquitin to any site in a broad ubiquitination zone⁹⁰, hence all Ub sites in the spatial
264 quadrant facing the E2 were considered accessible to the E2 (Fig. 6a, Extended Data Fig. 6c).
265 We then defined E2 accessibility as the fraction of top-scoring models in which the Ub site was
266 accessible to the E2 enzyme (Fig. 6a, Extended Data Fig. 6c, Supplementary Table 4). In
267 comparison to the total number of Ub sites in the structure of the POI, the E2-accessible Ub sites
268 showed a more significant positive association with protein degradability (Fig. 6b, Extended Data
269 Fig. 7a). In contrast, the number of E2-accessible lysine residues on the POIs does not show
270 significant association with their degradability (Extended Data Fig. 7a,b). Together, these results
271 suggest that lysines with detected ubiquitination events are more amenable to TPD. To further
272 assess whether E2-accessibility was independently useful, we randomly shuffled reported Ub
273 sites among all available lysine residues within a protein. Consistent with our initial finding, E2-
274 accessible Ub sites were significantly more associated with protein degradability than expected
275 based on the total number of Ub sites in each protein ($p=0.0064$; Fig. 6c).

276

277 We observed an overall positive correlation between the total number of Ub sites and E2
278 accessible Ub sites on kinases (Fig. 6d), and noticed some POIs with outlier levels of E2-
279 accessible and total Ub sites. For example, CDK1 had a high fraction of E2-accessible Ub sites
280 (Fig. 6d, Extended Data Fig. 7c), consistent with its frequent degradation by multi-kinase
281 degraders⁵¹. Therefore, we hypothesize that similar proteins, such as GRK2, GRK6, and STK26,
282 are promising targets for developing future TPD drugs if they had drug-target engagement (Fig.
283 6d). In contrast, some kinases, such as VRK1, ZAP70, NEK7, and MAPK14, had a low number
284 of E2-accessible Ub sites, despite having a high number of total Ub sites (Fig. 6d). As expected,
285 these kinases have significantly lower frequency of degradation by CRBN-recruiting multi-kinase
286 as measured by Donovan *et al.*⁵¹ (Fig. 6e).

287

288 Finally, we created an interactive web platform (<http://mapd.cistrome.org>), which incorporates
289 protein-intrinsic features, MAPD predictions, E2 accessibility of Ub sites in select proteins,
290 ligandability, and disease associations. This platform could enable rational prioritization of
291 degradable targets for developing degraders by the TPD community. Moreover, we implemented
292 MAPD as a R package (<https://github.com/liulab-dfci/MAPD>), which allows researchers to extend
293 our analysis when more chemoproteomic profiling data and/or protein features are available in
294 the future.

295

296

297

298 **Discussion**

299 Despite the growth in the number of targeted protein degraders, it remains challenging to predict
300 which proteins are tractable to this approach. In this study, we investigated the degradability of
301 kinases and their correlation with features intrinsic to protein targets. By developing a machine
302 learning model, MAPD (Model-based Analysis of Protein Degradability), we identified five features
303 predictive of kinase degradability, including the ubiquitination potential, acetylation potential,
304 phosphorylation potential, protein half-life and protein length. Systematic benchmarking indicates
305 that MAPD can well predict kinase degradability and is also applicable to proteins outside of the
306 kinome. By integrating MAPD predictions and ligand information of POIs, we prioritized disease-
307 associated degradable proteins as TPD drug targets.

308

309 Ternary complex formation is thought to be the most important factor in determining the
310 degradability of protein targets^{53,55-59}. However, our analysis found that protein degradability can
311 also be heavily influenced by protein-intrinsic features, especially the protein's endogenous
312 ubiquitination potential. By modeling the structural relationship between target proteins and E2-
313 enzyme, we found that protein degradability is highly correlated with the availability of E2-
314 accessible Ub sites. Thus, checking the protein-intrinsic features, especially the availability of E2-
315 accessible Ub sites, might be crucial for selecting protein targets or E3 recruiters before a TPD
316 drug discovery project.

317

318 Our study has several limitations. First, our analysis revealed protein-intrinsic features, such as
319 ubiquitination potential and protein half-life, associated with protein degradability, but it remains
320 to be answered how they influence protein degradability. Second, although our model had the
321 potential to identify degradable non-kinase targets, it showed biased predictions for some proteins
322 (e.g., BRD4, BCL6, HDAC6, and HDAC3) with poorly detected Ub sites or missing feature data.
323 Therefore, a careful consideration of feature data is important when interpreting the prediction

324 results. Lastly, while E2-accessible Ub sites are important in determining protein degradability,
325 we didn't incorporate this feature into MAPD. One reason is that most proteins don't have
326 experimentally solved protein structure with known ligandable pockets, which is required for
327 protein docking models. The release of highly accurate predicted protein structures generated
328 with AlphaFold may offer a great opportunity for researchers to address this problem in the
329 future⁹¹.

330

331 Our study also reveals several research directions deserving future study to advance the field.
332 First, computational and experimental studies investigating why certain lysines seem more
333 susceptible to ubiquitination than others could improve the predictions for degradability by MAPD.
334 Second, more extensive proteomic profiling of protein-intrinsic features and induced protein
335 degradation by multi-target degraders in disease-relevant cell lines or tissues could facilitate the
336 understanding of cell-type-specific protein degradability and further accelerate the development
337 of TPD drugs for diseases. Finally, we envision that future computational methods will not only
338 improve the prediction of protein degradability, but also predict the functional consequence of
339 degradation of disease-causing proteins.

340

341

342

343 Acknowledgements

344 This study was supported by grants from the Breast Cancer Research Foundation (BCRF-19-100
345 to X.S.L.), the Mark Foundation for Cancer Research (Mark Foundation Emerging Leader Award
346 19-001-ELA to E.S.F.), the NIH (R01CA218278 and R01CA214608 to E.S.F.), and Cancer
347 Research Institute (Irvington Postdoctoral Fellowship CRI 3442 to S.S.R.B.). C.T. is a Damon
348 Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRQ-04-20). We
349 acknowledge the Research Computing Group at Harvard Medical School and Dana-Farber
350 Cancer Institute for cluster time, and the SBGrid consortium for structural biology software. We
351 also would like to thank Dr. Chris Sander for helpful suggestions on this study.

352 Author Contributions

353 W.Z., C.T., and X.S.L. conceived of the study. W.Z., S.S.R.B., K.A.D., B.Z., E.S.F., C.T., and
354 X.S.L. drafted and edited the manuscript. W.Z. developed the computational methods. W.Z. and
355 S.S.R.B. performed the protein structural analysis. J.C. developed the interactive website. K.A.D.
356 contributed degradability data. Y.C., Z.Z., Y.Z., and D.L. participated in discussions.

357 Competing Interests Statement

358 X.S.L. is a cofounder, board member, SAB member, and consultant of GV20 Oncotherapy and
359 its subsidiaries; stockholder of BMY, TMO, WBA, ABT, ABBV, and JNJ; and received research
360 funding from Takeda, Sanofi, Bristol Myers Squibb, and Novartis. E.S.F. is a founder, science
361 advisory board (SAB) member, and equity holder in Civetta Therapeutics, Jengu Therapeutics

362 (board member), Neomorph Inc and an equity holder in C4 Therapeutics. E.S.F. is a consultant
363 to Novartis, Sanofi, EcoR1 capital, Avilar, and Deerfield. The Fischer lab receives or has received
364 research funding from Astellas, Novartis, Voronoi, Ajax, and Deerfield. K.A.D is a consultant to
365 Kronos Bio. All the other authors declare no competing interests.

366

367

368 References

- 369 1. Hochstrasser, M. Ubiquitin-dependent protein degradation. *Annu. Rev. Genet.* **30**, 405–439
- 370 (1996).
- 371 2. Glickman, M. H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway:
372 destruction for the sake of construction. *Physiol. Rev.* **82**, 373–428 (2002).
- 373 3. Pickart, C. M. Back to the future with ubiquitin. *Cell* **116**, 181–190 (2004).
- 374 4. Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. The proteasome: paradigm of a self-
375 compartmentalizing protease. *Cell* **92**, 367–380 (1998).
- 376 5. Sakamoto, K. M. *et al.* Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F
377 box complex for ubiquitination and degradation. *Proc. Natl. Acad. Sci. U. S. A.* **98**, 8554–
378 8559 (2001).
- 379 6. Schneekloth, A. R., Puchault, M., Tae, H. S. & Crews, C. M. Targeted intracellular protein
380 degradation induced by a small molecule: En route to chemical proteomics. *Bioorganic &*
381 *Medicinal Chemistry Letters* vol. 18 5904–5908 (2008).
- 382 7. Park, E. C., Finley, D. & Szostak, J. W. A strategy for the generation of conditional
383 mutations by protein destabilization. *Proc. Natl. Acad. Sci. U. S. A.* **89**, 1249–1252 (1992).
- 384 8. Burslem, G. M. & Crews, C. M. Small-Molecule Modulation of Protein Homeostasis.
385 *Chemical Reviews* vol. 117 11269–11301 (2017).
- 386 9. den Besten, W. & Lipford, J. R. Prospecting for molecular glues. *Nature chemical biology*
387 vol. 16 1157–1158 (2020).
- 388 10. Burslem, G. M. & Crews, C. M. Proteolysis-Targeting Chimeras as Therapeutics and Tools
389 for Biological Discovery. *Cell* **181**, 102–114 (2020).
- 390 11. Pettersson, M. & Crews, C. M. PROteolysis TArgeting Chimeras (PROTACs) — Past,
391 present and future. *Drug Discovery Today: Technologies* vol. 31 15–27 (2019).
- 392 12. Lu, J. *et al.* Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. *Chem.*

393 *Biol.* **22**, 755–763 (2015).

394 13. Winter, G. E. *et al.* DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in
395 vivo target protein degradation. *Science* **348**, 1376–1381 (2015).

396 14. Petzold, G., Fischer, E. S. & Thomä, N. H. Structural basis of lenalidomide-induced CK1 α
397 degradation by the CRL4(CRBN) ubiquitin ligase. *Nature* **532**, 127–130 (2016).

398 15. Gadd, M. S. *et al.* Structural basis of PROTAC cooperative recognition for selective protein
399 degradation. *Nat. Chem. Biol.* **13**, 514–521 (2017).

400 16. Nowak, R. P. *et al.* Plasticity in binding confers selectivity in ligand-induced protein
401 degradation. *Nature Chemical Biology* vol. 14 706–714 (2018).

402 17. Burslem, G. M. *et al.* The Advantages of Targeted Protein Degradation Over Inhibition: An
403 RTK Case Study. *Cell Chem Biol* **25**, 67–77.e3 (2018).

404 18. Fisher, S. L. & Phillips, A. J. Targeted protein degradation and the enzymology of
405 degraders. *Curr. Opin. Chem. Biol.* **44**, 47–55 (2018).

406 19. Samarasinghe, K. T. G. & Crews, C. M. Targeted protein degradation: a promise for
407 undruggable proteins. *Cell Chem Biol* (2021) doi:10.1016/j.chembiol.2021.04.011.

408 20. Henley, M. J. & Koehler, A. N. Advances in targeting ‘undruggable’ transcription factors with
409 small molecules. *Nature Reviews Drug Discovery* (2021) doi:10.1038/s41573-021-00199-0.

410 21. Pan, B. & Lentzsch, S. The application and biology of immunomodulatory drugs (IMiDs) in
411 cancer. *Pharmacol. Ther.* **136**, 56–68 (2012).

412 22. Teo, S. K. *et al.* Thalidomide in the treatment of leprosy. *Microbes Infect.* **4**, 1193–1202
413 (2002).

414 23. D’Amato, R. J., Loughnan, M. S., Flynn, E. & Folkman, J. Thalidomide is an inhibitor of
415 angiogenesis. *Proceedings of the National Academy of Sciences* vol. 91 4082–4085
416 (1994).

417 24. Thomas, D. A. & Kantarjian, H. M. Current role of thalidomide in cancer treatment. *Current
418 Opinion in Oncology* vol. 12 564–573 (2000).

419 25. Ito, T. *et al.* Identification of a primary target of thalidomide teratogenicity. *Science* **327**,
420 1345–1350 (2010).

421 26. Krönke, J. *et al.* Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple
422 myeloma cells. *Science* **343**, 301–305 (2014).

423 27. Lu, G. *et al.* The myeloma drug lenalidomide promotes the cereblon-dependent destruction
424 of Ikaros proteins. *Science* **343**, 305–309 (2014).

425 28. Chamberlain, P. P. *et al.* Structure of the human Cereblon–DDB1–lenalidomide complex
426 reveals basis for responsiveness to thalidomide analogs. *Nature Structural & Molecular
427 Biology* vol. 21 803–809 (2014).

428 29. Kim, K. *et al.* Disordered region of cereblon is required for efficient degradation by
429 proteolysis-targeting chimera. *Sci. Rep.* **9**, 19654 (2019).

