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Abstract

An animal entering a new environment typically faces three challenges: explore the

]
2 space for resources, memorize their locations, and navigate towards those targets
3 as needed. Experimental work on exploration, mapping, and navigation has mostly
4 focused on simple environments — such as an open arena, a pond [[1]], or a desert [2]
5 — and much has been learned about neural signals in diverse brain areas under these
6 conditions [3| 4]. However, many natural environments are highly constrained,
7 such as a system of burrows, or of paths through the underbrush. More generally,
8 many cognitive tasks are equally constrained, allowing only a small set of actions
9 at any given stage in the process. Here we propose an algorithm that learns the

10 structure of an arbitrary environment, discovers useful targets during exploration,

11 and navigates back to those targets by the shortest path. It makes use of a behavioral

12 module common to all motile animals, namely the ability to follow an odor to its

13 source [S]]. We show how the brain can learn to generate internal “virtual odors”

14 that guide the animal to any location of interest. This endotaxis algorithm can be

15 implemented with a simple 3-layer neural circuit using only biologically realistic

16 structures and learning rules. Several neural components of this scheme are found

17 in brains from insects to humans. Nature may have evolved a general mechanism

18 for search and navigation on the ancient backbone of chemotaxis.

o 1 Introduction

20 Efficient navigation requires knowing the structure of the environment: which locations are connected
21 to which others [[6]. One would like to understand how the brain acquires that knowledge, what neural
22 representation it adopts for the resulting map, how it tags significant locations in that map, and how
23 that knowledge gets read out for decision-making during navigation. Here we propose a mechanism
24 that solves all these problems and operates reliably in diverse and complex environments.

25 One algorithm for finding a valuable resource is common to all animals: chemotaxis. Every motile
26 species has a way to track odors through the environment, either to find the source of the odor or to
27 avoid it [3]]. This ability is central to finding food, connecting with a mate, and avoiding predators.
28 It is believed that brains originally evolved to organize the motor response in pursuit of chemical
29 stimuli. Indeed some of the oldest regions of the mammalian brain, including the hippocampus, seem
30 organized around an axis that processes smells [7, [8].

31 The specifics of chemotaxis, namely the methods for finding an odor and tracking it, vary by species,
32 but the toolkit always includes a random trial-and-error scheme: Try various actions that you have
33 available, then settle on the one that makes the odor stronger [3S)]. For example a rodent will weave
34 its head side-to-side, sampling the local odor gradient, then move in the direction where the smell
35 is stronger. Worms and maggots follow the same strategy. Dogs track a ground-borne odor trail by
3 casting across it side-to-side. Flying insects perform similar casting flights. Bacteria randomly change
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37 direction every now and then, and continue straight as long as the odor improves [9]. We propose
ss that this universal behavioral module for chemotaxis can be harnessed to solve general problems of
39 search and navigation in a complex environment.

a0 For concreteness, consider a mouse exploring a labyrinth of tunnels (Fig[TJA). The maze may contain
41 asource of food that emits an odor (Fig|I|A top). That odor will be strongest at the source and decline
42 with distance along the tunnels of the maze. The mouse can navigate to the food location by simply
43 following the odor gradient uphill. Suppose that the mouse discovers some other interesting locations
44 that do not emit a smell, like a source of water, or the exit from the labyrinth (Fig E]A). It would be
45 convenient if the mouse could tag such a location with an odorous material, so it may be found easily
46 on future occasions. Ideally the mouse would carry with it multiple such odor tags, so it can mark
47 different targets each with its specific recognizable odor (Fig[I]A mid and bottom).

48 Here we show that such tagging does not need to be physical. Instead we propose a mechanism
49 by which the mouse’s brain may compute a “virtual odor” signal that declines with distance from
50 a chosen target. That neural signal can be made available to the chemotaxis module as though it
51 were a real odor, enabling navigation up the gradient towards the target. Because this goal signal is
52 computed in the brain rather than sensed externally, we call this hypothetical process endotaxis.

53 2 A circuit to implement endotaxis

54 In Figure[TB we present a neural circuit model that implements three goals: mapping the connectivity
55 of the environment; tagging of goal locations with a virtual odor; and navigation towards those goals.
s6 The model includes four types of neurons: feature cells, point cells, map cells, and goal cells.

57 Feature cells: These cells fire when the animal encounters an interesting feature that may form a
s8 target for future navigation. Each feature cell is selective for a specific kind of resource, for example
59 water or food, by virtue of sensory pathways that respond to those stimuli.

60 Point cells: This layer of cells represents the animal’s location Each neuron in this population
61 has a small response field within the environment. The neuron fires when the animal enters that
62 response field. We assume that these point cells exist from the outset as soon as the animal enters
63 the environment. Each cell’s response field is defined by some conjunction of external and internal
64 sensory signals at that location.

65 Map cells: This layer of neurons learns the structure of the environment, namely how the various
66 locations are connected in space. The map cells get excitatory input from point cells with low
67 convergence: Each map cell should collect input from only one or a few point cells. These input
68 synapses are static. The map cells also excite each other with all-to-all connections. These recurrent
69 synapses are modifiable according to rules of Hebbian plasticity and, after learning, represent the
70 topology of the environment.

71 Goal cells: These neurons mark the locations of special resources in the map of the environment. A
72 goal cell for a specific feature receives excitatory input from the corresponding feature cell. It also
73 receives Hebbian excitatory synapses from map cells. Those synapses are strengthened when the
74 presynaptic map cell is active at the same time as the feature cell.

75 Each of the goal cells carries a virtual odor signal for its assigned feature. That signal increases
76  systematically as the animal moves closer to the target feature. A mode switch selects one amon
77 many possible virtual odors (or real odors) to be routed to the chemotaxis module for odor tracking.
78 The animal then pursues its chemotaxis search strategy to maximize that odor, which leads it to the
79 selected tagged feature.

go 2.1 Why does the circuit work?

g1 The key insight is that the output of the goal cell declines systematically with the distance of the
g2 animal from that target. This relationship holds even if the environment is a complex graph with

"'We avoid the term ‘place cell’ here because (1) that term has a technical meaning in the rodent hippocampus,
whereas the arguments here extend to species that don’t have a hippocampus; (2) all the cells in this network
have a place field, but it is smallest for the point cells.

That mode switch is controlled by the murinculus: a tiny mouse inside the mouse that tells the mouse what
to do. We do not claim to know how that works.


https://doi.org/10.1101/2021.09.24.461751
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461751; this version posted September 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

to chemotaxis

mode switch

&

% feature cells
)

&

goal cells

synapses

point cells

X
V.
map cells
u.
&

Figure 1: A mechanism for endotaxis. A: A constrained environment of nodes linked by straight
corridors, with special locations offering food, water, and the exit. Top: A real odor emitted by the
food source decreases with distance (shading). Middle: A virtual odor tagged to the water source.
Bottom: A virtual odor tagged to the exit. B: A neural circuit to implement endotaxis. Open circles:
four populations of neurons that represent “feature”, “point”, “map”, and “goal”. Arrows: signal
flow. Solid circles: synapses. Point cells have small receptive fields localized in the environment
and excite map cells. Map cells excite each other by recurrent Hebbian synapses and excite goal
cells by another set of Hebbian synapses. A goal cell also receives sensory input from a feature cell
indicating the presence of a resource, e.g. water or the exit. The feature cell for cheese responds to a
real odor emitted by that target. A “mode” switch selects among various goal signals depending on
the animal’s need. They may be virtual odors (water, exit) or real odors (cheese). The resulting signal
gets fed to the chemotaxis module for gradient ascent. Mathematical symbols used in the text: u; is
the output of a point cell at location ¢, v; is the output of the corresponding map cell, M is the matrix
of synaptic weights among map cells, G are the synaptic weights from the map cells onto goal cells,
and r is the output of goal cell g. C: The output of map cells after the map has been learned; here
the animal is located at points x (top) or y (bottom). Black means high activity. For illustration, each
map cell is drawn at the center of its place field.
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83 constrained connectivity. Here we explain how this comes about, with mathematical details in the
84 supplement.

