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Abstract 16 

Genome engineering methodologies are transforming biological research and discovery. 17 

Approaches based on CRISPR technology have been broadly adopted and there is growing 18 

interest in the generation of massively parallel edited cell libraries. Comparing the libraries 19 

generated by these varying approaches is challenging and researchers lack a common 20 

framework for defining and assessing the characteristics of these libraries. Here we describe a 21 

framework for evaluating massively parallel libraries of edited genomes based on established 22 

methods for sampling complex populations. We define specific attributes and metrics that are 23 

informative for describing a complex cell library and provide examples for estimating these 24 

values. We also connect this analysis to generic phenotyping approaches, using either pooled 25 

(typically via a selection assay) or isolate (often referred to as screening) phenotyping 26 

approaches. We approach this from the context of creating massively parallel, precisely edited 27 

libraries with one edit per cell, though the approach holds for other types of modifications, 28 

including libraries containing multiple edits per cell (combinatorial editing). This framework is a 29 

critical component for evaluating and comparing new technologies as well as understanding 30 

how a massively parallel edited cell library will perform in a given phenotyping approach. 31 

Introduction 32 
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Genome engineering methodologies are transforming biological research and discovery. 33 

Approaches based on CRISPR technology have been broadly adopted due to the relative ease 34 

of targeting defined genomic regions using specific guide RNAs (gRNAs) (Jinek et al. 2012). 35 

While there has been a large focus on modifying one or a small number of sites for translational 36 

research and therapeutics, there is growing interest in the generation of massively parallel 37 

edited cell libraries (Ding et al. 2014; Frangoul et al. 2020; Wilkinson et al. 2021). These libraries 38 

can accelerate the pace of genome discovery or cell engineering by allowing for the 39 

simultaneous interrogation of hundreds to thousands of loci in a single experiment. Current 40 

genome-wide approaches typically either leverage knock-out libraries 3 largely relying on 41 

error-prone repair processes for sequence disruptions 3 or rely on transcriptional modulation 42 

by tethering a nuclease-deficient Cas9 with a transcriptional repressor or activator to modulate 43 

gene expression (Mali et al. 2013; Cong et al. 2013; Gilbert et al. 2014). Recently, the generation 44 

of genome-wide libraries of precise edits has been described in microbes and human (Garst et 45 

al. 2017; Sadhu et al. 2018; Bao et al. 2018; Sharon et al. 2018; Hanna et al. 2021). This ability to 46 

make more refined changes will provide greater precision and information around genotype-47 

phenotype relationships. Comparing the libraries generated by these varying approaches is 48 

challenging and groups typically take different approaches and measures in reporting their 49 

work. What is currently lacking is a common framework for defining and assessing the 50 

characteristics of these libraries.  51 

The evaluation of these complex libraries can be challenging. The library represents a mixed 52 

population, with some cells containing the desired edit and the remaining cells constituting a 53 

Burden Population (Table 1) of cells containing incomplete, unintended or no edits. The 54 

population of cells containing the designed edits will also be a mosaic, with individual edit 55 

representations being driven by the representation of the design in the reagent pool, the 56 

functionality of the guide, the edit rate at different loci and any fitness effects an edit may have 57 

on an individual cell. Frequently the efficiency of massively parallel editing experiments is 58 

extrapolated based on experiments where editing has been performed in isolates rather than 59 

in a pooled manner (Sadhu et al. 2018; Sharon et al. 2018). Although this methodology is more 60 

experimentally tractable, it is not necessarily predictive of performance in a pooled setting. 61 

Additional biological factors can strongly affect outcomes, such as differential growth rates of 62 

cells that have undergone the editing process, the introduction of edits that impair cell viability 63 

to varying degrees, cells in which no double-stranded break (DSB) is created and which thus 64 

grow faster, and cells in which a DSB is created with failure to repair leading to their depletion. 65 

All of these factors impact the final library composition. In general, it is preferable for a library 66 

to contain a high fraction of edited cells, with an even representation of edits. Understanding 67 

the library composition is critical for assessing if a cell library is fit for a given phenotyping 68 

regime, though in practice obtaining this information can be technically challenging or cost 69 

prohibitive.  70 

Here we describe a framework for evaluating massively parallel libraries of edited genomes 71 

based on established methods for sampling complex populations. We define specific attributes 72 

and metrics that are informative for describing a complex cell library and provide examples for 73 

estimating these values. Obtaining all of these measures may be challenging or expensive, so 74 
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we also provide a theoretical framework to allow assessment of a given library in the absence 75 

of some desired data points. We also connect this analysis to generic phenotyping approaches, 76 

using either pooled (typically via a selection assay) or isolate (often referred to as screening) 77 

phenotyping approaches. We approach this from the context of creating massively parallel, 78 

precisely edited libraries with one edit per cell, though the approach holds for other types of 79 

modifications, including libraries containing multiple edits per cell (combinatorial editing). This 80 

framework is a critical component for evaluating and comparing new technologies as well as 81 

understanding how a massively parallel edited cell library will perform in a given phenotyping 82 

approach. 83 

Library Characterization 84 

Massively parallel genome engineering results in a library of cells, where most cells contain 85 

design reagents (that is, the combination of gRNA and repair template) encoding distinct edits. 86 

