

Endotaxis: A Universal Algorithm for Mapping, Goal-Learning, and Navigation

Tony Zhang¹, Matthew Rosenberg¹, Pietro Perona², Markus Meister¹

¹Division of Biology and Biological Engineering

²Division of Engineering and Applied Science
California Institute of Technology

{tonyzhang, mhrosenberg, perona, meister}@caltech.edu

September 24, 2021

Abstract

1 An animal entering a new environment typically faces three challenges: explore the
2 space for resources, memorize their locations, and navigate towards those targets
3 as needed. Experimental work on exploration, mapping, and navigation has mostly
4 focused on simple environments – such as an open arena, a pond [1], or a desert [2]
5 – and much has been learned about neural signals in diverse brain areas under these
6 conditions [3, 4]. However, many natural environments are highly constrained,
7 such as a system of burrows, or of paths through the underbrush. More generally,
8 many cognitive tasks are equally constrained, allowing only a small set of actions
9 at any given stage in the process. Here we propose an algorithm that learns the
10 structure of an arbitrary environment, discovers useful targets during exploration,
11 and navigates back to those targets by the shortest path. It makes use of a behavioral
12 module common to all motile animals, namely the ability to follow an odor to its
13 source [5]. We show how the brain can learn to generate internal “virtual odors”
14 that guide the animal to any location of interest. This *endotaxis* algorithm can be
15 implemented with a simple 3-layer neural circuit using only biologically realistic
16 structures and learning rules. Several neural components of this scheme are found
17 in brains from insects to humans. Nature may have evolved a general mechanism
18 for search and navigation on the ancient backbone of chemotaxis.

1 Introduction

20 Efficient navigation requires knowing the structure of the environment: which locations are connected
21 to which others [6]. One would like to understand how the brain acquires that knowledge, what neural
22 representation it adopts for the resulting map, how it tags significant locations in that map, and how
23 that knowledge gets read out for decision-making during navigation. Here we propose a mechanism
24 that solves all these problems and operates reliably in diverse and complex environments.

25 One algorithm for finding a valuable resource is common to all animals: chemotaxis. Every motile
26 species has a way to track odors through the environment, either to find the source of the odor or to
27 avoid it [5]. This ability is central to finding food, connecting with a mate, and avoiding predators.
28 It is believed that brains originally evolved to organize the motor response in pursuit of chemical
29 stimuli. Indeed some of the oldest regions of the mammalian brain, including the hippocampus, seem
30 organized around an axis that processes smells [7, 8].

31 The specifics of chemotaxis, namely the methods for finding an odor and tracking it, vary by species,
32 but the toolkit always includes a random trial-and-error scheme: Try various actions that you have
33 available, then settle on the one that makes the odor stronger [5]. For example a rodent will weave
34 its head side-to-side, sampling the local odor gradient, then move in the direction where the smell
35 is stronger. Worms and maggots follow the same strategy. Dogs track a ground-borne odor trail by
36 casting across it side-to-side. Flying insects perform similar casting flights. Bacteria randomly change

37 direction every now and then, and continue straight as long as the odor improves [9]. We propose
38 that this universal behavioral module for chemotaxis can be harnessed to solve general problems of
39 search and navigation in a complex environment.

40 For concreteness, consider a mouse exploring a labyrinth of tunnels (Fig 1A). The maze may contain
41 a source of food that emits an odor (Fig 1A top). That odor will be strongest at the source and decline
42 with distance along the tunnels of the maze. The mouse can navigate to the food location by simply
43 following the odor gradient uphill. Suppose that the mouse discovers some other interesting locations
44 that do not emit a smell, like a source of water, or the exit from the labyrinth (Fig 1A). It would be
45 convenient if the mouse could tag such a location with an odorous material, so it may be found easily
46 on future occasions. Ideally the mouse would carry with it multiple such odor tags, so it can mark
47 different targets each with its specific recognizable odor (Fig 1A mid and bottom).

48 Here we show that such tagging does not need to be physical. Instead we propose a mechanism
49 by which the mouse's brain may compute a "virtual odor" signal that declines with distance from
50 a chosen target. That neural signal can be made available to the chemotaxis module as though it
51 were a real odor, enabling navigation up the gradient towards the target. Because this goal signal is
52 computed in the brain rather than sensed externally, we call this hypothetical process *endotaxis*.

53 2 A circuit to implement endotaxis

54 In Figure 1B we present a neural circuit model that implements three goals: mapping the connectivity
55 of the environment; tagging of goal locations with a virtual odor; and navigation towards those goals.
56 The model includes four types of neurons: feature cells, point cells, map cells, and goal cells.

57 **Feature cells:** These cells fire when the animal encounters an interesting feature that may form a
58 target for future navigation. Each feature cell is selective for a specific kind of resource, for example
59 water or food, by virtue of sensory pathways that respond to those stimuli.

60 **Point cells:** This layer of cells represents the animal's location.¹ Each neuron in this population
61 has a small response field within the environment. The neuron fires when the animal enters that
62 response field. We assume that these point cells exist from the outset as soon as the animal enters
63 the environment. Each cell's response field is defined by some conjunction of external and internal
64 sensory signals at that location.

65 **Map cells:** This layer of neurons learns the structure of the environment, namely how the various
66 locations are connected in space. The map cells get excitatory input from point cells with low
67 convergence: Each map cell should collect input from only one or a few point cells. These input
68 synapses are static. The map cells also excite each other with all-to-all connections. These recurrent
69 synapses are modifiable according to rules of Hebbian plasticity and, after learning, represent the
70 topology of the environment.

71 **Goal cells:** These neurons mark the locations of special resources in the map of the environment. A
72 goal cell for a specific feature receives excitatory input from the corresponding feature cell. It also
73 receives Hebbian excitatory synapses from map cells. Those synapses are strengthened when the
74 presynaptic map cell is active at the same time as the feature cell.

75 Each of the goal cells carries a virtual odor signal for its assigned feature. That signal increases
76 systematically as the animal moves closer to the target feature. A mode switch selects one among
77 many possible virtual odors (or real odors) to be routed to the chemotaxis module for odor tracking.²
78 The animal then pursues its chemotaxis search strategy to maximize that odor, which leads it to the
79 selected tagged feature.

80 2.1 Why does the circuit work?

81 The key insight is that the output of the goal cell declines systematically with the distance of the
82 animal from that target. This relationship holds even if the environment is a complex graph with

¹We avoid the term 'place cell' here because (1) that term has a technical meaning in the rodent hippocampus, whereas the arguments here extend to species that don't have a hippocampus; (2) all the cells in this network have a place field, but it is smallest for the point cells.

²That mode switch is controlled by the *murinculus*: a tiny mouse inside the mouse that tells the mouse what to do. We do not claim to know how that works.

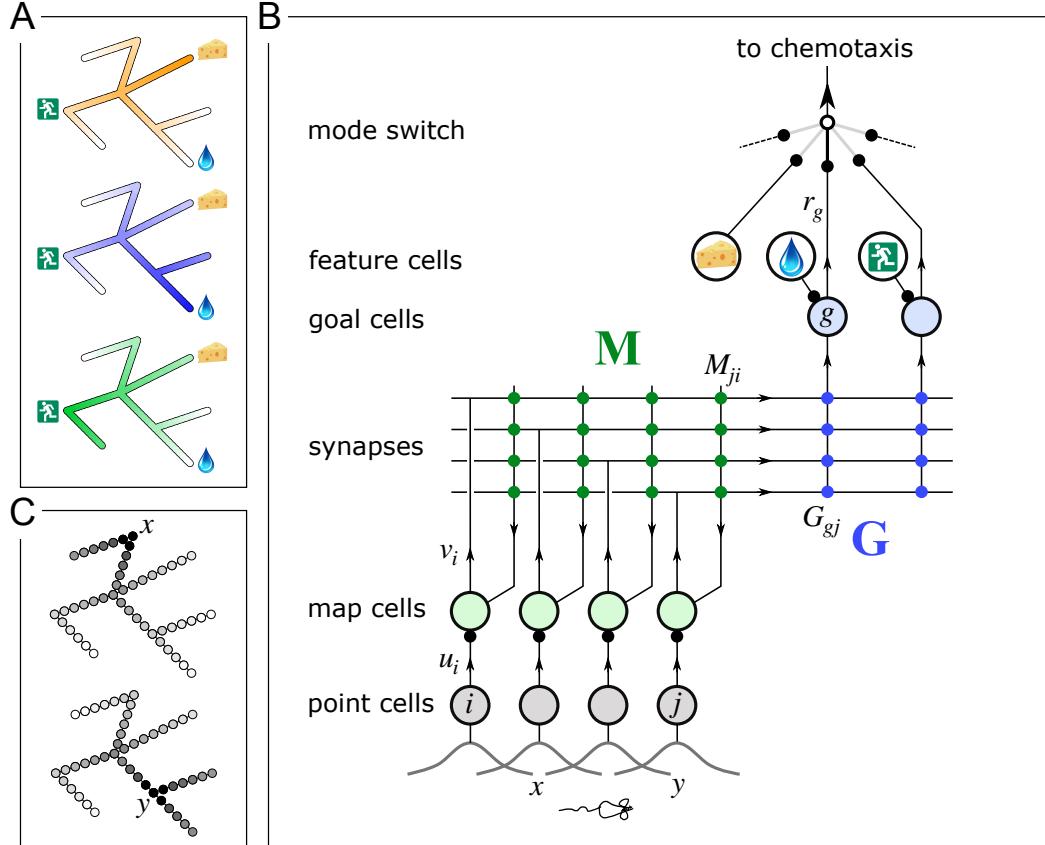


Figure 1: **A mechanism for endotaxis.** **A:** A constrained environment of nodes linked by straight corridors, with special locations offering food, water, and the exit. Top: A real odor emitted by the food source decreases with distance (shading). Middle: A virtual odor tagged to the water source. Bottom: A virtual odor tagged to the exit. **B:** A neural circuit to implement endotaxis. Open circles: four populations of neurons that represent “feature”, “point”, “map”, and “goal”. Arrows: signal flow. Solid circles: synapses. Point cells have small receptive fields localized in the environment and excite map cells. Map cells excite each other by recurrent Hebbian synapses and excite goal cells by another set of Hebbian synapses. A goal cell also receives sensory input from a feature cell indicating the presence of a resource, e.g. water or the exit. The feature cell for cheese responds to a real odor emitted by that target. A “mode” switch selects among various goal signals depending on the animal’s need. They may be virtual odors (water, exit) or real odors (cheese). The resulting signal gets fed to the chemotaxis module for gradient ascent. Mathematical symbols used in the text: u_i is the output of a point cell at location i , v_i is the output of the corresponding map cell, M is the matrix of synaptic weights among map cells, G are the synaptic weights from the map cells onto goal cells, and r_g is the output of goal cell g . **C:** The output of map cells after the map has been learned; here the animal is located at points x (top) or y (bottom). Black means high activity. For illustration, each map cell is drawn at the center of its place field.

83 constrained connectivity. Here we explain how this comes about, with mathematical details in the
84 supplement.

85 As the animal explores a new environment, when it moves from one location to an adjacent one,
86 those two point cells briefly fire together. That leads to a Hebbian strengthening of the excitatory
87 synapses between the two corresponding map cells. In this way the recurrent network of map cells
88 learns the connectivity of the graph that describes the environment. To a first approximation, the
89 matrix of synaptic connections among the map cells will converge to the correlation matrix of their
90 inputs [10, 11], which in turn reflects the adjacency matrix of the graph (Eqn 22). Now the brain can
91 use this adjacency information to find the shortest path to a target.

92 After this map learning, the output of the map network is a hump of activity, centered on the current
93 location x of the animal and declining with distance along the various paths in the graph (Fig 1C
94 top). If the animal moves to a different location y , the map output is another hump of activity, now
95 centered on y (Fig 1C bottom). The overlap of the two hump-shaped profiles will be large if nodes
96 x and y are close on the graph, and small if they are distant. Fundamentally the endotaxis network
97 computes that overlap. How is it done?

98 Suppose the animal visits y and finds water there. Then the profile of map activity $v_i(y)$ gets
99 stored in the synapses G_{gi} onto the goal cell g that responds to water (Fig 1B, Eqn 26). When the
100 animal subsequently moves to a different location x , the goal cell g receives the current map output
101 $v_i(x)$ filtered through the previously stored synaptic template $v_i(y)$. This is the desired measure of
102 overlap (Eqn 27), and one can show mathematically that it declines exponentially with the shortest
103 graph-distance between x and y (Eqn 28).