85 As the animal explores a new environment, when it moves from one location to an adjacent one,
g6 those two point cells briefly fire together. That leads to a Hebbian strengthening of the excitatory
g7 synapses between the two corresponding map cells. In this way the recurrent network of map cells
g8 learns the connectivity of the graph that describes the environment. To a first approximation, the
g9 matrix of synaptic connections among the map cells will converge to the correlation matrix of their
90 inputs [10L[11]], which in turn reflects the adjacency matrix of the graph (Eqn[22). Now the brain can
91 use this adjacency information to find the shortest path to a target.

92 After this map learning, the output of the map network is a hump of activity, centered on the current
93 location x of the animal and declining with distance along the various paths in the graph (Fig[TIC
94 top). If the animal moves to a different location y, the map output is another hump of activity, now
o5 centered on y (Fig[T|C bottom). The overlap of the two hump-shaped profiles will be large if nodes
96 « and y are close on the graph, and small if they are distant. Fundamentally the endotaxis network
97 computes that overlap. How is it done?

98 Suppose the animal visits y and finds water there. Then the profile of map activity v;(y) gets
99 stored in the synapses Gy; onto the goal cell g that responds to water (Fig , Eqgn . When the
100 animal subsequently moves to a different location x, the goal cell g receives the current map output
101 v;(x) filtered through the previously stored synaptic template v;(y). This is the desired measure of
102 overlap (Eqn[27)), and one can show mathematically that it declines exponentially with the shortest
103 graph-distance between x and y (Eqn 28).

14« 3 Performance of the endotaxis algorithm

105 Some important features of endotaxis can already be appreciated at this level of detail. First, the
106 structure of the environment is acquired separately from the location of resources. The graph that
107 connects different points in the environment is learned by the synapses in the map network. By
108 contrast the location of special goals within that map is learned by the synapses onto the goal cells.
109 The animal can explore and learn the environment regardless of the presence of threats or resources.
110 Once a resource is found, its location can be tagged immediately within the existing map structure.
111 If the distribution of resources changes, the knowledge of the connectivity map remains unaffected.
112 Second, the endotaxis algorithm is “always on”. There is no separation of learning and recall into
113 different phases. Both the map network and the goal network get updated continuously based on the
114 animal’s trajectory through the environment, and the goal signals are always available for directed
115 navigation via gradient ascent.

116 3.1 Simultaneous acquisition of map and targets during exploration

117 To illustrate these functions, and to explore capabilities that are less obvious from an analytical
118 inspection, we simulated agents navigating by the endotaxis algorithm (Fig[IB) through a range
119 of environments (Figs 2}3). In each case we assumed that there are point cells that fire at specific
120 locations, owing to a match of their sensory receptive fields with features in the environment. The
121 locations of these point cells define the nodes of the graph that the agent will learn. Both the map
122 synapses and the goal synapses start out fabula rasa with zero synaptic strengths. This is because the
123 animal has no notion of the topology of the environment (which location connects with which other
124 location), and no information on the location of the resources. As the agent explores the environment,
125 for example by a random walk, map synapses get updated based on the simultaneous firing of point
126 cells corresponding to neighboring locations. We used a standard formulation of Hebbian learning,
127 called Oja’s rule, which has only two parameters. Similarly the synapses onto goal cells get updated
128 based on the presynaptic map cell and the postsynaptic signal from feature cells. Map cells and goal
120 cells were allowed to learn at different rates (see Section [A] for detail).

130 A simple Gridworld environment (Fig|2)) serves to observe the dynamics of learning in detail. There
131 are three locations of interest: the entrance to the environment, experienced at the very start of
132 exploration; a water source; and a food item. When the agent first enters the novel space, a feature
133 neuron that responds to the entrance excites a goal cell, which leads to the potentiation of synapses
134 onto that neuron. Effectively that tags the entrance, and from now on that goal cell encodes a virtual
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Figure 2: The map and the targets are learned independently. (A) Left: an agent explores a
simple Gridworld with 3 salient goal locations following the red trajectory. Space is discretized into
square tiles, each tile represented by one point cell. Circles with crosses represent obstacles, namely
tiles that are not reachable. Right: graph of this environment, where each tile becomes a node, and
edges represent traversable connections between tiles. (B) The response fields of three goal neurons
for home (top), water (middle), and bug (bottom) at the 5 instants during the learning process (i-v).
Red edges connect previously visited nodes. The response (log color scale) is plotted at each location
where the agent could be placed. The agent starts random walking from the entrance (i) and gradually
discovers the other two goal locations (water at time iii, bug at time iv). Upon discovery of a goal
location, the corresponding goal cell’s signal is immediately useful in all previously visited locations
(iii, iv) as well as nodes that are < 2 steps away. Any new locations visited subsequently and nodes
< 2 steps away are also recruited into the goal cell’s response field (v).

135 “entrance odor” that declines with distance from the entrance. With every step the agent takes, the
136 map network gets updated, and the range of the entrance odor spreads further (Fig[ZB top). At all
137 times the agent could decide to follow this virtual odor uphill to the entrance.

138 The water source starts out invisible from anywhere except its special location (Fig 2B mid i-ii).
133 However, as soon as the agent reaches the water, the water goal cell gets integrated in the circuit
140 through the potentiation of synapses from map cells. Because the map network is already established
141 along the path that the agent took, that immediately creates a virtual “water odor” that spreads through
142 the environment and declines with distance from the water location (Fig |Z[B mid iii).

143 As the agent explores the environment further, the virtual odors spread accordingly to the new
144 locations visited (Fig 2B i-iv). After extensive exploration, the map and goal networks reach a
145 steady state. Now the virtual odors are available at every point in the environment, and they decline
146 monotonically with the shortest-path distance to the respective goal location (Fig[2B v). As one might
147 expect, an agent endotaxing uphill on this virtual odor always reaches the goal location, and does so
148 by the shortest possible path (Fig[BB-C i).

149 We performed a similar simulation for a complex labyrinth used in a recent study of mouse navigation
150 [12]. The topology of the maze was a binary tree with a single entrance, 63 T-junctions, and 64 end
151 nodes (Fig[3JA ii). A single source of water was located at one of the end nodes. In these experiments
152 mice learned the shortest path to the water source after visiting it ~10 times; they also performed
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Figure 3: Endotaxis can operate in environments with diverse topologies. (A) Three tasks and
their corresponding graph representations: i) Gridworld of Fig[2] with 3 goal nodes (home, water, and
food). ii) A binary tree labyrinth used in mouse navigation experiments [12], with 2 goals (home
and water). iii) Tower of Hanoi game, with 2 goals (the configurations of disks that solve the game).
(B) The virtual odors after extensive exploration. For each goal neuron the response at every node is
plotted against the shortest graph distance from the node to the goal. (C) Navigation by endotaxis:
For every starting node in the environment this plots the number of steps to the goal against the
shortest distance.