Each design reagent is represented in hundreds to thousands of cells. In microbial libraries, 87 

these reagents are often maintained as plasmids, while in mammalian libraries, episomes or 88 

genome-integrating vectors, such as lentivirus, must be used if the reagents are to be 89 

maintained within the population over the course of an experiment. In many cases, the 90 

reagents are attached to a barcode, or are used as a barcode themselves to track which cells 91 

contain specific reagents. If selection pressure is applied to the library, these reagents may also 92 

serve as a proxy for genotyping the specific edit. A percentage of the population will contain 93 

the desired edits, while the remaining population constitutes a Burden Population. In order to 94 

characterize such a library, we must define and measure several characteristics. Table 1 95 

provides a list of terms and measures useful for characterizing libraries.  96 

Table 1: terms and definitions useful for characterizing complex cell libraries 97 

TERM DEFINITION 

BURDEN POPULATION The population of cells in a library that is either unedited 

or contains unintended edits.  

COMPLETE INTENDED EDIT A precise edit that includes all modifications specified in 

the repair template (sometimes referred to as the 

homology arm) with no additional unintended 

modifications (Figure 1).   

EDIT COEFFICIENT OF 

VARIATION (EDIT CV) 

An aggregate measure across all the edits in a library, the 

coefficient of variation for the frequencies of the 

Complete Intended Edits in the edited cells of the library, 

defined as the standard deviation of edit frequencies 

normalized to their mean. 

EDIT FRACTION The fraction of cells in a library containing the Complete 

Intended Edit at the locus of interest (in a precise editing 

library) or an edit in the target region (in an imprecise 

editing library). 
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EDIT FRACTIONAL RICHNESS The Edit Richness (see below) scaled by the library size, a 

value in the range [0, 1]. 

EDIT RICHNESS The number of unique Complete Intended Edits present in 

a sample. 

INTENDED EDIT The modification of specific bases in a defined region of a 

genome.  

(https://www.nist.gov/programs-projects/nist-genome-

editing-lexicon#3.4) 

REAGENT COEFFICIENT OF 

VARIATION (REAGENT CV) 

An aggregate measure across all the editing reagents in a 

library, the coefficient of variation for the frequencies of 

the editing reagents (typically plasmids, episomes or 

virus) in the library. Defined as for Edit CV 

REAGENT FRACTIONAL 

RICHNESS 

The Reagent Richness (see below) scaled by the library 

size, a value in the range [0, 1]. 

REAGENT RICHNESS The number of unique reagents present in a sample. 

SCREENER9S SCORE The predicted Edit Fractional Richness for a 1x screen 

(number of isolates screened = number of designs in 

library) assuming a 30% Edit Fraction. 

SELECTOR9S SCORE The predicted Edit Fractional Richness for a selection 

assuming 1x106 cells and 30% Edit Fraction. 

TRACKABILITY The ability to identify the reagents associated with a cell 

in a complex cell library. 

Definitions Useful for Library Characterization 98 

Defining an edit 99 

When using CRISPR-Cas based systems to generate a desired sequence variant through 100 

precise editing, a guide and repair template are defined (commonly through software). In 101 

many cases, auxiliary edits to the PAM site are included to prevent the nuclease from recutting 102 

the edited locus. We define a 8Complete Intended Edit9 as an instance where the repair 103 

template sequence (the desired variant and any auxiliary edits) is faithfully and completely 104 

placed into the genome (Figure 1) and no other changes occur in the genome. Cases where 105 

only part of the repair template sequence is conferred to the genome are classified as 106 

incomplete edits and are considered part of the burden, though there will be differences from 107 

the reference sequence. Unintended events (off-target editing, reagent integration, or other 108 

large-scale genome rearrangement), either occurring at the edit locus or elsewhere in the 109 

genome, are also considered part of the Burden Population along with unedited cells.  110 

When producing imprecise edits, such as in the case of non-homologous end joining (NHEJ)-111 

mediated knockout libraries, the concept of a Complete Intended Edit is not relevant. 112 

