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Abstract 24 

Targeted protein degradation (TPD) has rapidly emerged as a therapeutic modality to eliminate 25 

previously undruggable proteins by repurposing the cell9s endogenous protein degradation 26 

machinery. However, the susceptibility of proteins for targeting by TPD approaches, termed 27 

<degradability=, is largely unknown. Recent systematic studies to map the degradable kinome 28 

have shown differences in degradation between kinases with similar drug-target engagement, 29 

suggesting yet unknown factors influencing degradability. We therefore developed a machine 30 

learning model, MAPD (Model-based Analysis of Protein Degradability), to predict degradability 31 

from protein features that encompass post-translational modifications, protein stability, protein 32 

expression and protein-protein interactions. MAPD shows accurate performance in predicting 33 

kinases that are degradable by TPD compounds (auPRC=0.759) and is likely generalizable to 34 

independent non-kinase proteins. We found five features with statistical significance to achieve 35 

optimal prediction, with ubiquitination potential being the most predictive. By structural modeling, 36 

we found that E2-accessible ubiquitination sites, but not lysine residues in general, are particularly 37 

associated with kinase degradability. Finally, we extended MAPD predictions to the entire 38 

proteome to find 964 disease-causing proteins, including 278 cancer genes, that may be tractable 39 

to TPD drug development. 40 

 41 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.27.462040doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.462040
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

Introduction 42 

The most prevalent pathway for selective protein degradation in eukaryotic cells is the Ubiquitin-43 

Proteasome System (UPS), which degrades proteins that are covalently modified with ubiquitin1344 

3. Ubiquitination is orchestrated in three steps by three enzymes. First, ubiquitin is activated by 45 

covalent attachment to the active site of an E1 ubiquitin-activating enzyme. Second, the activated 46 

ubiquitin is transferred from the E1 enzyme to an E2 ubiquitin-conjugating enzyme. Finally, the 47 

proximity induced by an E3 ubiquitin ligase selectively binding to a substrate allows for the 48 

covalent transfer of ubiquitin from the E2 enzyme to a lysine residue on the substrate. After 49 

repeated rounds of this process, a poly-ubiquitin chain can be formed, which often directs the 50 

substrate for degradation by the 26S proteasome4. 51 

  52 

Targeted protein degradation (TPD) is a novel pharmacologic modality that selectively induces 53 

degradation of a protein-of-interest (POI) by chemically repurposing the UPS537. The TPD 54 

molecules (degraders), epitomized by the molecular glues8,9 and PROteolysis TArgeting 55 

Chimeras (PROTACs)5,10313, typically induce the de novo ternary complex formation between an 56 

E3 ligase and a POI, leading to the ubiquitin transfer to available lysines and subsequent 57 

degradation of the POI14316. Unlike traditional inhibitors that target the catalytic binding site on a 58 

POI, degraders can induce protein degradation by binding to non-catalytic sites11,17,18. Therefore, 59 

previously undruggable proteins, such as transcription factors (TF), can be targeted by 60 

degraders19,20. For example, the FDA-approved immunomodulatory drugs (IMiDs) thalidomide, 61 

pomalidomide, and lenalidomide21328 induce degradation of transcription factors IKZF1 and IKZF3 62 

by recruiting them to CRBN25,26,29332, the substrate recognition subunit of the E3 ubiquitin ligase 63 

complex CUL4-RBX1-DDB-CRBN33. Over the last two decades, the TPD field has grown 64 

dramatically, with thousands of publicly available degraders developed for over 100 human 65 

protein targets34,35. Notably, degraders targeting androgen receptor36,37, oestrogen receptor38341, 66 

BCL-XL42,43, Ikaros/Aiolos (IKZF1/3)44347, Helios (IKZF2)44346, and GSPT148 have entered into 67 
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clinical trials, and degraders targeting STAT3, BRD9, BTK, or TRK will also be tested in patients 68 

soon49. Despite these advances, it remains challenging to predict which proteins are susceptible 69 

and which may be resistant to the TPD approaches. 70 

  71 

Chemoproteomic profiling approaches have emerged as a systematic approach to survey protein 72 

degradability50. Rather than profiling expression of a single protein in response to a selective 73 

degrader, these approaches use mass spectrometry to assess the proteome-wide response to 74 

treatment with pan-targeting degraders51354. For example, our recent study profiled 91 multi-75 

kinase degraders to assess the degradability of more than 400 protein kinases, identifying more 76 

than 200 kinases as degradable51. Using a library of pan-HDAC degraders, Xiong et al. 77 

investigated the degradability of zinc-dependent HDACs54. Together these broad-targeted 78 

degrader profiling experiments have greatly expanded the known degradable proteome. 79 

Unfortunately, chemoproteomic approaches to map degradability are inapplicable for most 80 

proteins due to the absence of ligands required for target recruitment to the ligase machinery. 81 

Thus, computational prediction of protein degradability offers a potentially practical alternative. 82 

  83 

It is widely believed that stable ternary complexes are associated with effective and selective 84 

target degradation15,16,53,55. A series of computational methods have been introduced to model 85 

PROTAC-mediated ternary complex formation56359, which have facilitated the rational and efficient 86 

optimization of PROTACs16,60. However, several studies have shown that although some level of 87 

binary target engagement and ternary complex formation are necessary for target recruitment 88 

and ubiquitin transfer, they are not always sufficient for targeted protein degradation51353,61. We 89 

propose that rather than drug-target interactions driving degradability, features intrinsic to the 90 

protein targets could also heavily influence degradability of specific targets. For instance, while 91 

ubiquitination is the initiation signal for proteasomal degradation62365, the association between 92 

protein degradability and known or potential ubiquitination (Ub) sites in the target protein is poorly 93 
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understood. 94 

  95 

In this study, we developed a machine learning model, MAPD (Model-based Analysis of Protein 96 

Degradability), to predict degradability from protein-intrinsic features (Fig. 1). MAPD shows 97 

promising performance in predicting degradable kinases by multi-kinase degraders and 98 

previously reported targets of PROTAC compounds. We found that a protein9s endogenous 99 

ubiquitination potential contributes the most to the degradability predictions. Structural analysis 100 

via protein-protein docking revealed the particular importance of E2-accessible Ub sites in 101 

determining degradability. Using MAPD, we have expanded our predictions to the human 102 

proteome to map protein tractability to TPD approaches. Our results are available at 103 

http://mapd.cistrome.org/, which could be a valuable resource for guiding target prioritization 104 

towards tractable TPD targets.105 
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Results 106 

Kinase degradability is associated with features intrinsic to the target 107 

Substantial efforts have been invested in the optimization of degraders for any particular target 108 

with no guarantee that a successful compound will be found66,67. Our previous chemoproteomic 109 

study of the protein kinome indicates that drug-target engagement is insufficient to predict which 110 

kinases can be degraded51, suggesting unexplained factors influencing protein degradability. In 111 

this study, we explored factors intrinsic to POIs that may influence their degradability by 112 

comparing kinases that all have drug-target engagement, but differ in multi-kinase degrader-113 

induced degradation. We first selected highly- and lowly-degradable kinases based on the 114 

number of multi-kinase degraders found to degrade each POI (Fig. 2a), with an additional 115 

requirement of high frequency of detection in the underlying global proteomic experiments 116 