153 error-free paths back to entrance on the first attempt [12]]. Again the simulated agent explored the
154 labyrinth with a random walk. The virtual entrance odor allowed it to navigate back to the entrance
155 from any point along the trajectory. The first visit to the water port established a goal cell with virtual
156 water odor. After exploration had covered the entire labyrinth, both the entrance odor and the water
157 odor were available at every location (Fig 3B ii), allowing for flawless navigation to the sources by
158 endotaxis (Fig[3[C ii).

159 It turns out that endotaxis is a useful strategy for cognitive tasks beyond spatial navigation. For
160 instance, the game “Towers of Hanoi” represents a more complex environment (Fig[3A iii). Disks of
161 different sizes are stacked on three pegs, with the constraint that no disk can rest on top a smaller
162 one. The game is solved by rearranging the pile of disks from one peg to another. In any state of the
163 game there are either 2 or 3 possible actions, and they form an interesting graph with many loops
164 (Fig[3JA iii). Again the simulated agent explored this graph by random walking. Once it encountered
165 a solution, that state was tagged with a virtual odor. After enough exploration the virtual odor signal
166 was available from every possible game state, and the agent could solve the game from any starting
167  state in the shortest number of moves. This example illustrates that endotaxis can learn cognitive
168 tasks that don’t involve spatial movement. It merely requires the existence of neurons that recognize
169 any given state of the game. To start with, the agent has no internal model of the game, so it must
170 happen on the first solution by chance. However, when prompted to solve the problem again, the
171 agent can use the learned virtual odor to complete the game in the fewest possible moves.

172 These simulations suggest that the endotaxis algorithm can function perfectly in environments of
173 reasonable complexity, learning both the connectivity of the environment and the location of multiple
174 resources within that map. How robust is that performance? First, the model did not require careful
175 tuning of parameters. Instead, we found that endotaxis works over several log units of the two
176 parameters in Oja’s rule for synaptic plasticity (Fig[6). It fails in predictable fashion: For example if
177 the agent takes longer to explore the environment than the time constant for synaptic change, then
178 the map is always partially forgotten, and navigation to a target will fail. Second, we considered the
179 effects of noise in neural signals, and found a gradual failure when the signal-to-noise value exceeded

180 1 (Fig[g).
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Figure 4: Endotaxis adapts quickly to changes in the environment or the target locations. (A) A
ring environment modified by sudden appearance of a blockage (i), a shortcut (ii), an additional goal
target (iii), or two targets with different reward size (iv). Graphs shown before and after modification.
Shaded nodes are target locations. Labels identify nodes on the graph. (B i-iii) Response profile of the
goal neuron after sufficient exploration, shown just before modification (left, after 200 random steps)
and after adaptation to the change (right, after an additional 200 steps). Color of nodes indicates
the target that the agent will reach by following the virtual odor starting from that node. Note the
virtual odor peaks at either one or two targets depending on the environment, with a higher amplitude
at the stronger target. (B iv) Varying « in Oja’s Rule for map learning adjusts the tradeoff between
distance and reward. With a large « the stronger target is favored from more starting nodes. (C)
Fraction of errors in endotaxis from all possible starting nodes, as a function of time before and after
the modification (dotted line).

181 4 Adaptation to change in the environment

182 An attractive feature of the endotaxis algorithm is that it separates learning the map from learning
183 the target locations. In many real-world environments the topology of the map (how are locations
184 connected?) is probably more stable than the targets (which locations are interesting?). Separating
185 the two allows the agent to adjust to changes on both fronts using different rules and time-scales. We
186 illustrate an example of each.

157 4.1 Change in connectivity

188 Suppose that the connectivity of the environment changes. For example, a shortcut appears between
189 two locations that used to be separated, or a blockage separates two previously adjacent locations
190 (Fig[JA i-ii). This alters the correlation in firing among the point cells during the agent’s explorations,
191 and over time that will reflect in the synapses of the map network. How will endotaxis adapt to such
192 changes?

193 To explore these adjustments, we considered navigation on a ring-shaped maze with a single goal
194 location (Fig[A 1). Note that the ring is the simplest graph that offers two routes to a target, and we
195 will evaluate whether the algorithm finds the shorter one. A simulated agent explored the ring by
196 stepping among locations in a random walk, and built the map cell network from that experience.
197 After a period of ~100 steps, navigation by endotaxis was perfect, in that the agent chose the shorter
198 route to the goal from every start node (Fig @B-C i). When we broke the ring by removing one
199 link, endotaxis failed from some start nodes because it steered the agent towards the blocked path.
200 However, after ~200 steps of additional exploration navigation returned to perfect performance again
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201 (Fig[C i). Over this period the knowledge of the former link was erased from the map network (Fig
202 [B i), because the corresponding map synapses weakened while the link was not used.

203 When we introduced a new shortcut between previously separated locations (Fig @A ii), a similar
204 change took place. For a brief period endotaxis was suboptimal, because the agent sometimes took
205 the long route even though a shorter one was available (Fig[4|C ii). However, that perturbation got
206 incorporated into the map much more quickly than the broken link, after just a few tens of steps of
207 exploration (compare Figs i-ii). One can understand the asymmetry as follows: As the agent
208 explores the environment, a newly available link is confirmed with certainty the first time it gets
200 traveled. By contrast the loss of a link remains uncertain until the agent has not taken that route many
210 times.

211 4.2 Appearance of new targets

212 Suppose the agent has discovered one location with a water resource. Some time later water also
213 appears at a second location (Fig[JA iii). When the agent discovers that, the same water goal cell will
214  get activated and therefore receive a potentiation of synapses active at that second location. Now the
215 input network to that goal cell contains the sum of two templates, corresponding to the map outputs
216 from the two target locations. As before, the current map output gets filtered through these synaptic
217 weights to create the virtual odor. One might worry that this goal signal steers the agent to a location
218 half-way between the two targets. Instead, simulations on the ring showed that the virtual odor peaks
219 at both targets, and endotaxis takes the agent reliably to the nearest one (Fig B iii).

220 4.3 Choice between multiple targets

221 Suppose one of the targets offering the same resource is more valuable than the other, for example
222 because it gives a larger reward (Fig[JA iv). In the endotaxis model (Fig[I]B) the larger reward causes
223 higher activity of the feature cell that responds to this resource, and thus stronger potentiation of the
224 synapses onto the associated goal cell (Eqn[20). Thus the input template of the goal cell becomes a
225 weighted sum of the map outputs from the two target locations, with greater weight for the location
226 with higher reward. In simulations, the virtual odor still showed two peaks, but the stronger target had
227 a greater region of attraction (Fig[4B iv left); for some starting locations the agent chose the longer
228 route in favor of the larger reward, a sensible behavior.

220 What determines the trade-off between the longer distance and the greater reward? In the endotaxis
230 model (Fig[TPB) this is set by an, one of the two parameters of the synaptic learning rule in the map
231 network (Eqn([I9). A small ay raises the cost of any additional step traveled and thus diminishes the
232 importance of reward differences (Fig|4B iv right). By contrast a large oy favors the larger reward
233 regardless of distance traveled. One can show that the role of av is directly equivalent to the discount
234 factor in reinforcement learning theory (Eqn[28).