430 30. Gao, S., Wang, S. & Song, Y. Novel immunomodulatory drugs and neo-substrates.
431 *Biomark Res* **8**, 2 (2020).

432 31. Stewart, A. K. How Thalidomide Works Against Cancer. *Science* vol. 343 256–257 (2014).

433 32. Sievers, Q. L. *et al.* Defining the human C2H2 zinc finger degrome targeted by thalidomide
434 analogs through CRBN. *Science* **362**, (2018).

435 33. Fischer, E. S. *et al.* Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with
436 thalidomide. *Nature* **512**, 49–53 (2014).

437 34. Weng, G. *et al.* PROTAC-DB: an online database of PROTACs. *Nucleic Acids Res.* **49**,
438 D1381–D1387 (2021).

439 35. Prilusky. PROTACpedia - Main. <https://protacdb.weizmann.ac.il/ptcb/main> (2016).

440 36. Trial of ARV-110 in Patients With Metastatic Castration Resistant Prostate Cancer - Full
441 Text View - ClinicalTrials.gov. <https://clinicaltrials.gov/ct2/show/NCT03888612>.

442 37. Raina, K. *et al.* PROTAC-induced BET protein degradation as a therapy for castration-
443 resistant prostate cancer. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 7124–7129 (2016).

444 38. Petrylak, D. P. *et al.* First-in-human phase I study of ARV-110, an androgen receptor (AR)

445 PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer
446 (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI). *Journal of Clinical*
447 *Oncology* vol. 38 3500–3500 (2020).

448 39. Neklesa, T. *et al.* ARV-110: An oral androgen receptor PROTAC degrader for prostate
449 cancer. *Journal of Clinical Oncology* vol. 37 259–259 (2019).

450 40. Flanagan, J. J. *et al.* Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC
451 degrader for breast cancer. *Poster Session Abstracts* (2019) doi:10.1158/1538-
452 7445.sabcs18-p5-04-18.

453 41. A Phase 1/2 Trial of ARV-471 Alone and in Combination With Palbociclib (IBRANCE®) in
454 Patients With ER+/HER2- Locally Advanced or Metastatic Breast Cancer - Full Text View -
455 ClinicalTrials.gov. <https://clinicaltrials.gov/ct2/show/NCT04072952>.

456 42. He, Y. *et al.* DT2216—a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent
457 T cell lymphomas. *Journal of Hematology & Oncology* vol. 13 (2020).

458 43. A Study of DT2216 in Relapsed/Refractory Malignancies.
459 <https://clinicaltrials.gov/ct2/show/NCT04886622>.

460 44. Hansen, J. D. *et al.* Discovery of CRBN E3 Ligase Modulator CC-92480 for the Treatment
461 of Relapsed and Refractory Multiple Myeloma. *J. Med. Chem.* **63**, 6648–6676 (2020).

462 45. Inc., K. N. & Kernel Networks Inc. A Safety and Preliminary Efficacy Study of CC-99282,
463 Alone and in Combination With Rituximab in Subjects With Relapsed or Refractory Non-
464 hodgkin Lymphomas (R/R NHL). *Case Medical Research* (2019) doi:10.31525/ct1-
465 nct03930953.

466 46. Study of Safety and Efficacy of DKY709 Alone or in Combination With PDR001 in Patients
467 With Advanced Solid Tumors. <https://clinicaltrials.gov/ct2/show/NCT03891953>.

468 47. A Safety and Preliminary Efficacy Study of CC-99282, Alone and in Combination With
469 Rituximab in Subjects With Relapsed or Refractory Non-hodgkin Lymphomas (R/R NHL).
470 <https://clinicaltrials.gov/ct2/show/NCT03930953>.

471 48. A Safety and Efficacy Study of CC-90009 Combinations in Subjects With Acute Myeloid
472 Leukemia. <https://clinicaltrials.gov/ct2/show/NCT04336982>.

473 49. Mullard, A. Targeted protein degraders crowd into the clinic. *Nat. Rev. Drug Discov.* **20**,
474 247–250 (2021).

475 50. Spradlin, J. N., Zhang, E. & Nomura, D. K. Reimagining Druggability Using
476 Chemoproteomic Platforms. *Acc. Chem. Res.* **54**, 1801–1813 (2021).

477 51. Donovan, K. A. *et al.* Mapping the Degradable Kinome Provides a Resource for Expedited
478 Degrader Development. *Cell* **183**, 1714–1731.e10 (2020).

479 52. Huang, H.-T. *et al.* A Chemoproteomic Approach to Query the Degradable Kinome Using a
480 Multi-kinase Degrader. *Cell Chem Biol* **25**, 88–99.e6 (2018).

481 53. Bondeson, D. P. *et al.* Lessons in PROTAC Design from Selective Degradation with a
482 Promiscuous Warhead. *Cell Chem Biol* **25**, 78–87.e5 (2018).

483 54. Xiong, Y. *et al.* Chemo-proteomics exploration of HDAC degradability by small molecule
484 degraders. *Cell Chem Biol* (2021) doi:10.1016/j.chembiol.2021.07.002.

485 55. Roy, M. J. *et al.* SPR-measured dissociation kinetics of PROTAC ternary complexes
486 influence target degradation rate. doi:10.1101/451948.

487 56. Drummond, M. L. & Williams, C. I. In Silico Modeling of PROTAC-Mediated Ternary
488 Complexes: Validation and Application. *J. Chem. Inf. Model.* **59**, 1634–1644 (2019).

489 57. Zaidman, D., Prilusky, J. & London, N. PRosettaC: Rosetta Based Modeling of PROTAC
490 Mediated Ternary Complexes. *J. Chem. Inf. Model.* **60**, 4894–4903 (2020).

491 58. Bai, N. *et al.* Rationalizing PROTAC-Mediated Ternary Complex Formation Using Rosetta.
492 *J. Chem. Inf. Model.* **61**, 1368–1382 (2021).

493 59. Drummond, M. L., Henry, A., Li, H. & Williams, C. I. Improved Accuracy for Modeling
494 PROTAC-Mediated Ternary Complex Formation and Targeted Protein Degradation via
495 New In Silico Methodologies. doi:10.1101/2020.07.10.197186.

496 60. Farnaby, W. *et al.* BAF complex vulnerabilities in cancer demonstrated via structure-based

497 PROTAC design. *Nat. Chem. Biol.* **15**, 672–680 (2019).

498 61. Smith, B. E. *et al.* Differential PROTAC substrate specificity dictated by orientation of
499 recruited E3 ligase. *Nat. Commun.* **10**, 131 (2019).

500 62. Lecker, S. H., Goldberg, A. L. & Mitch, W. E. Protein degradation by the ubiquitin-
501 proteasome pathway in normal and disease states. *J. Am. Soc. Nephrol.* **17**, 1807–1819
502 (2006).

503 63. Hristova, V., Sun, S., Zhang, H. & Chan, D. W. Proteomic analysis of degradation ubiquitin
504 signaling by ubiquitin occupancy changes responding to 26S proteasome inhibition. *Clin.*
505 *Proteomics* **17**, 2 (2020).

506 64. Schubert, U. *et al.* Rapid degradation of a large fraction of newly synthesized proteins by
507 proteasomes. *Nature* **404**, 770–774 (2000).

508 65. Mészáros, B., Kumar, M., Gibson, T. J., Uyar, B. & Dosztányi, Z. Degrons in cancer. *Sci.*
509 *Signal.* **10**, (2017).

510 66. Cheng, B., Ren, Y., Cao, H. & Chen, J. Discovery of novel resorcinol diphenyl ether-based
511 PROTAC-like molecules as dual inhibitors and degraders of PD-L1. *Eur. J. Med. Chem.*
512 **199**, 112377 (2020).

513 67. McCoull, W. *et al.* Development of a Novel B-Cell Lymphoma 6 (BCL6) PROTAC To
514 Provide Insight into Small Molecule Targeting of BCL6. *ACS Chem. Biol.* **13**, 3131–3141
515 (2018).

516 68. Hornbeck, P. V. *et al.* PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. *Nucleic*
517 *Acids Res.* **43**, D512–20 (2015).

518 69. Xu, G. & Jaffrey, S. R. Proteomic identification of protein ubiquitination events. *Biotechnol.*
519 *Genet. Eng. Rev.* **29**, 73–109 (2013).

520 70. Liu, H. & Motoda, H. *Computational Methods of Feature Selection*. (CRC Press, 2007).

521 71. Wishart, D. S. *et al.* DrugBank 5.0: a major update to the DrugBank database for 2018.
522 *Nucleic Acids Res.* **46**, D1074–D1082 (2018).

523 72. Mendez, D. *et al.* ChEMBL: towards direct deposition of bioassay data. *Nucleic Acids Res.*
524 **47**, D930–D940 (2019).

525 73. Kuljanin, M. *et al.* Reimagining high-throughput profiling of reactive cysteines for cell-based
526 screening of large electrophile libraries. *Nat. Biotechnol.* **39**, 630–641 (2021).

527 74. Schneider, M. *et al.* The PROTACtable genome. *Nat. Rev. Drug Discov.* (2021)
528 doi:10.1038/s41573-021-00245-x.

529 75. Chakravarty, D. *et al.* OncoKB: A Precision Oncology Knowledge Base. *JCO Precis Oncol*
530 **2017**, (2017).

531 76. Landrum, M. J. *et al.* ClinVar: improvements to accessing data. *Nucleic Acids Res.* **48**,
532 D835–D844 (2020).

533 77. Hu, H. *et al.* AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of
534 animal transcription factors. *Nucleic Acids Res.* **47**, D33–D38 (2019).

535 78. Lambert, S. A. *et al.* The human transcription factors. *Cell* **172**, 650–665 (2018).

536 79. Kregel, S. *et al.* Androgen receptor degraders overcome common resistance mechanisms
537 developed during prostate cancer treatment. *Neoplasia* **22**, 111–119 (2020).

538 80. Kim, G.-Y. *et al.* Chemical Degradation of Androgen Receptor (AR) Using Bicalutamide
539 Analog-Thalidomide PROTACs. *Molecules* **26**, (2021).

540 81. Han, X. *et al.* Discovery of Highly Potent and Efficient PROTAC Degraders of Androgen
541 Receptor (AR) by Employing Weak Binding Affinity VHL E3 Ligase Ligands. *J. Med. Chem.*
542 **62**, 11218–11231 (2019).

543 82. Liang, J. *et al.* GDC-9545 (Giredestrant): A Potent and Orally Bioavailable Selective
544 Estrogen Receptor Antagonist and Degrader with an Exceptional Preclinical Profile for ER+
545 Breast Cancer. *J. Med. Chem.* (2021) doi:10.1021/acs.jmedchem.1c00847.

546 83. Bardia, A. *et al.* Phase I Study of Elacestrant (RAD1901), a Novel Selective Estrogen
547 Receptor Degrader, in ER-Positive, HER2-Negative Advanced Breast Cancer. *J. Clin.*
548 *Oncol.* **39**, 1360–1370 (2021).

549 84. Shomali, M. *et al.* SAR439859, a Novel Selective Estrogen Receptor Degrader (SERD),
550 Demonstrates Effective and Broad Antitumor Activity in Wild-Type and Mutant ER-Positive
551 Breast Cancer Models. *Mol. Cancer Ther.* **20**, 250–262 (2021).

552 85. Guo, S. *et al.* GLL398, an oral selective estrogen receptor degrader (SERD), blocks tumor
553 growth in xenograft breast cancer models. *Breast Cancer Res. Treat.* **180**, 359–368 (2020).

554 86. Bihani, T. *et al.* Elacestrant (RAD1901), a Selective Estrogen Receptor Degrader (SERD),
555 Has Antitumor Activity in Multiple ER Breast Cancer Patient-derived Xenograft Models.
556 *Clin. Cancer Res.* **23**, 4793–4804 (2017).

557 87. Long, M. J. C., Gollapalli, D. R. & Hedstrom, L. Inhibitor mediated protein degradation.
558 *Chem. Biol.* **19**, 629–637 (2012).

559 88. Bery, N. *et al.* A Targeted Protein Degradation Cell-Based Screening for Nanobodies
560 Selective toward the Cellular RHOB GTP-Bound Conformation. *Cell Chem Biol* **26**, 1544–
561 1558.e6 (2019).

562 89. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of
563 hydrogen-bonded and geometrical features. *Biopolymers* vol. 22 2577–2637 (1983).

564 90. Fischer, E. S. *et al.* The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture,
565 targeting, and activation. *Cell* **147**, 1024–1039 (2011).

566 91. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* (2021)
567 doi:10.1038/s41586-021-03819-2.

568 92. Emanuele, M. J. *et al.* Global identification of modular cullin-RING ligase substrates. *Cell*
569 **147**, 459–474 (2011).

570 93. Yen, H.-C. S. & Elledge, S. J. Identification of SCF ubiquitin ligase substrates by global
571 protein stability profiling. *Science* **322**, 923–929 (2008).