(Extended Data Fig. 1a). We next collected protein features that may be predictive of kinase 117 

degradability, including post-translational modifications (PTMs), protein stability, protein-protein 118 

interaction (PPI), protein expression, etc. (Supplementary Table 1). Often features within a 119 

category are highly correlated with each other, while features between categories tend to provide 120 

independent information (Fig. 2b). 121 

  122 

To identify features associated with protein degradability, we compared highly- and lowly-123 

degradable kinases using a Wilcoxon rank-sum test. Compared to lowly-degradable kinases, the 124 

highly-degradable kinases have a significantly higher proportion of lysine residues that have 125 

reported ubiquitination events from the PhosphoSitePlus database68 (hereafter referred to as 126 

ubiquitination potential) (p=5.2e-4; Fig. 2c, S1b-c). The ubiquitination potential likely reflects a 127 

protein9s endogenous capacity to be ubiquitinated since the ubiquitination events are from cell 128 

lines in the absence of degrader treatment69. Notably, the percentage of lysine residues on POIs 129 

are not significantly different (Extended Data Fig. 1d). Besides ubiquitination potential, mRNA 130 

expression of a POI in the assayed cell lines is positively associated with protein degradability 131 
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(Fig. 2c, S1e), suggesting that profiling in more cell contexts might be advantageous. 132 

Furthermore, we observed an enrichment of proteins with lower half-life in the highly-degradable 133 

group (Fig. 2c, S1f). Given that protein half-life was not correlated with ubiquitination potential 134 

(Extended Data Fig. 1g), this indicates an independent signal for predicting protein degradability. 135 

Collectively, these results suggest that features intrinsic to protein targets might influence their 136 

degradability. 137 

  138 

Development of Model-based Analysis of Protein Degradability (MAPD) 139 

We next sought to build a machine learning model, named Model-based Analysis of Protein 140 

Degradability (MAPD), to combine multiple features associated with protein degradability into a 141 

single score. Towards this end, we tested six commonly used machine learning methods, 142 

including naive bayes (NB), k-nearest neighbor (KNN), logistic regression, linear-kernel support 143 

vector machine (svmLinear), radial kernel support vector machine (svmRadial), and random forest 144 

(RF). Because of the redundancy of protein-intrinsic features, we performed forward feature 145 

selection for each method (Methods), which iteratively selects the best-performing features 146 

(Supplementary Table 2) until the model performance plateaus70. By evaluating performance 147 

using cross-validation, the RF model outperformed other models with an area under the Precision-148 

Recall Curve (auPRC) of 0.759 (Fig. 3a) and area under the receiver operating characteristic 149 

curves (auROC) of 0.773 (Extended Data Fig. 2a). Therefore, all further analyses are based on 150 

the RF model implementation. 151 

  152 

Five protein-intrinsic features were identified as important in the MAPD model, including 153 

ubiquitination potential, phosphorylation potential, protein half-life, acetylation potential, and 154 

protein length (Extended Data Fig. 2b), in order of importance. Next, we compared the 155 

performance of MAPD to models that were trained on each individual feature using cross-156 

validation. Consistent with the highest importance of ubiquitination potential in MAPD, the model 157 
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trained on the ubiquitination potential showed the highest auPRC (0.584) and auROC (0.663) 158 

among all other single-featured models (Fig. 3b, Extended Data Fig. 2c). Interestingly, the 159 

combination of the three PTM features (ubiquitination, phosphorylation, and acetylation) seem to 160 

achieve higher auPRC (0.659) and auROC (0.753) than ubiquitination potential alone (p=0.058, 161 

Delong9s test) (Fig. 3b, Extended Data Fig. 2c). This suggests that the general propensity of a 162 

protein to be post-translationally modified might be predictive of protein degradability. 163 

  164 

MAPD shows good performance in predicting kinase degradability 165 

To evaluate the robustness of MAPD, we assessed the degradability of the kinome, with the 166 

predictions for training kinases collected from the 20-fold cross-validation to avoid inflating the 167 

performance assessment. We first examined the degradability of kinases profiled in Donovan et 168 

al.51 and found significantly higher MAPD scores of degradable kinases than other kinases 169 

engaged by multi-kinase degraders (Extended Data Fig. 3a). This trend is also consistent for 170 

specific degraders, such as TL12-186 and SK-3-91 (Extended Data Fig. 3a), although with less 171 

significance due to the smaller number of POIs in these datasets. Based on a threshold with the 172 

best cross-validation accuracy, MAPD identified 382 highly-degradable kinase/kinase-related 173 

proteins, covering 78.8% (171/217) experimentally degradable kinases51 (Fig. 4a). Consistent 174 

with the low MAPD scores, the remaining 21.2% kinases have a low frequency of degradation 175 

(Extended Data Fig. 3b). Furthermore, within all experimentally degraded kinases, MAPD scores 176 

show considerable correlation with their frequency of degradation by multi-kinase degraders 177 

(p=5.51e-6) (Fig. 4b), indicating the capability of MAPD in prioritizing highly-degradable targets. 178 

We next examined the overlap of degradable targets from MAPD and curated protein targets with 179 

reported PROTACs in databases (PROTAC-DB34 and PROTACpedia35). Although some 180 

PROTAC targets were missed (Supplementary Table 3), MAPD successfully identified 77% 181 

(50/65) of kinase targets (Fig. 4a), supporting its ability in distinguishing degradable kinases from 182 

other kinases. In addition, MAPD recovered 14 PROTAC targets that were not identified by 183 
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Donovan et al.51 (Fig. 4a), which highlights how computational methods can be complementary 184 

to high-throughput experimental approaches. 185 

  186 

A binder of the target protein is required in the design of TPD molecules, so the propensity of a 187 

POI to be bound by a small molecule, also called ligandability, is relevant to tractability of the POI 188 

by TPD molecules. Here, we leveraged knowledge of existing small molecules to refine MAPD 189 

predictions. A protein is considered ligandable if it has at least one ligand reported in PROTAC-190 

DB34, PROTACpedia35, DrugBank71, ChEMBL72 or SLCABPP (Ligandable Cysteine Database)73 191 

(Extended Data Fig. 3d). Out of the 519 ligandable kinases, MAPD identified 350 degradable 192 

kinases, including 74% (253/342) PROTACtable targets and 97 targets specifically identified by 193 

MAPD (Fig. 4c). PROTACtable was introduced in a recent perspective article74 that qualitatively 194 

assigned tractable TPD targets based on ligand records in ChEMBL and a rule-based approach 195 

that only considers whether certain protein annotations are available. We observed a significantly 196 

lower ubiquitination potential of PROTACtable-specific targets than MAPD-specific targets (Fig. 197 

4d). For example, MAP3K4, a PROTACtable-specific target, has only one reported Ub site despite 198 

being a particularly long protein with 103 lysines68 (Fig. 4e). In contrast, the MAPD-specific target, 199 

AGK, is extensively ubiquitinated despite its short length (Fig. 4e). Experimental data showed that 200 

AGK was degraded sufficiently by multi-kinase degraders51 while MAP3K4 was not despite its 201 

strong target engagement by a multi-kinase degrader52. These examples highlight a potential 202 

advantage of MAPD by quantitatively assessing protein degradability. 203 

  204 

In total, MAPD identified 132 disease-relevant kinase targets, including 72 cancer genes in 205 

OncoKB and 60 kinases associated with other diseases reported in the ClinVar database75,76 206 

(Extended Data Fig. 3e). These kinases could be prospective targets for development of 207 

degraders (Supplementary Table 3). The most degradable kinases include targets with developed 208 