104 3 Performance of the endotaxis algorithm

105 Some important features of endotaxis can already be appreciated at this level of detail. First, the
106 structure of the environment is acquired separately from the location of resources. The graph that
107 connects different points in the environment is learned by the synapses in the map network. By
108 contrast the location of special goals within that map is learned by the synapses onto the goal cells.
109 The animal can explore and learn the environment regardless of the presence of threats or resources.
110 Once a resource is found, its location can be tagged immediately within the existing map structure.
111 If the distribution of resources changes, the knowledge of the connectivity map remains unaffected.
112 Second, the endotaxis algorithm is “always on”. There is no separation of learning and recall into
113 different phases. Both the map network and the goal network get updated continuously based on the
114 animal’s trajectory through the environment, and the goal signals are always available for directed
115 navigation via gradient ascent.

116 3.1 Simultaneous acquisition of map and targets during exploration

117 To illustrate these functions, and to explore capabilities that are less obvious from an analytical
118 inspection, we simulated agents navigating by the endotaxis algorithm (Fig 1B) through a range
119 of environments (Figs 2-3). In each case we assumed that there are point cells that fire at specific
120 locations, owing to a match of their sensory receptive fields with features in the environment. The
121 locations of these point cells define the nodes of the graph that the agent will learn. Both the map
122 synapses and the goal synapses start out *tabula rasa* with zero synaptic strengths. This is because the
123 animal has no notion of the topology of the environment (which location connects with which other
124 location), and no information on the location of the resources. As the agent explores the environment,
125 for example by a random walk, map synapses get updated based on the simultaneous firing of point
126 cells corresponding to neighboring locations. We used a standard formulation of Hebbian learning,
127 called Oja’s rule, which has only two parameters. Similarly the synapses onto goal cells get updated
128 based on the presynaptic map cell and the postsynaptic signal from feature cells. Map cells and goal
129 cells were allowed to learn at different rates (see Section A for detail).

130 A simple Gridworld environment (Fig 2) serves to observe the dynamics of learning in detail. There
131 are three locations of interest: the entrance to the environment, experienced at the very start of
132 exploration; a water source; and a food item. When the agent first enters the novel space, a feature
133 neuron that responds to the entrance excites a goal cell, which leads to the potentiation of synapses
134 onto that neuron. Effectively that tags the entrance, and from now on that goal cell encodes a virtual

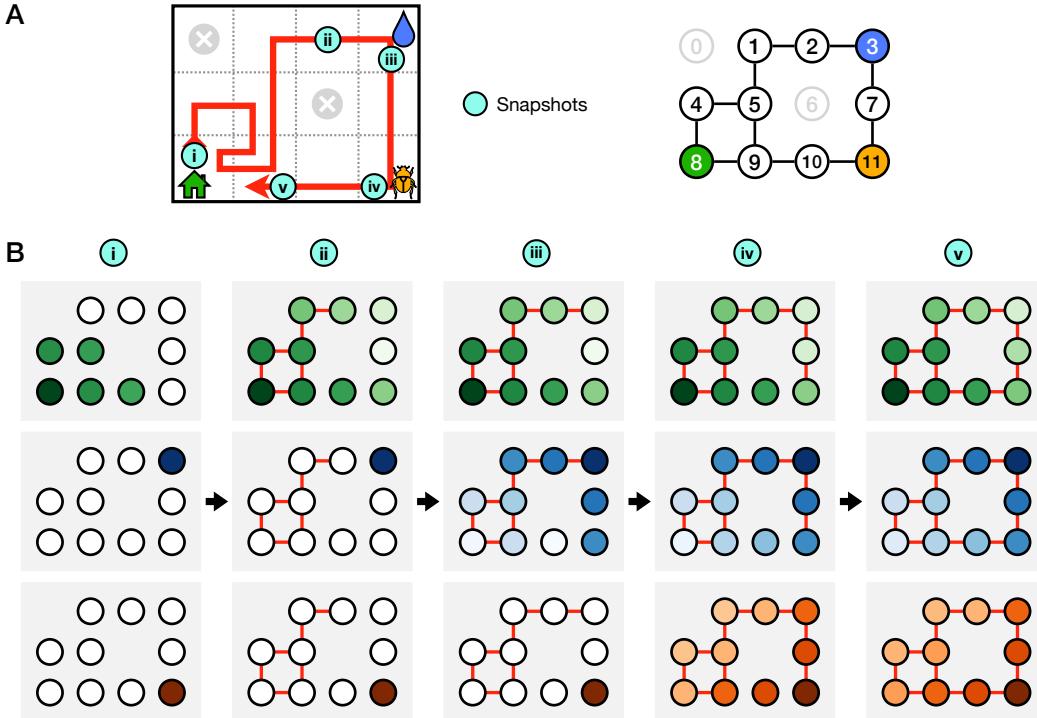


Figure 2: **The map and the targets are learned independently.** (A) Left: an agent explores a simple Gridworld with 3 salient goal locations following the red trajectory. Space is discretized into square tiles, each tile represented by one point cell. Circles with crosses represent obstacles, namely tiles that are not reachable. Right: graph of this environment, where each tile becomes a node, and edges represent traversable connections between tiles. (B) The response fields of three goal neurons for home (top), water (middle), and bug (bottom) at the 5 instants during the learning process (i-v). Red edges connect previously visited nodes. The response (log color scale) is plotted at each location where the agent could be placed. The agent starts random walking from the entrance (i) and gradually discovers the other two goal locations (water at time iii, bug at time iv). Upon discovery of a goal location, the corresponding goal cell's signal is immediately useful in all previously visited locations (iii, iv) as well as nodes that are ≤ 2 steps away. Any new locations visited subsequently and nodes ≤ 2 steps away are also recruited into the goal cell's response field (v).

135 “entrance odor” that declines with distance from the entrance. With every step the agent takes, the
 136 map network gets updated, and the range of the entrance odor spreads further (Fig 2B top). At all
 137 times the agent could decide to follow this virtual odor uphill to the entrance.

138 The water source starts out invisible from anywhere except its special location (Fig 2B mid i-ii).
 139 However, as soon as the agent reaches the water, the water goal cell gets integrated in the circuit
 140 through the potentiation of synapses from map cells. Because the map network is already established
 141 along the path that the agent took, that immediately creates a virtual “water odor” that spreads through
 142 the environment and declines with distance from the water location (Fig 2B mid iii).

143 As the agent explores the environment further, the virtual odors spread accordingly to the new
 144 locations visited (Fig 2B i-iv). After extensive exploration, the map and goal networks reach a
 145 steady state. Now the virtual odors are available at every point in the environment, and they decline
 146 monotonically with the shortest-path distance to the respective goal location (Fig 2B v). As one might
 147 expect, an agent endotaxing uphill on this virtual odor always reaches the goal location, and does so
 148 by the shortest possible path (Fig 3B-C i).

149 We performed a similar simulation for a complex labyrinth used in a recent study of mouse navigation
 150 [12]. The topology of the maze was a binary tree with a single entrance, 63 T-junctions, and 64 end
 151 nodes (Fig 3A ii). A single source of water was located at one of the end nodes. In these experiments
 152 mice learned the shortest path to the water source after visiting it ~ 10 times; they also performed

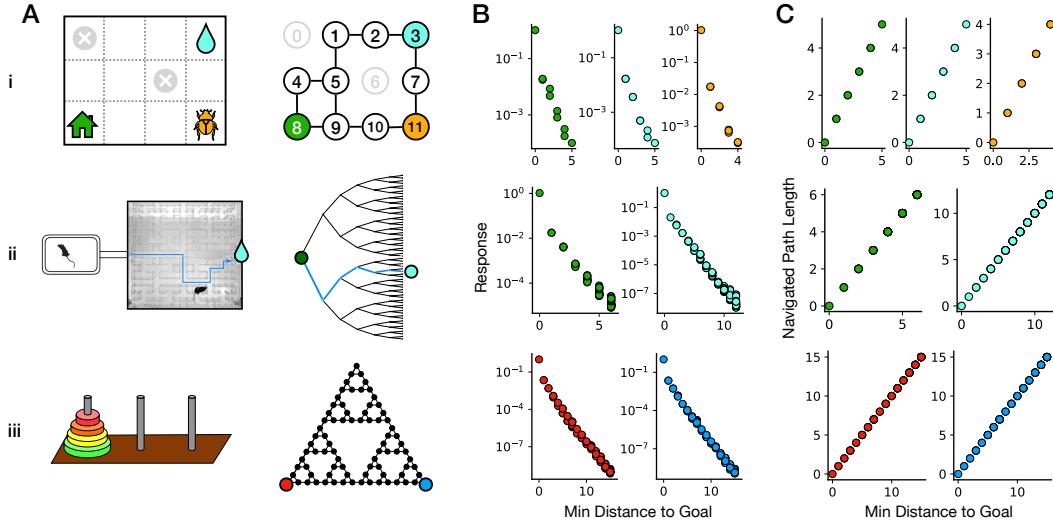


Figure 3: Endotaxis can operate in environments with diverse topologies. (A) Three tasks and their corresponding graph representations: i) Gridworld of Fig 2 with 3 goal nodes (home, water, and food). ii) A binary tree labyrinth used in mouse navigation experiments [12], with 2 goals (home and water). iii) Tower of Hanoi game, with 2 goals (the configurations of disks that solve the game). (B) The virtual odors after extensive exploration. For each goal neuron the response at every node is plotted against the shortest graph distance from the node to the goal. (C) Navigation by endotaxis: For every starting node in the environment this plots the number of steps to the goal against the shortest distance.

153 error-free paths back to entrance on the first attempt [12]. Again the simulated agent explored the
 154 labyrinth with a random walk. The virtual entrance odor allowed it to navigate back to the entrance
 155 from any point along the trajectory. The first visit to the water port established a goal cell with virtual
 156 water odor. After exploration had covered the entire labyrinth, both the entrance odor and the water
 157 odor were available at every location (Fig 3B ii), allowing for flawless navigation to the sources by
 158 endotaxis (Fig 3C ii).

159 It turns out that endotaxis is a useful strategy for cognitive tasks beyond spatial navigation. For
 160 instance, the game “Towers of Hanoi” represents a more complex environment (Fig 3A iii). Disks of
 161 different sizes are stacked on three pegs, with the constraint that no disk can rest on top a smaller
 162 one. The game is solved by rearranging the pile of disks from one peg to another. In any state of the
 163 game there are either 2 or 3 possible actions, and they form an interesting graph with many loops
 164 (Fig 3A iii). Again the simulated agent explored this graph by random walking. Once it encountered
 165 a solution, that state was tagged with a virtual odor. After enough exploration the virtual odor signal
 166 was available from every possible game state, and the agent could solve the game from any starting
 167 state in the shortest number of moves. This example illustrates that endotaxis can learn cognitive
 168 tasks that don’t involve spatial movement. It merely requires the existence of neurons that recognize
 169 any given state of the game. To start with, the agent has no internal model of the game, so it must
 170 happen on the first solution by chance. However, when prompted to solve the problem again, the
 171 agent can use the learned virtual odor to complete the game in the fewest possible moves.

172 These simulations suggest that the endotaxis algorithm can function perfectly in environments of
 173 reasonable complexity, learning both the connectivity of the environment and the location of multiple
 174 resources within that map. How robust is that performance? First, the model did not require careful
 175 tuning of parameters. Instead, we found that endotaxis works over several log units of the two
 176 parameters in Oja’s rule for synaptic plasticity (Fig 6). It fails in predictable fashion: For example if
 177 the agent takes longer to explore the environment than the time constant for synaptic change, then
 178 the map is always partially forgotten, and navigation to a target will fail. Second, we considered the
 179 effects of noise in neural signals, and found a gradual failure when the signal-to-noise value exceeded
 180 1 (Fig 8).