However, in this case, the desired events would be insertion-deletion events occurring at the 113 

target site. Events that do not lead to a true loss of functional protein (knockout) or that 114 

happen outside of target region would fall into the Burden Population. In this framework, only 115 
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Complete Intended Edits (in precise editing) or target site changes leading to a knockout (in 116 

imprecise editing) are considered edits. A formal definition of what is meant by an edit allows 117 

us to develop a more rigorous framework by which to evaluate these complex cell libraries. In 118 

the discussion that follows, the term <edit= refers to Complete Intended Edit unless indicated 119 

otherwise. 120 

 121 

Figure 1. Challenges of edit identification in a large pool of precisely edited cells. A complete and intended edit 122 

occurs only when the complete repair template is faithfully placed in the genome; this includes the desired edit 123 

and any auxiliary edits made to prevent recutting of the edited locus. Cases where only part of the repair template 124 

are incorporated into the genome are considered incomplete and count as burden rather than an edit, even if they 125 

include the desired variant. Any other unintended or unedited cells are also considered part of the burden. 126 

Estimation of the Edit Fraction 127 

The Edit Fraction is a critical component of characterizing a massively parallel genome 128 

engineered library. Ideally, we would like to identify all edits that occurred within a population. 129 

In practice, this is challenging because of the mosaic nature of the library; at any given locus, 130 

the count of reference sequence representation will far exceed the count of edit-containing 131 

sequences. Fortunately, determination of the overall Edit Fraction does not require complete 132 

evaluation of all members of the library. We describe two approaches for identifying the Edit 133 

Fraction in a library: a shallow sampling of the library by deeply sequencing isolates or a deeper 134 

sampling of the library by shallow sequencing of a pool of cells (Figure 2).  135 

One way to assess the Edit Fraction is to sample isolates selected from the population (Figure 136 

2A). After sufficient cell divisions, standard sequencing approaches, such as whole genome 137 

shotgun (WGS) of each isolate, can be employed. This requires only collection and growth of 138 

isolates (typically by low density plating and picking single colonies into a 96-well plate) and 139 
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library preparation. While this produces a large number of reads outside of the targeted locus 140 

that do not contribute to edit detection, these reads can be assessed for off-target events. 141 

Alternatively, one could take an approach to identify the design reagent in each isolate (see 142 

below), and then use a targeted sequencing approach, such as hybrid capture or genomic 143 

amplification, to confirm the validity of the edit. This approach has the benefit of more 144 

efficiently utilizing sequencing reads but takes longer and requires two library preparations, in 145 

addition to the creation of custom reagents for each edit locus. Regardless of whether whole 146 

genome or targeted sequencing is performed, this isolate evaluation approach generally 147 

results in very shallow sampling of a library.  148 

An alternative approach to characterizing the Edit Fraction in a library employs limited WGS on 149 

the entire population of cells at a shallow read depth, an approach we term pooled WGS 150 

(pWGS) (Figure 2B). While the population of cells used as input for this analysis may number in 151 

the millions, the cost of sequencing will typically limit the number of cells ultimately sampled, 152 

often in the range of a few hundred to a few thousand. For example, if an experiment involves 153 

sequencing to an average genomic coverage depth of 1000x, it will profile approximately 1000 154 

cells9 worth of DNA at each targeted edit locus. In contrast to isolate sampling, the pooled 155 

approach limits the manual work of colony isolation and growth at the expense of greater 156 

complexity in sequence analysis. If a pWGS assay is tuned to sequence roughly 1000 genomes9 157 

worth of DNA per locus, then for an edit library of 1000 or more members, the assay should be 158 

viewed as a sampling of mainly the right tail of the edit frequency distribution. Sampling 159 

deeper would require substantially more sequencing, on the order of billions of read pairs or 160 

more (Figure 3D and supplemental section 8). Even though the pWGS sampling depth is 161 

typically shallow and thus incapable of providing reliable data on a per-design basis, the sum of 162 

the per-design Edit Fractions produces a reliable estimate of the overall Edit Fraction in the 163 

library (Figure 3A). In either the isolate or pWGS approach, many edits that are present in the 164 

pool will be missed in the sequencing results due to being present at very low frequency 165 

relative to the per-locus sampling depth. Despite the absence of many of the edits in the 166 

sample, making the assumption that the underlying edit frequencies follow a parametric 167 

distribution can allow for reliable estimation of the Edit CV (Table 1 and Figure 3D). In 168 

situations where the edits are clustered in a subset of the genome, targeted sequencing 169 

approaches can provide a more cost-efficient readout of the edit frequencies. Assay replicates 170 

will provide differing parameter estimates due to sampling biases in the context of shallow 171 

coverage; therefore, inspection of confidence intervals is helpful to guide appropriate 172 

interpretation.   173 
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 174 

 175 

 176 

Figure 2. Measurements of interest when evaluating a multiplex precisely edited library. This simplified example 177 

is based on a contrived library targeting 13 distinct edits, with half of the cells in the pool containing a Complete 178 