572 94. Yen, H.-C. S., Xu, Q., Chou, D. M., Zhao, Z. & Elledge, S. J. Global protein stability profiling
573 in mammalian cells. *Science* **322**, 918–923 (2008).

574 95. Mathieson, T. *et al.* Systematic analysis of protein turnover in primary cells. *Nat. Commun.*

575 9, 689 (2018).

576 96. Schwahnässer, B. *et al.* Global quantification of mammalian gene expression control.

577 *Nature* **473**, 337–342 (2011).

578 97. Zecha, J. *et al.* Peptide Level Turnover Measurements Enable the Study of Proteoform

579 Dynamics. *Mol. Cell. Proteomics* **17**, 974–992 (2018).

580 98. Szklarczyk, D. *et al.* STRING v11: protein–protein association networks with increased

581 coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic*

582 *Acids Research* vol. 47 D607–D613 (2019).

583 99. Giurgiu, M. *et al.* CORUM: the comprehensive resource of mammalian protein complexes-

584 2019. *Nucleic Acids Res.* **47**, D559–D563 (2019).

585 100. Nusinow, D. P. *et al.* Quantitative Proteomics of the Cancer Cell Line Encyclopedia. *Cell*

586 **180**, 387–402.e16 (2020).

587 101. Jiang, L. *et al.* A Quantitative Proteome Map of the Human Body. *Cell* **183**, 269–283.e19

588 (2020).

589 102. Winter, G. E. *et al.* BET Bromodomain Proteins Function as Master Transcription

590 Elongation Factors Independent of CDK9 Recruitment. *Mol. Cell* **67**, 5–18.e19 (2017).

591 103. Potenza, E., Di Domenico, T., Walsh, I. & Tosatto, S. C. E. MobiDB 2.0: an improved

592 database of intrinsically disordered and mobile proteins. *Nucleic Acids Res.* **43**, D315–20

593 (2015).

594 104. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in

595 multidimensional genomic data. *Bioinformatics* **32**, 2847–2849 (2016).

596 105. Irizarry, R. A. The caret package. *Introduction to Data Science* 523–528 (2019)

597 doi:10.1201/9780429341830-30.

598 106. Kumar, A. Pre-processing and Modelling using Caret Package in R. *International Journal of*

599 *Computer Applications* vol. 181 39–42 (2018).

600 107. Robin, X. *et al.* pROC: an open-source package for R and S to analyze and compare ROC

601 curves. *BMC Bioinformatics* vol. 12 (2011).

602 108.Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision-recall and
603 receiver operating characteristic curves in R. *Bioinformatics* **31**, 2595–2597 (2015).

604 109.Eid, S., Turk, S., Volkamer, A., Rippmann, F. & Fulle, S. KinMap: a web-based tool for
605 interactive navigation through human kinome data. *BMC Bioinformatics* **18**, 16 (2017).

606 110.Website. <http://kinase.com/kinbase/>.

607 111.Buljan, M. *et al.* Kinase Interaction Network Expands Functional and Disease Roles of
608 Human Kinases. *Mol. Cell* **79**, 504–520.e9 (2020).

609 112.Burley, S. K. *et al.* RCSB Protein Data Bank: powerful new tools for exploring 3D structures
610 of biological macromolecules for basic and applied research and education in fundamental
611 biology, biomedicine, biotechnology, bioengineering and energy sciences. *Nucleic Acids
612 Res.* **49**, D437–D451 (2021).

613 113.Waterhouse, A. *et al.* SWISS-MODEL: homology modelling of protein structures and
614 complexes. *Nucleic Acids Res.* **46**, W296–W303 (2018).

615 114.Pieper, U. *et al.* ModBase, a database of annotated comparative protein structure models
616 and associated resources. *Nucleic Acids Res.* **42**, D336–46 (2014).

617 115.Tokheim, C. *et al.* Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer
618 Using 3D Protein Structure. *Cancer Res.* **76**, 3719–3731 (2016).

619 116.Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A. & Caves, L. S. D. Bio3d:
620 an R package for the comparative analysis of protein structures. *Bioinformatics* vol. 22
621 2695–2696 (2006).

622 117.Lawrie, A. M. *et al.* Protein kinase inhibition by staurosporine revealed in details of the
623 molecular interaction with CDK2. *Nat. Struct. Biol.* **4**, 796–801 (1997).

624 118.Leman, J. K. *et al.* Macromolecular modeling and design in Rosetta: recent methods and
625 frameworks. *Nat. Methods* **17**, 665–680 (2020).

626 119.Marze, N. A., Roy Burman, S. S., Sheffler, W. & Gray, J. J. Efficient flexible backbone

627 protein–protein docking for challenging targets. *Bioinformatics* vol. 34 3461–3469 (2018).

628 120. Ikuta, M. *et al.* Crystallographic approach to identification of cyclin-dependent kinase 4

629 (CDK4)-specific inhibitors by using CDK4 mimic CDK2 protein. *J. Biol. Chem.* **276**, 27548–

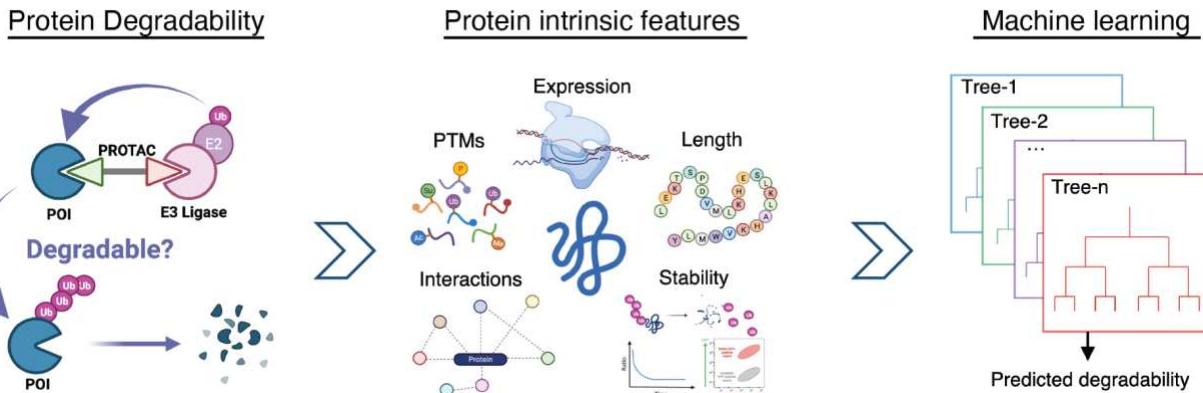
630 27554 (2001).

631

632

633 **Figures**

Machine learning predicts tractability of targeted protein degradation



635 **Fig. 1 | Study overview.**

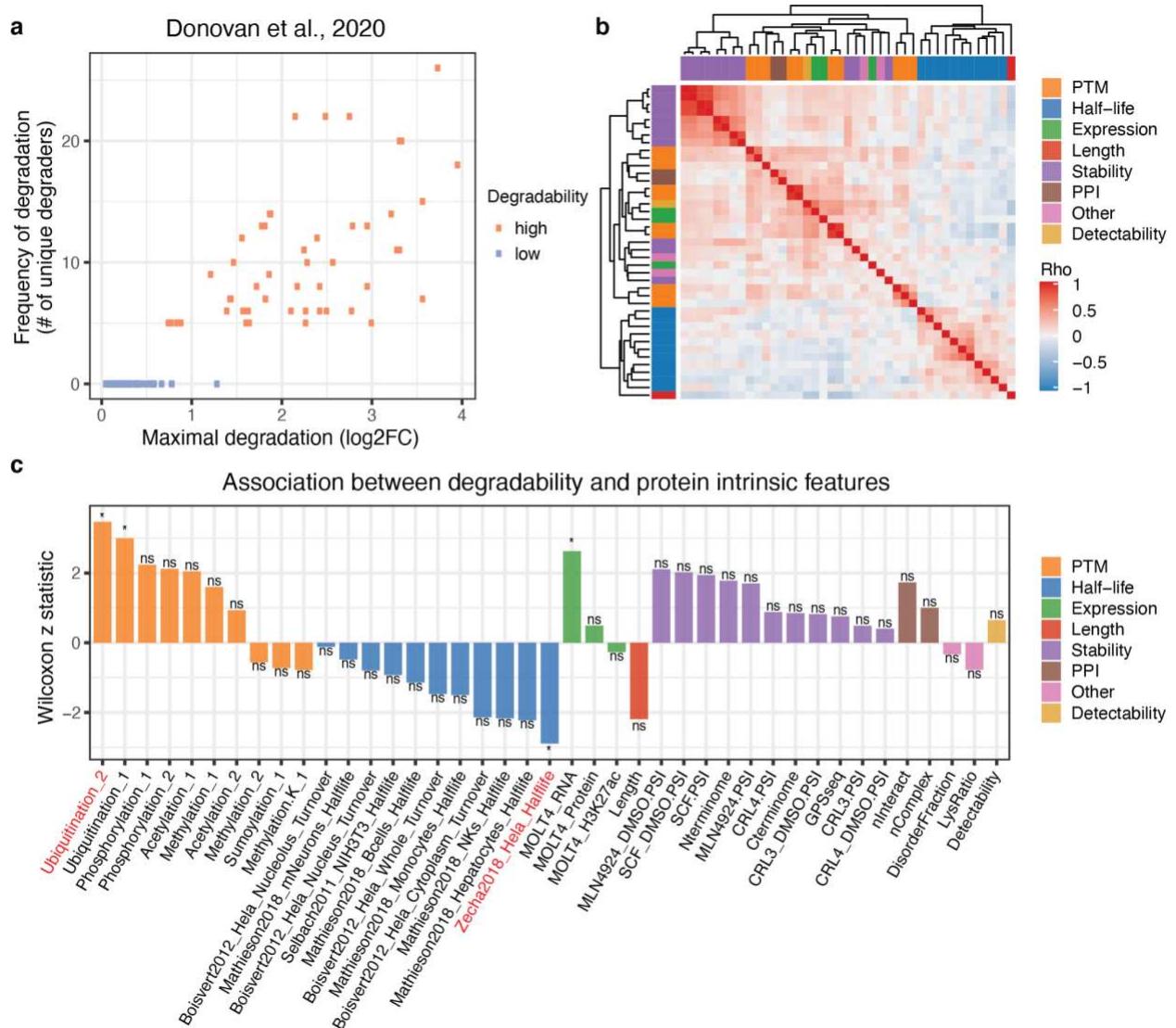
636 The ubiquitin-proteasome system can be repurposed by a PROTAC (Proteolysis Targeting
637 Chimera) or other small molecule to degrade a protein of interest (POI). However, it remains to
638 be answered which proteins are amenable to this approach (left). Here, we associated kinase
639 degradability with protein-intrinsic features spanning protein expression, post-translational
640 modifications, protein length, protein-protein interactions, protein stability, and protein half-life to
641 identify predictive factors (middle). Based on the predictive features, we developed a machine
642 learning model to predict protein degradability (right).