235 In summary, endotaxis adapts readily to changes in the environment or in the availability of rewards.
236 Furthermore, it implements a rational choice between multiple targets of the same kind, using a
237 variable weighting of reward versus distance. None of these features required any custom tuning:
238 They all follow directly from the basic formulation in Figure[TB.

230 5 Discussion

240 5.1 Summary of claims

241 We have presented a neural mechanism that can support learning, navigation, and problem solving
242 in complex and changing environments. It is based on chemotaxis, namely the ability to follow an
243 odor signal to its source, which is shared universally by most or all motile animals. The algorithm,
244 called endotaxis, is formulated as a neural network that creates an internal “virtual odor” which the
245 animal can follow to reach any chosen target location (Fig[I). When the agent begins to explore
246 the environment, the network learns both the structure of the space, namely how various points are
247 connected, and the location of valuable resources (Fig[Z). After sufficient exploration the agent can
248 then navigate back to those target locations from any point in the environment (Fig[3). The algorithm
249 1S always on and it adapts flexibly to changes in the structure of the environment or in the locations
250 of targets (Fig[d). Furthermore, even in its simplest form, endotaxis can arbitrate among multiple
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251 locations with the same resource, by trading off the promised reward against the distance traveled
252 (Fig[)). Beyond spatial navigation, endotaxis can also learn the solution to purely cognitive tasks
253 (Fig[3)), or any problem defined by search on a graph. The neural network model that implements
254 endotaxis has a close resemblance to known brain circuits. We propose that evolution may have built
255 upon the ancient behavioral module for chemotaxis to enable much more general abilities for search
256 and navigation, even in the absence of odor gradients. In the following sections we consider how
257 these findings relate to some well-established phenomena and results on animal navigation.

258 5.2 Animal behavior

259 The millions of animal species no doubt use a wide range of mechanisms to get around their
260 environment, and it is worth specifying which of those problems endotaxis might solve. First, the
261 learning mechanism proposed here applies to complex environments, namely those in which discrete
262 paths form sparse connections between points. For a bird, this is less of a concern, because it can get
263 from every point to any other “as the crow flies”. For a rodent and many other terrestrial animals, on
264 the other hand, the paths they may follow are constrained by obstacles and by the need to remain
265 under cover. In those conditions the brain cannot assume that the distance between points is given
266 by euclidean geometry, or that beacons for a goal will be visible in a straight line from far away, or
267 that a target can be reached by following a known heading. Second, we are focusing on the early
268 experience with a new environment. Endotaxis can get an animal from zero knowledge to a cognitive
269 map that allows reliable navigation towards goals encountered on a previous foray. It explains how an
270 animal can return home from inside a complex environment on the first attempt [[12], or navigate to a
271 special location after encountering it just once (Figs[2]3). But it does not implement more advanced
272 routines of spatial learning, such as stringing a habitual sequence of actions together into one, or
273 internal deliberation to plan entire routes. Clearly, expert animals will make use of algorithms other
274 than the beginner’s choice proposed here.

275 A key characteristic of endotaxis, distinct from other forms of navigation, is the reliance on trial-
276 and-error. The agent does not deliberate to plan the shortest path to the goal. Instead, it finds the
277 shortest path by locally sampling the real-world actions available at its current point, and choosing
278 the one that maximizes the virtual odor signal. In fact, there is strong evidence that animals navigate
279 by real-world trial-and-error, at least in the early phase of learning [[13]]. Rats and mice often stop at
280 an intersection, bend their body halfway along each direction, then choose one corridor to proceed.
281 Sometimes they walk a few steps down a corridor, then reverse and try another one. These actions —
282 called “vicarious trial and error” — look eerily like sniffing out an odor gradient, but they occur even
283 in absence of any olfactory cues. Lashley [[14], in his first scientific paper on visual discrimination in
284 the rat, reported that rats at a decision point often hesitate “with a swaying back and forth between
285 the passages”. Similar behaviors occur in arthropods [[15] and humans [[L6] when poised at a decision
286 point. We suggest that the animal does indeed sample a gradient, not of an odor, but of an internally
287 generated virtual odor that reflects the proximity to the goal. The animal uses the same policy of
288 spatial sampling that it would apply to a real odor signal, consistent with the idea that endotaxis is
289 built on the ancient behavioral module for chemotaxis.

290 Frequently a rodent stopped at a maze junction merely turns its head side-to-side, rather than walking
291 down a corridor to sample the gradient. Within the endotaxis model, this could be explained if some
202 of the point cells in the lowest layer (Fig[IB) are selective for head direction or for the view down
293 a specific corridor. During navigation, activation of that “direction cell” systematically precedes
294 activation of point cells further down that corridor. Therefore the direction cell gets integrated into
295 the map network. From then on, when the animal turns in that direction, this action takes a step along
296 the graph of the environment without requiring a walk in ultimately fruitless directions. In this way
297 the agent can sample the goal gradient while minimizing energy expenditure.

298 The vicarious trial and error movements are commonplace early on during navigation in a new
299 environment. Later on the animal performs them more rarely and instead moves smoothly through
soo multiple intersections in a row [13]. This may reflect a transition between different modes of
301 navigation, from the early endotaxis, where every action gets evaluated on its real-world merit, to a
302 mode where many actions are strung together into behavioral motifs. At a late stage of learning the
303 agent may also develop an internal forward model for the effects of its own actions, which would
s04 allow for prospective planning of an entire route. An interesting direction for future research is to
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305 seek a neuromorphic circuit model for such action planning; perhaps it can be built naturally on top
sos  of the endotaxis circuit.

307 While rodents engaged in early navigation act as though they are sniffing out a virtual odor, we would
sos dearly like to know whether the experience feels like sniffing to them. The prospects for having that
309 conversation in the near future are dim, but in the meantime we can talk to humans about the topic.
310 Human language has an intriguing set of metaphors for decision making under uncertainty: “this
311 doesn’t smell right”, “sniff out a solution”, “that idea stinks”, “smells fishy to me”, “the sweet smell
stz of success”. All these sayings apply in situations where we don’t yet understand the rules but are just
313 feeling our way into a problem. Going beyond mere correlation, there is also a causal link: Fishy
314 smells can change people’s decisions on matters entirely unrelated to fish [[17]. In the endotaxis model
s15  (Fig[IB) this might happen if the mode switch is leaky, allowing real smells to interfere with virtual
st6  odors. Perhaps this partial synesthesia between smells and decisions results from the evolutionary
317 repurposing of an ancient behavioral module that was intended for olfactory search.

sis 5.3 Brain circuits

319 The proposed circuitry (Fig[I) relates closely to some real existing neural networks: the so-called
320 cerebellum-like circuits. They include the insect mushroom body, the mammalian cerebellum, and a
321 host of related structures in non-mammalian vertebrates [18,[19]. The distinguishing features are:
322 A large population of neurons with selective responses (e.g. Kenyon cells, cerebellar granule cells),
323 massive convergence from that population onto a smaller set of output neurons (e.g. Mushroom
324 body output neurons, Purkinje cells), and synaptic plasticity at the output neurons gated by signals
325 from the animal’s experience (e.g. dopaminergic inputs to mushroom body, climbing fiber input to
s26 cerebellum). It is thought that this plasticity creates an adaptive filter by which the output neurons
327 learn to predict the behavioral consequences of the animal’s actions [18, [20]]. This is what the goal
328 cells do in the endotaxis model.