Intended Edit and 12 of the designs represented. Open circles represent cells of the Burden Population, most of 179 

which will contain editing reagents if selection pressure is maintained or if the trackability reagent is intentionally 180 

integrated into the genome. Dashed circles represent the design reagent. Rectangular boxes represent sequence 181 

reads, open are wild type while filled are Complete Intended Edit-containing reads.  A. A shallow library sampling 182 

but deep sequencing approach involves edit detection by selecting isolates and performing whole genome 183 

shotgun (WGS) analysis. For the isolates selected, this can provide detailed edit data, as well as information on 184 

any unintended events, but the approach samples only a small number of cells in the library. It is important to use 185 

sufficiently deep sequencing on each isolate to provide good power for detecting edits. B. An alternative 186 

approach involves doing a broad library sampling but shallow sequence assessment of the library to obtain an 187 

estimate of the fraction of cells containing an edit. As with the previous approach, many individual edits that are 188 

present in the pool will be absent from the sample; nevertheless, an estimate of Edit Fraction f can be obtained by 189 

summing the fraction of edited reads at each locus (designated by L_n). At approximately 1000x coverage and 190 

with Edit Fraction f, 1000f edited cells will be sampled. Increasing read depth will increase the number of cells 191 

sampled, but very high coverage would be required to deeply assay at each edit locus. C. Design distribution can 192 

be measured directly from the reagents, typically through a short-read sequencing (NGS) assay using 193 

amplification handles. The reagents will be detected in both the edited and Burden Populations, and this assay 194 

will not distinguish those populations in the absence of strong selection for edited cells.  195 
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 196 

 197 

Figure 3: Example usage of pWGS and design reagent amplicon sequencing assays to characterize an E. coli edit 198 

library. After exclusion of controls, the library consists of 928 designs including insertions, deletions and 199 

substitutions spanning the genome. The resulting edits are not expected to result in any notable effects on 200 

cellular fitness.  A: Number of sequencing reads with exact match to expected edits in a pWGS run. The pWGS run 201 

included 157M 2x150 read pairs. After exclusion of reads failing quality filters the mean coverage depth fully 202 

spanning the targeted edits is 3434. Summing the per-locus Edit Fractions produces an estimate of 0.44 for the 203 

overall Edit Fraction in the pool, thus the pWGS run profiles approximately 1501 genomes9 worth of DNA overall. 204 

A total of 1615 edited reads is seen, comprising 546 unique edits (y-axis) with read depth per edit ranging from 1 205 

to 15 (x-axis).  B: Scatterplot comparing the edit frequencies estimated from pWGS with design reagent 206 

frequencies estimated from amplicon sequencing of reagents.  C: Histogram and cumulative distribution function 207 

(CDF) of reagent representation (defined as the product of reagent frequency and library size), measured by 208 

amplicon sequencing of the design reagents. The assay consists of 3.0M reads. Fitting the design reagent 209 

frequencies to a beta distribution via maximum likelihood estimation (MLE), the data are well described by a beta 210 

distribution with mean 1/928 and CV 0.73.  D: Histogram and CDF as in C, but for the representation of edits as 211 

measured by pWGS. Given that the pWGS run is sampling roughly 1501 genomes9 worth of DNA per locus, it 212 

should be viewed as a sampling of mainly the right tail of the edit frequency distribution. The fraction of the edit 213 

library that is observed at least once is 0.59. Fitting edit frequencies with a beta distribution via MLE, the estimate 214 

of CV is 1.01. Observation of a greater fraction of all possible edits in the library would require substantially more 215 

sequencing. For example, if the goal were to directly observe 90% of the edits in pWGS, it would require detection 216 

of edits whose frequencies among the 44% of edited cells is around the 10th percentile of the reagent frequency 217 

distribution, or 1e-4. Aiming for an expected edit read count of 10, to have a reasonable chance of observing edits 218 

at the 10th percentile, it would take a mean coverage depth of 213K. This is 62-fold larger than the actual 219 

coverage depth for the pWGS run, which would require a total sequencing throughput of 9.8B read pairs. E: 220 

Screener9s curve, showing the predicted Reagent Fractional Richness (solid curve) and Edit Fractional Richness 221 

(dashed curve) as a function of the number of clonal isolates phenotyped in a screening experiment. The red 222 

curves are based on a beta binomial model fit. The blue curve is a prediction based on the nonparametric estimate 223 

of the distribution of reagent frequencies, a nonparametric fit to the edit frequencies is not useful given the 224 
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limited sampling depth of the pWGS data. The point indicated on the curve corresponds to the Screener9s score, 225 

which is the predicted Edit Fractional Richness when sampling depth is equal to the library size times the Edit 226 

Fraction. F: Selector9s curve, showing the same data as in E but with the x-axis changed to log scale and domain 227 

extended to cover the deep sampling that is typically relevant for the large number of cells sampled in selection 228 

applications. The solid point indicated on the curve corresponds to the Selector9s score, which is the predicted 229 