643

644

645

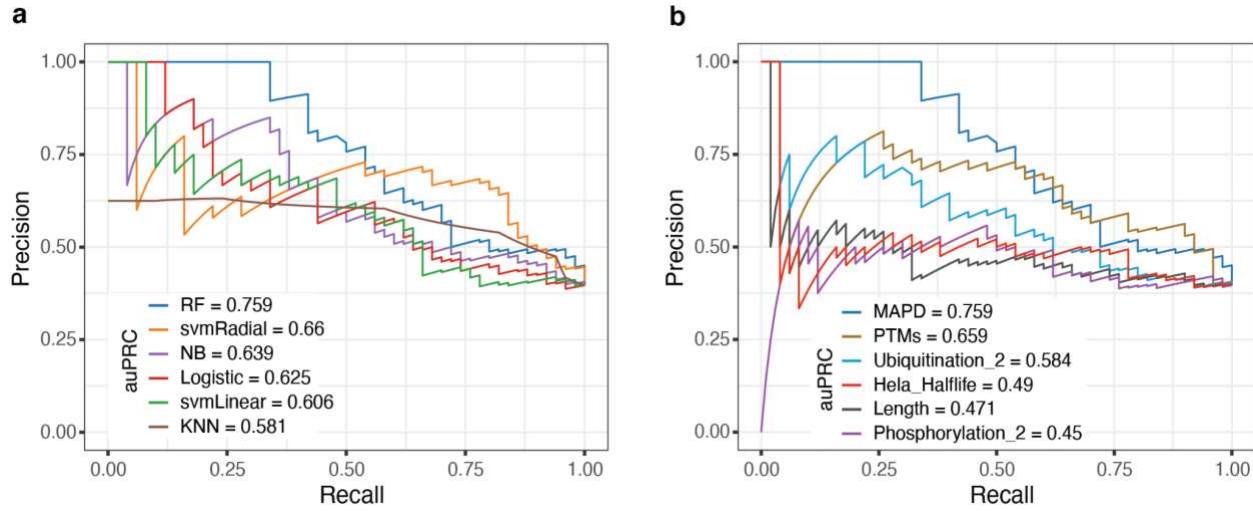
646



647

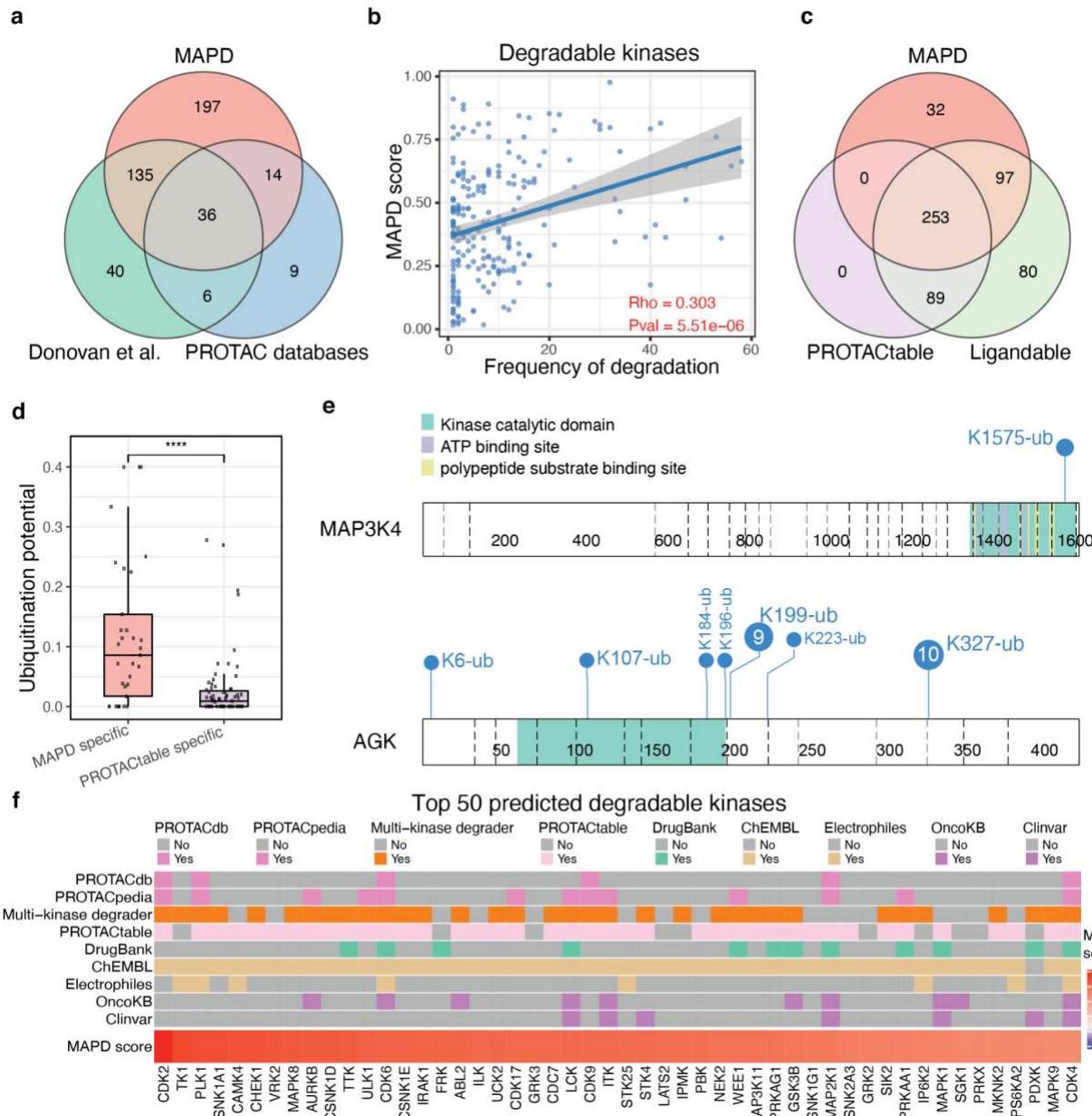
648 **Fig. 2 | Kinase degradability is associated with features intrinsic to the target.** **a**, Dot plot
649 showing the frequency of degradation and maximal degradation of protein kinases induced by
650 multi-kinase degraders from the Donovan et al. study. Orange dots represent the kinases with
651 high degradability, and light blue dots represent the kinases with low degradability. **b**, Pairwise
652 Spearman's correlation of 42 protein-intrinsic features spanning protein stability, post-
653 translational modification (PTM), protein-protein interaction (PPI), protein length, protein half-life,
654 protein expression, protein detectability and others. **c**, Bar diagram showing the association
655 between degradability of kinases and their features. The x-axis shows the abbreviated name of
656 protein-intrinsic features (see Supplementary Table 1 for full details), and the y-axis shows the

657 Wilcoxon z-statistics indicating the association between protein degradability and each protein-
658 intrinsic feature (*=FDR<0.05).
659
660
661



662

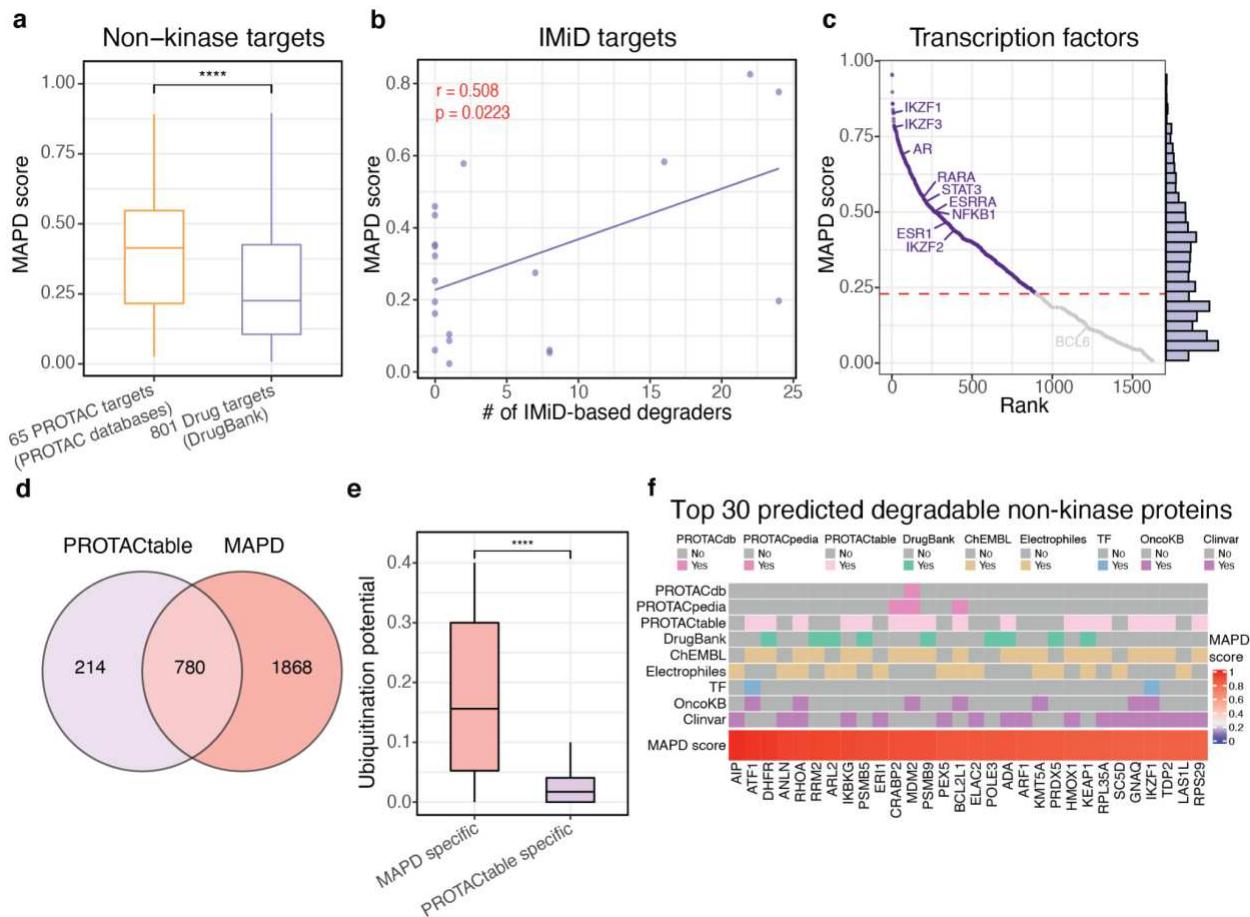
663 **Fig. 3 | Development of Model-based Analysis of Protein Degradability (MAPD).** **a**, Precision-
664 Recall curves that show the performance of six machine learning models based on 20-fold cross-
665 validation. RF indicates the random forest model, svmRadial indicates the radial-kernel support
666 vector machine model, NB indicates the naive bayes model, Logistic indicates the logistic
667 regression model, svmLinear indicates the linear kernel support vector machine model, and KNN
668 indicates the k-nearest neighbor model. **b**, Precision-Recall curves that show the performance of
669 MAPD and models trained on individual features or combination of features. 'PTMs' indicates the
670 model trained on the combination of ubiquitination potential (Ubiquitination_2), acetylation
671 potential (Acetylation_1), and phosphorylation potential (Phosphorylation_2). 'Ubiquitination_2'
672 indicates the model trained on ubiquitination potential. 'Hela_Halflife' indicates the model trained
673 on a single feature describing half-life in Hela cells from Zecha *et al.* 'Length' indicates the model
674 trained on protein length. 'Phosphorylation_2' indicates the model trained on phosphorylation
675 potential.



676

677 **Fig. 4 | MAPD shows good performance in predicting kinase degradability. a**, Venn diagram
678 showing the overlap between kinases degraded by multi-kinase degraders from Donovan *et al.*,
679 PROTAC targets reported in PROTAC databases (including PROTAC-DB and PROTACpedia),
680 and degradable kinases identified by MAPD. **b**, Scatter plot showing the Spearman correlation
681 between MAPD scores and frequency degradation of all degradable kinases from Donovan *et al.*
682 **c**, Venn diagram showing the overlap between degradable kinases identified by MAPD,
683 PROTACtable kinases, and ligandable kinases. **d**, Box plot showing ubiquitination potential

684 (proportion of lysine residues with reported ubiquitination events in the PhosphoSitePlus) of
685 MAPD-specific targets and PROTACtable-specific targets. **e**, Lollipop diagram showing the
686 reported Ub sites in MAP3K4 (PROTACtable-specific target) and AGK (MAPD-specific target).
687 The number in the circles indicates the number of references for each Ub site in PhosphoSitePlus
688 and the blank circle indicates that only one reference is available. The blue text near the circle
689 indicates the location of the Ub site. **f**, Heatmap showing annotations of the top 50 predicted
690 degradable kinases, with MAPD scores shown at the bottom. ‘PROTACdb’ and ‘PROTACpedia’
691 indicate whether a kinase has a developed degrader reported in the respective databases. The
692 ‘Multi-kinase degrader’ indicates whether a protein is degraded by the multi-kinase degrader.
693 ‘DrugBank’ indicates whether a protein has FDA approved drug recorded in the DrugBank
694 database. ‘ChEMBL’ indicates whether a protein has ligands recorded in the ChEMBL database.
695 ‘Electrophiles’ indicate whether a protein has ligandable cysteines from the SLCABPP
696 (Streamlined Cysteine Activity-Based Protein Profiling). The ‘OncoKB’ indicates whether a protein
697 is considered as a cancer gene in the OncoKB database. The ‘ClinVar’ indicates whether the
698 protein is associated with a disease in the ClinVar database (****=p<0.0001).
699



700
701 **Fig. 5 | MAPD predicts degradability proteome-wide.** **a**, Box plot showing the MAPD scores of
702 non-kinase PROTAC targets from PROTAC databases (including PROTAC-DB and
703 PROTACpedia) and other non-kinase drug targets from DrugBank. **b**, Scatter plot showing the
704 MAPD scores and the frequency of degradation of IMiD targets by CCRN-recruiting degraders
705 from Donovan *et al.* **c**, Ranked dot plot showing the MAPD scores of human transcriptional factors
706 (TF). TFs with reported degraders are labeled on the figure. The histogram at right shows the
707 distribution of MAPD scores of all human TFs and the red dashed line shows the threshold for
708 identifying degradable proteins by MAPD. **d**, Venn diagram showing the overlap of degradable
709 non-kinase proteins between MAPD predictions and PROTACtable genome. **e**, Box plot showing
710 the ubiquitination potential (proportion of lysines with reported ubiquitination events in the
711 PhosphoSitePlus) in MAPD-specific targets and PROTACtable genome-specific targets. **f**,

712 Heatmap showing annotations of the top 30 predicted degradable non-kinase proteins, with
713 MAPD scores shown at the bottom. ‘PROTACdb’ and ‘PROTACpedia’ annotations indicate
714 whether a kinase has a developed degrader reported in the respective databases. The ‘Multi-
715 kinase degrader’ indicates whether a protein is degraded by the multi-kinase degrader.
716 ‘DrugBank’ indicates whether a protein has FDA approved drug recorded in the DrugBank
717 database. ‘ChEMBL’ indicates whether a protein has ligands recorded in the ChEMBL database.
718 ‘Electrophiles’ indicate whether a protein has ligandable cysteines from the SLCABPP
719 (Streamlined Cysteine Activity-Based Protein Profiling). ‘OncoKB’ indicates whether a protein is
720 considered as a cancer gene in the OncoKB database. ‘ClinVar’ indicates whether the protein is
721 associated with a disease in ClinVar database (****=p<0.0001).