PROTACs34,35, such as CDK2, PLK1, CDK6, CDK9 and CDK4, and other promising targets, such 209 
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as TK1, CSNK1A1, CHEK1, MAPK8, and AURKB that are degraded by multi-kinase 210 

degraders51,52 (Fig. 4f). 211 

  212 

MAPD predicts proteome-wide degradability 213 

We hypothesized that MAPD might also predict the degradability of non-kinase proteins. To test 214 

this, we collected 65 non-kinase targets with publicly available degraders reported in PROTAC 215 

databases34,35. These PROTAC targets had significantly higher MAPD scores than other drug 216 

targets from DrugBank71 (Fig. 5a). To further corroborate this finding, we collected a list of TFs, 217 

such as Ikaros (IKZF1) and Aiolos (IKZF3), that are frequently degraded by thalidomide analog 218 

(IMiD)-based degraders32,51. The MAPD scores of these TFs showed significant correlation with 219 

their observed frequency of degradation (p=0.022) (Fig. 5b). Additional TFs have also been 220 

targeted by TPD molecules20,77,78, such as degraders for AR38,79381 and ER82386 that have entered 221 

into clinical trials. With the exception of BCL6 which has few reported Ub sites, MAPD correctly 222 

predicts the high degradability of most TF PROTAC targets (Fig. 5c). Taken together, these 223 

results indicate that MAPD is generalizable to POIs outside of the kinome. 224 

  225 

Given the robust performance of MAPD, we next applied MAPD proteome-wide to systematically 226 

score all proteins outside of the kinome. MAPD predicted 2,648 degradable targets out of 4,137 227 

ligandable non-kinase proteins (Extended Data Fig. 4a,b), which was two-fold more than 228 

PROTACtable74 (Fig. 5d). The MAPD-specific targets again had significantly higher levels of 229 

ubiquitination potential than the PROTACtable-specific targets (Fig. 4e). We further identified 832 230 

disease-relevant non-kinase targets that are amenable to TPD (Extended Data Fig. 4c and 231 

Supplementary Table 4). Of these, 206 proteins are considered as oncogenic genes by OncoKB 232 

and 626 proteins are associated with other human diseases reported in the ClinVar database75,76 233 

(Extended Data Fig. 4c). The top predicted degradable targets include known PROTAC targets, 234 

such as MDM2 and BCL-XL (BCL2L1), and other potentially degradable targets. DHFR, one of 235 
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the top-ranking targets, has been successfully degraded by a hydrophobic tagging probe 236 

consisting of a hydrophobic moiety Boc3Arg and a DHFR non-covalent binding ligand TMP87. 237 

RHOA, RHOB, and RHOC are also predicted to be degradable, which have been previously 238 

reported to be degraded by F-box-intracellular single-domain antibodies88. These results suggest 239 

potential opportunity for future TPD efforts (Fig. 5f). 240 

  241 

The E2-accessibility of Ub sites is associated with protein degradability 242 

Given that ubiquitination potential was the most important feature in MAPD, we hypothesized that 243 

structural properties of Ub sites could be informative of protein degradability. To test this 244 

hypothesis, we first grouped Ub sites according to their structural properties (Supplementary 245 

Table 4) such as secondary structure, relative solvent accessibility, or flexibility (as defined by B-246 

factor)89. We then examined the association between protein degradability and the number of Ub 247 

sites in each group using a Wilcoxon z-statistic. Among annotated secondary structures, the 248 

number of Ub sites in loop regions showed modestly higher association with protein degradability 249 

relative to the total number of Ub sites (Extended Data Fig. 5a). However, neither relative solvent 250 

accessibility nor flexibility of Ub sites improved the association with protein degradability 251 

(Extended Data Fig. 5b,c). These data suggest that local structural properties of a Ub site provide 252 

limited information for predicting protein degradability. 253 

  254 

We next investigated the property of Ub sites that facilitates the transfer of ubiquitin from the 255 

attached E2 enzyme to the POI in degrader-mediated ternary complexes. We reasoned that 256 

quantifying the accessibility of Ub sites to the E2 enzyme might be predictive of protein 257 

degradability. As most degraders in the chemoproteomics study were based on the CRBN 258 

substrate receptor, we examined this hypothesis by computationally docking 251 target kinases 259 

with experimental structures onto CRBN3IMiD (Extended Data Fig. 6a). We examined the 200 260 

top-scoring structural models for each POI and removed those where it was not feasible to fit a 261 
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PROTAC (Extended Data Fig. 6b). Due to the high flexibility of the CUL4 arm, the attached E2 262 

can transfer ubiquitin to any site in a broad ubiquitination zone90, hence all Ub sites in the spatial 263 

quadrant facing the E2 were considered accessible to the E2 (Fig. 6a, Extended Data Fig. 6c). 264 

We then defined E2 accessibility as the fraction of top-scoring models in which the Ub site was 265 

accessible to the E2 enzyme (Fig. 6a, Extended Data Fig. 6c, Supplementary Table 4). In 266 

comparison to the total number of Ub sites in the structure of the POI, the E2-accessible Ub sites 267 

showed a more significant positive association with protein degradability (Fig. 6b, Extended Data 268 

Fig. 7a). In contrast, the number of E2-accessible lysine residues on the POIs does not show 269 

significant association with their degradability (Extended Data Fig. 7a,b). Together, these results 270 

suggest that lysines with detected ubiquitination events are more amenable to TPD. To further 271 

assess whether E2-accessibility was independently useful, we randomly shuffled reported Ub 272 

sites among all available lysine residues within a protein. Consistent with our initial finding, E2-273 

accessible Ub sites were significantly more associated with protein degradability than expected 274 

based on the total number of Ub sites in each protein (p=0.0064; Fig. 6c). 275 

  276 

We observed an overall positive correlation between the total number of Ub sites and E2 277 

accessible Ub sites on kinases (Fig. 6d), and noticed some POIs with outlier levels of E2-278 

accessible and total Ub sites. For example, CDK1 had a high fraction of E2-accessible Ub sites 279 

(Fig. 6d, Extended Data Fig. 7c), consistent with its frequent degradation by multi-kinase 280 

degraders51. Therefore, we hypothesize that similar proteins, such as GRK2, GRK6, and STK26, 281 

are promising targets for developing future TPD drugs if they had drug-target engagement (Fig. 282 

6d). In contrast, some kinases, such as VRK1, ZAP70, NEK7, and MAPK14, had a low number 283 

of E2-accessible Ub sites, despite having a high number of total Ub sites (Fig. 6d). As expected, 284 

these kinases have significantly lower frequency of degradation by CRBN-recruiting multi-kinase 285 

as measured by Donovan et al.51 (Fig. 6e). 286 

  287 
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Finally, we created an interactive web platform (http://mapd.cistrome.org), which incorporates 288 

protein-intrinsic features, MAPD predictions, E2 accessibility of Ub sites in select proteins, 289 

ligandability, and disease associations. This platform could enable rational prioritization of 290 

degradable targets for developing degraders by the TPD community. Moreover, we implemented 291 