329 The analogy to the insect mushroom body invites a broader interpretation of what purpose that
330 structure serves. In the conventional picture the mushroom body helps with odor discrimination and
331 forms memories of discrete odors that are associated with salient experience [21]]. Subsequently the
332 animal can seek or avoid those odors. But insects can also use odors as landmarks in the environment.
333 In this more general form of navigation, the odor is not a goal in itself, but serves to mark a route
334 towards some entirely different goal [22| 23]]. In ants and bees, the mushroom body receives massive
335 visual input, and the insect uses discrete panoramic views of the landscape as markers for its location
336 [24H26l. Our analysis shows how the mushroom body circuitry can tie together these discrete points
337  into a cognitive map that supports navigation towards arbitrary goal locations.

sse In this picture a Kenyon cell that fires only under a specific pattern of receptor activation becomes
339 selective for a specific location in the environment, and thus would play the role of a map cell in
340 the endotaxis circuit (Fig . FjAfter sufficient exploration of the reward landscape the mushroom
341 body output neurons come to encode the animal’s proximity to a desirable goal, and that signal can
342 guide a trial-and-error mechanism for steering. In fact, mushroom body output neurons are known to
343 guide the turning decisions of the insect [27], perhaps through their projections to the central complex
344 [28]], an area critical to the animal’s turning behavior. Conceivably this is where the insect’s basic
345 chemotaxis module is implemented, namely the policy for ascending on a goal signal.

a6 Beyond the cerebellum-like circuits, the general ingredients of the endotaxis model — recurrent
347 synapses, Hebbian learning, many-to-one convergence — are found commonly in other brain areas
a4g  including the mammalian neocortex and hippocampus. In the rodent hippocampus, an interesting
s49 candidate for map cells are the pyramidal cells in area CA3. Many of these neurons exhibit place
ss50 fields and they are recurrently connected by synapses with Hebbian plasticity. It was suggested early
351 on that random exploration by the agent produces correlations between nearby place cells, and thus
352 the synaptic weights among those neurons might be inversely related to the distance between their
353 place fields [29, 30]. However, simulations showed that the synapses are substantially strengthened
54 only among immediately adjacent place fields [30,31]] (see also our Eqn[21)), thus limiting the utility
355 for global navigation across the environment. Here we show that a useful global distance function
56 emerges from the output of the recurrent network (Eqns[24] [27] [28)) rather than its synaptic structure.

3Point cells and Map cells are the same in this picture

10


https://doi.org/10.1101/2021.09.24.461751
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461751; this version posted September 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

57 Further, we offer a biologically realistic circuit (Fig[IB) that can read out this distance function for
358 subsequent navigation.

359 5.4 Neural signals

ss0 The endotaxis circuit proposes three types of neurons — point cells, map cells, and goal cells — and
361 it is instructive to compare their expected signals to existing recordings from animal brains during
362 navigation behavior. Much of that prior work has focused on the rodent hippocampal formation
363 [32]], but we do not presume that endotaxis is localized to that structure. The three cell types in the
se4 model all have place fields, in that they fire preferentially in certain regions within the graph of the
se5 environment. However, they differ in important respects:

ss6  Size and location The place field is smallest for a point cell; somewhat larger for a map cell, owing
367 to recurrent connections in the map network; and larger still for goal cells, owing to additional pooling
ses  in the goal network. Such a wide range of place field sizes has indeed been observed in surveys of
369 the rodent hippocampus, spanning at least a factor of 10 in diameter [33} 34]. Some place cells show
370 a graded firing profile that fills the available environment. Furthermore one finds more place fields
a71  near the goal location of a navigation task, even when that location has no overt markers [35]. Both
a7z of those characteristics are expected of the goal cells in the endotaxis model.

373 Dynamics The endotaxis model assumes that point cells exist from the very outset in any environ-
s74 ment. Indeed, many place cells in the rodent hippocampus appear within minutes of the animal’s entry
375 into an arena [33)136]. Furthermore, any given environment activates only a small fraction of these
s76 neurons. Most of the “potential place cells” remain silent, presumably because their sensory trigger
a7z feature doesn’t match any of the locations in the current environment [37,[38]). In the endotaxis model,
a7e  each of these sets of point cells is tied into a different map network, which would allow the circuit to
379 maintain multiple cognitive maps in memory [29]. Finally a small change in the environment, such
as0  as appearance of a local barrier (Fig[)), can indeed lead to disappearance and appearance of nearby
381 place cells [39].

ss2  Goal cells, on the other hand, are expected to appear suddenly when the animal first arrives at
383 a memorable location. At that moment the goal cell’s input synapses from the map network are
ss4 activated and the neuron immediately develops a place field. This prediction is reminiscent of a
3ss  startling experimental observation in recordings from hippocampal area CA1: A neuron can suddenly
sgs start firing with a fully formed place field that may be located anywhere in the environment [40]. This
387 event appears to be triggered by a calcium plateau potential in the dendrites of the place cell, which
sge potentiates the excitatory synaptic inputs the cell receives. A surprising aspect of this discovery was
sse the large extent of the resulting place field, which would require the animal several seconds to cover.
390 This was interpreted as a signature of a new plasticity mechanism that extends over several seconds
391 [41]]. Our endotaxis model has a different explanation for this phenomenon: The goal cell’s place
392 field extends far in space because it taps into the map network, which has already prepared a large
393 place field prior to the agent finding the goal location. In this picture all the synaptic changes are
394 local in time and space, and there is no need to invoke an extended time scale for plasticity.

395 5.5 Learning theories

396 Endotaxis has similarities with reinforcement learning (RL) [42]. In both cases the agent explores a
397 number of locations in the environment. In RL these are called states and every state has an associated
398 value representing how close the agent is to rewards. In endotaxis, this is the role of the virtual
399 odor, represented by the activity of a goal neuron. The value function gets modified through the
400 experience of reward when the agent reaches a valuable resource; in endotaxis this happens via
401 update of the synapses in the goal network (G in Fig[IB). In both RL and endotaxis, when the animal
402 wishes to exploit a given resource it navigates so as to maximize the value function. Over time that
403 value function converges to a form that allows the agent to find the goal directly from every starting
404 state. The exponential decay of the virtual odor with increasing distance from the target (Eqn [28)) is
405 reminiscent of the exponential decay of the value function in RL, controlled by the discount factor,
406 [42].

407 In endotaxis much of the learning happens independent of any reinforcement. During exploration,
408 the circuit learns the topology of the environment, specifically by updating the synapses in the map
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a00  network (M in Fig[IB). The presence of rewards is not necessary for map learning: Until a resource
410 is found for the first time, the value function remains zero because the G synapses have not yet
411 been established (Eqn [I8). Eventually, when the goal is encountered, G is updated in one shot
412 and the value function becomes nonzero throughout the known portion of the environment. Thus
413 the agent learns how to navigate to the goal location from a single reinforcement (Fig[2)). This is
414 possible because the ground has been prepared, as it were, by learning a map. In animal behavior this
415 phenomenon is called latent learning. Early debates in animal psychology pitched latent learning and
416 reinforcement learning as alternative explanations [43]]. Instead, in the endotaxis algorithm, neither
417 can function without the other (see Eqn[I8). In model-based reinforcement learning, the agent could
418 learn a forward model of the environment and uses it to update a value function. A key difference is
419 that endotaxis learns the distances between all pairs of states, and can then establish a value function
420 after a single reinforcement, whereas RL typically requires an iterative method to establish the value
421 function [44-46].