722

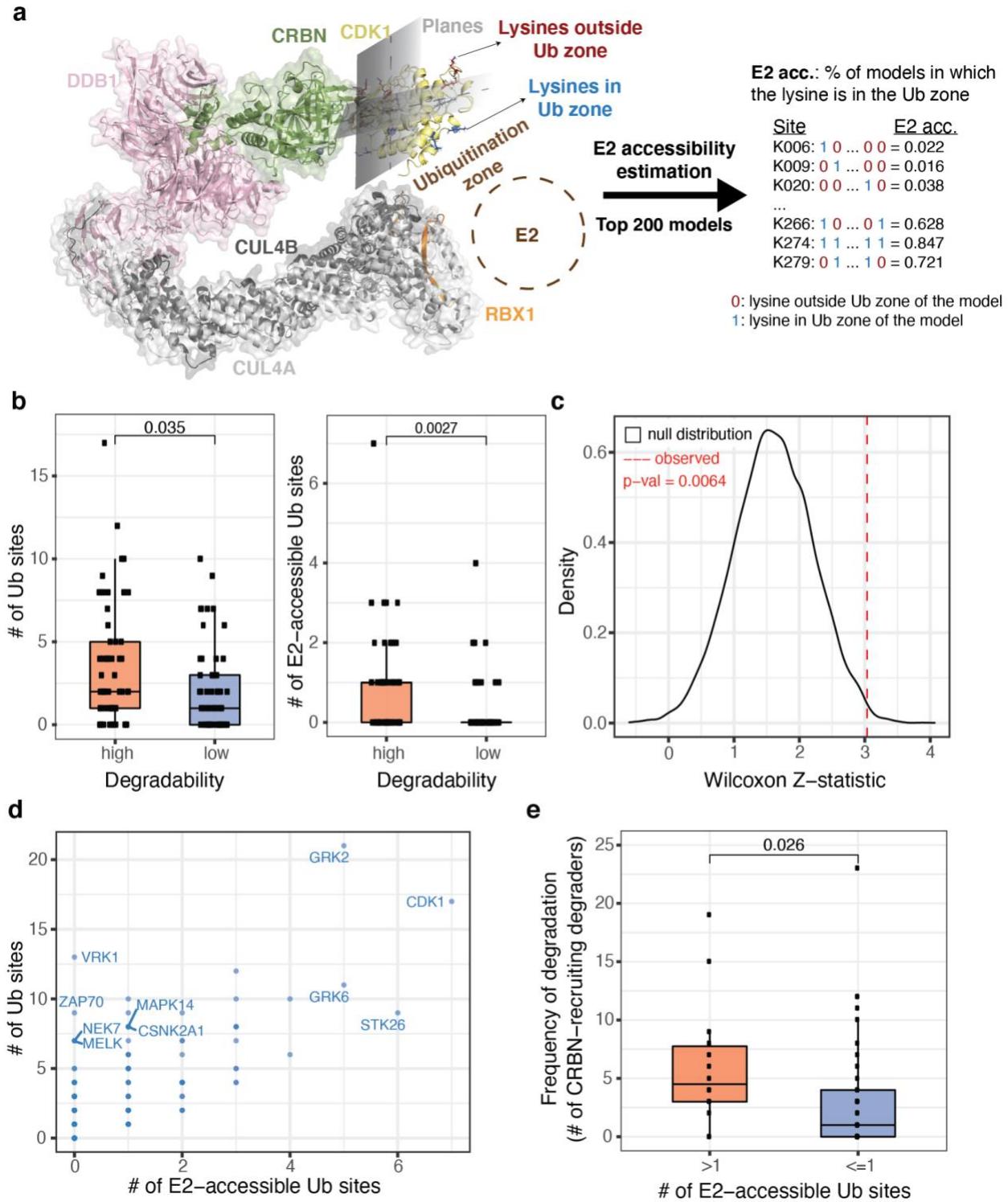
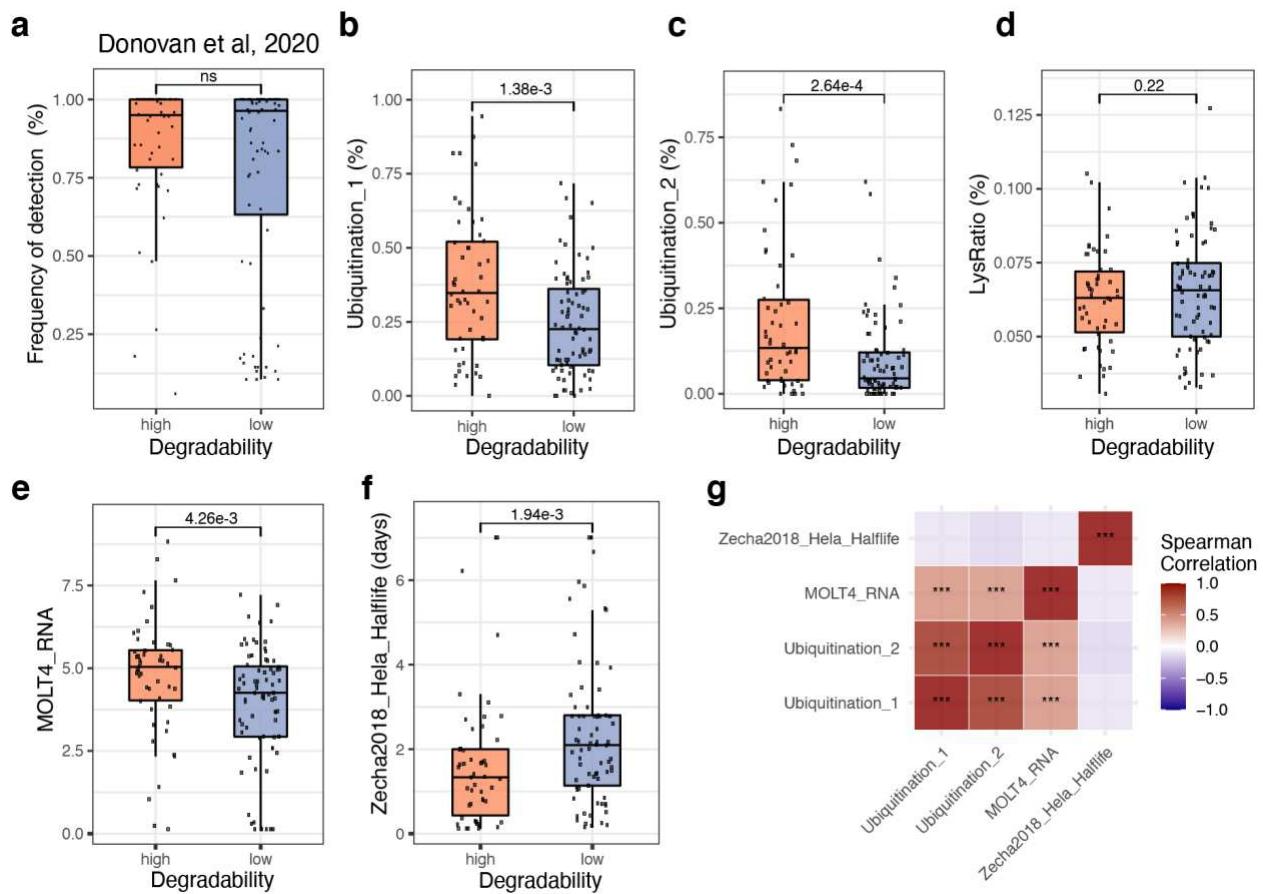


Fig. 6 | E2-accessibility of Ub sites is associated with protein degradability. a, Diagram showing how to estimate accessibility of lysine/Ub sites to E2 enzyme in degrader-induced ternary complex. The model of CDK1 (4Y72) was docked to the CRBN-Lenalidomide structure (PDB:

727 5FQD), which is shown as an example. The E3 ubiquitin ligase complex consists of CCRN, DDB1,
728 CUL4A, and CUL4B, shown in green, pink, light gray and gray, respectively. The CDK1 is the
729 target protein, shown in yellow. The RBX1 fragment (shown in orange) was used to estimate the
730 position of the E2 enzyme and corresponding ubiquitination zone in the target protein. Lysine/Ub
731 sites in the ubiquitination zone were estimated by drawing two planes with respect to the position
732 of CCRN and the target kinase. The sites lying in the quadrant facing the putative position of the
733 E2, estimated by the placement of RBX1 are considered accessible. The predicted E2-accessible
734 and E2-inaccessible lysine residues are highlighted in blue and red, respectively. For each target
735 protein, 200 top-scoring feasible models are selected for evaluating the accessibility of lysine
736 residues to E2 enzyme. For each Ub site, the fraction of feasible models with the site in the
737 ubiquitination zone was estimated as its E2 accessibility. **b**, Box plot showing the association of
738 kinase degradability with total number of Ub sites (left) and E2-accessible Ub sites (right) in the
739 kinases. The E2-accessible Ub sites (E2 accessibility ≥ 0.5) were defined as the Ub sites lying
740 in the ubiquitination zone of more than 50% feasible models. **c**, Density plot showing the null
741 distribution of Wilcoxon z-statistics generated by shuffling Ub sites among all lysine residues for
742 10,000 times. The red dashed line indicates the observed Wilcoxon z-statistic representing the
743 association between protein degradability and the number of E2-accessible Ub sites (E2
744 accessibility ≥ 0.5). **d**, Dot plot showing the total number of resolved Ub sites and the number of
745 E2-accessible Ub sites (E2 accessibility ≥ 0.5). **e**, Box plot showing the number CCRN-recruiting
746 degraders that degrade kinases with high (>1) and low (≤ 1) level of E2-accessible Ub sites. All
747 kinases involved in this analysis have at least two reported Ub sites, which reduces the
748 confounding effect derived from the difference in the total number of Ub sites.

749

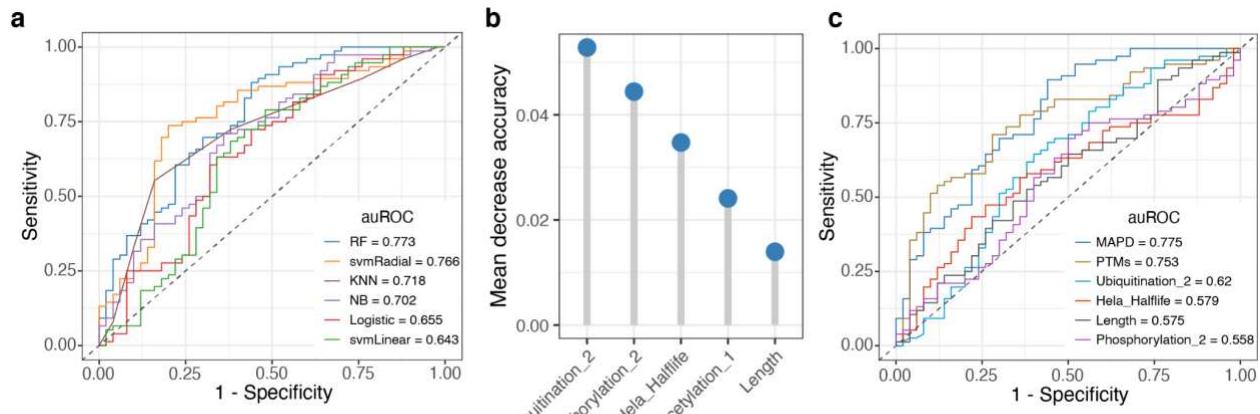
750 **Extended Data Figures**



752 **Extended Data Fig. 1 | Kinase degradability is associated with features intrinsic to the**
 753 **target.** Related to Fig. 2. **a-f**, Box plot showing difference between high-degradability and low-
 754 degradability kinases for **(a)** frequency of detection in the chemoproteomic data from Donovan *et*
 755 *al.* study, **(b)** proportion of lysines with at least one reported ubiquitination event in the
 756 PhosphoSitePlus, **(c)** proportion of lysines with at least two reported ubiquitination events in the
 757 PhosphoSitePlus, **(d)** fraction of lysine residues, **(e)** mRNA expression in the MOLT4 cell line,
 758 and **(f)** protein half-life in Hela cells. **g**, Heatmap showing the pairwise Spearman correlation of
 759 the four protein-intrinsic features. **h**, Heatmap of Wilcoxon z statistics indicating the association
 760 between protein degradability and protein-intrinsic features of kinases in each family. The x-axis
 761 shows the abbreviated name of protein-intrinsic features (see Supplementary Table 1 for full
 762 details). The y-axis shows the kinase family with the number of highly-degradable (H) and lowly-

763 degradable (L) kinases shown in the label. The color shows the Wilcoxon z-statistics indicating
764 the association between protein degradability and each protein-intrinsic feature (ns=p>0.05,
765 *= $p<0.05$, **= $p<0.01$, ***= $p<0.001$).