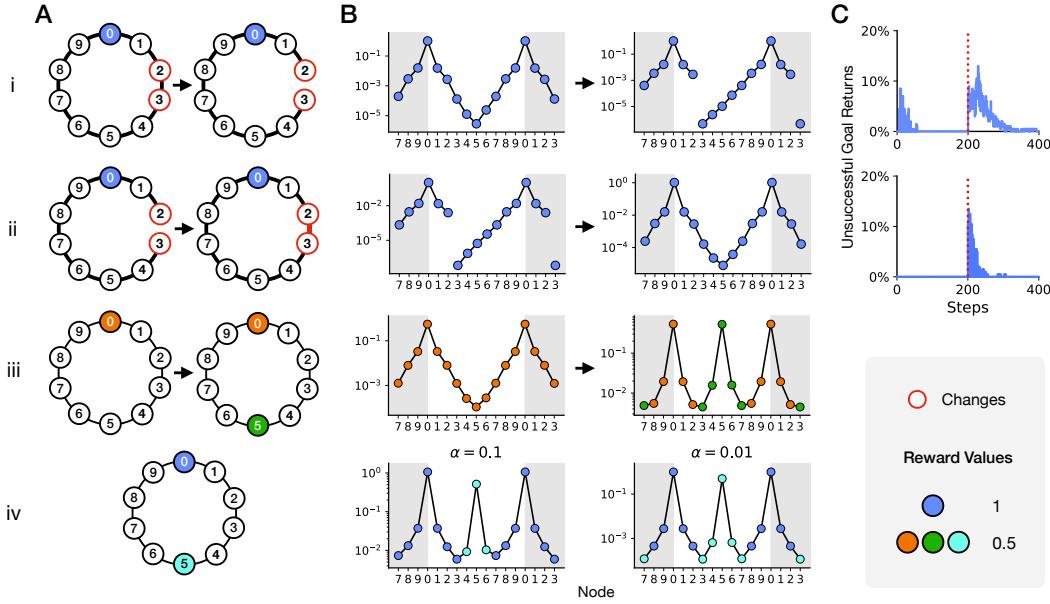


Figure 4: Endotaxis adapts quickly to changes in the environment or the target locations. (A) A ring environment modified by sudden appearance of a blockage (i), a shortcut (ii), an additional goal target (iii), or two targets with different reward size (iv). Graphs shown before and after modification. Shaded nodes are target locations. Labels identify nodes on the graph. (B i-iii) Response profile of the goal neuron after sufficient exploration, shown just before modification (left, after 200 random steps) and after adaptation to the change (right, after an additional 200 steps). Color of nodes indicates the target that the agent will reach by following the virtual odor starting from that node. Note the virtual odor peaks at either one or two targets depending on the environment, with a higher amplitude at the stronger target. (B iv) Varying α in Oja's Rule for map learning adjusts the tradeoff between distance and reward. With a large α the stronger target is favored from more starting nodes. (C) Fraction of errors in endotaxis from all possible starting nodes, as a function of time before and after the modification (dotted line).

181 4 Adaptation to change in the environment

182 An attractive feature of the endotaxis algorithm is that it separates learning the map from learning
 183 the target locations. In many real-world environments the topology of the map (how are locations
 184 connected?) is probably more stable than the targets (which locations are interesting?). Separating
 185 the two allows the agent to adjust to changes on both fronts using different rules and time-scales. We
 186 illustrate an example of each.

187 4.1 Change in connectivity

188 Suppose that the connectivity of the environment changes. For example, a shortcut appears between
 189 two locations that used to be separated, or a blockage separates two previously adjacent locations
 190 (Fig 4A i-ii). This alters the correlation in firing among the point cells during the agent's explorations,
 191 and over time that will reflect in the synapses of the map network. How will endotaxis adapt to such
 192 changes?

193 To explore these adjustments, we considered navigation on a ring-shaped maze with a single goal
 194 location (Fig 4A i). Note that the ring is the simplest graph that offers two routes to a target, and we
 195 will evaluate whether the algorithm finds the shorter one. A simulated agent explored the ring by
 196 stepping among locations in a random walk, and built the map cell network from that experience.
 197 After a period of \sim 100 steps, navigation by endotaxis was perfect, in that the agent chose the shorter
 198 route to the goal from every start node (Fig 4B-C i). When we broke the ring by removing one
 199 link, endotaxis failed from some start nodes because it steered the agent towards the blocked path.
 200 However, after \sim 200 steps of additional exploration navigation returned to perfect performance again

201 (Fig 4C i). Over this period the knowledge of the former link was erased from the map network (Fig
202 4B i), because the corresponding map synapses weakened while the link was not used.

203 When we introduced a new shortcut between previously separated locations (Fig 4A ii), a similar
204 change took place. For a brief period endotaxis was suboptimal, because the agent sometimes took
205 the long route even though a shorter one was available (Fig 4C ii). However, that perturbation got
206 incorporated into the map much more quickly than the broken link, after just a few tens of steps of
207 exploration (compare Figs 4C i-ii). One can understand the asymmetry as follows: As the agent
208 explores the environment, a newly available link is confirmed with certainty the first time it gets
209 traveled. By contrast the loss of a link remains uncertain until the agent has not taken that route many
210 times.

211 4.2 Appearance of new targets

212 Suppose the agent has discovered one location with a water resource. Some time later water also
213 appears at a second location (Fig 4A iii). When the agent discovers that, the same water goal cell will
214 get activated and therefore receive a potentiation of synapses active at that second location. Now the
215 input network to that goal cell contains the sum of two templates, corresponding to the map outputs
216 from the two target locations. As before, the current map output gets filtered through these synaptic
217 weights to create the virtual odor. One might worry that this goal signal steers the agent to a location
218 half-way between the two targets. Instead, simulations on the ring showed that the virtual odor peaks
219 at both targets, and endotaxis takes the agent reliably to the nearest one (Fig 4B iii).

220 4.3 Choice between multiple targets

221 Suppose one of the targets offering the same resource is more valuable than the other, for example
222 because it gives a larger reward (Fig 4A iv). In the endotaxis model (Fig 1B) the larger reward causes
223 higher activity of the feature cell that responds to this resource, and thus stronger potentiation of the
224 synapses onto the associated goal cell (Eqn 20). Thus the input template of the goal cell becomes a
225 weighted sum of the map outputs from the two target locations, with greater weight for the location
226 with higher reward. In simulations, the virtual odor still showed two peaks, but the stronger target had
227 a greater region of attraction (Fig 4B iv left); for some starting locations the agent chose the longer
228 route in favor of the larger reward, a sensible behavior.

229 What determines the trade-off between the longer distance and the greater reward? In the endotaxis
230 model (Fig 1B) this is set by α_M , one of the two parameters of the synaptic learning rule in the map
231 network (Eqn 19). A small α_M raises the cost of any additional step traveled and thus diminishes the
232 importance of reward differences (Fig 4B iv right). By contrast a large α_M favors the larger reward
233 regardless of distance traveled. One can show that the role of α_M is directly equivalent to the discount
234 factor in reinforcement learning theory (Eqn 28).

235 In summary, endotaxis adapts readily to changes in the environment or in the availability of rewards.
236 Furthermore, it implements a rational choice between multiple targets of the same kind, using a
237 variable weighting of reward versus distance. None of these features required any custom tuning:
238 They all follow directly from the basic formulation in Figure 1B.

239 5 Discussion

240 5.1 Summary of claims

241 We have presented a neural mechanism that can support learning, navigation, and problem solving
242 in complex and changing environments. It is based on chemotaxis, namely the ability to follow an
243 odor signal to its source, which is shared universally by most or all motile animals. The algorithm,
244 called endotaxis, is formulated as a neural network that creates an internal “virtual odor” which the
245 animal can follow to reach any chosen target location (Fig 1). When the agent begins to explore
246 the environment, the network learns both the structure of the space, namely how various points are
247 connected, and the location of valuable resources (Fig 2). After sufficient exploration the agent can
248 then navigate back to those target locations from any point in the environment (Fig 3). The algorithm
249 is *always on* and it adapts flexibly to changes in the structure of the environment or in the locations
250 of targets (Fig 4). Furthermore, even in its simplest form, endotaxis can arbitrate among multiple

251 locations with the same resource, by trading off the promised reward against the distance traveled
252 (Fig 4). Beyond spatial navigation, endotaxis can also learn the solution to purely cognitive tasks
253 (Fig 3), or any problem defined by search on a graph. The neural network model that implements
254 endotaxis has a close resemblance to known brain circuits. We propose that evolution may have built
255 upon the ancient behavioral module for chemotaxis to enable much more general abilities for search
256 and navigation, even in the absence of odor gradients. In the following sections we consider how
257 these findings relate to some well-established phenomena and results on animal navigation.

258 **5.2 Animal behavior**

259 The millions of animal species no doubt use a wide range of mechanisms to get around their
260 environment, and it is worth specifying which of those problems endotaxis might solve. First, the
261 learning mechanism proposed here applies to complex environments, namely those in which discrete
262 paths form sparse connections between points. For a bird, this is less of a concern, because it can get
263 from every point to any other “as the crow flies”. For a rodent and many other terrestrial animals, on
264 the other hand, the paths they may follow are constrained by obstacles and by the need to remain
265 under cover. In those conditions the brain cannot assume that the distance between points is given
266 by euclidean geometry, or that beacons for a goal will be visible in a straight line from far away, or
267 that a target can be reached by following a known heading. Second, we are focusing on the early
268 experience with a new environment. Endotaxis can get an animal from zero knowledge to a cognitive
269 map that allows reliable navigation towards goals encountered on a previous foray. It explains how an
270 animal can return home from inside a complex environment on the first attempt [12], or navigate to a
271 special location after encountering it just once (Figs 2,3). But it does not implement more advanced
272 routines of spatial learning, such as stringing a habitual sequence of actions together into one, or
273 internal deliberation to plan entire routes. Clearly, expert animals will make use of algorithms other
274 than the beginner’s choice proposed here.

275 A key characteristic of endotaxis, distinct from other forms of navigation, is the reliance on trial-
276 and-error. The agent does not deliberate to plan the shortest path to the goal. Instead, it finds the
277 shortest path by locally sampling the real-world actions available at its current point, and choosing
278 the one that maximizes the virtual odor signal. In fact, there is strong evidence that animals navigate
279 by real-world trial-and-error, at least in the early phase of learning [13]. Rats and mice often stop at
280 an intersection, bend their body halfway along each direction, then choose one corridor to proceed.
281 Sometimes they walk a few steps down a corridor, then reverse and try another one. These actions –
282 called “vicarious trial and error” – look eerily like sniffing out an odor gradient, but they occur even
283 in absence of any olfactory cues. Lashley [14], in his first scientific paper on visual discrimination in
284 the rat, reported that rats at a decision point often hesitate “with a swaying back and forth between
285 the passages”. Similar behaviors occur in arthropods [15] and humans [16] when poised at a decision
286 point. We suggest that the animal does indeed sample a gradient, not of an odor, but of an internally
287 generated virtual odor that reflects the proximity to the goal. The animal uses the same policy of
288 spatial sampling that it would apply to a real odor signal, consistent with the idea that endotaxis is
289 built on the ancient behavioral module for chemotaxis.

290 Frequently a rodent stopped at a maze junction merely turns its head side-to-side, rather than walking
291 down a corridor to sample the gradient. Within the endotaxis model, this could be explained if some
292 of the point cells in the lowest layer (Fig 1B) are selective for head direction or for the view down
293 a specific corridor. During navigation, activation of that “direction cell” systematically precedes
294 activation of point cells further down that corridor. Therefore the direction cell gets integrated into
295 the map network. From then on, when the animal turns in that direction, this action takes a step along
296 the graph of the environment without requiring a walk in ultimately fruitless directions. In this way
297 the agent can sample the goal gradient while minimizing energy expenditure.

298 The vicarious trial and error movements are commonplace early on during navigation in a new
299 environment. Later on the animal performs them more rarely and instead moves smoothly through
300 multiple intersections in a row [13]. This may reflect a transition between different modes of
301 navigation, from the early endotaxis, where every action gets evaluated on its real-world merit, to a
302 mode where many actions are strung together into behavioral motifs. At a late stage of learning the
303 agent may also develop an internal forward model for the effects of its own actions, which would
304 allow for prospective planning of an entire route. An interesting direction for future research is to

305 seek a neuromorphic circuit model for such action planning; perhaps it can be built naturally on top
306 of the endotaxis circuit.
307 While rodents engaged in early navigation act as though they are sniffing out a virtual odor, we would
308 dearly like to know whether the experience *feels like* sniffing to them. The prospects for having that
309 conversation in the near future are dim, but in the meantime we can talk to humans about the topic.
310 Human language has an intriguing set of metaphors for decision making under uncertainty: “this
311 doesn’t smell right”, “sniff out a solution”, “that idea stinks”, “smells fishy to me”, “the sweet smell
312 of success”. All these sayings apply in situations where we don’t yet understand the rules but are just
313 feeling our way into a problem. Going beyond mere correlation, there is also a causal link: Fishy
314 smells can change people’s decisions on matters entirely unrelated to fish [17]. In the endotaxis model
315 (Fig 1B) this might happen if the mode switch is leaky, allowing real smells to interfere with virtual
316 odors. Perhaps this partial synesthesia between smells and decisions results from the evolutionary
317 repurposing of an ancient behavioral module that was intended for olfactory search.