Edit Fractional Richness when sampling 1M cells. 230 

Estimation of Reagent Distribution 231 

Direct detection of edits in massively parallel editing libraries is ideal for assessing library 232 

diversity, but in practice it is often prohibitively expensive due to the depth of sequencing 233 

required. In lieu of extensive genomic sequencing, many approaches make it relatively 234 

straightforward to detect the reagents conferring edits, so profiling the reagent distribution 235 

can be a useful proxy for the edit distribution. For microbes, each cell typically contains 236 

multiple clonal reagent copies, and most reagents will be present in hundreds to thousands of 237 

cells. For mammalian cells, the copy number of the trackable reagent is typically lower, on the 238 

order of one to less than 10.  Ideally, all designs would be equally represented, but in practice 239 

most libraries have a distribution of representation. Every manipulation of the library (reagent 240 

manufacturing, transformation, growth of the cell population) introduces an opportunity to 241 

alter this distribution. Understanding the distribution of reagents is critical for interpreting 242 

phenotyping results and will help define the effect size and significance of results. For example, 243 

if a phenotyping approach is assessing depletion of reagents as a measure proxy for genotype 244 

(a common approach in essential gene screens), designs in the extreme left tail of the 245 

distribution will likely be underpowered for association with a phenotype. 246 

Sequencing the reagent library throughout the experimental process provides useful insight 247 

into how various manipulations can impact design reagent distribution. This approach can be 248 

useful for approximating edits post-phenotyping, particularly in the case of strong selective 249 

pressure. In a library containing a mixture of active and inactive gRNA-donor cassettes, the 250 

number of viable edited cells is tightly coupled to gRNA activity, rate of homology directed 251 

repair (HDR) and the relative survival rate of edited members of the population.  DNA synthesis 252 

errors that result in unintended editing events during the homology-directed repair process or 253 

poor transformation efficiency can impact uniform representation of intended edits (Roy et al. 254 

2018). These effects can reduce the effective diversity in an edited library, directly impacting 255 

the success of phenotyping. For instance, edited variant libraries may lack the desired intended 256 

diversity due to editing process failures or takeover by a sub-population of a particular 257 

Complete Intended Edit, unintended edits or unedited cells.  In each of these cases, the cost 258 

and effectiveness of phenotypic investigations will be adversely affected.  259 

Typically, short read sequencing (NGS) of the reagent is used to determine the library 260 

distribution from a sample of the library (Fig 2C). Approaches that either detect a barcode 261 

(Garst et al. 2017; Sadhu et al. 2018) or the reagents themselves (Bao et al. 2018; Sharon et al. 262 

2018) are used. It is assumed that the read counts for a design reagent are proportional to the 263 

number of cells containing that design; thus, a read count is equivalent to a design reagent 264 

count. The dispersion of the distribution is measured by the Reagent CV (Table 1, Figure 3C). 265 
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Larger Reagent CV values indicate greater variance in the relative abundances of the designs, 266 

which can lead to under- or overrepresentation of individual designs. Prior to applying selective 267 

pressure, a small Reagent CV is preferable for all phenotyping approaches, though libraries 268 

with larger Reagent CVs can still be useful for some experiments. It is important to note that 269 

while the Reagent CV is a useful and accessible metric, what matters most for many 270 

applications is the Edit CV (Table 1). If every design reagent has an equal probability of 271 

producing an edit, the Reagent CV and Edit CV will be equal to one another. In most real-world 272 

situations there are various sources of bias, including those mentioned above, which result in 273 

the Edit CV being larger than the Reagent CV, to an extent that will depend on the 274 

experimental context (Figure 3D).  275 

We have introduced measures that can be useful for describing aspects of a massively parallel 276 

edited cell library. We next introduce approaches for combining these measures to produce 277 

metrics that can be utilized for evaluating these libraries.  278 

Metrics for Library Evaluation 279 

In this section we define several concepts that utilize the above measurements to provide a 280 

fuller characterization of a library. Neither Edit Fraction nor reagent distribution alone can fully 281 

characterize the utility of a library. When sampling a library with a high Edit Fraction but poor 282 

representation of some or many library members, any phenotyping regime will be continually 283 

sampling only a small subset of the desired variation. Alternatively, even representation of the 284 

designs with a poor Edit Fraction will lead to over-sampling of the Burden Population. Different 285 

phenotyping approaches will be more or less tolerant to deviations in either Edit Fraction or 286 

design reagent distribution. Below, we describe metrics that combine these two measures into 287 

a score that can be used to quickly assess the utility of a given library.  288 

Edit Library Richness 289 

When sampling cells or isolates from an engineered cell library, the quantity that is typically 290 

most important is the number of unique edits represented in the sample. Borrowing from the 291 

ecological literature, the term <richness= is used to refer to the number of unique edits in the 292 

sample from the library (Levin et al. 2012). The expected richness �!  of a sample of m cells or 293 

isolates from a library of S edits can be predicted given �, the fraction of cells that contain an 294 

edit, and the frequencies �"  of each edit among the edited cells. 295 

 296 

As with other measures, the variance of the sample9s richness can be calculated (supplemental 297 

section 1). For some approaches, a variant will need to be observed more than once to provide 298 

statistical power for making the genotype-phenotype correlation. In these cases, there is a 299 
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tractable generalization for when richness is defined in terms of needing at least � 300 

observations of each edit (supplemental section 2). This is useful in cases where the dynamic 301 

range of quantification relies on a set number of observations of the edit. There is an accurate 302 

approximation for the mean and variance of richness, useful both for its mathematical 303 

convenience and because it reduces computational complexity from �(�#�#) to �(��) 304 