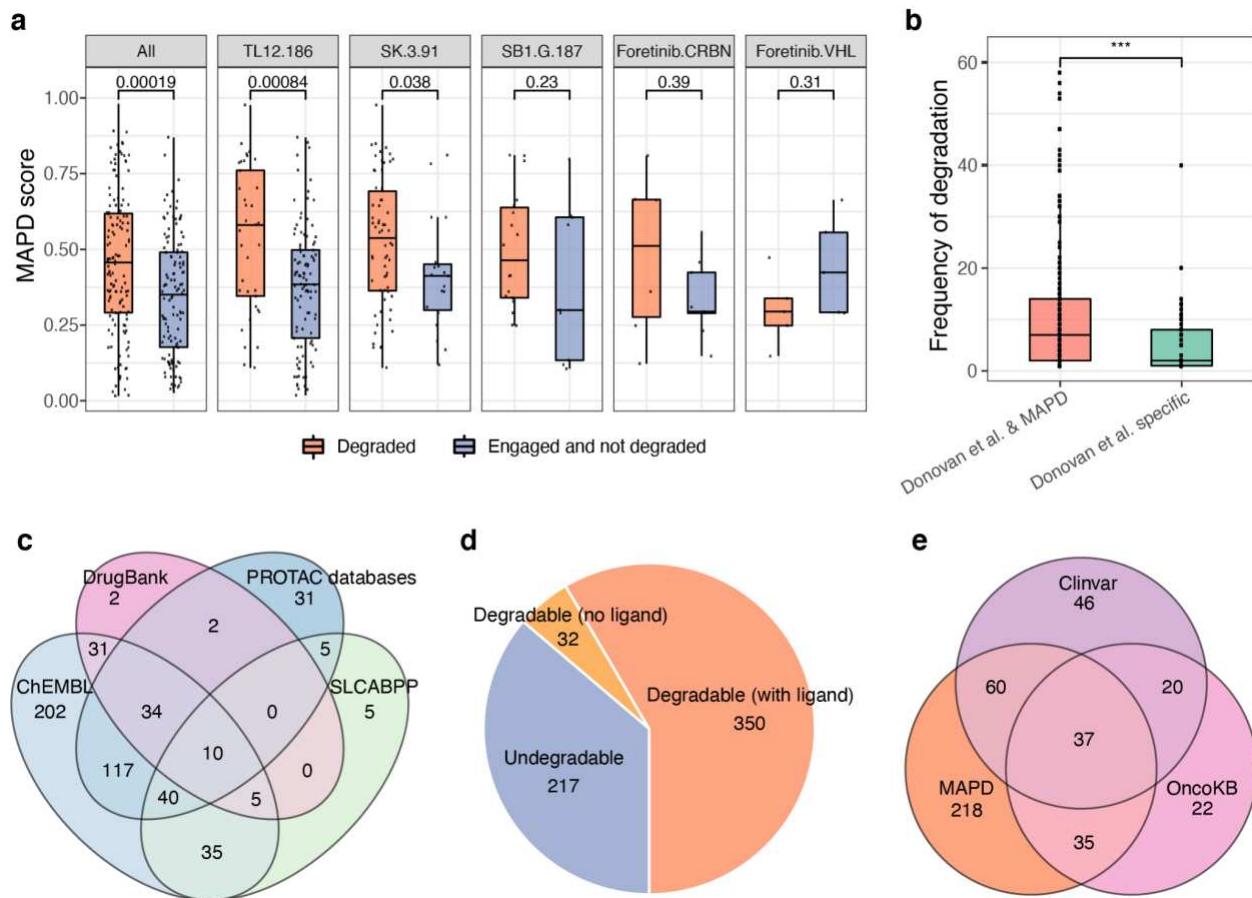
766



767

768 **Extended Data Fig. 2 | Development of Model-based Analysis of Protein Degradability**

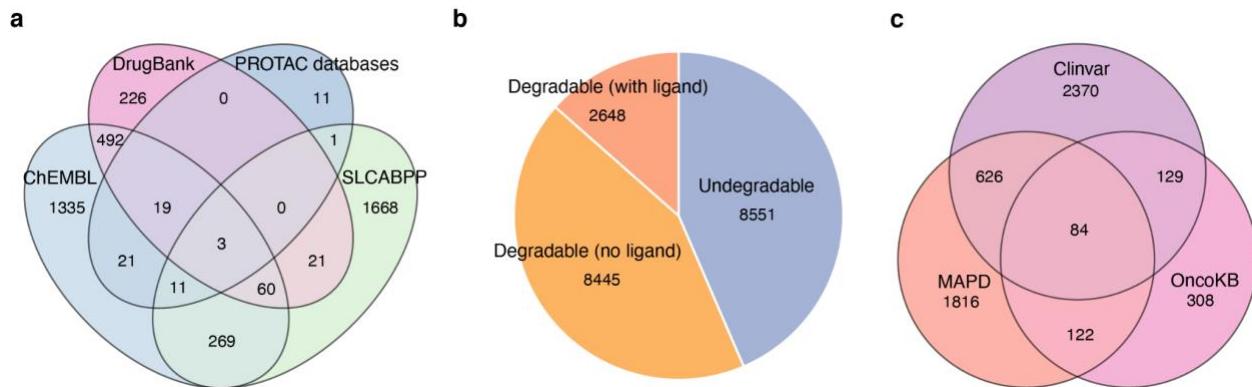
769 **(MAPD).** Related to Fig. 3. **a**, ROC curves (receiver operating characteristics curves) showing the
770 performance of six machine learning models in predicting kinase degradability based on 20-fold
771 cross-validation. **b**, Importance of five features in the MAPD revealed by mean decrease accuracy
772 metric that measures how much accuracy the model losses by excluding each feature from the
773 model. **c**, ROC curves (receiver operating characteristics curves) showing the performance of
774 MAPD and models trained on a subset of features based on 20-fold cross-validation.



775

776 **Extended Data Fig. 3 | MAPD shows good performance in predicting kinase degradability.**

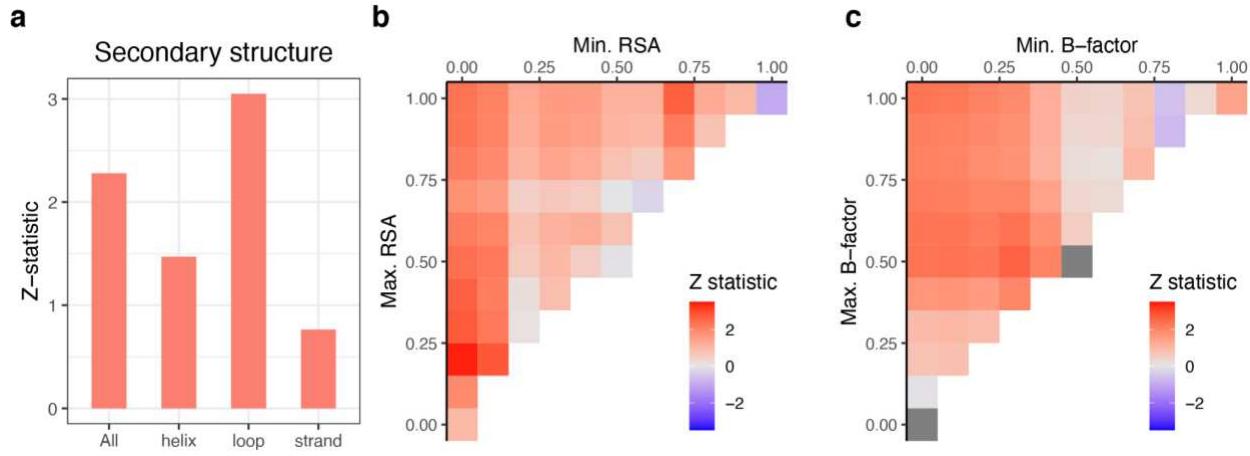
777 Related to Fig. 4. **a**, Box plot showing the MAPD scores of degraded kinases compared to other
778 engaged kinases by each multi-kinase degrader ('All' indicates all degraders from Donovan *et al.*
779 study). **b**, Box plot showing the frequency of degradation of degradable kinases identified by both
780 MAPD and Donovan *et al.* and other experimentally degradable kinases (Donovan *et al.* specific).
781 **c**, Venn diagram showing the overlap between ligandable kinases from PROTAC databases
782 (PROTAC-DB and PROTACpedia), DrugBank, ChEMBL, and SLCABPP. **d**, Pie chart showing
783 the number of degradable kinases (with/without ligand) and undegradable kinases from MAPD
784 predictions. **e**, Venn diagram showing the overlap between degradable kinases identified by
785 MAPD, oncogenic kinases reported in the OncoKB, and kinases associated with other human
786 disease reported in the ClinVar database.



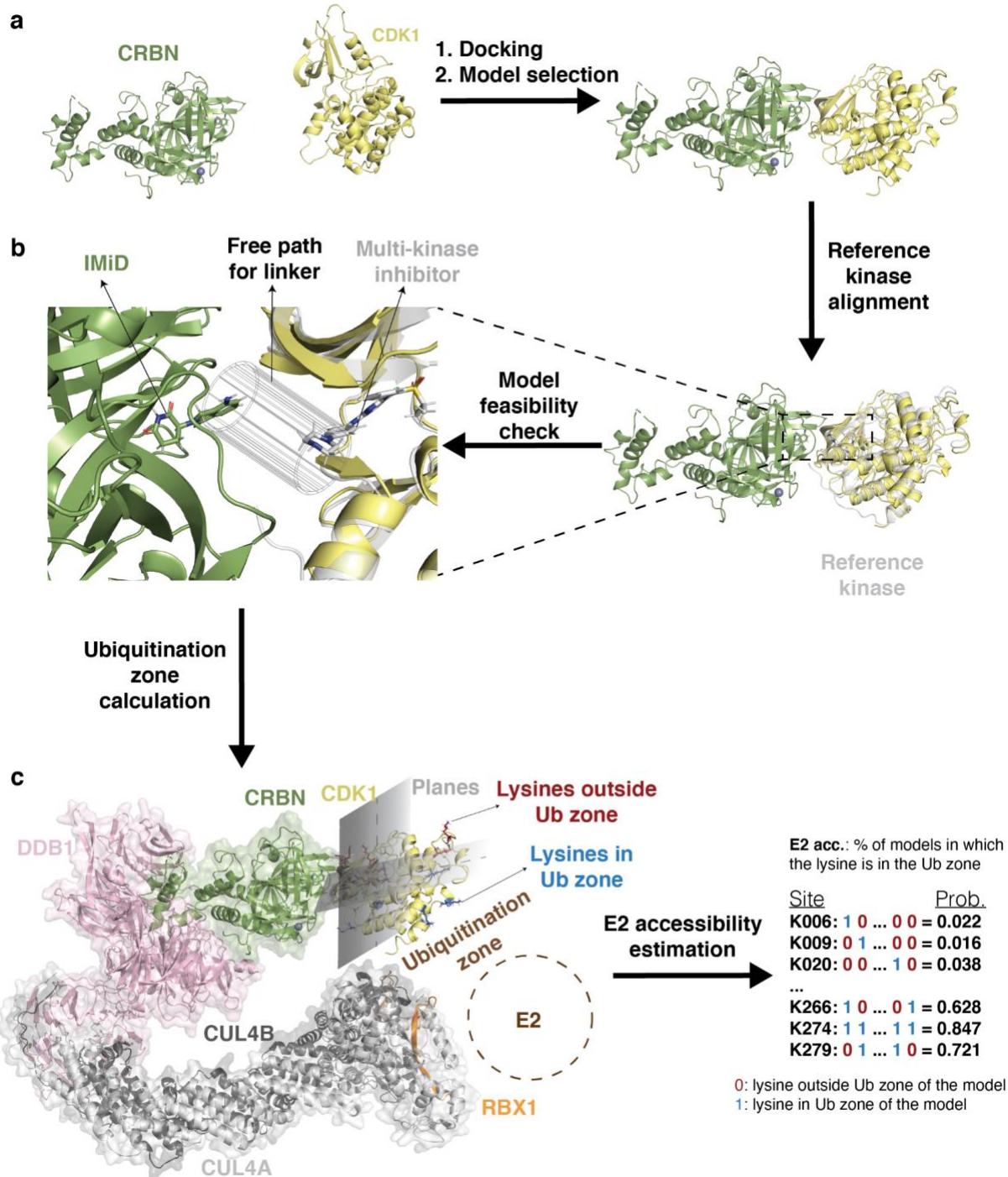
787

788 **Extended Data Fig. 4 | MAPD predicts degradability proteome-wide.** Related to Fig. 5. **a**,
789 Venn diagram showing the overlap of ligandable non-kinase proteins from PROTAC databases
790 (PROTAC-DB and PROTACpedia), DrugBank, ChEMBL, and SLCABPP. **b**, Pie chart showing
791 the number of degradable non-kinase proteins (with/without ligand) and undegradable non-kinase
792 proteins from MAPD predictions. **c**, Venn diagram showing the overlap between degradable non-
793 kinase proteins predicted by MAPD and disease-causing proteins reported in the OncoKB and
794 ClinVar database.