422 The neural signals in endotaxis bear some similarity to the so-called successor representation [47,148]].
423 This is a proposal for how the brain might encode the current state of the agent, intended to simplify
424 the mathematics of time-difference reinforcement learning. Each neuron stands for a possible state of
425 the agent. The activity of neuron j is proportional to the time-discounted probability that the agent
426 will find itself at state j in the future. Thus, the output of the endotaxis map network (Eqns[6]
427 qualitatively resembles a successor representation. However there are some important differences:
428 First, the successor representation depends not only on the structure of the environment, but on the
429 optimal policy of the agent, which in turn depends on the distribution of rewards. Thus the successor
430 representation must itself be learned through a reinforcement algorithm. There is agreement in the
431 literature that the successor representation would be more useful if the model of the environment were
432 independent of reward structure [49]; however, it is believed that “it is more difficult to learn” [47]].
433 By contrast, the map matrix in the endotaxis mechanism is built from a policy of random exploration
434 independent of the reward landscape. Second, no plausible biomorphic mechanism for learning the
435 successor representation has been proposed yet, whereas the endotaxis circuit is made entirely from
436 biologically realistic components.

437 5.6 Outlook

438 In summary, we have proposed a simple model for spatial learning and navigation in an unknown
439 environment. It includes an algorithm, as well as a fully-specified neural circuit implementation.
440 The model makes quantitative and testable predictions that match a diverse set of observations in
441 behavior, anatomy, and physiology, from insects to rodents (Secs [5.2}j5.4). Of course the same
442 observables may be consistent with other models, and in fact multiple navigation mechanisms may be
443 at work in parallel or during successive stages of learning. Perhaps the most distinguishing features
444 of the endotaxis algorithm are its reliance on trial-and-error sampling, and the close relationship to
445 chemotaxis. To explore these specific ingredients, future research could work backwards: First find
446 the neural circuit that controls the random trial-and-error sampling of odors. Then test if that module
447 receives a convergence of goal signals from other circuits that process non-olfactory information. If
448 so, that could lead to the mode switch which routes one or another goal signal to the decision-making
449 module. Finally, upstream of that mode switch lies the soul [50] of the animal that tells the navigation
450 machinery what goal to pursue. Given recent technical developments we believe that such a program
451 of module-tracing is within reach, at least for the insect brain.
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> A Supplement

4

a

453 The core function of the endotaxis network is to learn the distance between any two points in
454 the environment starting from purely local connectivity. As the agent explores the graph of the
455 environment, the point cells for two adjacent locations briefly fire together. This is the local event
456 that drives synaptic learning in the map population. Eventually the map network learns the global
457 structure of the graph. In particular, for any chosen goal node on the graph, the network computes a
458 virtual odor signal that varies with the agent’s location and declines monotonically with the distance
459 from the goal. Using that distance function the agent can navigate to the goal node by the shortest
460 path. In this section we explain how this global distance measure comes about. We start with an
461 analytical result about computing distances on a graph, continue with a formal analysis of how the
462 endotaxis network functions, and proceed to numerical experiments that supplement results in the
463  text.

464 A.1 A neuromorphic function to compute the shortest distance on a graph

465 Finding the shortest path between all pairs of nodes on a graph is a central problem of graph theory,
466 known as “all pairs shortest path” (APSP) [51]. Generally an APSP algorithm delivers a matrix
467 containing the distances D;; for all pairs of nodes. That matrix can then be used to construct the
a8 actual sequence corresponding to the shortest path iteratively. The Floyd-Warshall algorithm [52] is
469 simple and works even for the more general case of weighted edges between nodes. Unfortunately we
470 know of no plausible way to implement Floyd-Warshall’s three nested loops of comparison statements
471 with neurons.

472 There is, however, a simple function for APSP that operates directly on the adjacency matrix and can
473 be solved by a recurrent neural network. Specifically: If a connected, directed graph has adjacency
474 matrix A;;,

A — 1, if node ¢ can be reached from node j in one step 1)
& 0, otherwise, including the ¢ = j case
475 then with a suitably small positive value of «y the shortest path distances are given by
log [(1 - vA)fl} 3
D;; = . @)

log ~y

476 where 1 is the identity matrix, and the half-square brackets mean “round up to the nearest integer”.

477 Proof: The powers of the adjacency matrix represent the effects of taking multiple steps on the graph,
478 namely

[Ak] = Ni(f) = number of distinct paths to get from node j to node i in k steps

479 where a path is an ordered sequence of edges on the graph. This can be seen by induction as follows.
480 By definition

(M _
N =4

j

481 Suppose we know Ni(f) and want to compute N, i(fH). Every path from j to 4 of length k + 1 steps
4g2  has to reach a neighbor of node ¢ in £ steps. Therefore

(k+1) _ (k)
Nij = ZAilNlj @)
l
483 The RHS corresponds to multiplication by A, so the solution is
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Ni(f) - [Ak}

ij
484 We are particularly interested in the shortest path from node j to node :. If the shortest distance D;;;
45 from j to 7 is k steps then there must exist a path of length & but not of any length < k. Therefore

Dj; = min N >0 (4)

486 Now consider the Taylor series

Y =(1-7A)" 5)
=1+~A+~2A% + ...

487 Then

Yij = SONPAR = NP 4 NPt Putt 4 (©)
k=0

)

ags We will show that if ~y is chosen positive but small enough then the growth of Nt-(f with increasing k

a0 gets eclipsed by the decay of * such that

yPi < Yy < AP )
490 The left inequality is obvious from Eqn@because Ni(jD” ) > 1by Eqn

491 To understand the right inequality, note first that NV, i(f) is bounded by a geometric series. From Eqn
492 it follows that

(k) k
N;;" <q
403 where ¢ is the largest number of neighbors of any node on the graph. So from Eqn|[6]
(q7)"

Yy < (@) (@ = T ®)

a94  This expression is < yPu~1 (Eqn as long as

1

Y<——p- 9
q+qPu
495 In addition, because
D;; < n = number of nodes on the graph
496 this is satisfied if one chooses «y such that
1
v < (10)
q+q"

497 With that condition on ~ the inequality [7]holds and taking the logarithm on both sides leads to the
498 desired result:

log Yi; w

D;: =
J [log’y
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499 A.2 The goal signal in endotaxis

s00 In later sections we show that Y;; can be computed by the endotaxis network, and how the required
501 synaptic weights can be learned from exploration on the graph. For reasons of practical implementa-
s02  tion, the network does not operate on Y;; directly but on the scalar products of the column-vectors in
503 Y, namely

E;; = “goal signal from node j to i” = Z Y5 Yij (1T)
k

s04 To understand how that goal signal I;; varies with distance one can follow arguments parallel to
s05 those that led to Eqn[6] Using the upper bound by the geometric series (Eqn[8) and inserting in Eqn
so6 [[T]one finds again that it is possible to choose a v small enough to satisfy

YD < By <AyPeTt (12)

so07  Under those conditions the goal signal I;; decays exponentially with the graph distance D;.

so8  A.3 Regime of validity of the goal signal

509 The analytical arguments above all relied on choosing a very small ~y. In numerical experiments we
sto  found that the exponential dependence of the goal signal E;; on distance (Eqn[I2) actually holds over
511 a wide range of y (Fig[5jA).