(supplemental section 3). 305 

Under the assumption that all designs have equal probability of conferring their edits, 306 

measurements of reagent frequencies and of the Edit Fraction can be used to predict the 307 

richness in a variety of circumstances. It is useful to plot the predicted richness against the 308 

number of cell isolates evaluated in a screen or selection, producing a <Screener9s Curve= 309 

(Figure 3E, 4E and 5C) or a <Selector9s Curve= (Figure 3F, 4F and 5D). These plots serve as a 310 

guide to set expectations of what fraction of an edit library will be probed in a screen or 311 

selection. 312 

The appropriate sample size m from which to make richness predictions will depend strongly 313 

on the particular situation. In some cases, the cost of phenotyping each sample is high, and the 314 

sample size needs to be kept small for practical reasons. In other cases, deep sampling is 315 

affordable, and many cells can be sampled. To be able to quantify a library9s suitability for 316 

screening and selection applications, and to be able to do so in the absence of an estimate of 317 

Edit Fraction, two metrics are introduced - the Screener9s Score and the Selector9s Score. The 318 

Screener9s Score is defined as the expected Edit Fractional Richness when sampling S times (a 319 

1-fold sampling of the library) and with Edit Fraction set to 0.3. The maximum possible value 320 

for the Screener9s Score is 1 2 �$%.' or 0.26 (supplemental section 4). The Selector9s Score is 321 

defined as the expected Edit Fractional Richness when sampling 10( times (a reasonable 322 

number of input cells for a selection protocol), with the same Edit Fraction of 0.3. The 323 

Selector9s Score can take on any value in the range [0,1]. These scores are intended to be 324 

general measures and more detailed information concerning the Edit Fraction would make this 325 

estimate more accurate. Figure 4 illustrates how these concepts can be used to quantitatively 326 

assess different libraries for screening and selection purposes. 327 
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 328 

 329 

Figure 4: Comparative evaluation of two runs of a 10,000 member E. coli library, the runs are named X and Y. A 330 

and B: histogram and CDF (blue) of design frequencies as determined by deep amplicon sequencing of the 331 

reagents. The red curves correspond to beta distributions fit by Maximum Likelihood Estimation (MLE). The 332 

estimates for Reagent CV are 0.79 and 0.90 for runs X and Y respectively. C and D: histogram and CDF (blue) of 333 

genomic edit frequencies as determined by pWGS. The red curves are beta distributions fit by MLE, the shaded 334 

area spans the 95% confidence interval for the edit CV estimates. The estimated edit CVs are 1.54 and 2.48 for 335 

runs X and Y respectively. The pWGS assay is a shallow sampling of edits, with an estimated sampling depth of 336 

488 and 724 in runs X and Y respectively, which is very small compared to the library size of 10,000. The pWGS 337 

assay also enables estimation of Edit Fraction, the estimates are 0.25 and 0.57 for runs X and Y. Run X has a lower 338 

Edit Fraction but also a lower edit CV compared to run Y, so determination of which run is better to use in 339 

downstream applications will depend on the situation. E: Screener9s curves plotting predicted Edit Fractional 340 

Richness against sample size for the two runs. The points on the curves correspond to the Screener9s Scores using 341 

the estimated Edit Fractions. For a screen of 20,000 or fewer isolates (twice the library size), run Y is predicted to 342 

yield greater Edit Fractional Richness, with its larger Edit Fraction making up for its larger edit CV. F: Selector9s 343 

curves, like E but with the x-axis expanded to span a range more typical for a selection application. The points on 344 

the curves denote the Selector9s Scores, the predicted Edit Fractional Richness when sampling 106 cells. The lower 345 

edit CV of run X makes it a better choice for a selection application, despite it having less than half the Edit 346 

Fraction of run Y. 347 

When an estimate of Edit Fraction is available to complement the estimates of design reagent 348 

frequencies, the Empirical Screener9s Score and Empirical Selector9s Score can be evaluated in 349 

a similar manner, replacing the fixed assumption of 0.3 Edit Fraction with the empirically 350 

determined estimate (Figure 3D). These curves aid in understanding the best phenotypic 351 

approaches to take given various library characteristics and experimental goals.  352 