795



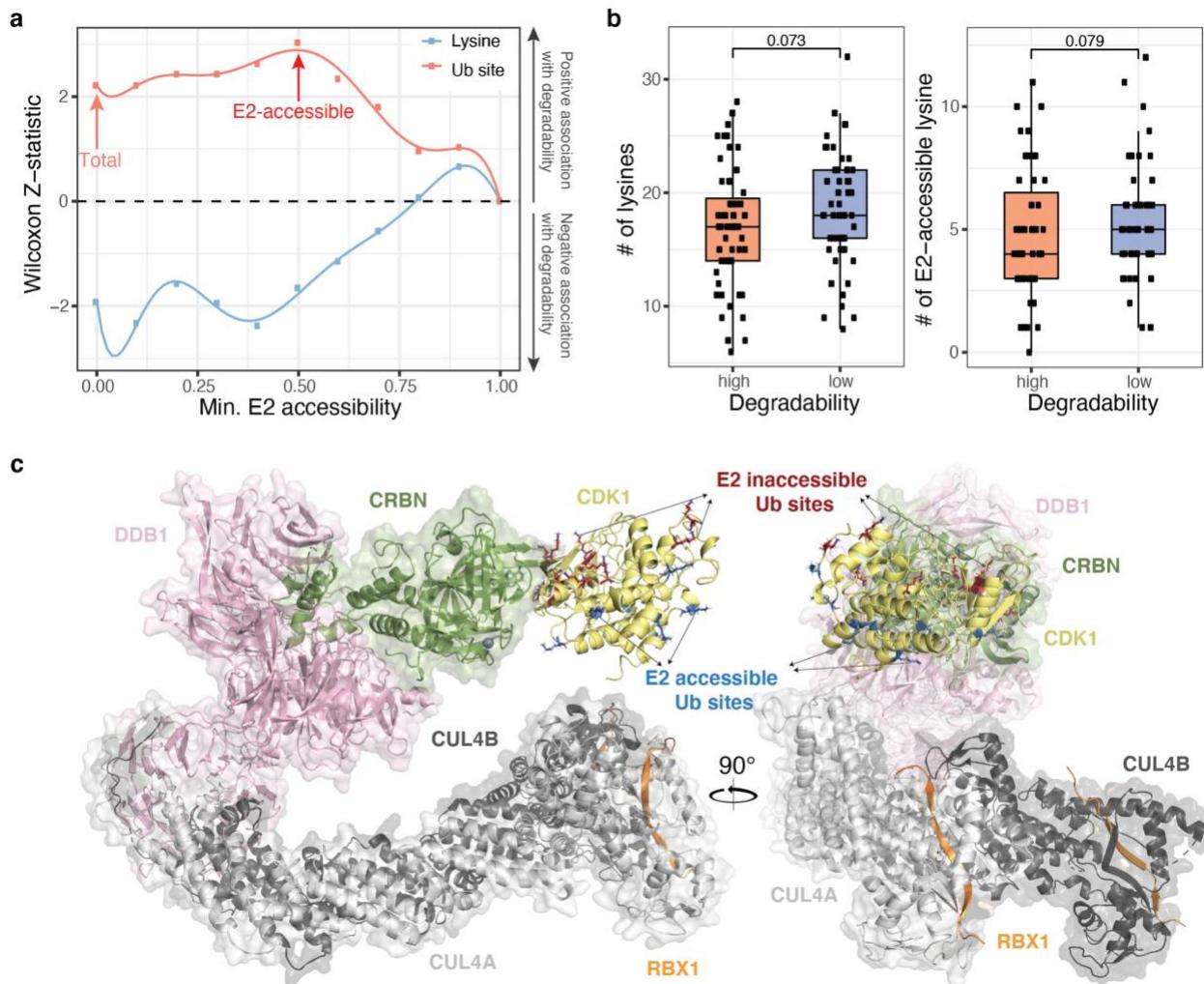
797 **Extended Data Fig. 5 | Local structural properties of a Ub site are not informative for**
798 **predicting protein degradability.** **a**, Bar plot showing the Wilcoxon z-statistics that indicate the
799 association between protein degradability and Ub sites in each specific secondary structure. The
800 “All” indicate the total resolved Ub sites in protein structures. **b**, Heatmap showing the Wilcoxon
801 z-statistics that indicate the association between protein degradability and Ub sites in each
802 specific range of relative solvent accessibility (RSA). The x-axis indicates the minimum RSA of
803 each range, and the y-axis indicates the maximum RSA of each range. **c**, Heatmap showing the
804 Wilcoxon z-statistics that indicate the association between protein degradability and Ub sites in
805 each specific range of b-factor (flexibility). The x-axis indicates the minimum b-factor of each
806 range, and the y-axis indicates the maximum b-factor of each range.



807

808 **Extended Data Fig. 6 | Assessment of E2 accessibility of Ub sites.** Related to Fig. 6. **a**,
 809 Diagram showing the protein–protein docking process. All kinases were first aligned at their ATP
 810 binding pocket to a reference kinase, CDK2 (1AQ1). Next, the aligned kinases were positioned in
 811 an arbitrary (but similar) orientation around the ligand-binding pocket of CRBN-Lenalidomide

812 structure (PDB: 5FQD). Here, CDK1 (4Y72) is shown as an example. Local docking was
813 performed, and the 200 top-scoring models were selected for further evaluation. **b**, For every
814 docked model, the feasibility of ternary complex formation with a PROTAC was tested by aligning
815 CDK2 with a multi-kinase inhibitor (TAE) and checking whether a free path for a linker exists. As
816 multiple linkers of different lengths and rigidities were involved, a broad cylinder was used to
817 estimate all linker conformations. **c**, For models where it was feasible to build a ternary complex
818 with a PROTAC, Ub sites in the ubiquitination zone were estimated by drawing two planes with
819 respect to the position of CRBN and the target kinase. The sites lying in the quadrant facing the
820 putative position of the E2, estimated by the placement of RBX1 are considered accessible. For
821 each Ub site, the fraction of feasible models with the site in the ubiquitination zone was used as
822 a probability to measure its E2 accessibility.



824 **Extended Data Fig. 7 | E2-accessibility of Ub sites is associated with protein degradability.**

825 Related to Fig. 6. **a**, Smooth line showing the association between protein degradability and the
826 number of E2-accessible Ub sites/lysine residues (E2 accessibility greater than a certain
827 threshold). The x-axis shows the threshold of E2 accessibility for selecting E2-accessible
828 lysine/Ub sites, and the y-axis shows the Wilcoxon z-statistics indicating the association between
829 kinase degradability and the number of lysine/Ub sites with a E2 accessibility greater than a
830 certain threshold. A positive Wilcoxon z-statistic indicates the positive association between protein
831 degradability and the number of lysine/Ub sites, while a negative Wilcoxon z-statistic indicates
832 the negative association between protein degradability and lysine/Ub sites. The salmon arrow
833 points to the association between kinase degradability and the total number of Ub sites, while the

834 red arrow points to the association between kinase degradability and the number of E2-accessible
835 Ub sites (accessible to E2 in more than 50% docking models). **b**, Box plot showing the association
836 of kinase degradability with total number of lysine residues (left) and E2-accessible lysine
837 residues (right) in the kinase targets. The E2-accessible lysine residues (E2 accessibility ≥ 0.5)
838 were defined as the lysine residues lying in the ubiquitination zone of more than 50% feasible
839 models. **c**, Docking model of the ternary complex of CRL4^{CRBN} and the target kinase CDK1.
840 Overlay of CUL4A (PDB: 4A0K) and CUL4B (4A0L) superimposed on DDB1 WD repeat beata-
841 propeller B (4A0K), with CRBN (5FQD) superimposed DDB1 WD repeat beta-propellers A and C
842 demonstrates high flexibility of the CUL4 arm of the E3 ligase. The RBX1 fragment was used to
843 estimate the position of the E2 enzyme and corresponding ubiquitination zone in the target protein
844 CDK1. The model of CDK1 (4Y72) docked to CRBN is shown in yellow, and the predicted E2-
845 accessible and E2-inaccessible Ub sites are highlighted in blue and red, respectively.

846

847

848 **Supplementary Tables**

849 **Table 1: A list of protein-intrinsic features.**

850 **Table 2: Forward feature selection result for each model.**

851 **Table 3: MAPD predictions, ligandability, and disease associations of human proteins.**

852 **Table 4: Accessibility of Ub sites to the E2 enzyme in kinase docking models.**

853

854 **Materials and Methods**

855 **Kinase degradability data**

856 We collected 151 quantitative proteomics data measuring the changes of protein abundance in
857 response to treatment of 85 unique multi-kinase degraders (degraders with allosteric linkers are
858 excluded)⁵¹. We used the limma package to perform differential protein expression analysis
859 comparing the degrader treated samples with the DMSO treated samples. For each protein, we
860 calculated the frequency of degradation as the number of experiments in which the protein is
861 significantly down-regulated (FC (fold change)>1.25 and p-value<0.01). Furthermore, to
862 aggregate the results of multiple replicates for each degrader, we aggregated log2FC from
863 replicate experiments using Stouffer's Z-score and corresponding p-values using Fisher's
864 method. We then counted the number of unique degraders that can degrade each protein
865 (Stouffer's Z-score< log2(1.5) and Fisher's p-value<0.01). We collected 5 KiNativ profiling data
866 and 2 KinomeScan data from published studies^{51,52}, which profiled target engagement of five
867 multi-kinase degraders, including TL12-186, SK-3-91, SB1-G-187, DB0646, and WH-10417-
868 099^{51,52}. A KinomeScan score smaller than 15 or a KiNativ score greater than 35 indicate strong
869 drug-target engagement.

870

871 **Definition of high-degradability and low-degradability kinases**

872 We defined highly-degradable kinases as those degraded by at least five different multi-kinase
873 degraders (50 kinases), and lowly-degradable kinases that were engaged by at least one multi-
874 kinase degrader, quantified in more than 10% underlying global proteomic experiments, but not
875 degraded (76 kinases). The high-degradable kinases and low-degradable kinases are used
876 throughout the study to investigate the association between protein degradability and protein-
877 intrinsic features.

878

879 **Protein-intrinsic features**

880 We built more than 42 protein-intrinsic features spanning post-translational modifications (PTM)⁶⁸,
881 protein stability generated from GPS (global protein stability) profiling^{92–94}, protein half-life^{95–97},
882 protein-protein interactions^{98,99}, protein expression, protein detectability^{51,100,101}, protein length,
883 and others.

884

885 Post-translational modification (PTM) features. We collected all available post-translational
886 modification (PTM) sites from the PhosphoSitePlus database (02/17/2021)⁶⁸. PhosphoSitePlus
887 includes three types of supports for each PTM site, including LT_LIT (the number of publications
888 supporting the site), MS_LIT (the number of mass spec studies supporting the site), and MS_CST
889 (the number of mass spec studies performed by Cell Signaling Technology supporting the site).
890 We generated two features related to each type of PTM. The first feature (e.g., Ubiquitination_1)
891 refers to the fraction of relevant amino acid residues in a protein (e.g., lysine residues) that have
892 a corresponding reported PTM site (e.g., Ub site), which only needs the support of a single
893 reference for each PTM site (LT_LIT+MS_LIT+MS_CST >0). The second feature (e.g.,
894 Ubiquitination_2) is calculated in the same manner, except requires each PTM site to be
895 supported by at least two studies (LT_LIT>1 | MS_LIT>1 | MS_CST >1). We also included the
896 fraction of each likely modified amino acid as additional features, such as LysRatio indicating the
897 fraction of lysine residue in a protein.

898

899 Protein half-life and protein stability features. We downloaded protein half lives in seven different
900 cell types (B cells, NK cells, Monocytes, Hepatocytes, neurons, Hela, and NIH3T3) from published
901 studies^{95–97}. We additionally collected seven global protein stability (GPS) profiling data from three
902 studies^{92–94}, which include the stability of full-length proteins in HEK293T cell lines treated with
903 DMSO, MLN4924, dominant negative CRL4, or dominant negative CRL3 and stability of N-
904 terminome and C-terminome peptides of human proteome. All protein half-life data and GPS data
905 were cross-referred for imputing the missing data. The imputation was done by using the

906 impute.knn function (k-nearest neighbor) with default parameters in the impute R package.