MAPD as a R package (https://github.com/liulab-dfci/MAPD), which allows researchers to extend 292 

our analysis when more chemoproteomic profiling data and/or protein features are available in 293 

the future. 294 

 295 

 296 

 297 
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Discussion 298 

Despite the growth in the number of targeted protein degraders, it remains challenging to predict 299 

which proteins are tractable to this approach. In this study, we investigated the degradability of 300 

kinases and their correlation with features intrinsic to protein targets. By developing a machine 301 

learning model, MAPD (Model-based Analysis of Protein Degradability), we identified five features 302 

predictive of kinase degradability, including the ubiquitination potential, acetylation potential, 303 

phosphorylation potential, protein half-life and protein length. Systematic benchmarking indicates 304 

that MAPD can well predict kinase degradability and is also applicable to proteins outside of the 305 

kinome. By integrating MAPD predictions and ligand information of POIs, we prioritized disease-306 

associated degradable proteins as TPD drug targets. 307 

  308 

Ternary complex formation is thought to be the most important factor in determining the 309 

degradability of protein targets53,55359. However, our analysis found that protein degradability can 310 

also be heavily influenced by protein-intrinsic features, especially the protein9s endogenous 311 

ubiquitination potential. By modeling the structural relationship between target proteins and E2 312 

enzyme, we found that protein degradability is highly correlated with the availability of E2-313 

accessible Ub sites. Thus, checking the protein-intrinsic features, especially the availability of E2-314 

accessible Ub sites, might be crucial for selecting protein targets or E3 recruiters before a TPD 315 

drug discovery project. 316 

  317 

Our study has several limitations. First, our analysis revealed protein-intrinsic features, such as 318 

ubiquitination potential and protein half-life, associated with protein degradability, but it remains 319 

to be answered how they influence protein degradability. Second, although our model had the 320 

potential to identify degradable non-kinase targets, it showed biased predictions for some proteins 321 

(e.g., BRD4, BCL6, HDAC6, and HDAC3) with poorly detected Ub sites or missing feature data. 322 

Therefore, a careful consideration of feature data is important when interpreting the prediction 323 
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results. Lastly, while E2-accessible Ub sites are important in determining protein degradability, 324 

we didn9t incorporate this feature into MAPD. One reason is that most proteins don9t have 325 

experimentally solved protein structure with known ligandable pockets, which is required for 326 

protein docking models. The release of highly accurate predicted protein structures generated 327 

with AlphaFold may offer a great opportunity for researchers to address this problem in the 328 

future91. 329 

  330 

Our study also reveals several research directions deserving future study to advance the field. 331 

First, computational and experimental studies investigating why certain lysines seem more 332 

susceptible to ubiquitination than others could improve the predictions for degradability by MAPD. 333 

Second, more extensive proteomic profiling of protein-intrinsic features and induced protein 334 

degradation by multi-target degraders in disease-relevant cell lines or tissues could facilitate the 335 

understanding of cell-type-specific protein degradability and further accelerate the development 336 

of TPD drugs for diseases. Finally, we envision that future computational methods will not only 337 

improve the prediction of protein degradability, but also predict the functional consequence of 338 

degradation of disease-causing proteins. 339 

 340 

 341 

 342 
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Figures 633 

 634 

Fig. 1 | Study overview. 635 

The ubiquitin-proteasome system can be repurposed by a PROTAC (Proteolysis Targeting 636 

Chimera) or other small molecule to degrade a protein of interest (POI). However, it remains to 637 

be answered which proteins are amenable to this approach (left). Here, we associated kinase 638 

degradability with protein-intrinsic features spanning protein expression, post-translational 639 

modifications, protein length, protein-protein interactions, protein stability, and protein half-life to 640 

identify predictive factors (middle). Based on the predictive features, we developed a machine 641 

learning model to predict protein degradability (right). 642 

 643 

 644 

 645 

  646 
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647 

Fig. 2 | Kinase degradability is associated with features intrinsic to the target. a, Dot plot 648 

showing the frequency of degradation and maximal degradation of protein kinases induced by 649 

multi-kinase degraders from the Donovan et al. study. Orange dots represent the kinases with 650 

high degradability, and light blue dots represent the kinases with low degradability. b, Pairwise 651 

Spearman9s correlation of 42 protein-intrinsic features spanning protein stability, post-652 

translational modification (PTM), protein-protein interaction (PPI), protein length, protein half-life, 653 

protein expression, protein detectability and others. c, Bar diagram showing the association 654 

between degradability of kinases and their features. The x-axis shows the abbreviated name of 655 

protein-intrinsic features (see Supplementary Table 1 for full details), and the y-axis shows the 656 
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Wilcoxon z-statistics indicating the association between protein degradability and each protein-657 

intrinsic feature (*=FDR<0.05). 658 

 659 

 660 
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 662 

Fig. 3 | Development of Model-based Analysis of Protein Degradability (MAPD). a, Precision-663 

Recall curves that show the performance of six machine learning models based on 20-fold cross-664 

validation. RF indicates the random forest model, svmRadial indicates the radial-kernel support 665 

vector machine model, NB indicates the naive bayes model, Logistic indicates the logistic 666 

regression model, svmLinear indicates the linear kernel support vector machine model, and KNN 667 

indicates the k-nearest neighbor model. b, Precision-Recall curves that show the performance of 668 

MAPD and models trained on individual features or combination of features. 8PTMs9 indicates the 669 

model trained on the combination of ubiquitination potential (Ubiquitination_2), acetylation 670 

potential (Acetylation_1), and phosphorylation potential (Phosphorylation_2). 8Ubiquitination_29 671 

indicates the model trained on ubiquitination potential. 8Hela_Halflife9 indicates the model trained 672 

on a single feature describing half-life in Hela cells from Zecha et al. 8Length9 indicates the model 673 

trained on protein length. 8Phosphorylation_29 indicates the model trained on phosphorylation 674 

potential.  675 
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 676 

Fig. 4 | MAPD shows good performance in predicting kinase degradability. a, Venn diagram 677 

showing the overlap between kinases degraded by multi-kinase degraders from Donovan et al., 678 

PROTAC targets reported in PROTAC databases (including PROTAC-DB and PROTACpedia), 679 

and degradable kinases identified by MAPD. b, Scatter plot showing the Spearman correlation 680 

between MAPD scores and frequency degradation of all degradable kinases from Donovan et al. 681 

c, Venn diagram showing the overlap between degradable kinases identified by MAPD, 682 

PROTACtable kinases, and ligandable kinases. d, Box plot showing ubiquitination potential 683 
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(proportion of lysine residues with reported ubiquitination events in the PhosphoSitePlus) of 684 

MAPD-specific targets and PROTACtable-specific targets. e, Lollipop diagram showing the 685 

reported Ub sites in MAP3K4 (PROTACtable-specific target) and AGK (MAPD-specific target). 686 

The number in the circles indicates the number of references for each Ub site in PhosphoSitePlus 687 

and the blank circle indicates that only one reference is available. The blue text near the circle 688 

indicates the location of the Ub site. f, Heatmap showing annotations of the top 50 predicted 689 

degradable kinases, with MAPD scores shown at the bottom. 8PROTACdb9 and 8PROTACpedia9 690 

indicate whether a kinase has a developed degrader reported in the respective databases. The 691 

8Multi-kinase degrader9 indicates whether a protein is degraded by the multi-kinase degrader. 692 

8DrugBank9 indicates whether a protein has FDA approved drug recorded in the DrugBank 693 

database. 8ChEMBL9 indicates whether a protein has ligands recorded in the ChEMBL database. 694 

8Electrophiles9 indicate whether a protein has ligandable cysteines from the SLCABPP 695 