318 5.3 Brain circuits

319 The proposed circuitry (Fig 1) relates closely to some real existing neural networks: the so-called
320 cerebellum-like circuits. They include the insect mushroom body, the mammalian cerebellum, and a
321 host of related structures in non-mammalian vertebrates [18, 19]. The distinguishing features are:
322 A large population of neurons with selective responses (e.g. Kenyon cells, cerebellar granule cells),
323 massive convergence from that population onto a smaller set of output neurons (e.g. Mushroom
324 body output neurons, Purkinje cells), and synaptic plasticity at the output neurons gated by signals
325 from the animal’s experience (e.g. dopaminergic inputs to mushroom body, climbing fiber input to
326 cerebellum). It is thought that this plasticity creates an adaptive filter by which the output neurons
327 learn to predict the behavioral consequences of the animal’s actions [18, 20]. This is what the goal
328 cells do in the endotaxis model.
329 The analogy to the insect mushroom body invites a broader interpretation of what purpose that
330 structure serves. In the conventional picture the mushroom body helps with odor discrimination and
331 forms memories of discrete odors that are associated with salient experience [21]. Subsequently the
332 animal can seek or avoid those odors. But insects can also use odors as landmarks in the environment.
333 In this more general form of navigation, the odor is not a goal in itself, but serves to mark a route
334 towards some entirely different goal [22, 23]. In ants and bees, the mushroom body receives massive
335 visual input, and the insect uses discrete panoramic views of the landscape as markers for its location
336 [24–26]. Our analysis shows how the mushroom body circuitry can tie together these discrete points
337 into a cognitive map that supports navigation towards arbitrary goal locations.
338 In this picture a Kenyon cell that fires only under a specific pattern of receptor activation becomes
339 selective for a specific location in the environment, and thus would play the role of a map cell in
340 the endotaxis circuit (Fig 1).³ After sufficient exploration of the reward landscape the mushroom
341 body output neurons come to encode the animal’s proximity to a desirable goal, and that signal can
342 guide a trial-and-error mechanism for steering. In fact, mushroom body output neurons are known to
343 guide the turning decisions of the insect [27], perhaps through their projections to the central complex
344 [28], an area critical to the animal’s turning behavior. Conceivably this is where the insect’s basic
345 chemotaxis module is implemented, namely the policy for ascending on a goal signal.
346 Beyond the cerebellum-like circuits, the general ingredients of the endotaxis model – recurrent
347 synapses, Hebbian learning, many-to-one convergence – are found commonly in other brain areas
348 including the mammalian neocortex and hippocampus. In the rodent hippocampus, an interesting
349 candidate for map cells are the pyramidal cells in area CA3. Many of these neurons exhibit place
350 fields and they are recurrently connected by synapses with Hebbian plasticity. It was suggested early
351 on that random exploration by the agent produces correlations between nearby place cells, and thus
352 the synaptic weights among those neurons might be inversely related to the distance between their
353 place fields [29, 30]. However, simulations showed that the synapses are substantially strengthened
354 only among immediately adjacent place fields [30, 31] (see also our Eqn 21), thus limiting the utility
355 for global navigation across the environment. Here we show that a useful global distance function
356 emerges from the *output* of the recurrent network (Eqns 24, 27, 28) rather than its synaptic structure.

³Point cells and Map cells are the same in this picture

357 Further, we offer a biologically realistic circuit (Fig 1B) that can read out this distance function for
358 subsequent navigation.

359 **5.4 Neural signals**

360 The endotaxis circuit proposes three types of neurons – point cells, map cells, and goal cells – and
361 it is instructive to compare their expected signals to existing recordings from animal brains during
362 navigation behavior. Much of that prior work has focused on the rodent hippocampal formation
363 [32], but we do not presume that endotaxis is localized to that structure. The three cell types in the
364 model all have place fields, in that they fire preferentially in certain regions within the graph of the
365 environment. However, they differ in important respects:

366 **Size and location** The place field is smallest for a point cell; somewhat larger for a map cell, owing
367 to recurrent connections in the map network; and larger still for goal cells, owing to additional pooling
368 in the goal network. Such a wide range of place field sizes has indeed been observed in surveys of
369 the rodent hippocampus, spanning at least a factor of 10 in diameter [33, 34]. Some place cells show
370 a graded firing profile that fills the available environment. Furthermore one finds more place fields
371 near the goal location of a navigation task, even when that location has no overt markers [35]. Both
372 of those characteristics are expected of the goal cells in the endotaxis model.

373 **Dynamics** The endotaxis model assumes that point cells exist from the very outset in any environment.
374 Indeed, many place cells in the rodent hippocampus appear within minutes of the animal’s entry
375 into an arena [33, 36]. Furthermore, any given environment activates only a small fraction of these
376 neurons. Most of the “potential place cells” remain silent, presumably because their sensory trigger
377 feature doesn’t match any of the locations in the current environment [37, 38]. In the endotaxis model,
378 each of these sets of point cells is tied into a different map network, which would allow the circuit to
379 maintain multiple cognitive maps in memory [29]. Finally a small change in the environment, such
380 as appearance of a local barrier (Fig 4), can indeed lead to disappearance and appearance of nearby
381 place cells [39].

382 Goal cells, on the other hand, are expected to appear suddenly when the animal first arrives at
383 a memorable location. At that moment the goal cell’s input synapses from the map network are
384 activated and the neuron immediately develops a place field. This prediction is reminiscent of a
385 startling experimental observation in recordings from hippocampal area CA1: A neuron can suddenly
386 start firing with a fully formed place field that may be located anywhere in the environment [40]. This
387 event appears to be triggered by a calcium plateau potential in the dendrites of the place cell, which
388 potentiates the excitatory synaptic inputs the cell receives. A surprising aspect of this discovery was
389 the large extent of the resulting place field, which would require the animal several seconds to cover.
390 This was interpreted as a signature of a new plasticity mechanism that extends over several seconds
391 [41]. Our endotaxis model has a different explanation for this phenomenon: The goal cell’s place
392 field extends far in space because it taps into the map network, which has already prepared a large
393 place field prior to the agent finding the goal location. In this picture all the synaptic changes are
394 local in time and space, and there is no need to invoke an extended time scale for plasticity.

395 **5.5 Learning theories**

396 Endotaxis has similarities with *reinforcement learning* (RL) [42]. In both cases the agent explores a
397 number of locations in the environment. In RL these are called *states* and every state has an associated
398 *value* representing how close the agent is to rewards. In endotaxis, this is the role of the virtual
399 odor, represented by the activity of a goal neuron. The value function gets modified through the
400 experience of reward when the agent reaches a valuable resource; in endotaxis this happens via
401 update of the synapses in the goal network (G in Fig 1B). In both RL and endotaxis, when the animal
402 wishes to exploit a given resource it navigates so as to maximize the value function. Over time that
403 value function converges to a form that allows the agent to find the goal directly from every starting
404 state. The exponential decay of the virtual odor with increasing distance from the target (Eqn 28) is
405 reminiscent of the exponential decay of the value function in RL, controlled by the discount factor, γ
406 [42].

407 In endotaxis much of the learning happens independent of any reinforcement. During exploration,
408 the circuit learns the topology of the environment, specifically by updating the synapses in the map

409 network (M in Fig 1B). The presence of rewards is not necessary for map learning: Until a resource
410 is found for the first time, the value function remains zero because the G synapses have not yet
411 been established (Eqn 18). Eventually, when the goal is encountered, G is updated in one shot
412 and the value function becomes nonzero throughout the known portion of the environment. Thus
413 the agent learns how to navigate to the goal location from a single reinforcement (Fig 2). This is
414 possible because the ground has been prepared, as it were, by learning a map. In animal behavior this
415 phenomenon is called *latent learning*. Early debates in animal psychology pitched latent learning and
416 reinforcement learning as alternative explanations [43]. Instead, in the endotaxis algorithm, neither
417 can function without the other (see Eqn 18). In *model-based* reinforcement learning, the agent could
418 learn a forward model of the environment and uses it to update a value function. A key difference is
419 that endotaxis learns the distances between all pairs of states, and can then establish a value function
420 after a single reinforcement, whereas RL typically requires an iterative method to establish the value
421 function [44–46].

422 The neural signals in endotaxis bear some similarity to the so-called *successor representation* [47, 48].
423 This is a proposal for how the brain might encode the current state of the agent, intended to simplify
424 the mathematics of time-difference reinforcement learning. Each neuron stands for a possible state of
425 the agent. The activity of neuron j is proportional to the time-discounted probability that the agent
426 will find itself at state j in the future. Thus, the output of the endotaxis map network (Eqns 6, 24)
427 qualitatively resembles a successor representation. However there are some important differences:
428 First, the successor representation depends not only on the structure of the environment, but on the
429 optimal policy of the agent, which in turn depends on the distribution of rewards. Thus the successor
430 representation must itself be learned through a reinforcement algorithm. There is agreement in the
431 literature that the successor representation would be more useful if the model of the environment were
432 independent of reward structure [49]; however, it is believed that “it is more difficult to learn” [47].
433 By contrast, the map matrix in the endotaxis mechanism is built from a policy of random exploration
434 independent of the reward landscape. Second, no plausible biomimetic mechanism for learning the
435 successor representation has been proposed yet, whereas the endotaxis circuit is made entirely from
436 biologically realistic components.

437 5.6 Outlook

438 In summary, we have proposed a simple model for spatial learning and navigation in an unknown
439 environment. It includes an algorithm, as well as a fully-specified neural circuit implementation.
440 The model makes quantitative and testable predictions that match a diverse set of observations in
441 behavior, anatomy, and physiology, from insects to rodents (Secs 5.2–5.4). Of course the same
442 observables may be consistent with other models, and in fact multiple navigation mechanisms may be
443 at work in parallel or during successive stages of learning. Perhaps the most distinguishing features
444 of the endotaxis algorithm are its reliance on trial-and-error sampling, and the close relationship to
445 chemotaxis. To explore these specific ingredients, future research could work backwards: First find
446 the neural circuit that controls the random trial-and-error sampling of odors. Then test if that module
447 receives a convergence of goal signals from other circuits that process non-olfactory information. If
448 so, that could lead to the mode switch which routes one or another goal signal to the decision-making
449 module. Finally, upstream of that mode switch lies the soul [50] of the animal that tells the navigation
450 machinery what goal to pursue. Given recent technical developments we believe that such a program
451 of module-tracing is within reach, at least for the insect brain.

452 A Supplement

453 The core function of the endotaxis network is to learn the distance between any two points in
 454 the environment starting from purely local connectivity. As the agent explores the graph of the
 455 environment, the point cells for two adjacent locations briefly fire together. This is the local event
 456 that drives synaptic learning in the map population. Eventually the map network learns the global
 457 structure of the graph. In particular, for any chosen goal node on the graph, the network computes a
 458 virtual odor signal that varies with the agent's location and declines monotonically with the distance
 459 from the goal. Using that distance function the agent can navigate to the goal node by the shortest
 460 path. In this section we explain how this global distance measure comes about. We start with an
 461 analytical result about computing distances on a graph, continue with a formal analysis of how the
 462 endotaxis network functions, and proceed to numerical experiments that supplement results in the
 463 text.

464 A.1 A neuromorphic function to compute the shortest distance on a graph

465 Finding the shortest path between all pairs of nodes on a graph is a central problem of graph theory,
 466 known as “all pairs shortest path” (APSP) [51]. Generally an APSP algorithm delivers a matrix
 467 containing the distances D_{ij} for all pairs of nodes. That matrix can then be used to construct the
 468 actual sequence corresponding to the shortest path iteratively. The Floyd-Warshall algorithm [52] is
 469 simple and works even for the more general case of weighted edges between nodes. Unfortunately we
 470 know of no plausible way to implement Floyd-Warshall’s three nested loops of comparison statements
 471 with neurons.

472 There is, however, a simple function for APSP that operates directly on the adjacency matrix and can
 473 be solved by a recurrent neural network. Specifically: If a connected, directed graph has adjacency
 474 matrix A_{ij} ,

$$A_{ij} = \begin{cases} 1, & \text{if node } i \text{ can be reached from node } j \text{ in one step} \\ 0, & \text{otherwise, including the } i = j \text{ case} \end{cases} \quad (1)$$

475 then with a suitably small positive value of γ the shortest path distances are given by

$$D_{ij} = \left\lceil \frac{\log \left[(\mathbf{1} - \gamma \mathbf{A})^{-1} \right]_{ij}}{\log \gamma} \right\rceil \quad (2)$$

476 where $\mathbf{1}$ is the identity matrix, and the half-square brackets mean “round up to the nearest integer”.