52 As 7y increases, one enters a regime where the systematic relationship to graph distance (Fig[5B)
513 breaks down and the goal signal becomes non-monotonic: Comparing all node pairs throughout the
514 graph one now finds many instances where the pair with a larger distance produces a stronger goal
515 signal (Fig[5|C). This happens because Eqn[I2]is no longer satisfied. Nonetheless, it is still possible
st6 that an agent ascending on the goal signal gets all the correct local instructions to find the shortest
517 path. To test this we asked whether the goal signal recommends the correct successor node: For every
518 start node 7 and goal node 7 one finds the node connected to j with the highest goal signal. If that
519 neighbor is always one step closer to ¢ then navigation will be perfect.

520 Indeed we found an extended range of values for v where the goal signal worked flawlessly for
521 navigation between all pairs of nodes (Fig[5|C). In this range the goal signal gives the correct turning
522 instructions on a local level, even if it is not globally monotonic with distance across the entire graph.
523 This behavior can also be seen in some of the simulations of random exploration (Fig[3B).

524 At higher v values navigation begins to fail (Fig[5D-E). For an increasing number of start/goal pairs
525 the agent gets trapped in a local maximum of signal before arriving at the goal.

s26 Finally above a certain critical value . the goal signal fails catastrophically (Fig [5F). There is a
527 simple mathematical reason for this: Recall that the Taylor expansion (3)) has a convergence radius of
s28 1. That means all the eigenvalues of vA must have absolute value < 1, which requires

1
- largest absolute eigenvalue of A

v < e (13)

529 Outside of that convergence radius the expression (1 — fyA)_1 can no longer be interpreted as
530 counting paths on the graph and therefore loses any connection to graph distance.

531 A4 Model formulation

532 We formalized the endotaxis mechanism of Figure 1B as follows:

533 The environment is parcelled into a set of discrete locations in space that are sparsely connected to
s34 each other. The locations and connectors form a graph that is fully specified by the adjacency matrix

s3s A;; (Eqn .

536 We treat neural processing using a textbook linear rate model [[10]. Each node on the graph has a
537 point cell corresponding to that location. The point cell fires at a rate of 1 when the agent’s position j
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Figure 5: The goal signal and the choice of . (A) The goal signal declines exponentially with
graph distance (the tower of Hanoi graph with 4 levels was used for these simulations). Data points
indicate the goal signal between all pairs of nodes, computed with different values of ~, and plotted
against the distance on the graph between the nodes. Lines are exponential fits to the data. (B-F)
Detailed plot of goal signal vs distance as - approaches the critical value 7., which for this graph is
0.335 (Eqn[I3). The fraction of correct successors S is listed in each panel; as S drops below 1, the
goal signal becomes less useful for navigation.
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538 is at that node, and at a lower level w, with 0 < w < 1, at the neighboring nodes. Thus the firing
539 fields of neighboring point cells overlap somewhat; this produces correlations among point cells
s40 along the agent’s trajectory which will drive synaptic plasticity.

u;(x) = firing rate of point cell ¢ with the agent at node x (14)

541 where d;, is the Kronecker delta. The output of the map network (Fig[IB) is

v=u+Mv=(1-M)"tu (16)

s42  where u is the vector of point cell outputs, v is the vector of map cell outputs, and M is the matrix of
543 recurrent synapses among map cells.

544 A goal cell g receives sensory input s, from neurons that signal the goal resource available to the
545 agent at the current node:

s4(y) = amount of resource g present when the agent is at node y a7

s46  In addition the goal cell gets input from the map neurons via the network of goal synapses. Thus the
547 vector of goal cell activities with the agent at node x is

r(z) = s(z) + Gv(z) = s(z) + G(1 — M) u(z) (18)

s48  The recurrent synapses among map cells undergo Hebbian plasticity. To keep the synaptic strengths
s49  bounded some normalization rule is needed. We adopted the standard Oja’s Rule [10]:

dM,;
dt

= Bum(amviv; — Mijv;?) (19)

ss0  where [3 sets the speed of synaptic plasticity and « its strength. The map network has no self-synapses:
551 M;; = 0.
ss2  The synapses from map cells to goal cells also undergo Hebbian plasticity, again via Oja’s Rule

dGy;
dt

= Ba(agryv; — GgirgQ) (20)

553 Because learning about targets is conceptually different from learning the map of the environment, we
ss4  allowed o, B¢ to differ from ang, Sv. Including the spatial overlap w, the model has 5 parameters.

555 A.5 How the endotaxis network learns the goal signal

ss6  Consider the linear rate model of the map network in Fig|[I]B and Eqns 16| It is well known that
s57 a Hebbian recurrent network of this type will learn the correlation structure of its inputs [[10} [11].
ss8  Evaluating Eqn[I9]after synapses have equilibrated leads to

M = %“;’; Q1)

559 In the limit of small M;;, i.e. if the inputs from point cells dominate, then v; ~ u; and one gets to
560 lowest order

U;Uj
Mij = a <<u42]>> =awdy =74y (22)

561 where
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¥ =aw (23)

se2  In this approximation, the recurrent synapses M;; directly reflect the connections among point cells
563 and thus the adjacency matrix of the graph.

s64 The output of the map network (Eqn [I6)) is

v=1-M)tu=(1-~vA)"tu (24)

s65  So the recurrent network of map cells effectively computes the all-pairs distance function derived
s66 above (Eqn . If the agent is at node x then the map output v(z) equals the z-th column vector of
567 the matrix Y (in the limit of small w and ~):

vi(z) ~ Yie (25)

ses  which declines exponentially with the graph distance D;, (Eqn[7). These distance-dependent humps
seo  of activity are schematized in Fig|[T|C.

570 The remaining problem is how to use the map output to encode the distance to a specific remembered
571 goal location. Suppose goal ¢ has a rewarding resource only at node y, specifically sq(x) = d4, (Eqn
s72 [T7). When the agent first arrives at location y, the synaptic plasticity rule (Eqn [20) updates the goal
573 synapses Gg; from zero to a profile proportional to the current map output:

Ggi ~ U’L(y) (26)

574 Subsequent visits will strengthen that profile. From then on, when the agent is at a location x # y the
s75  virtual odor varies according to Eqn[I8}

ry(@) = s(x) + Gv(a) @7)
~04v(y) - v(2) = By

576 This corresponds to the goal signal E analyzed above (Eqns Fig[5). Thus the virtual odor
577 computed by the endotaxis network decays exponentially with the agent’s distance from the goal

By~ yPe (28)

578 where 7 = aw.

s79 The explanation here relied on multiple small-signal approximations. However, our simulations
580 show that navigation based on the virtual odor signal is robust in realistic scenarios that include fully
581 non-linear synaptic update rules and stochastic exploration by a random walk (Figs [2[[34).

ss2 In this framework, the factor + has an interesting interpretation. Its neural meaning is the strength
583 of recurrent synapses in the map network compared to the feed-forward synapses from point cells
ss4  (Eqn[22). Ultimately it determines the distance-dependence of the goal signal: For every step along
sss the graph the goal signal declines by a factor of v (Eqn [28). By analogy to the value function in
sss reinforcement learning [42], one can identify v as a discount factor or cost that the agent assigns for
587 every step it has to take. This becomes relevant when the agent trades off two goal locations that offer
sss rewards of different magnitude (Fig[4[C): an additional step to one of the goals gets compensated if
sso  the reward is larger by a factor of 1/+. If the agent can manipulate -, for example by varying « in
se0 Oja’s plasticity rule (Eqns [T9I22)), that allows it to assign different costs on distance traveled (FigC).

s91  A.6 Limits and extensions of the endotaxis model
592 To help illuminate the remarkable phenomenon of rapid learning in a complex environment we sought

593 an explanation in terms of biologically realistic processes. This informed the choice of modeling
s94 language, using concrete circuits of neurons and synapses, rather than abstract cognitive functions.
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s95 Furthermore we kept the model as simple as possible: the cells are single-compartment neurons
s96 without elaborate biophysics. The synapses are of a simple Hebbian type. All the input-output
s97 functions are linear. Free parameters are kept to the minimum: two each for the synaptic learning
s98 rules in the two networks. This simplicity allowed us to understand how and why the model works in

se9 analytical detail (Sec[A.THA.5).