(Streamlined Cysteine Activity-Based Protein Profiling). The 8OncoKB9 indicates whether a protein 696 

is considered as a cancer gene in the OncoKB database. The 8ClinVar9 indicates whether the 697 

protein is associated with a disease in the ClinVar database (****=p<0.0001). 698 

 699 
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 700 

Fig. 5 | MAPD predicts degradability proteome-wide. a, Box plot showing the MAPD scores of 701 

non-kinase PROTAC targets from PROTAC databases (including PROTAC-DB and 702 

PROTACpedia) and other non-kinase drug targets from DrugBank. b, Scatter plot showing the 703 

MAPD scores and the frequency of degradation of IMiD targets by CRBN-recruiting degraders 704 

from Donovan et al. c, Ranked dot plot showing the MAPD scores of human transcriptional factors 705 

(TF). TFs with reported degraders are labeled on the figure. The histogram at right shows the 706 

distribution of MAPD scores of all human TFs and the red dashed line shows the threshold for 707 

identifying degradable proteins by MAPD. d, Venn diagram showing the overlap of degradable 708 

non-kinase proteins between MAPD predictions and PROTACtable genome. e, Box plot showing 709 

the ubiquitination potential (proportion of lysines with reported ubiquitination events in the 710 

PhosphoSitePlus) in MAPD-specific targets and PROTACtable genome-specific targets. f, 711 
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Heatmap showing annotations of the top 30 predicted degradable non-kinase proteins, with 712 

MAPD scores shown at the bottom. 8PROTACdb9 and 8PROTACpedia9 annotations indicate 713 

whether a kinase has a developed degrader reported in the respective databases. The 8Multi-714 

kinase degrader9 indicates whether a protein is degraded by the multi-kinase degrader. 715 

8DrugBank9 indicates whether a protein has FDA approved drug recorded in the DrugBank 716 

database. 8ChEMBL9 indicates whether a protein has ligands recorded in the ChEMBL database. 717 

8Electrophiles9 indicate whether a protein has ligandable cysteines from the SLCABPP 718 

(Streamlined Cysteine Activity-Based Protein Profiling). 8OncoKB9 indicates whether a protein is 719 

considered as a cancer gene in the OncoKB database. 8ClinVar9 indicates whether the protein is 720 

associated with a disease in ClinVar database (****=p<0.0001). 721 

 722 
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 723 

Fig. 6 | E2-accessibility of Ub sites is associated with protein degradability. a, Diagram 724 

showing how to estimate accessibility of lysine/Ub sites to E2 enzyme in degrader-induced ternary 725 

complex. The model of CDK1 (4Y72) was docked to the CRBN-Lenalidomide structure (PDB: 726 
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5FQD), which is shown as an example. The E3 ubiquitin ligase complex consists of CRBN, DDB1, 727 

CUL4A, and CUL4B, shown in green, pink, light gray and gray, respectively. The CDK1 is the 728 

target protein, shown in yellow. The RBX1 fragment (shown in orange) was used to estimate the 729 

position of the E2 enzyme and corresponding ubiquitination zone in the target protein. Lysine/Ub 730 

sites in the ubiquitination zone were estimated by drawing two planes with respect to the position 731 

of CRBN and the target kinase. The sites lying in the quadrant facing the putative position of the 732 

E2, estimated by the placement of RBX1 are considered accessible. The predicted E2-accessible 733 

and E2-inaccessible lysine residues are highlighted in blue and red, respectively. For each target 734 

protein, 200 top-scoring feasible models are selected for evaluating the accessibility of lysine 735 

residues to E2 enzyme. For each Ub site, the fraction of feasible models with the site in the 736 

ubiquitination zone was estimated as its E2 accessibility. b, Box plot showing the association of 737 

kinase degradability with total number of Ub sites (left) and E2-accessible Ub sites (right) in the 738 

kinases. The E2-accessible Ub sites (E2 accessibility >=0.5) were defined as the Ub sites lying 739 

in the ubiquitination zone of more than 50% feasible models. c, Density plot showing the null 740 

distribution of Wilcoxon z-statistics generated by shuffling Ub sites among all lysine residues for 741 

10,000 times. The red dashed line indicates the observed Wilcoxon z-statistic representing the 742 

association between protein degradability and the number of E2-accessible Ub sites (E2 743 

accessibility >=0.5). d, Dot plot showing the total number of resolved Ub sites and the number of 744 

E2-accessible Ub sites (E2 accessibility >=0.5). e, Box plot showing the number CRBN-recruiting 745 

degraders that degrade kinases with high (>1) and low (<=1) level of E2-accessible Ub sites. All 746 

kinases involved in this analysis have at least two reported Ub sites, which reduces the 747 

confounding effect derived from the difference in the total number of Ub sites. 748 

  749 
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Extended Data Figures 750 

 751 

Extended Data Fig. 1 | Kinase degradability is associated with features intrinsic to the 752 

target. Related to Fig. 2. a-f, Box plot showing difference between high-degradability and low-753 

degradability kinases for (a) frequency of detection in the chemoproteomic data from Donovan et 754 

al. study, (b) proportion of lysines with at least one reported ubiquitination event in the 755 

PhosphoSitePlus, (c) proportion of lysines with at least two reported ubiquitination events in the 756 

PhosphoSitePlus, (d) fraction of lysine residues, (e) mRNA expression in the MOLT4 cell line, 757 

and (f) protein half-life in Hela cells. g, Heatmap showing the pairwise Spearman correlation of 758 

the four protein-intrinsic features. h, Heatmap of Wilcoxon z statistics indicating the association 759 

between protein degradability and protein-intrinsic features of kinases in each family. The x-axis 760 

shows the abbreviated name of protein-intrinsic features (see Supplementary Table 1 for full 761 

details). The y-axis shows the kinase family with the number of highly-degradable (H) and lowly-762 
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degradable (L) kinases shown in the label. The color shows the Wilcoxon z-statistics indicating 763 

the association between protein degradability and each protein-intrinsic feature (ns=p>0.05, 764 

*=p<0.05, **=p<0.01, ***=p<0.001). 765 

  766 
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 767 

Extended Data Fig. 2 | Development of Model-based Analysis of Protein Degradability 768 

(MAPD). Related to Fig. 3. a, ROC curves (receiver operating characteristics curves) showing the 769 

performance of six machine learning models in predicting kinase degradability based on 20-fold 770 

cross-validation. b, Importance of five features in the MAPD revealed by mean decrease accuracy 771 

metric that measures how much accuracy the model losses by excluding each feature from the 772 

model. c, ROC curves (receiver operating characteristics curves) showing the performance of 773 

MAPD and models trained on a subset of features based on 20-fold cross-validation. 774 
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 775 

Extended Data Fig. 3 | MAPD shows good performance in predicting kinase degradability. 776 

Related to Fig. 4. a, Box plot showing the MAPD scores of degraded kinases compared to other 777 

engaged kinases by each multi-kinase degrader (8All9 indicates all degraders from Donovan et al. 778 

study).  b, Box plot showing the frequency of degradation of degradable kinases identified by both 779 

MAPD and Donovan et al. and other experimentally degradable kinases (Donovan et al. specific). 780 

c, Venn diagram showing the overlap between ligandable kinases from PROTAC databases 781 

(PROTAC-DB and PROTACpedia), DrugBank, ChEMBL, and SLCABPP. d, Pie chart showing 782 

the number of degradable kinases (with/without ligand) and undegradable kinases from MAPD 783 

predictions. e, Venn diagram showing the overlap between degradable kinases identified by 784 