477 **Proof:** The powers of the adjacency matrix represent the effects of taking multiple steps on the graph,
 478 namely

$$[\mathbf{A}^k]_{ij} = N_{ij}^{(k)} = \text{number of distinct paths to get from node } j \text{ to node } i \text{ in } k \text{ steps}$$

479 where a path is an ordered sequence of edges on the graph. This can be seen by induction as follows.
 480 By definition

$$N_{ij}^{(1)} = A_{ij}$$

481 Suppose we know $N_{ij}^{(k)}$ and want to compute $N_{ij}^{(k+1)}$. Every path from j to i of length $k+1$ steps
 482 has to reach a neighbor of node i in k steps. Therefore

$$N_{ij}^{(k+1)} = \sum_l A_{il} N_{lj}^{(k)} \quad (3)$$

483 The RHS corresponds to multiplication by \mathbf{A} , so the solution is

$$N_{ij}^{(k)} = [\mathbf{A}^k]_{ij}$$

484 We are particularly interested in the shortest path from node j to node i . If the shortest distance D_{ij}
485 from j to i is k steps then there must exist a path of length k but not of any length $< k$. Therefore

$$D_{ij} = \min_k N_{ij}^{(k)} > 0 \quad (4)$$

486 Now consider the Taylor series

$$\begin{aligned} \mathbf{Y} &= (\mathbf{1} - \gamma \mathbf{A})^{-1} \\ &= \mathbf{1} + \gamma \mathbf{A} + \gamma^2 \mathbf{A}^2 + \dots \end{aligned} \quad (5)$$

487 Then

$$Y_{ij} = \sum_{k=0}^{\infty} N_{ij}^{(k)} \gamma^k = N_{ij}^{(D_{ij})} \gamma^{D_{ij}} + N_{ij}^{(D_{ij}+1)} \gamma^{D_{ij}+1} + \dots \quad (6)$$

488 We will show that if γ is chosen positive but small enough then the growth of $N_{ij}^{(k)}$ with increasing k
489 gets eclipsed by the decay of γ^k such that

$$\gamma^{D_{ij}} < Y_{ij} < \gamma^{D_{ij}-1} \quad (7)$$

490 The left inequality is obvious from Eqn 6 because $N_{ij}^{(D_{ij})} \geq 1$ by Eqn 4.

491 To understand the right inequality, note first that $N_{ij}^{(k)}$ is bounded by a geometric series. From Eqn 3
492 it follows that

$$N_{ij}^{(k)} < q^k$$

493 where q is the largest number of neighbors of any node on the graph. So from Eqn 6

$$Y_{ij} < (q\gamma)^{D_{ij}} + (q\gamma)^{D_{ij}+1} + \dots = \frac{(q\gamma)^{D_{ij}}}{1 - q\gamma} \quad (8)$$

494 This expression is $< \gamma^{D_{ij}-1}$ (Eqn 7) as long as

$$\gamma < \frac{1}{q + q^{D_{ij}}} \quad (9)$$

495 In addition, because

$$D_{ij} < n \equiv \text{number of nodes on the graph}$$

496 this is satisfied if one chooses γ such that

$$\gamma < \frac{1}{q + q^n} \quad (10)$$

497 With that condition on γ the inequality 7 holds and taking the logarithm on both sides leads to the
498 desired result:

$$D_{ij} = \left\lceil \frac{\log Y_{ij}}{\log \gamma} \right\rceil$$

499 **A.2 The goal signal in endotaxis**

500 In later sections we show that Y_{ij} can be computed by the endotaxis network, and how the required
 501 synaptic weights can be learned from exploration on the graph. For reasons of practical implementa-
 502 tion, the network does not operate on Y_{ij} directly but on the scalar products of the column-vectors in
 503 \mathbf{Y} , namely

$$E_{ij} = \text{“goal signal from node } j \text{ to } i\text{”} = \sum_k Y_{ki} Y_{kj} \quad (11)$$

504 To understand how that goal signal E_{ij} varies with distance one can follow arguments parallel to
 505 those that led to Eqn 6. Using the upper bound by the geometric series (Eqn 8) and inserting in Eqn
 506 11 one finds again that it is possible to choose a γ small enough to satisfy

$$\gamma^{D_{ij}} < E_{ij} < \gamma^{D_{ij}-1} \quad (12)$$

507 Under those conditions the goal signal E_{ij} decays exponentially with the graph distance D_{ij} .

508 **A.3 Regime of validity of the goal signal**

509 The analytical arguments above all relied on choosing a very small γ . In numerical experiments we
 510 found that the exponential dependence of the goal signal E_{ij} on distance (Eqn 12) actually holds over
 511 a wide range of γ (Fig 5A).

512 As γ increases, one enters a regime where the systematic relationship to graph distance (Fig 5B)
 513 breaks down and the goal signal becomes non-monotonic: Comparing all node pairs throughout the
 514 graph one now finds many instances where the pair with a larger distance produces a stronger goal
 515 signal (Fig 5C). This happens because Eqn 12 is no longer satisfied. Nonetheless, it is still possible
 516 that an agent ascending on the goal signal gets all the correct local instructions to find the shortest
 517 path. To test this we asked whether the goal signal recommends the correct successor node: For every
 518 start node j and goal node i one finds the node connected to j with the highest goal signal. If that
 519 neighbor is always one step closer to i then navigation will be perfect.

520 Indeed we found an extended range of values for γ where the goal signal worked flawlessly for
 521 navigation between all pairs of nodes (Fig 5C). In this range the goal signal gives the correct turning
 522 instructions on a local level, even if it is not globally monotonic with distance across the entire graph.
 523 This behavior can also be seen in some of the simulations of random exploration (Fig 3B).

524 At higher γ values navigation begins to fail (Fig 5D-E). For an increasing number of start/goal pairs
 525 the agent gets trapped in a local maximum of signal before arriving at the goal.

526 Finally above a certain critical value γ_c the goal signal fails catastrophically (Fig 5F). There is a
 527 simple mathematical reason for this: Recall that the Taylor expansion (5) has a convergence radius of
 528 1. That means all the eigenvalues of $\gamma \mathbf{A}$ must have absolute value < 1 , which requires

$$\gamma < \gamma_c \equiv \frac{1}{\text{largest absolute eigenvalue of } \mathbf{A}} \quad (13)$$

529 Outside of that convergence radius the expression $(1 - \gamma \mathbf{A})^{-1}$ can no longer be interpreted as
 530 counting paths on the graph and therefore loses any connection to graph distance.

531 **A.4 Model formulation**

532 We formalized the endotaxis mechanism of Figure 1B as follows:

533 The environment is parcelled into a set of discrete locations in space that are sparsely connected to
 534 each other. The locations and connectors form a graph that is fully specified by the adjacency matrix
 535 A_{ij} (Eqn 1).

536 We treat neural processing using a textbook linear rate model [10]. Each node on the graph has a
 537 point cell corresponding to that location. The point cell fires at a rate of 1 when the agent's position j

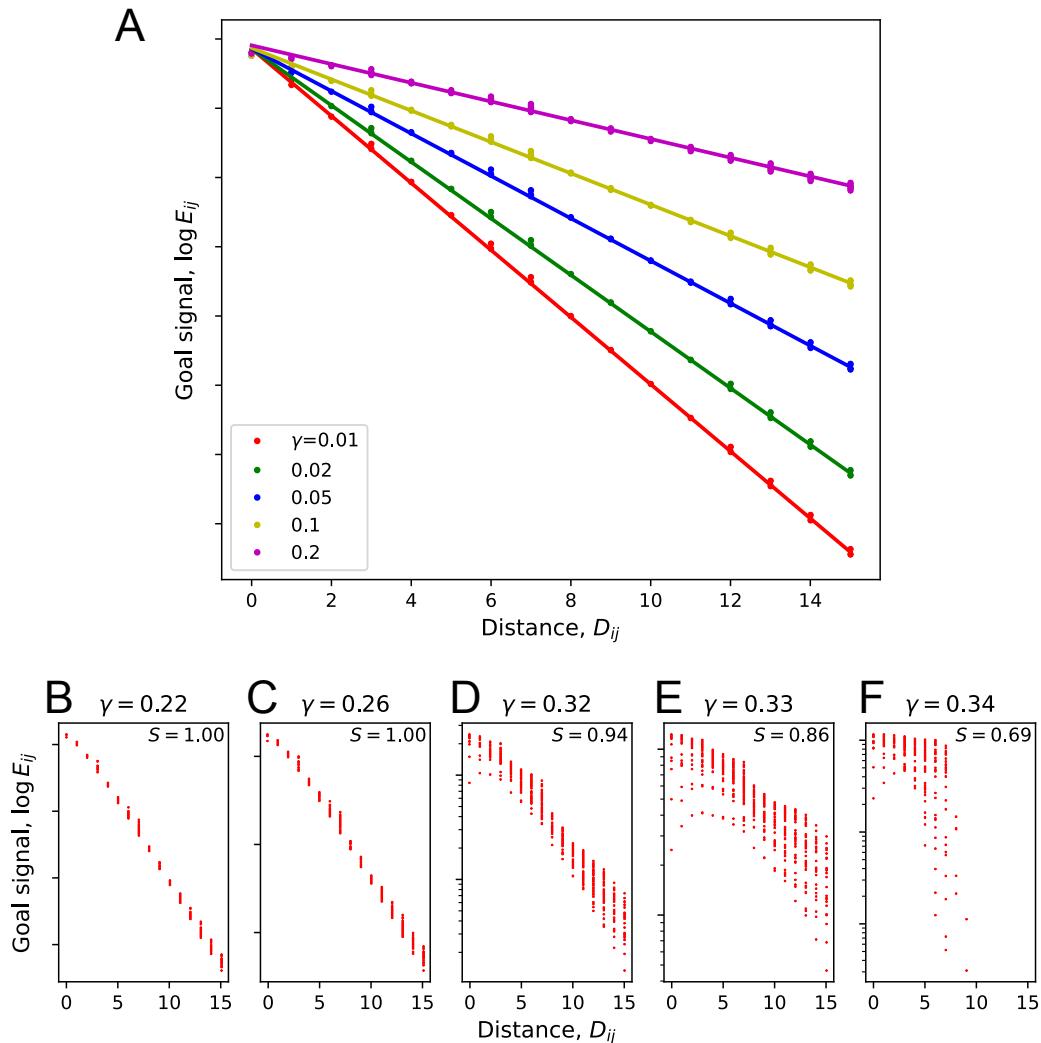


Figure 5: **The goal signal and the choice of γ .** (A) The goal signal declines exponentially with graph distance (the tower of Hanoi graph with 4 levels was used for these simulations). Data points indicate the goal signal between all pairs of nodes, computed with different values of γ , and plotted against the distance on the graph between the nodes. Lines are exponential fits to the data. (B-F) Detailed plot of goal signal vs distance as γ approaches the critical value γ_c , which for this graph is 0.335 (Eqn 13). The fraction of correct successors S is listed in each panel; as S drops below 1, the goal signal becomes less useful for navigation.

538 is at that node, and at a lower level w , with $0 < w < 1$, at the neighboring nodes. Thus the firing
 539 fields of neighboring point cells overlap somewhat; this produces correlations among point cells
 540 along the agent's trajectory which will drive synaptic plasticity.

$$u_i(x) = \text{firing rate of point cell } i \text{ with the agent at node } x \quad (14)$$

$$= \delta_{ix} + w A_{ix} \quad (15)$$

541 where δ_{ix} is the Kronecker delta. The output of the map network (Fig 1B) is

$$\mathbf{v} = \mathbf{u} + \mathbf{Mv} = (\mathbf{1} - \mathbf{M})^{-1} \mathbf{u} \quad (16)$$

542 where \mathbf{u} is the vector of point cell outputs, \mathbf{v} is the vector of map cell outputs, and \mathbf{M} is the matrix of
 543 recurrent synapses among map cells.

544 A goal cell g receives sensory input s_g from neurons that signal the goal resource available to the
 545 agent at the current node:

$$s_g(y) = \text{amount of resource } g \text{ present when the agent is at node } y \quad (17)$$

546 In addition the goal cell gets input from the map neurons via the network of goal synapses. Thus the
 547 vector of goal cell activities with the agent at node x is

$$\mathbf{r}(x) = \mathbf{s}(x) + \mathbf{Gv}(x) = \mathbf{s}(x) + \mathbf{G}(\mathbf{1} - \mathbf{M})^{-1} \mathbf{u}(x) \quad (18)$$

548 The recurrent synapses among map cells undergo Hebbian plasticity. To keep the synaptic strengths
 549 bounded some normalization rule is needed. We adopted the standard Oja's Rule [10]:

$$\frac{dM_{ij}}{dt} = \beta_M (\alpha_M v_i v_j - M_{ij} v_i^2) \quad (19)$$

550 where β sets the speed of synaptic plasticity and α its strength. The map network has no self-synapses:
 551 $M_{ii} = 0$.