600 Surprisingly this simplest possible model also learns very robustly in simulations over a range of
601 environments. The parameters do not require careful tuning; in fact a single set of 4 numbers works
602 fine for the conditions we studied. In some ways the simulations perform better than real animals. For
603 example in the binary maze the agent can navigate to a reward location flawlessly after discovering
604 it the first time (Fig[3B), whereas real mice solve that problem after ~10 experiences [12]]. This
605 inspires confidence that as one adds realistic “bells and whistles” to the model the additional degrees
606 of freedom will not break its operation. A number of extensions seem interesting for future work.

607 The distance function computed by the network fundamentally relies on the decay of neural activation
608 over multiple synaptic links. In a large environment, and operating with a small v, the virtual odor
609 signal will span many orders of magnitude (Eqn[28). Real neurons cannot function reliably over such
610 a large dynamic range, but some plausible additions could counteract the decay: A more realistic
611 activation function with a compressive nonlinearity can amplify the signal locally in each neuron.
612 Second, a short-term adaptive gain control might adjust the strength of synapses. In this way map
613 cells far from the animal’s current location could become more sensitive and continue to respond to
614 the local trial-and-error movements of the agent.

615 Another desirable feature would be long-term memory. Animals can learn a cognitive map within
616 minutes, and then retain it for days. Clearly there are multiple time scales for learning and forgetting.
617 In complex brains one supposes that long-term consolidation is handled by transfer of the information
618 between brain areas, for example hippocampus and cortex. Small insect brains don’t offer that luxury,
619 but perhaps the goal can be achieved within the endotaxis circuit itself, by endowing synapses with
620 more complex dynamics [53]].

621 A hierarchical extension of the model could be formulated such that an additional set of feedforward
622 weights could read out from the goal signals in the current model formulation, which would allow
623 for weighted preferences of desired goal features. Such a system could be useful for returning to
624 locations with multiple properties that are desirable to the animal, or remembering a unique set of
625 properties that characterize certain goal locations.

626 A.7 Simulations

e27  Figures[2] 3] and ]report the results of endotaxis learning while an agent explores the environment.
628 We gave the agent a trajectory, either chosen by design (Fig[2) or as an unbiased random walk through
620 the graph (Figs[3] ). After every step of the random walk we computed the cell activities in a forward
630 pass from point cells to goal cells. Then we updated the synaptic weights in the two networks M and
63t G via a Hebbian learning rule. See Algorithm []for details. Matrix operations were implemented in
632 JAX [54], but for the task complexity explored in this paper there was no need for GPU acceleration.

633 Learning and subsequent navigation worked robustly over a range of the o and By parameters in
ss« Oja’s Rule (Fig[6]). cn has an absolute upper bound of ~./w (Eqns which depends on the
635 eigenspectrum of the graph. In practice the Tower of Hanoi graph posed the strongest challenge,
636 presumably because of its size and the large number of loops. For simplicity, we selected model
637 parameters that allow for perfect navigation on that graph and applied the same model without
638 modifications across all the tasks reported here. Note that this is not an exclusive set: smaller values
639 for arpr and By would work as well.

620 A.7.1 Change in connectivity

e+t To analyze changes in connectivity (Fig[dA.i-ii) we simulated an agent performing a random walk
e42 on aring. At each time step we asked if the agent could navigate to the goal by the shortest path.
643 We assumed that the appearance of a block or a shortcut between two adjacent nodes will alter the
644 sensory cues around both locations (2 and 3 in Fig JA.i-ii). Therefore the point cells that used to
645 encode those locations drop silent, and the respective map cells lose their afferent input, while still
646 remaining in the recurrent network. At the same time two new point cells appear at those locations,
647 because the new cues match their selectivity. Their map cells now receive afferent input from the
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Figure 6: Dependence of map learning on the parameters «; and 5y in Oja’s rule. Each panel

is for one combination of «; and )y and shows performance on the Gridworld task (Figs i).

The fraction of successful navigations is plotted vs the number of steps in the exploratory random
walk, averaged over 30 different walks. The 3 curves show navigation to the 3 goals, color coded as

in Fig[3]i.
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Algorithm 1 Online Learning via Oja’s Rule

7 : pre-synaptic neuron

1 : post-synaptic neuron

w = 0.3 (fractional activity at neighbor nodes)
54 = 1 (except dual-target tasks)

ay = 0.05
By = 0.02
ag = 0.5 am
Ba = 0.03
M+ 0
G0

for step t in node visit sequence do
Compute Neural Activity
WUnode(t) < 1

for each neighboring node i do
| Unode(s) —w

end for

WUpode(others) < 0
v=u+Mv=(1-M)'u
g=Guv+ Snode(t)

Synaptic Learning
M;j < Mij + Bu(anvivy — Myjv?)
Gij + Gij + Ba(acgivy — Gijg?)

end for

648 respective locations, but their recurrent synapses start at zero weight. The agent then continues a
e40 random walk around the ring, subject to the new constraints, and the learning algorithm proceeds as
650 usual.

651  A.7.2 Dynamics of learning

es2  Figure[J]illustrates the state of the synaptic networks over the course of online learning, as observed
ss3 during a random walk on the binary maze graph (Fig [B]A-ii). The norm of the map matrix || M]||
54 increases continuously through steady small updates ||dM||. By comparison the goal matrix ||G||
es5  increases in noticeable steps of ||dG|| every time the agent visits a goal location. With sufficiently low
656 « and 3, the network learns stably and gradually approaches a steady state. However, as demonstrated
657 in the text, even the first visit to a goal location already produces a goal signal that allows a reliable
658 return to that location.

659 A.7.3 Robustness to noise

s60 We tested how robust the map learning is to noise. Figure [§]illustrates the results using the Gridworld
e61  task (Fig[3}). At each step of the simulation we perturbed each neuron’s signal with multiplicative
e62 noise, by adding a Gaussian noise variable to the logarithm. Performance of learning and navigation
663 was robust for signal-to-noise ratios of 2 or higher.

21


https://doi.org/10.1101/2021.09.24.461751
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461751; this version posted September 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

0.04
0.5
0.4 0.03
503 g 0.02
0.2
0.01
0.1
0.0 0.00
0.00200 1 0.008
0.00175
0.00150 0.006
_ 0.00125 _
£ 0.00100 1 g 0.004
~ 0.00075 4 -
0.00050 1 0.002
0.00025 1
0.00000 0.000
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000

Figure 7: Dynamics of online learning. Evolution of the map matrix (]| M|| and |[dM]|) and the
goal matrix (||G/|| and ||dG||) during exploration of the binary maze graph of Fig[3A ii. See text for
details.
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