MAPD, oncogenic kinases reported in the OncoKB, and kinases associated with other human 785 

disease reported in the ClinVar database. 786 
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 787 

Extended Data Fig. 4 | MAPD predicts degradability proteome-wide. Related to Fig. 5. a, 788 

Venn diagram showing the overlap of ligandable non-kinase proteins from PROTAC databases 789 

(PROTAC-DB and PROTACpedia), DrugBank, ChEMBL, and SLCABPP. b, Pie chart showing 790 

the number of degradable non-kinase proteins (with/without ligand) and undegradable non-kinase 791 

proteins from MAPD predictions. c, Venn diagram showing the overlap between degradable non-792 

kinase proteins predicted by MAPD and disease-causing proteins reported in the OncoKB and 793 

ClinVar database. 794 

  795 
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 796 

Extended Data Fig. 5 | Local structural properties of a Ub site are not informative for 797 

predicting protein degradability. a, Bar plot showing the Wilcoxon z-statistics that indicate the 798 

association between protein degradability and Ub sites in each specific secondary structure. The 799 

<All= indicate the total resolved Ub sites in protein structures. b, Heatmap showing the Wilcoxon 800 

z-statistics that indicate the association between protein degradability and Ub sites in each 801 

specific range of relative solvent accessibility (RSA). The x-axis indicates the minimum RSA of 802 

each range, and the y-axis indicates the maximum RSA of each range. c, Heatmap showing the 803 

Wilcoxon z-statistics that indicate the association between protein degradability and Ub sites in 804 

each specific range of b-factor (flexibility). The x-axis indicates the minimum b-factor of each 805 

range, and the y-axis indicates the maximum b-factor of each range. 806 
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 807 

Extended Data Fig. 6 | Assessment of E2 accessibility of Ub sites. Related to Fig. 6. a, 808 

Diagram showing the protein3protein docking process. All kinases were first aligned at their ATP 809 

binding pocket to a reference kinase, CDK2 (1AQ1). Next, the aligned kinases were positioned in 810 

an arbitrary (but similar) orientation around the ligand-binding pocket of CRBN-Lenalidomide 811 
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structure (PDB: 5FQD). Here, CDK1 (4Y72) is shown as an example. Local docking was 812 

performed, and the 200 top-scoring models were selected for further evaluation. b, For every 813 

docked model, the feasibility of ternary complex formation with a PROTAC was tested by aligning 814 

CDK2 with a multi-kinase inhibitor (TAE) and checking whether a free path for a linker exists. As 815 

multiple linkers of different lengths and rigidities were involved, a broad cylinder was used to 816 

estimate all linker conformations. c, For models where it was feasible to build a ternary complex 817 

with a PROTAC, Ub sites in the ubiquitination zone were estimated by drawing two planes with 818 

respect to the position of CRBN and the target kinase. The sites lying in the quadrant facing the 819 

putative position of the E2, estimated by the placement of RBX1 are considered accessible. For 820 

each Ub site, the fraction of feasible models with the site in the ubiquitination zone was used as 821 

a probability to measure its E2 accessibility. 822 
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 823 

Extended Data Fig. 7 | E2-accessibility of Ub sites is associated with protein degradability. 824 

Related to Fig. 6. a, Smooth line showing the association between protein degradability and the 825 

number of E2-accessible Ub sites/lysine residues (E2 accessibility greater than a certain 826 

threshold). The x-axis shows the threshold of E2 accessibility for selecting E2-accessible 827 

lysine/Ub sites, and the y-axis shows the Wilcoxon z-statistics indicating the association between 828 

kinase degradability and the number of lysine/Ub sites with a E2 accessibility greater than a 829 

certain threshold. A positive Wilcoxon z-statistic indicates the positive association between protein 830 

degradability and the number of lysine/Ub sites, while a negative Wilcoxon z-statistic indicates 831 

the negative association between protein degradability and lysine/Ub sites. The salmon arrow 832 

points to the association between kinase degradability and the total number of Ub sites, while the 833 
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red arrow points to the association between kinase degradability and the number of E2-accessible 834 

Ub sites (accessible to E2 in more than 50% docking models). b, Box plot showing the association 835 

of kinase degradability with total number of lysine residues (left) and E2-accessible lysine 836 

residues (right) in the kinase targets. The E2-accessible lysine residues (E2 accessibility >=0.5) 837 

were defined as the lysine residues lying in the ubiquitination zone of more than 50% feasible 838 

models. c, Docking model of the ternary complex of CRL4CRBN and the target kinase CDK1. 839 

Overlay of CUL4A (PDB: 4A0K) and CUL4B (4A0L) superimposed on DDB1 WD repeat beata-840 

propeller B (4A0K), with CRBN (5FQD) superimposed DDB1 WD repeat beta-propellers A and C 841 

demonstrates high flexibility of the CUL4 arm of the E3 ligase. The RBX1 fragment was used to 842 

estimate the position of the E2 enzyme and corresponding ubiquitination zone in the target protein 843 

CDK1. The model of CDK1 (4Y72) docked to CRBN is shown in yellow, and the predicted E2-844 

accessible and E2-inaccessible Ub sites are highlighted in blue and red, respectively. 845 

 846 

  847 
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Supplementary Tables 848 

Table 1: A list of protein-intrinsic features. 849 

Table 2: Forward feature selection result for each model. 850 

Table 3: MAPD predictions, ligandability, and disease associations of human proteins. 851 

Table 4: Accessibility of Ub sites to the E2 enzyme in kinase docking models. 852 

 853 
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Materials and Methods 854 

Kinase degradability data 855 

We collected 151 quantitative proteomics data measuring the changes of protein abundance in 856 

response to treatment of 85 unique multi-kinase degraders (degraders with allosteric linkers are 857 

excluded)51. We used the limma package to perform differential protein expression analysis 858 

comparing the degrader treated samples with the DMSO treated samples. For each protein, we 859 

calculated the frequency of degradation as the number of experiments in which the protein is 860 

significantly down-regulated (FC (fold change)>1.25 and p-value<0.01). Furthermore, to 861 

aggregate the results of multiple replicates for each degrader, we aggregated log2FC from 862 

replicate experiments using Stouffer9s Z-score and corresponding p-values using Fisher9s 863 

method. We then counted the number of unique degraders that can degrade each protein 864 

(Stouffer9s Z-score< log2(1.5) and Fisher9s p-value<0.01). We collected 5 KiNativ profiling data 865 

and 2 KinomeScan data from published studies51,52, which profiled target engagement of five 866 

multi-kinase degraders, including TL12-186, SK-3-91, SB1-G-187, DB0646, and WH-10417-867 

09951,52. A KinomeScan score smaller than 15 or a KiNativ score greater than 35 indicate strong 868 

drug-target engagement. 869 

  870 

Definition of high-degradability and low-degradability kinases 871 

We defined highly-degradable kinases as those degraded by at least five different multi-kinase 872 

degraders (50 kinases), and lowly-degradable kinases that were engaged by at least one multi-873 

kinase degrader, quantified in more than 10% underlying global proteomic experiments, but not 874 

degraded (76 kinases). The high-degradable kinases and low-degradable kinases are used 875 

throughout the study to investigate the association between protein degradability and protein-876 

intrinsic features. 877 

  878 

Protein-intrinsic features 879 
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We built more than 42 protein-intrinsic features spanning post-translational modifications (PTM)68, 880 

protein stability generated from GPS (global protein stability) profiling92394, protein half-life95397, 881 

protein-protein interactions98,99, protein expression, protein detectability51,100,101, protein length, 882 

and others. 883 

  884 

Post-translational modification (PTM) features. We collected all available post-translational 885 

modification (PTM) sites from the PhosphoSitePlus database (02/17/2021)68. PhosphoSitePlus 886 

includes three types of supports for each PTM site, including LT_LIT (the number of publications 887 

supporting the site), MS_LIT (the number of mass spec studies supporting the site), and MS_CST 888 