552 The synapses from map cells to goal cells also undergo Hebbian plasticity, again via Oja's Rule

$$\frac{dG_{gi}}{dt} = \beta_G (\alpha_G r_g v_i - G_{gi} r_g^2) \quad (20)$$

553 Because learning about targets is conceptually different from learning the map of the environment, we
 554 allowed α_G, β_G to differ from α_M, β_M . Including the spatial overlap w , the model has 5 parameters.

555 A.5 How the endotaxis network learns the goal signal

556 Consider the linear rate model of the map network in Fig 1B and Eqns 16-19. It is well known that
 557 a Hebbian recurrent network of this type will learn the correlation structure of its inputs [10, 11].
 558 Evaluating Eqn 19 after synapses have equilibrated leads to

$$M_{ij} = \alpha \frac{\langle v_i v_j \rangle}{\langle v_j^2 \rangle} \quad (21)$$

559 In the limit of small M_{ij} , i.e. if the inputs from point cells dominate, then $v_i \approx u_i$ and one gets to
 560 lowest order

$$M_{ij} \approx \alpha \frac{\langle u_i u_j \rangle}{\langle u_i^2 \rangle} = \alpha w A_{ij} \equiv \gamma A_{ij} \quad (22)$$

561 where

$$\gamma = \alpha w \quad (23)$$

562 In this approximation, the recurrent synapses M_{ij} directly reflect the connections among point cells
 563 and thus the adjacency matrix of the graph.

564 The output of the map network (Eqn 16) is

$$\mathbf{v} = (\mathbf{1} - \mathbf{M})^{-1} \mathbf{u} = (\mathbf{1} - \gamma \mathbf{A})^{-1} \mathbf{u} \quad (24)$$

565 So the recurrent network of map cells effectively computes the all-pairs distance function derived
 566 above (Eqn 5). If the agent is at node x then the map output $\mathbf{v}(x)$ equals the x -th column vector of
 567 the matrix \mathbf{Y} (in the limit of small w and γ):

$$v_i(x) \approx Y_{ix} \quad (25)$$

568 which declines exponentially with the graph distance D_{ix} (Eqn 7). These distance-dependent humps
 569 of activity are schematized in Fig 1C.

570 The remaining problem is how to use the map output to encode the distance to a specific remembered
 571 goal location. Suppose goal g has a rewarding resource only at node y , specifically $s_g(x) = \delta_{xy}$ (Eqn
 572 17). When the agent first arrives at location y , the synaptic plasticity rule (Eqn 20) updates the goal
 573 synapses G_{gi} from zero to a profile proportional to the current map output:

$$G_{gi} \sim v_i(y) \quad (26)$$

574 Subsequent visits will strengthen that profile. From then on, when the agent is at a location $x \neq y$ the
 575 virtual odor varies according to Eqn 18:

$$\begin{aligned} r_g(x) &= \mathbf{s}(x) + \mathbf{G} \mathbf{v}(x) \\ &\sim 0 + \mathbf{v}(y) \cdot \mathbf{v}(x) \equiv E_{xy} \end{aligned} \quad (27)$$

576 This corresponds to the goal signal E analyzed above (Eqns 11, 12, Fig 5). Thus the virtual odor
 577 computed by the endotaxis network decays exponentially with the agent's distance from the goal

$$E_{xy} \sim \gamma^{D_{xy}} \quad (28)$$

578 where $\gamma = \alpha w$.

579 The explanation here relied on multiple small-signal approximations. However, our simulations
 580 show that navigation based on the virtual odor signal is robust in realistic scenarios that include fully
 581 non-linear synaptic update rules and stochastic exploration by a random walk (Figs 2,3,4).

582 In this framework, the factor γ has an interesting interpretation. Its neural meaning is the strength
 583 of recurrent synapses in the map network compared to the feed-forward synapses from point cells
 584 (Eqn 22). Ultimately it determines the distance-dependence of the goal signal: For every step along
 585 the graph the goal signal declines by a factor of γ (Eqn 28). By analogy to the value function in
 586 reinforcement learning [42], one can identify γ as a discount factor or cost that the agent assigns for
 587 every step it has to take. This becomes relevant when the agent trades off two goal locations that offer
 588 rewards of different magnitude (Fig 4C): an additional step to one of the goals gets compensated if
 589 the reward is larger by a factor of $1/\gamma$. If the agent can manipulate γ , for example by varying α in
 590 Oja's plasticity rule (Eqns 19,22), that allows it to assign different costs on distance traveled (Fig 4C).

591 A.6 Limits and extensions of the endotaxis model

592 To help illuminate the remarkable phenomenon of rapid learning in a complex environment we sought
 593 an explanation in terms of biologically realistic processes. This informed the choice of modeling
 594 language, using concrete circuits of neurons and synapses, rather than abstract cognitive functions.

595 Furthermore we kept the model as simple as possible: the cells are single-compartment neurons
596 without elaborate biophysics. The synapses are of a simple Hebbian type. All the input-output
597 functions are linear. Free parameters are kept to the minimum: two each for the synaptic learning
598 rules in the two networks. This simplicity allowed us to understand how and why the model works in
599 analytical detail (Sec A.1-A.5).

600 Surprisingly this simplest possible model also learns very robustly in simulations over a range of
601 environments. The parameters do not require careful tuning; in fact a single set of 4 numbers works
602 fine for the conditions we studied. In some ways the simulations perform better than real animals. For
603 example in the binary maze the agent can navigate to a reward location flawlessly after discovering
604 it the first time (Fig 3B), whereas real mice solve that problem after ~ 10 experiences [12]. This
605 inspires confidence that as one adds realistic “bells and whistles” to the model the additional degrees
606 of freedom will not break its operation. A number of extensions seem interesting for future work.

607 The distance function computed by the network fundamentally relies on the decay of neural activation
608 over multiple synaptic links. In a large environment, and operating with a small γ , the virtual odor
609 signal will span many orders of magnitude (Eqn 28). Real neurons cannot function reliably over such
610 a large dynamic range, but some plausible additions could counteract the decay: A more realistic
611 activation function with a compressive nonlinearity can amplify the signal locally in each neuron.
612 Second, a short-term adaptive gain control might adjust the strength of synapses. In this way map
613 cells far from the animal’s current location could become more sensitive and continue to respond to
614 the local trial-and-error movements of the agent.

615 Another desirable feature would be long-term memory. Animals can learn a cognitive map within
616 minutes, and then retain it for days. Clearly there are multiple time scales for learning and forgetting.
617 In complex brains one supposes that long-term consolidation is handled by transfer of the information
618 between brain areas, for example hippocampus and cortex. Small insect brains don’t offer that luxury,
619 but perhaps the goal can be achieved within the endotaxis circuit itself, by endowing synapses with
620 more complex dynamics [53].

621 A hierarchical extension of the model could be formulated such that an additional set of feedforward
622 weights could read out from the goal signals in the current model formulation, which would allow
623 for weighted preferences of desired goal features. Such a system could be useful for returning to
624 locations with multiple properties that are desirable to the animal, or remembering a unique set of
625 properties that characterize certain goal locations.

626 A.7 Simulations

627 Figures 2, 3, and 4 report the results of endotaxis learning while an agent explores the environment.
628 We gave the agent a trajectory, either chosen by design (Fig 2) or as an unbiased random walk through
629 the graph (Figs 3, 4). After every step of the random walk we computed the cell activities in a forward
630 pass from point cells to goal cells. Then we updated the synaptic weights in the two networks M and
631 G via a Hebbian learning rule. See Algorithm 1 for details. Matrix operations were implemented in
632 JAX [54], but for the task complexity explored in this paper there was no need for GPU acceleration.

633 Learning and subsequent navigation worked robustly over a range of the α_M and β_M parameters in
634 Oja’s Rule (Fig 6). α_M has an absolute upper bound of γ_c/w (Eqns 13, 24) which depends on the
635 eigenspectrum of the graph. In practice the Tower of Hanoi graph posed the strongest challenge,
636 presumably because of its size and the large number of loops. For simplicity, we selected model
637 parameters that allow for perfect navigation on that graph and applied the same model without
638 modifications across all the tasks reported here. Note that this is not an exclusive set: smaller values
639 for α_M and β_M would work as well.

640 A.7.1 Change in connectivity

641 To analyze changes in connectivity (Fig 4A.i-ii) we simulated an agent performing a random walk
642 on a ring. At each time step we asked if the agent could navigate to the goal by the shortest path.
643 We assumed that the appearance of a block or a shortcut between two adjacent nodes will alter the
644 sensory cues around both locations (2 and 3 in Fig 4A.i-ii). Therefore the point cells that used to
645 encode those locations drop silent, and the respective map cells lose their afferent input, while still
646 remaining in the recurrent network. At the same time two new point cells appear at those locations,
647 because the new cues match their selectivity. Their map cells now receive afferent input from the

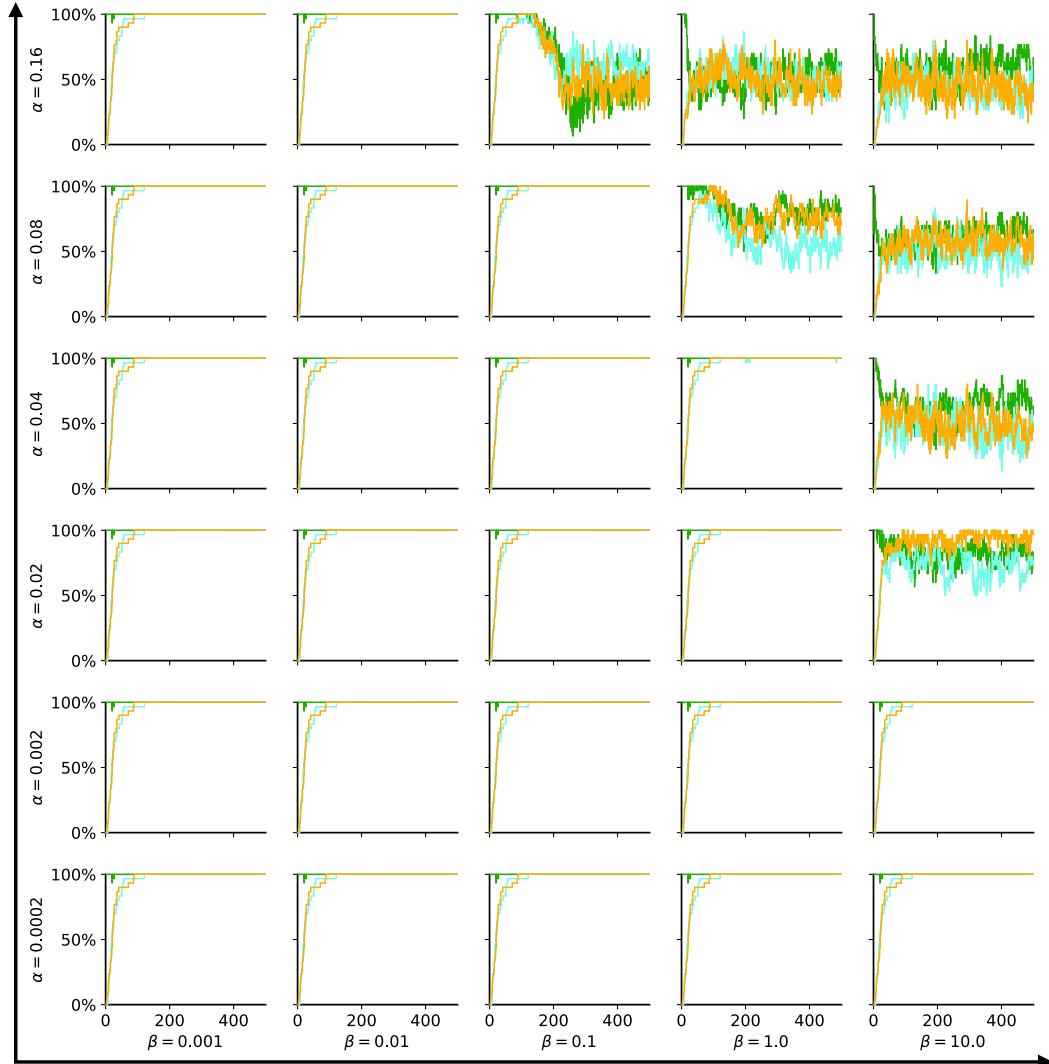


Figure 6: Dependence of map learning on the parameters α_M and β_M in Oja's rule. Each panel is for one combination of α_M and β_M and shows performance on the Gridworld task (Figs 2, 3 i). The fraction of successful navigations is plotted vs the number of steps in the exploratory random walk, averaged over 30 different walks. The 3 curves show navigation to the 3 goals, color coded as in Fig 3 i.