Maximizing Library Richness 353 
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The four variables appearing in the expression for richness motivate different approaches for 354 

maximizing the richness of a sample, though in practical applications some of the approaches 355 

may be inaccessible (supplemental section 4). The first approach is the obvious one of 356 

increasing the sample size 3 the larger the sample, the greater the richness. The second 357 

approach is to increase the probability f that a design reagent confers an edit - something that 358 

can be achieved, for example, by improving models for gRNA design. The third approach is to 359 

increase the library size S. Lastly, the edit CV has a direct impact, with more evenly distributed 360 

libraries resulting in greater richness. 361 

For a sample of size m from a library of size S with Edit Fraction f, the maximum richness 362 

possible is � 01 2 �$!"# 1, attained for a perfectly even library where all design reagent 363 

frequencies are equal to 1/� (supplemental section 4). 364 

Predicting Library Richness 365 

The predictor of library richness introduced above requires an estimate of the frequency of 366 

every member of the library. In some situations where deep sampling from the library is 367 

feasible it will be possible to get good frequency estimates, but for large libraries it is often 368 

desirable to be able to predict richness from shallow sampling, to help guide decisions about 369 

when to proceed with deep sampling. 370 

The problem of predicting future richness from an initial sampling is commonly referred to as 371 

the unknown species problem in ecology, one of the earliest solutions was the Good-Toulmin 372 

estimator (Good and Toulmin 1956). The Good-Toulmin estimator is a nonparametric 373 

approach which works well for predicting up to twice the depth as available in the initial 374 

sample but beyond that it becomes unstable.  An improved nonparametric approach 375 

introduced the use of rational function approximations to produce stable estimates at 376 

sampling depths orders of magnitude larger than the initial sample (Daley and Smith 2013) and 377 

subsequent work extended the approach to predict richness when requiring more than one 378 

observation of each library member (https://arxiv.org/pdf/1607.02804.pdf). 379 

An alternative approach is to assume a parametric model to describe the library frequencies.  A 380 

benefit of the parametric approach is that it can produce good estimates from shallow 381 

sampling, as long as the model is a good fit for the underlying data.  The beta distribution, 382 

described by two parameters, is a natural model to consider and one that is often an excellent 383 

fit for genome editing libraries (Figures 3, 4, S4).  When using a model for design reagent 384 

frequencies where the total library size is known, a constraint is needed to ensure that the 385 

frequencies sum to 1, or equivalently, to ensure their mean is 1/S; as a result, there is only one 386 

free parameter. It turns out to be convenient to use the CV as the free parameter. When design 387 

reagent frequencies follow a beta distribution, there is a closed-form solution available for the 388 

expected Edit Fractional Richness, where Edit Fractional Richness is defined as the Edit 389 

Richness scaled by the library size (supplemental section 6). For a beta model, Edit Fractional 390 

Richness depends on only two parameters - the CV of the design reagent frequencies c, and 391 
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the sampling fraction �, defined as mf/S, which can be thought of as the effective fraction of 392 

the library that is profiled in a sampling of � cells (Figure 5). The expected Edit Fractional 393 

Richness �!,* where at least n observations of an edit are required, is well approximated as 394 

 395 

Consistent with the expression for Edit Fractional Richness, the number of observations of 396 

each edit in the sample follows a negative binomial distribution with failure probability set to 397 

1/(1 + ��#) and failure count set to 1/�#. There is also an expression for the variance of 398 

richness (supplemental section 6). These expressions can be used with the delta method to 399 

account for uncertainty in the estimates of CV and Edit Fraction, enabling construction of 400 

confidence intervals for Screener9s and Selector9s curves. 401 

Supplemental section 9.3 presents a comparison of parametric and nonparametric estimators 402 

of richness on some empirical data. 403 

Applying These Estimates and Metrics 404 

Massively parallel genome engineered libraries provide rich diversity for a variety of 405 

applications. The framework described above can be applied to experimental design, library 406 

evaluation and comparing results from different approaches. Below, we describe using this 407 

framework to evaluate libraries for utility in either forward engineering or genome discovery 408 

applications.  409 

Forward Engineering Experiments 410 

Forward Engineering of biological systems relies on effective methods to generate beneficial 411 

genetic diversity to provide the fuel for evolutionary optimization (Fox and Giver 2011). 412 

Screening of isolated genetic variants that drive improved phenotypes becomes an exercise in 413 

maximizing richness while managing sampling depth. As noted above, increasing the library 414 

size is a way of maximizing richness. Shallow screening of large libraries has proven to be an 415 

efficient way to maximize the beneficial diversity rate, as most of the genotypes observed are 416 

likely to be unique at lower sampling depth (Alvizo et al. 2014). 417 

The effects of library size, Edit Fraction and Edit CV for screening experiments is shown in 418 