(the number of mass spec studies performed by Cell Signaling Technology supporting the site). 889 

We generated two features related to each type of PTM. The first feature (e.g., Ubiquitination_1) 890 

refers to the fraction of relevant amino acid residues in a protein (e.g., lysine residues) that have 891 

a corresponding reported PTM site (e.g., Ub site), which only needs the support of a single 892 

reference for each PTM site (LT_LIT+MS_LIT+MS_CST >0). The second feature (e.g., 893 

Ubiquitination_2) is calculated in the same manner, except requires each PTM site to be 894 

supported by at least two studies (LT_LIT>1 | MS_LIT>1 | MS_CST >1). We also included the 895 

fraction of each likely modified amino acid as additional features, such as LysRatio indicating the 896 

fraction of lysine residue in a protein. 897 

  898 

Protein half-life and protein stability features. We downloaded protein half lives in seven different 899 

cell types (B cells, NK cells, Monocytes, Hepatocytes, neurons, Hela, and NIH3T3) from published 900 

studies95397. We additionally collected seven global protein stability (GPS) profiling data from three 901 

studies92394, which include the stability of full-length proteins in HEK293T cell lines treated with 902 

DMSO, MLN4924, dominant negative CRL4, or dominant negative CRL3 and stability of N-903 

terminome and C-terminome peptides of human proteome. All protein half-life data and GPS data 904 

were cross-referred for imputing the missing data. The imputation was done by using the 905 
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impute.knn function (k-nearest neighbor) with default parameters in the impute R package. 906 

  907 

Protein-protein interaction and protein complex. We downloaded protein-protein interactions (PPI) 908 

from the STRING database98 and retrieved the high-confidence PPIs using an arbitrary cutoff of 909 

experimental score>100 and combined_score>200. The degree of each protein in the PPI 910 

network was calculated as an estimation of likelihood of the protein interacting with others. 911 

Additionally, curated protein complex annotations were downloaded from the CORUM database99 912 

and the number of distinct protein complexes associated with each protein was taken as the 913 

estimation of likelihood of a protein being complexed in vivo. 914 

  915 

Gene and protein expression data. We downloaded RNA-seq data of MOLT4 from the GEO 916 

(GSE79253)102. RNA expression values were normalized as logarithm Transcripts Per Million 917 

(TPM). We retrieved quantitative proteomics data of MOLT4 cell lines from Donovan et al., 2020 918 

study51. Relative protein abundances were log normalized and centered with a median value of 919 

zero per sample. The missing values in the proteomic data were imputed using the impute.knn 920 

function (k-nearest neighbor) from the impute R package, with CCLE proteomic data as 921 

reference100. 922 

  923 

Protein detectability. We took the frequency of detection of proteins in Donovan et al. proteomic 924 

datasets as the estimation of protein detectability by mass spectrometry51. 925 

  926 

Other features. We retrieved 20381 reviewed human protein sequences and their length from the 927 

UniProtKB database (2021_01). We downloaded Intrinsically disordered regions (IDRs) from the 928 

MobiDB database103, which includes manually curated annotations and predicted disorder 929 

regions. We ranked the IDR annotations based on the four types of evidence, including curated-930 

disorder-priority, derived-missing_residues-th_90, derived-mobile_residues-th_90, and 931 
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prediction-disorder-mobidb_lite. For each protein, duplicate IDRs were removed for downstream 932 

analysis. 933 

  934 

Pairwise correlation of protein-intrinsic features 935 

We computed pairwise spearman correlation of protein-intrinsic features and clustered the 936 

features based on the correlation matrix using hierarchical clustering with Euclidean distance 937 

measure and complete linkage. The data are visualized using the ComplexHeatmap R 938 

package104. 939 

  940 

Association between protein degradability and features intrinsic to protein targets 941 

We tested each feature9s difference in 50 high degradability kinases and 76 low degradability 942 

kinases using the wilcox.test function in R and computed the Z-statistic using the wilcoxonZ 943 

function in the rcompanion R package. We used the same method to test the association between 944 

protein degradability and protein-intrinsic features in each kinase family. 945 

  946 

Model-based Analysis of Protein Degradability (MAPD) 947 

We sought to build a classification model to predict protein degradability from intrinsic protein 948 

features. We tried six different machine learning models, including linear-kernel SVM (kernlab), 949 

radial-kernel SVM (kernlab), random forest (randomForest), K-nearest neighbors, logistic 950 

regression (LiblineaR), and naive bayes (naivebayes). For each model, we performed feature 951 

selection and then selected the best model trained on a set of best-performing features. 952 

  953 

Forward feature selection. We performed recursive forward feature selection for six machine 954 

learning methods separately. In each iteration, we add a feature which improves the model 955 

performance most. The performance is computed as the area under Precision-Recall Curve 956 

(auPRC) based on 20-fold cross-validation. This process is stopped when the addition of a new 957 
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feature does not further improve the performance. 958 

  959 

Feature importance. We evaluated the importance of features in MAPD using the varImp function 960 

in the caret R package105,106, which computes the feature importance on permuted out-of-bag 961 

samples based on mean decrease in the accuracy. 962 

  963 

Performance evaluation. To evaluate the performance of each model involved in the study, we 964 

collected prediction scores of all proteins from cross validation and computed the area under the 965 

Receiver Operating Characteristic curve (auROC) using the roc function from the pROC 966 

package107 and Precision-Recall curve (auPRC) using the pr.curve from the PRROC package in 967 

R108. 968 

  969 

Single feature evaluation. For each individual feature, we trained a logistic model. For the 970 

combination of features, we trained random forest models. Finally, we compared the model 971 

performance based on 20-fold cross validation. 972 

  973 

Final model training for predictions outside of the kinome. We used the caret package for 974 

parameter tuning and final model training. We evaluated the model tuning parameters based on 975 

leave-one-out cross-validation (method = <LOOCV= in the trainControl function), with the F1 score 976 

as performance metric (metric = <F= in the train function, summaryFunction = prSummary in the 977 

trainControl function). With the optimal parameters (mtry = 2), we trained a final random forest 978 

model including 20,000 trees (ntree = 20,000) with 5 minimum node sizes (nodesize = 5). 979 

  980 

Prediction 981 

We predicted the degradability of all human proteins using the final random forest model. For 982 

kinases included in the training, we took the average prediction scores collected from three 983 
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repeated 20-fold cross-validation. Based on the cross-validation, we chose a cutoff (0.2327) that 984 

leads to the highest F1 score. A protein is predicted to be degradable if it has a MAPD score 985 

greater than the cutoff. To account for potential biases from missing feature data, we scored the 986 

feature completeness for each protein using a weighted sum score with the formula: � =987 ∑ ������(�) ∗ ��(�)�∈� . The � variable represents the feature set, and � represents each feature 988 

in the feature set. The function ������(�) denotes the scaled feature importance of � and the 989 

indicator function ��(�) denotes whether � is from actual data (1 = actual, 0 = imputed). The � 990 

represents the feature completeness, with a 0-1 range. A score of 1 indicates all features are from 991 

actual data, and a score of 0 indicates all features are imputed. 992 

  993 

Degradable proteins 994 

We collected PROTAC targets with reported degraders in the PROTAC-DB (2021-05-27) and/or 995 

the PROTACpedia (2021-07-08)34,35. For evaluation purposes, the targets from Donovan et al. 996 

study were removed from the PROTAC databases (including PROTAC-DB and PROTACpedia). 997 