Algorithm 1 Online Learning via Oja's Rule

j : pre-synaptic neuron
 i : post-synaptic neuron
 $w = 0.3$ (fractional activity at neighbor nodes)
 $s_g = 1$ (except dual-target tasks)
 $\alpha_M = 0.05$
 $\beta_M = 0.02$
 $\alpha_G = 0.5 \cdot \alpha_M$
 $\beta_G = 0.03$

$\mathbf{M} \leftarrow 0$
 $\mathbf{G} \leftarrow 0$

for *step t in node visit sequence* **do**
 Compute Neural Activity
 $u_{node(t)} \leftarrow 1$
 for *each neighboring node i do*
 $u_{node(i)} \leftarrow w$
 end for
 $u_{node(others)} \leftarrow 0$
 $\mathbf{v} = \mathbf{u} + \mathbf{M}\mathbf{v} = (1 - \mathbf{M})^{-1}\mathbf{u}$
 $\mathbf{g} = \mathbf{G}\mathbf{v} + s_{node(t)}$
 Synaptic Learning
 $M_{ij} \leftarrow M_{ij} + \beta_M(\alpha_M v_i v_j - M_{ij} v_i^2)$
 $G_{ij} \leftarrow G_{ij} + \beta_G(\alpha_G g_i v_j - G_{ij} g_i^2)$
end for

648 respective locations, but their recurrent synapses start at zero weight. The agent then continues a
649 random walk around the ring, subject to the new constraints, and the learning algorithm proceeds as
650 usual.

651 **A.7.2 Dynamics of learning**

652 Figure 7 illustrates the state of the synaptic networks over the course of online learning, as observed
653 during a random walk on the binary maze graph (Fig 3A-ii). The norm of the map matrix $\|\mathbf{M}\|$
654 increases continuously through steady small updates $\|\mathbf{dM}\|$. By comparison the goal matrix $\|\mathbf{G}\|$
655 increases in noticeable steps of $\|\mathbf{dG}\|$ every time the agent visits a goal location. With sufficiently low
656 α and β , the network learns stably and gradually approaches a steady state. However, as demonstrated
657 in the text, even the first visit to a goal location already produces a goal signal that allows a reliable
658 return to that location.

659 **A.7.3 Robustness to noise**

660 We tested how robust the map learning is to noise. Figure 8 illustrates the results using the Gridworld
661 task (Fig 3-i). At each step of the simulation we perturbed each neuron's signal with multiplicative
662 noise, by adding a Gaussian noise variable to the logarithm. Performance of learning and navigation
663 was robust for signal-to-noise ratios of 2 or higher.

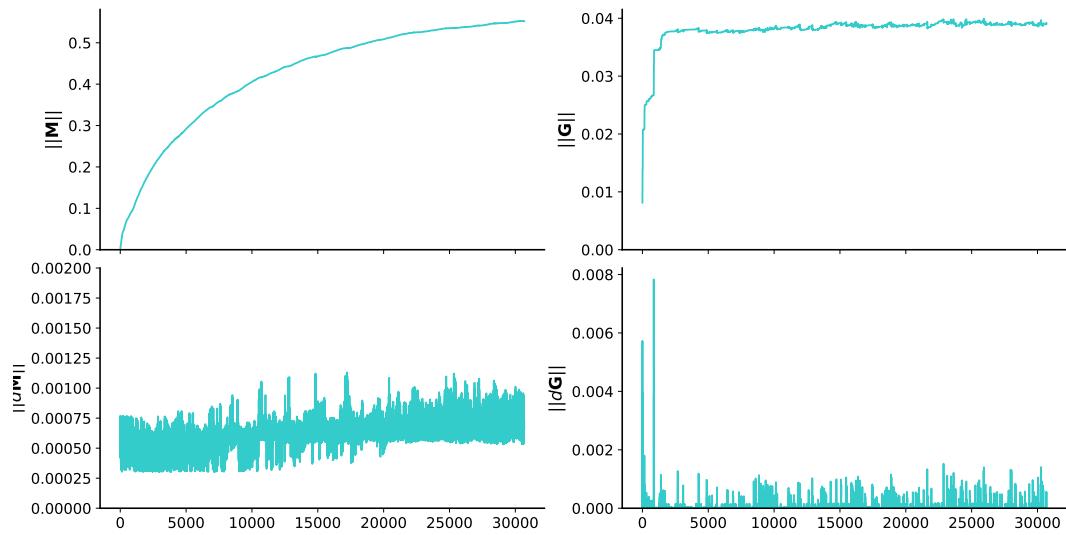


Figure 7: **Dynamics of online learning.** Evolution of the map matrix ($\|M\|$ and $\|dM\|$) and the goal matrix ($\|G\|$ and $\|dG\|$) during exploration of the binary maze graph of Fig 3A ii. See text for details.

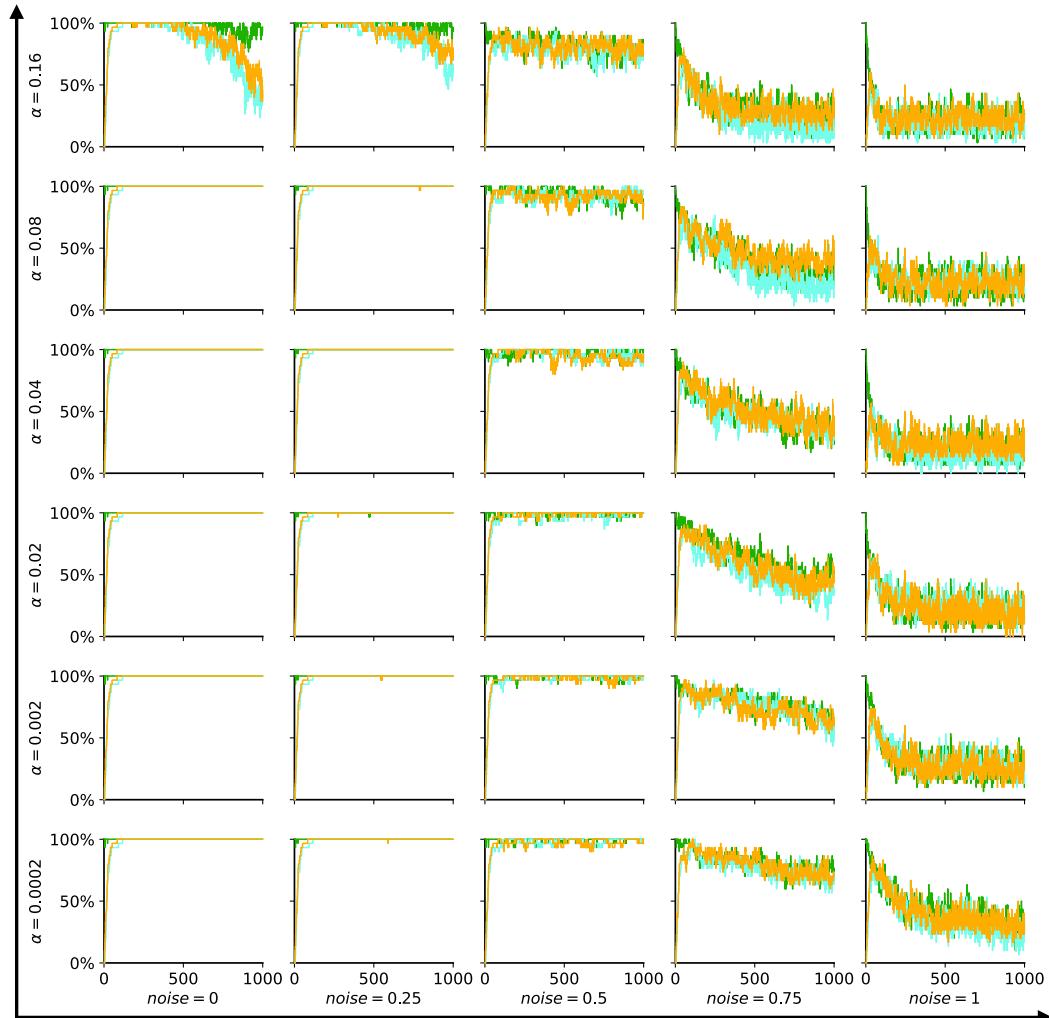


Figure 8: **Learning tolerates perturbation by neural noise.** Each panel shows navigation performance on the Gridworld task (Figs 2, 3 i), plotted as in Fig 6. Each neuron's activity was perturbed by multiplicative noise proportional to the unit's activity. The panels differ by the combination of α_M (rows) and noise level (columns). The noise level as a fraction of the unit's firing rate is listed below each column.

664 References

665 [1] R. G. M. Morris, P. Garrud, J. N. P. Rawlins, and J. O'Keefe. Place navigation impaired in
666 rats with hippocampal lesions. *Nature*, 297(5868):681–683, June 1982. ISSN 1476-4687. doi:
667 10.1038/297681a0.

668 [2] Martin Müller and Rüdiger Wehner. Path integration in desert ants, *Cataglyphis fortis*. *Proceed-
669 ings of the National Academy of Sciences*, 85(14):5287–5290, July 1988. ISSN 0027-8424,
670 1091-6490. doi: 10.1073/pnas.85.14.5287.

671 [3] Marielena Sosa and Lisa M. Giocomo. Navigating for reward. *Nature Reviews Neuroscience*,
672 pages 1–16, July 2021. ISSN 1471-0048. doi: 10.1038/s41583-021-00479-z.

673 [4] Thomas S. Collett and Matthew Collett. Memory use in insect visual navigation. *Nature
674 Reviews Neuroscience*, 3(7):542–552, July 2002. ISSN 1471-0048. doi: 10.1038/nrn872.

675 [5] Keeley L. Baker, Michael Dickinson, Teresa M. Findley, David H. Gire, Matthieu Louis, Marie P.
676 Suver, Justus V. Verhagen, Katherine I. Nagel, and Matthew C. Smeal. Algorithms for Olfactory
677 Search across Species. *The Journal of Neuroscience*, 38(44):9383–9389, October 2018. ISSN
678 0270-6474. doi: 10.1523/JNEUROSCI.1668-18.2018.

679 [6] E. C. Tolman. Cognitive maps in rats and men. *Psychological Review*, 55(4):189–208, 1948.
680 ISSN 0033-295X. doi: 10.1037/h0061626. WOS:A1948UY69500001.

681 [7] Lucia F. Jacobs. From chemotaxis to the cognitive map: The function of olfaction. *Proceedings
682 of the National Academy of Sciences*, 109(Supplement 1):10693–10700, June 2012. ISSN
683 0027-8424, 1091-6490. doi: 10.1073/pnas.1201880109.

684 [8] Francisco Aboitiz and Juan F. Montiel. Olfaction, navigation, and the origin of isocortex.
685 *Frontiers in Neuroscience*, 9, 2015. ISSN 1662-453X. doi: 10.3389/fnins.2015.00402.

686 [9] H. C. Berg. A physicist looks at bacterial chemotaxis. *Cold Spring Harb Symp Quant Biol*, 53
687 Pt 1:1–9, 1988.

688 [10] Peter Dayan and L. F. Abbott. *Theoretical Neuroscience: Computational and Mathematical
689 Modeling of Neural Systems*. Computational Neuroscience. MIT Press, Cambridge, Mass.,
690 2001.

691 [11] Mathieu Galtier, Olivier Faugeras, and Paul Bressloff. Hebbian Learning of Recurrent Con-
692 nections: A Geometrical Perspective. *Neural computation*, 24:2346–83, May 2012. doi:
693 10.1162/NECO_a_00322.

694 [12] Matthew Rosenberg, Tony Zhang, Pietro Perona, and Markus Meister. Mice in a labyrinth
695 exhibit rapid learning, sudden insight, and efficient exploration. *eLife*, 10:e66175, July 2021.
696 ISSN 2050-084X. doi: 10.7554/eLife.66175.

697 [13] A. David Redish. Vicarious trial and error. *Nature reviews. Neuroscience*, 17(3):147–159,
698 March 2016. ISSN 1471-003X. doi: 10.1038/nrn.2015.30.

699 [14] K. S. Lashley. Visual discrimination of size and form in the albino rat. *Journal of Animal
700 Behavior*, 2(5):310–331, 1912. ISSN 0095-9928(Print). doi: 10.1037/h0071033.