Figure 5. The discovery rates for libraries with differing Edit CVs are plotted, showing the effect 419 

to which libraries with higher variance in the distribution of the population forces much deeper 420 

screening in order to continue to observe unique variants. For forward engineers seeking 421 

simply to maximize the discovery rate of beneficial diversity, a shallow sampling from a large 422 

library is a particularly effective approach. For shallow sampling, the impact of Edit CV on Edit 423 

Fractional Richness is modest, as few of the sampled variants are duplicates. Conversely, with 424 
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deeper sampling (where researchers desire observing the highest fraction of designs) the 425 

effect of a larger Edit CV becomes more limiting. As the Edit CV of the library population 426 

increases, it becomes increasingly difficult to observe those designs present at the lower 427 

frequencies in the population. Edit Fraction has a linear effect on screening outcomes - halving 428 

the edit rate while doubling the sample size results in no net change in expected richness. 429 

 430 

 431 

 432 

Figure 5: Exploration of richness under the assumption that edit frequencies follow a beta distribution. A: Edit 433 

Richness for different library sizes, assuming an Edit CV of 1.5 and an Edit Fraction of 0.6. B: Edit Fractional 434 

richness for the same scenarios as used in A. C: Screener9s curves, showing Edit Fractional Richness as a function 435 

of Fractional Sampling, with different values for edit CV. Fractional Sampling is defined as the product of 436 

sampling depth (the number of cells or isolates sampled) and Edit Fraction divided by the library size. Fractional 437 

Sampling and Edit CV are all that is required to predict Edit Fractional Richness under the beta assumption. D: 438 

Selector9s curves, which are the same figure as C with a log-scale x-axis to enable prediction of Edit Fractional 439 

Richness with the deep sampling that is typically used for a selection experiment 440 

 441 

Genome Discovery 442 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2021.09.23.458228doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.458228
http://creativecommons.org/licenses/by-nd/4.0/


 16 

While forward engineering is driven largely by the identification of desired phenotypes, 443 

genome discovery is often focused on testing specific variants to determine if they drive a 444 

phenotype. In this case, a researcher may be more interested in observing all, or most, variants 445 

within a library several times in order to develop robust hypotheses around genotype-446 

phenotype correlations. In this case, maximizing library coverage may be the most beneficial 447 

approach. When employing an isolate phenotyping approach, this will likely require minimizing 448 

library size	so that the edits can be sampled multiple times. When employing a selection 449 

strategy, increasing library size may be appropriate if Edit CV is held low. This will be driven by 450 

the number of times a researcher wants to observe edits in the left tail of the distribution. For 451 

more precise genotype-phenotype correlations, assessing more libraries containing a smaller 452 

number of edits will likely yield more robust results. Strategic use of the Screener9s and 453 

Selector9s Scores in planning experiments can maximize outcomes by informing sampling 454 

depth needed to robustly associate genotypic changes with phenotypes of interest.  455 

Conclusions 456 

As technology continues to improve, the ability to create larger libraries with precise edits will 457 

become commonplace. To date, no common standards exist for describing and evaluating cell 458 

libraries. This makes comparing libraries produced using different approaches challenging. 459 

Perhaps more importantly, a lack of common standards makes planning experiments and 460 

evaluating libraries as fit-for-purpose challenging, and these measures differ from lab to lab. 461 

Here, we have proposed a framework for evaluating massively parallel libraries of genome 462 

engineered cells. We have provided precise definitions around what constitutes an edit. While 463 

previous groups have often looked at the reagents within a complex cell library, we 464 

demonstrate the value of measuring the fraction of cells within the pool that actually contain 465 

an edit and we introduce methodology to directly profile the distribution of edit frequencies. 466 

This provides for robust characterization of library properties without needing to employ 467 

expensive and labor-intensive approaches to understand editing at every target site. We 468 

introduce the concept of edit library richness to more fully describe a library quantitatively, as 469 

the Edit Fraction is insufficient to fully characterize a library9s quality. When generating a 470 

complex editing library, it is valuable to have a large percentage of the designs represented in 471 

the final population, not just have a large Edit Fraction that all contain the same, or a few edits. 472 

We also provide models and methods that allow predictions of library quality when some key 473 

metrics, typically Edit Fraction, are not available. Development of a robust framework for 474 

evaluating complex cell libraries will be necessary to inform which approaches will be useful for 475 

phenotypic analysis of a library. Establishment of common methods will facilitate comparing 476 

libraries created from various methods. While we have focused on libraries of precise genome 477 

edits, the metrics, models and methods proposed here can be applied to any type of library 478 

conforming to the general statistical assumptions introduced. 479 

Copyright @2022 Inscripta, Inc 480 

 481 
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Supplemental Materials 482 

Mathematical derivations and deeper discussion of the metrics are available in the attached 483 

Supplement. Code and data used for analyses can be accessed online at 484 

https://github.com/InscriptaLabs/cell_lib_eval_paper   485 
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