This resulted in 65 kinases and 65 proteins outside of the kinome. From Donovan et al. study, we 998 

collected 217 kinases degraded by at least one multi-kinase degrader as 8degraded9 and all the 999 

others detected in the same datasets as 8not degraded951. We collected 1,336 PROTACtable 1000 

targets, including the Clinical Precedence targets, Discovery Opportunity targets, and Literature 1001 

Precedence targets from the PROTACtable genome74. We collected 24 IMiD targets from 1002 

published studies32 and assessed their frequency of degradation by 68 CRBN-recruiting multi-1003 

kinase degraders from Donovan et al. study51. 1004 

  1005 

Protein family 1006 

We downloaded the human kinase/kinase-related proteins from four different resources, including 1007 

KinMap, KinBase, Donovan et al. study, and a review article1093111. We collected 1,626 human 1008 

transcriptional factors from a review article78. 1009 
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  1010 

Protein ligandability 1011 

We downloaded the cysteine reactivity data from the SLCABPP73 and assessed protein 1012 

ligandability using the number of compounds with a competition ratio greater than 4. Besides, we 1013 

collected protein ligands from the ChEMBL (2021-07-23) and DrugBank database71,72. For any 1014 

proteins degraded by a multi-kinase degrader or with a ligand recorded in the ChEMBL (2021-07-1015 

23), DrugBank, or SLCABPP, we considered it as a ligandable target. 1016 

  1017 

Protein-disease associations 1018 

We considered a protein as a cancer driver if it is an oncogene reported in the OncoKB or it is 1019 

predicted as an oncogene by 20/20+ algorithm. 20/20+ analysis was performed on the aggregated 1020 

pan-cancer dataset with default parameters. Genes with an oncogene score greater than 0.5 are 1021 

considered oncogenes. To annotate potential protein targets associated with other human 1022 

diseases, we also downloaded the variant-disease association from the ClinVar database76 1023 

(2021-04-20). For quality control, we removed annotations of likely loss-of-function variants, 1024 

including indel, deletion, insertion, and microsatellite, as well as some uncertain annotations with 1025 

key words like 8conflicting9, 8protective9, 8uncertain9, 8benign9, and 8not9. This resulted in 3,415 1026 

proteins associated with human diseases reported in the ClinVar database. 1027 

  1028 

Structural properties of lysine residues and Ub sites 1029 

We downloaded protein structures of human models or homology models from PDB112, SWISS-1030 

MODEL113, and ModPipe114. The detailed data cleaning and processing have been described in 1031 

Tokheim et al. study115. Protein structures were analyzed using the DSSP program89 in bio3d R 1032 

package116, which returns the solvent accessibility and secondary structure of each residue. 1033 

  1034 

Protein-protein docking 1035 
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We downloaded protein structures of 323 kinases from the PDB. In cases where multiple 1036 

structures were available, the largest structure was chosen. They were aligned to CDK2 (PDB: 1037 

1AQ1)117, a reference kinase, to ensure that the kinase domain was present. 251 kinase 1038 

structures were alignable with root-mean-square deviation less than 3.5 Å near the ATP-binding 1039 

pocket. Next, the aligned kinases were positioned in an arbitrary (but similar) orientation around 1040 

the ligand-binding pocket of CRBN3Lenalidomide structure (PDB: 5FQD)14. Using Rosetta 1041 

v.3.12118 and RosettaDock v.4.0119, we performed 5,000 independent local docking with different 1042 

starting points and perturbation of 3 Å and 8° (all options listed below). Models were evaluated by 1043 

the interface score metric (I_sc) and the 200 lowest-scoring models were selected for further 1044 

evaluation. 1045 

  1046 

E2 accessibility of lysine residues 1047 

We assessed the accessibility of solvent-exposed lysine residues to the E2 enzyme by calculating 1048 

the fraction of protein-protein docking models among the 200 lowest-scoring models that could fit 1049 

a PROTAC and in which the lysine residues are in the ubiquitination zone of the E2 enzyme. All 1050 

lysines with any atom having >2.5 Å2 exposed surface area were considered solvent exposed. 1051 

The ability of the ternary complex to fit a PROTAC was assessed by aligning CDK2 with CDK4 1052 

inhibitor (PDB: 1GIJ)120 to the kinase and calculating if there was a free path available between 1053 

the N3 atom Lenalidomide and C26 atom of the CDK4 inhibitor to build a linker. If a cylinder of 1054 

radius 1 Å and length <14 Å could be constructed between the aforementioned atoms with less 1055 

than 2 protein backbone or compound atoms (except neighboring atoms) inside the cylinder, we 1056 

estimated that there exists a free path to build a linker, and hence fit the PROTAC. To assess 1057 

which lysine residue lie within the ubiquitination zone of the E2, we constructed two planes to split 1058 

up space into quadrants. The 8vertical9 plane passes through half the distance between the CRBN 1059 

edge facing the kinase and the center-of-mass of the kinase. The 8horizontal9 plane is 1060 

approximately perpendicular to the vertical plane and passes through the center-of-mass of the 1061 
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kinase. The lysine residues lying in the quadrant facing the putative position of the E2 are 1062 

considered accessible. Finally, if the lysine residue was more than 60 Å away from the 1063 

Lenalidomide or the Cα3Cβ vector points in the direction opposite of the putative E2 site, the 1064 

residue was considered inaccessible.   1065 

  1066 

Association between protein degradability and characteristics of Ub sites 1067 

We first counted each protein9s lysine residues/Ub sites in different secondary structures (coil, 1068 

strand, and loop), and then tested whether there is a difference between highly-degradable and 1069 

lowly-degradable kinases using the Wilcoxon z-statistics. Similarly, we assessed the associations 1070 

between kinase degradability and the number of lysine residues/Ub sites with a specific range of 1071 

solvent accessibility or B-factor. A positive Wilcoxon z-statistic indicates the positive correlation 1072 

between kinase degradability and the number of Ub sites/lysine residues in the proteins. 1073 

We also tested the association between kinase degradability and the number of E2-accessible 1074 

Ub sites/lysine residues (E2 accessibility greater than a specific threshold) in each protein. To 1075 

further demonstrate the specific importance of E2-accessible Ub sites, we randomly shuffled the 1076 

Ub sites among all lysine residues and re-evaluated the association between kinase degradability 1077 

and the number of E2-accessible Ub sites in each kinase. We generated a null distribution by 1078 

repeating the shuffling process for 10,000 times and calculated the p-value by counting the 1079 

percentage of shuffling that led to a higher Wilcoxon z-statistic than the observed Wilcoxon z-1080 

statistic.  1081 

  1082 
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Data and software availability 1083 

The R package is stored on github: https://github.com/liulab-dfci/MAPD. The source code for 1084 

reproducible data analysis is stored on github: https://github.com/liulab-dfci/Degradability2021. All 1085 

relevant data and results are accessible at http://mapd.cistrome.org. 1086 

 1087 
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