701 [15] Michael Tarsitano. Route selection by a jumping spider (*Portia labiata*) during the locomotory
702 phase of a detour. *Animal Behaviour*, 72(6):1437–1442, December 2006. ISSN 0003-3472. doi:
703 10.1016/j.anbehav.2006.05.007.

704 [16] Diogo Santos-Pata and Paul F. M. J. Verschure. Human Vicarious Trial and Error Is Predictive
705 of Spatial Navigation Performance. *Frontiers in Behavioral Neuroscience*, 12:237, October
706 2018. ISSN 1662-5153. doi: 10.3389/fnbeh.2018.00237.

707 [17] Spike W. S. Lee and Norbert Schwarz. Bidirectionality, mediation, and moderation of metaphor-
708 ical effects: the embodiment of social suspicion and fishy smells. *Journal of Personality and
709 Social Psychology*, 103(5):737–749, November 2012. ISSN 1939-1315. doi: 10.1037/a0029708.

710 [18] Curtis C. Bell, Victor Han, and Nathaniel B. Sawtell. Cerebellum-like structures and their
711 implications for cerebellar function. *Annual Review of Neuroscience*, 31:1–24, 2008. ISSN
712 0147-006X. doi: 10.1146/annurev.neuro.30.051606.094225.

713 [19] S. M. Farris. Are mushroom bodies cerebellum-like structures? *Arthropod Struct Dev*, 40:
714 368–79, July 2011. doi: 10.1016/j.asd.2011.02.004.

715 [20] D. M. Wolpert, R. C. Miall, and M. Kawato. Internal models in the cerebellum. *Trends
716 in Cognitive Sciences*, 2(9):338–347, September 1998. ISSN 1364-6613. doi: 10.1016/
717 S1364-6613(98)01221-2.

718 [21] Martin Heisenberg. Mushroom body memoir: From maps to models. *Nature Reviews Neuro-
719 science*, 4(4):266–275, April 2003. ISSN 1471-0048. doi: 10.1038/nrn1074.

720 [22] Markus Knaden and Paul Graham. The Sensory Ecology of Ant Navigation: From Nat-
721ural Environments to Neural Mechanisms. In M. R. Berenbaum, editor, *Annual Review
722 of Entomology*, Vol 61, volume 61, pages 63–76. 2016. ISBN 978-0-8243-0161-3. doi:
723 10.1146/annurev-ento-010715-023703.

724 [23] Kathrin Steck, Bill S. Hansson, and Markus Knaden. Smells like home: Desert ants, Cataglyphis
725 fortis, use olfactory landmarks to pinpoint the nest. *Frontiers in Zoology*, 6(1):5, February 2009.
726 ISSN 1742-9994. doi: 10.1186/1742-9994-6-5.

727 [24] Barbara Webb and Antoine Wystrach. Neural mechanisms of insect navigation. *Current Opinion
728 in Insect Science*, 15:27–39, June 2016. ISSN 2214-5745. doi: 10.1016/j.cois.2016.02.011.

729 [25] Cornelia Buehlmann, Beata Wozniak, Roman Goulard, Barbara Webb, Paul Graham, and
730 Jeremy E. Niven. Mushroom Bodies Are Required for Learned Visual Navigation, but Not for
731 Innate Visual Behavior, in Ants. *Current biology: CB*, 30(17):3438–3443.e2, September 2020.
732 ISSN 1879-0445. doi: 10.1016/j.cub.2020.07.013.

733 [26] Xuelong Sun, Shigang Yue, and Michael Mangan. A decentralised neural model explaining
734 optimal integration of navigational strategies in insects. *eLife*, 9:e54026, June 2020. ISSN
735 2050-084X. doi: 10.7554/eLife.54026.

736 [27] Y. Aso, D. Sitaraman, T. Ichinose, K. R. Kaun, K. Vogt, G. Belliart-Guerin, P. Y. Placais, A. A.
737 Robie, N. Yamagata, C. Schnaitmann, W. J. Rowell, R. M. Johnston, T. T. Ngo, N. Chen,
738 W. Korff, M. N. Nitabach, U. Heberlein, T. Preat, K. M. Branson, H. Tanimoto, and G. M. Rubin.
739 Mushroom body output neurons encode valence and guide memory-based action selection in
740 Drosophila. *Elife*, 3:e04580, 2014. doi: 10.7554/eLife.04580.

741 [28] Feng Li, Jack W Lindsey, Elizabeth C Marin, Nils Otto, Marisa Dreher, Georgia Dempsey,
742 Ildiko Stark, Alexander S Bates, Markus William Pleijzier, Philipp Schlegel, Aljoscha Nern,
743 Shin-ya Takemura, Nils Eckstein, Tansy Yang, Audrey Francis, Amalia Braun, Ruchi Parekh,
744 Marta Costa, Louis K Scheffer, Yoshinori Aso, Gregory SXE Jefferis, Larry F Abbott, Ashok
745 Litwin-Kumar, Scott Waddell, and Gerald M Rubin. The connectome of the adult Drosophila
746 mushroom body provides insights into function. *eLife*, 9:e62576, December 2020. ISSN
747 2050-084X. doi: 10.7554/eLife.62576.

748 [29] Robert U. Muller, John L. Kubie, and Russ Saypoff. The hippocampus as a cognitive graph
749 (abridged version). *Hippocampus*, 1(3):243–246, 1991. ISSN 1098-1063. doi: 10.1002/
750 hipo.450010306. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/hipo.450010306>. _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/hipo.450010306>.

752 [30] A. D. Redish and D. S. Touretzky. The role of the hippocampus in solving the Morris water
753 maze. *Neural Computation*, 10(1):73–111, January 1998. ISSN 0899-7667. doi: 10.1162/
754 089976698300017908.

755 [31] R. U. Muller, M. Stead, and J. Pach. The hippocampus as a cognitive graph. *The Journal of
756 General Physiology*, 107(6):663–694, June 1996. ISSN 0022-1295. doi: 10.1085/jgp.107.6.663.

757 [32] May-Britt Moser, David C. Rowland, and Edvard I. Moser. Place Cells, Grid Cells, and Memory.
758 *Cold Spring Harbor Perspectives in Biology*, 7(2):a021808, February 2015. ISSN 1943-0264.
759 doi: 10.1101/cshperspect.a021808.

760 [33] M. A. Wilson and B. L. McNaughton. Dynamics of the hippocampal ensemble code for
761 space. *Science (New York, N.Y.)*, 261(5124):1055–1058, August 1993. ISSN 0036-8075. doi:
762 10.1126/science.8351520.

763 [34] Kirsten Brun Kjelstrup, Trygve Solstad, Vegard Heimly Brun, Torkel Hafting, Stefan Leutgeb,
764 Menno P. Witter, Edvard I. Moser, and May-Britt Moser. Finite scale of spatial representation in
765 the hippocampus. *Science (New York, N.Y.)*, 321(5885):140–143, July 2008. ISSN 1095-9203.
766 doi: 10.1126/science.1157086.

767 [35] Stig A. Hollup, Sturla Molden, James G. Donnett, May-Britt Moser, and Edvard I. Moser.
768 Accumulation of Hippocampal Place Fields at the Goal Location in an Annular Watermaze
769 Task. *Journal of Neuroscience*, 21(5):1635–1644, March 2001. ISSN 0270-6474, 1529-2401.
770 doi: 10.1523/JNEUROSCI.21-05-01635.2001.

771 [36] Loren M. Frank, Garrett B. Stanley, and Emery N. Brown. Hippocampal Plasticity across
772 Multiple Days of Exposure to Novel Environments. *Journal of Neuroscience*, 24(35):7681–
773 7689, September 2004. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.1958-04.2004.

774 [37] Charlotte B. Alme, Chenglin Miao, Karel Jezek, Alessandro Treves, Edvard I. Moser, and
775 May-Britt Moser. Place cells in the hippocampus: Eleven maps for eleven rooms. *Proceedings
776 of the National Academy of Sciences*, 111(52):18428–18435, December 2014. ISSN 0027-8424,
777 1091-6490. doi: 10.1073/pnas.1421056111.

778 [38] J. Epsztein, M. Brecht, and A. K. Lee. Intracellular determinants of hippocampal CA1 place
779 and silent cell activity in a novel environment. *Neuron*, 70:109–20, April 2011. doi: 10.1016/j.
780 neuron.2011.03.006.

781 [39] Alice Alvernhe, Etienne Save, and Bruno Poucet. Local remapping of place cell firing in the
782 Tolman detour task. *The European Journal of Neuroscience*, 33(9):1696–1705, May 2011.
783 ISSN 1460-9568. doi: 10.1111/j.1460-9568.2011.07653.x.

784 [40] Katie C. Bittner, Aaron D. Milstein, Christine Grienberger, Sandro Romani, and Jeffrey C.
785 Magee. Behavioral time scale synaptic plasticity underlies CA1 place fields. *Science*, 357
786 (6355):1033–1036, September 2017. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.
787 aan3846. URL <https://science.scienmag.org/content/357/6355/1033>. Publisher:
788 American Association for the Advancement of Science Section: Report.

789 [41] Jeffrey C. Magee and Christine Grienberger. Synaptic Plasticity Forms and Functions. *Annual
790 Review of Neuroscience*, 43(1):95–117, 2020. doi: 10.1146/annurev-neuro-090919-022842.
791 URL <https://doi.org/10.1146/annurev-neuro-090919-022842>. _eprint:
792 <https://doi.org/10.1146/annurev-neuro-090919-022842>.

793 [42] Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. MIT Press,
794 November 2018. ISBN 978-0-262-03924-6.

795 [43] D. Thistlethwaite. A critical review of latent learning and related experiments. *Psychological
796 Bulletin*, 48(2):97–129, 1951. ISSN 0033-2909. doi: 10.1037/h0055171.

797 [44] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution.
798 In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
799 nett, editors, *Advances in Neural Information Processing Systems*, volume 31. Curran
800 Associates, Inc., 2018. URL <https://proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf>.

802 [45] Richard S Sutton. Integrated architectures for learning, planning, and reacting based on
803 approximating dynamic programming. In *Machine learning proceedings 1990*, pages 216–224.
804 Elsevier, 1990.

805 [46] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Model-based reinforcement
806 learning: A survey. *arXiv preprint arXiv:2006.16712*, 2020.

807 [47] Peter Dayan. Improving generalization for temporal difference learning: The successor
808 representation. *Neural Computation*, 5(4):613–624, July 1993. ISSN 0899-7667. doi:
809 10.1162/neco.1993.5.4.613.

810 [48] Kimberly L. Stachenfeld, Matthew M. Botvinick, and Samuel J. Gershman. The hippocampus as
811 a predictive map. *Nature Neuroscience*, 20(11):1643–1653, November 2017. ISSN 1546-1726.
812 doi: 10.1038/nn.4650.

813 [49] Jesse P. Geerts, Fabian Chersi, Kimberly L. Stachenfeld, and Neil Burgess. A general model
814 of hippocampal and dorsal striatal learning and decision making. *Proceedings of the National
815 Academy of Sciences*, 117(49):31427–31437, December 2020. ISSN 0027-8424, 1091-6490.
816 doi: 10.1073/pnas.2007981117.

817 [50] Plato. The apology. ca 400 BCE.

818 [51] Uri Zwick. Exact and approximate distances in graphs — A survey. In Friedhelm Meyer auf der
819 Heide, editor, *Algorithms — ESA 2001*, pages 33–48, Berlin, Heidelberg, 2001. Springer Berlin
820 Heidelberg. ISBN 978-3-540-44676-7.

821 [52] Robert W. Floyd. Algorithm 97: Shortest path. *Communications of the ACM*, 5(6):345, June
822 1962. ISSN 0001-0782. doi: 10.1145/367766.368168.

823 [53] L. F. Abbott and W. G. Regehr. Synaptic computation. *Nature*, 431:796–803, October 2004.
824 doi: 10.1038/nature03010.

825 [54] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
826 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
827 Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
828 <http://github.com/google/jax>.

829 **Data and code availability**

830 Data and code to reproduce the reported results are available at <https://github.com/tonyzhang25/Zhang-2021-Endotaxis>. Following acceptance of the manuscript they will be
831 archived in a permanent public repository.
832

833 **Acknowledgments**

834 Funding: This work was supported by the Simons Collaboration on the Global Brain (grant 543015
835 to MM and 543025 to PP), by NSF award 1564330 to PP, and by a gift from Google to PP.
836 Author contributions: Conception of the study TZ, MR, PP, MM; Numerical work TZ, PP; Analytical
837 work MM; Drafting the manuscript MM; Revision and approval TZ, MR, PP, MM.
838 Competing interests: The authors declare no competing interests.
839 Colleagues: We thank Kyu Hyun Lee and Ruben Portugues for comments.