907

908 Protein-protein interaction and protein complex. We downloaded protein-protein interactions (PPI)
909 from the STRING database⁹⁸ and retrieved the high-confidence PPIs using an arbitrary cutoff of
910 experimental score>100 and combined_score>200. The degree of each protein in the PPI
911 network was calculated as an estimation of likelihood of the protein interacting with others.
912 Additionally, curated protein complex annotations were downloaded from the CORUM database⁹⁹
913 and the number of distinct protein complexes associated with each protein was taken as the
914 estimation of likelihood of a protein being complexed in vivo.

915

916 Gene and protein expression data. We downloaded RNA-seq data of MOLT4 from the GEO
917 (GSE79253)¹⁰². RNA expression values were normalized as logarithm Transcripts Per Million
918 (TPM). We retrieved quantitative proteomics data of MOLT4 cell lines from Donovan *et al.*, 2020
919 study⁵¹. Relative protein abundances were log normalized and centered with a median value of
920 zero per sample. The missing values in the proteomic data were imputed using the impute.knn
921 function (k-nearest neighbor) from the impute R package, with CCLE proteomic data as
922 reference¹⁰⁰.

923

924 Protein detectability. We took the frequency of detection of proteins in Donovan *et al.* proteomic
925 datasets as the estimation of protein detectability by mass spectrometry⁵¹.

926

927 Other features. We retrieved 20381 reviewed human protein sequences and their length from the
928 UniProtKB database (2021_01). We downloaded Intrinsically disordered regions (IDRs) from the
929 MobiDB database¹⁰³, which includes manually curated annotations and predicted disorder
930 regions. We ranked the IDR annotations based on the four types of evidence, including curated-
931 disorder-priority, derived-missing_residues-th_90, derived-mobile_residues-th_90, and

932 prediction-disorder-mobidb_lite. For each protein, duplicate IDRs were removed for downstream
933 analysis.

934

935 **Pairwise correlation of protein-intrinsic features**

936 We computed pairwise spearman correlation of protein-intrinsic features and clustered the
937 features based on the correlation matrix using hierarchical clustering with Euclidean distance
938 measure and complete linkage. The data are visualized using the ComplexHeatmap R
939 package¹⁰⁴.

940

941 **Association between protein degradability and features intrinsic to protein targets**

942 We tested each feature's difference in 50 high degradability kinases and 76 low degradability
943 kinases using the wilcox.test function in R and computed the Z-statistic using the wilcoxonZ
944 function in the rcompanion R package. We used the same method to test the association between
945 protein degradability and protein-intrinsic features in each kinase family.

946

947 **Model-based Analysis of Protein Degradability (MAPD)**

948 We sought to build a classification model to predict protein degradability from intrinsic protein
949 features. We tried six different machine learning models, including linear-kernel SVM (kernlab),
950 radial-kernel SVM (kernlab), random forest (randomForest), K-nearest neighbors, logistic
951 regression (LiblineaR), and naive bayes (naivebayes). For each model, we performed feature
952 selection and then selected the best model trained on a set of best-performing features.

953

954 Forward feature selection. We performed recursive forward feature selection for six machine
955 learning methods separately. In each iteration, we add a feature which improves the model
956 performance most. The performance is computed as the area under Precision-Recall Curve
957 (auPRC) based on 20-fold cross-validation. This process is stopped when the addition of a new

958 feature does not further improve the performance.

959

960 Feature importance. We evaluated the importance of features in MAPD using the varImp function
961 in the caret R package^{105,106}, which computes the feature importance on permuted out-of-bag
962 samples based on mean decrease in the accuracy.

963

964 Performance evaluation. To evaluate the performance of each model involved in the study, we
965 collected prediction scores of all proteins from cross validation and computed the area under the
966 Receiver Operating Characteristic curve (auROC) using the roc function from the pROC
967 package¹⁰⁷ and Precision-Recall curve (auPRC) using the pr.curve from the PRROC package in
968 R¹⁰⁸.

969

970 Single feature evaluation. For each individual feature, we trained a logistic model. For the
971 combination of features, we trained random forest models. Finally, we compared the model
972 performance based on 20-fold cross validation.

973

974 Final model training for predictions outside of the kinome. We used the caret package for
975 parameter tuning and final model training. We evaluated the model tuning parameters based on
976 leave-one-out cross-validation (method = “LOOCV” in the trainControl function), with the F1 score
977 as performance metric (metric = “F” in the train function, summaryFunction = prSummary in the
978 trainControl function). With the optimal parameters (mtry = 2), we trained a final random forest
979 model including 20,000 trees (ntree = 20,000) with 5 minimum node sizes (nodesize = 5).

980

981 **Prediction**

982 We predicted the degradability of all human proteins using the final random forest model. For
983 kinases included in the training, we took the average prediction scores collected from three

984 repeated 20-fold cross-validation. Based on the cross-validation, we chose a cutoff (0.2327) that
985 leads to the highest F1 score. A protein is predicted to be degradable if it has a MAPD score
986 greater than the cutoff. To account for potential biases from missing feature data, we scored the
987 feature completeness for each protein using a weighted sum score with the formula: $C =$
988 $\sum_{x \in F} varImp(x) * I_A(x)$. The F variable represents the feature set, and x represents each feature
989 in the feature set. The function $varImp(x)$ denotes the scaled feature importance of x and the
990 indicator function $I_A(x)$ denotes whether x is from actual data (1 = actual, 0 = imputed). The C
991 represents the feature completeness, with a 0-1 range. A score of 1 indicates all features are from
992 actual data, and a score of 0 indicates all features are imputed.

993

994 **Degradable proteins**

995 We collected PROTAC targets with reported degraders in the PROTAC-DB (2021-05-27) and/or
996 the PROTACpedia (2021-07-08)^{34,35}. For evaluation purposes, the targets from Donovan *et al.*
997 study were removed from the PROTAC databases (including PROTAC-DB and PROTACpedia).
998 This resulted in 65 kinases and 65 proteins outside of the kinome. From Donovan *et al.* study, we
999 collected 217 kinases degraded by at least one multi-kinase degrader as 'degraded' and all the
1000 others detected in the same datasets as 'not degraded'⁵¹. We collected 1,336 PROTACtable
1001 targets, including the Clinical Precedence targets, Discovery Opportunity targets, and Literature
1002 Precedence targets from the PROTACtable genome⁷⁴. We collected 24 IMiD targets from
1003 published studies³² and assessed their frequency of degradation by 68 CRBN-recruiting multi-
1004 kinase degraders from Donovan *et al.* study⁵¹.

1005

1006 **Protein family**

1007 We downloaded the human kinase/kinase-related proteins from four different resources, including
1008 KinMap, KinBase, Donovan *et al.* study, and a review article^{109–111}. We collected 1,626 human
1009 transcriptional factors from a review article⁷⁸.

1010

1011 **Protein ligandability**

1012 We downloaded the cysteine reactivity data from the SLCABPP⁷³ and assessed protein
1013 ligandability using the number of compounds with a competition ratio greater than 4. Besides, we
1014 collected protein ligands from the ChEMBL (2021-07-23) and DrugBank database^{71,72}. For any
1015 proteins degraded by a multi-kinase degrader or with a ligand recorded in the ChEMBL (2021-07-
1016 23), DrugBank, or SLCABPP, we considered it as a ligandable target.

1017

1018 **Protein-disease associations**

1019 We considered a protein as a cancer driver if it is an oncogene reported in the OncoKB or it is
1020 predicted as an oncogene by 20/20+ algorithm. 20/20+ analysis was performed on the aggregated
1021 pan-cancer dataset with default parameters. Genes with an oncogene score greater than 0.5 are
1022 considered oncogenes. To annotate potential protein targets associated with other human
1023 diseases, we also downloaded the variant-disease association from the ClinVar database⁷⁶
1024 (2021-04-20). For quality control, we removed annotations of likely loss-of-function variants,
1025 including indel, deletion, insertion, and microsatellite, as well as some uncertain annotations with
1026 key words like ‘conflicting’, ‘protective’, ‘uncertain’, ‘benign’, and ‘not’. This resulted in 3,415
1027 proteins associated with human diseases reported in the ClinVar database.

1028

1029 **Structural properties of lysine residues and Ub sites**

1030 We downloaded protein structures of human models or homology models from PDB¹¹², SWISS-
1031 MODEL¹¹³, and ModPipe¹¹⁴. The detailed data cleaning and processing have been described in
1032 Tokheim *et al.* study¹¹⁵. Protein structures were analyzed using the DSSP program⁸⁹ in bio3d R
1033 package¹¹⁶, which returns the solvent accessibility and secondary structure of each residue.

1034

1035 **Protein-protein docking**

1036 We downloaded protein structures of 323 kinases from the PDB. In cases where multiple
1037 structures were available, the largest structure was chosen. They were aligned to CDK2 (PDB:
1038 1AQ1)¹¹⁷, a reference kinase, to ensure that the kinase domain was present. 251 kinase
1039 structures were alignable with root-mean-square deviation less than 3.5 Å near the ATP-binding
1040 pocket. Next, the aligned kinases were positioned in an arbitrary (but similar) orientation around
1041 the ligand-binding pocket of CRBN–Lenalidomide structure (PDB: 5FQD)¹⁴. Using Rosetta
1042 v.3.12¹¹⁸ and RosettaDock v.4.0¹¹⁹, we performed 5,000 independent local docking with different
1043 starting points and perturbation of 3 Å and 8° (all options listed below). Models were evaluated by
1044 the interface score metric (I_sc) and the 200 lowest-scoring models were selected for further
1045 evaluation.

1046

1047 **E2 accessibility of lysine residues**

1048 We assessed the accessibility of solvent-exposed lysine residues to the E2 enzyme by calculating
1049 the fraction of protein-protein docking models among the 200 lowest-scoring models that could fit
1050 a PROTAC and in which the lysine residues are in the ubiquitination zone of the E2 enzyme. All
1051 lysines with any atom having >2.5 Å² exposed surface area were considered solvent exposed.
1052 The ability of the ternary complex to fit a PROTAC was assessed by aligning CDK2 with CDK4
1053 inhibitor (PDB: 1GIJ)¹²⁰ to the kinase and calculating if there was a free path available between
1054 the N3 atom Lenalidomide and C26 atom of the CDK4 inhibitor to build a linker. If a cylinder of
1055 radius 1 Å and length <14 Å could be constructed between the aforementioned atoms with less
1056 than 2 protein backbone or compound atoms (except neighboring atoms) inside the cylinder, we
1057 estimated that there exists a free path to build a linker, and hence fit the PROTAC. To assess
1058 which lysine residue lie within the ubiquitination zone of the E2, we constructed two planes to split
1059 up space into quadrants. The ‘vertical’ plane passes through half the distance between the CRBN
1060 edge facing the kinase and the center-of-mass of the kinase. The ‘horizontal’ plane is
1061 approximately perpendicular to the vertical plane and passes through the center-of-mass of the

1062 kinase. The lysine residues lying in the quadrant facing the putative position of the E2 are
1063 considered accessible. Finally, if the lysine residue was more than 60 Å away from the
1064 Lenalidomide or the C_α – C_β vector points in the direction opposite of the putative E2 site, the
1065 residue was considered inaccessible.

1066

1067 **Association between protein degradability and characteristics of Ub sites**

1068 We first counted each protein's lysine residues/Ub sites in different secondary structures (coil,
1069 strand, and loop), and then tested whether there is a difference between highly-degradable and
1070 lowly-degradable kinases using the Wilcoxon z-statistics. Similarly, we assessed the associations
1071 between kinase degradability and the number of lysine residues/Ub sites with a specific range of
1072 solvent accessibility or B-factor. A positive Wilcoxon z-statistic indicates the positive correlation
1073 between kinase degradability and the number of Ub sites/lysine residues in the proteins.

1074 We also tested the association between kinase degradability and the number of E2-accessible
1075 Ub sites/lysine residues (E2 accessibility greater than a specific threshold) in each protein. To
1076 further demonstrate the specific importance of E2-accessible Ub sites, we randomly shuffled the
1077 Ub sites among all lysine residues and re-evaluated the association between kinase degradability
1078 and the number of E2-accessible Ub sites in each kinase. We generated a null distribution by
1079 repeating the shuffling process for 10,000 times and calculated the p-value by counting the
1080 percentage of shuffling that led to a higher Wilcoxon z-statistic than the observed Wilcoxon z-
1081 statistic.

1082

1083 **Data and software availability**

1084 The R package is stored on github: <https://github.com/liulab-dfci/MAPD>. The source code for
1085 reproducible data analysis is stored on github: <https://github.com/liulab-dfci/Degradability2021>. All
1086 relevant data and results are accessible at <http://mapd.cistrome.org>.

1087