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Abstract

Genome engineering methodologies are transforming biological research and discovery.
Approaches based on CRISPR technology have been broadly adopted and there is growing
interest in the generation of massively parallel edited cell libraries. Comparing the libraries
generated by these varying approaches is challenging and researchers lack a common
framework for defining and assessing the characteristics of these libraries. Here we describe a
framework for evaluating massively parallel libraries of edited genomes based on established
methods for sampling complex populations. We define specific attributes and metrics that are
informative for describing a complex cell library and provide examples for estimating these
values. We also connect this analysis to generic phenotyping approaches, using either pooled
(typically via a selection assay) or isolate (often referred to as screening) phenotyping
approaches. We approach this from the context of creating massively parallel, precisely edited
libraries with one edit per cell, though the approach holds for other types of modifications,
including libraries containing multiple edits per cell (combinatorial editing). This framework is a
critical component for evaluating and comparing new technologies as well as understanding
how a massively parallel edited cell library will perform in a given phenotyping approach.

Introduction
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Genome engineering methodologies are transforming biological research and discovery.
Approaches based on CRISPR technology have been broadly adopted due to the relative ease
of targeting defined genomic regions using specific guide RNAs (JRNAs) (Jinek et al. 2012).
While there has been a large focus on modifying one or a small number of sites for translational
research and therapeutics, there is growing interest in the generation of massively parallel
edited cell libraries (Ding et al. 2014; Frangoul et al. 2020; Wilkinson et al. 2021). These libraries
can accelerate the pace of genome discovery or cell engineering by allowing for the
simultaneous interrogation of hundreds to thousands of loci in a single experiment. Current
genome-wide approaches typically either leverage knock-out libraries — largely relying on
error-prone repair processes for sequence disruptions — or rely on transcriptional modulation
by tethering a nuclease-deficient Casg with a transcriptional repressor or activator to modulate
gene expression (Mali et al. 2013; Cong et al. 2013; Gilbert et al. 2014). Recently, the generation
of genome-wide libraries of precise edits has been described in microbes and human (Garst et
al. 2017; Sadhu et al. 2018; Bao et al. 2018; Sharon et al. 2018; Hanna et al. 2021). This ability to
make more refined changes will provide greater precision and information around genotype-
phenotype relationships. Comparing the libraries generated by these varying approaches is
challenging and groups typically take different approaches and measures in reporting their
work. What is currently lacking is a common framework for defining and assessing the
characteristics of these libraries.

The evaluation of these complex libraries can be challenging. The library represents a mixed
population, with some cells containing the desired edit and the remaining cells constituting a
Burden Population (Table 1) of cells containing incomplete, unintended or no edits. The
population of cells containing the designed edits will also be a mosaic, with individual edit
representations being driven by the representation of the design in the reagent pool, the
functionality of the guide, the edit rate at different loci and any fitness effects an edit may have
on an individual cell. Frequently the efficiency of massively parallel editing experiments is
extrapolated based on experiments where editing has been performed in isolates rather than
in a pooled manner (Sadhu et al. 2018; Sharon et al. 2018). Although this methodology is more
experimentally tractable, it is not necessarily predictive of performance in a pooled setting.
Additional biological factors can strongly affect outcomes, such as differential growth rates of
cells that have undergone the editing process, the introduction of edits that impair cell viability
to varying degrees, cells in which no double-stranded break (DSB) is created and which thus
grow faster, and cells in which a DSB is created with failure to repair leading to their depletion.
All of these factors impact the final library composition. In general, it is preferable for a library
to contain a high fraction of edited cells, with an even representation of edits. Understanding
the library composition is critical for assessing if a cell library is fit for a given phenotyping
regime, though in practice obtaining this information can be technically challenging or cost
prohibitive.

Here we describe a framework for evaluating massively parallel libraries of edited genomes
based on established methods for sampling complex populations. We define specific attributes
and metrics that are informative for describing a complex cell library and provide examples for
estimating these values. Obtaining all of these measures may be challenging or expensive, so
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we also provide a theoretical framework to allow assessment of a given library in the absence
of some desired data points. We also connect this analysis to generic phenotyping approaches,
using either pooled (typically via a selection assay) or isolate (often referred to as screening)
phenotyping approaches. We approach this from the context of creating massively parallel,
precisely edited libraries with one edit per cell, though the approach holds for other types of
modifications, including libraries containing multiple edits per cell (combinatorial editing). This
framework is a critical component for evaluating and comparing new technologies as well as
understanding how a massively parallel edited cell library will perform in a given phenotyping
approach.

Library Characterization

Massively parallel genome engineering results in a library of cells, where most cells contain
design reagents (that is, the combination of gRNA and repair template) encoding distinct edits.
Each design reagent is represented in hundreds to thousands of cells. In microbial libraries,
these reagents are often maintained as plasmids, while in mammalian libraries, episomes or
genome-integrating vectors, such as lentivirus, must be used if the reagents are to be
maintained within the population over the course of an experiment. In many cases, the
reagents are attached to a barcode, or are used as a barcode themselves to track which cells
contain specific reagents. If selection pressure is applied to the library, these reagents may also
serve as a proxy for genotyping the specific edit. A percentage of the population will contain
the desired edits, while the remaining population constitutes a Burden Population. In order to
characterize such a library, we must define and measure several characteristics. Table 1
provides a list of terms and measures useful for characterizing libraries.

Table 1: terms and definitions useful for characterizing complex cell libraries

TERM DEFINITION

BURDEN POPULATION The population of cells in a library that is either unedited
or contains unintended edits.

COMPLETE INTENDED EDIT A precise edit that includes all modifications specified in
the repair template (sometimes referred to as the
homology arm) with no additional unintended
modifications (Figure 1).

EDIT COEFFICIENT OF An aggregate measure across all the edits in a library, the
VARIATION (EDIT CV) coefficient of variation for the frequencies of the
Complete Intended Edits in the edited cells of the library,
defined as the standard deviation of edit frequencies
normalized to their mean.

EDIT FRACTION The fraction of cells in a library containing the Complete
Intended Edit at the locus of interest (in a precise editing
library) or an edit in the target region (in an imprecise
editing library).



https://doi.org/10.1101/2021.09.23.458228
http://creativecommons.org/licenses/by-nd/4.0/

98

99

100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.23.458228; this version posted April 5, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

EDIT FRACTIONAL RICHNESS
EDIT RICHNESS

INTENDED EDIT

REAGENT COEFFICIENT OF
VARIATION (REAGENT CV)

REAGENT FRACTIONAL
RICHNESS

REAGENT RICHNESS
SCREENER’S SCORE

SELECTOR’S SCORE

TRACKABILITY

The Edit Richness (see below) scaled by the library size, a
value in the range [o, 1].

The number of unique Complete Intended Edits present in
asample.

The modification of specific bases in a defined region of a
genome.
(https://www.nist.gov/programs-projects/nist-genome-
editing-lexicon#3.4)

An aggregate measure across all the editing reagentsina
library, the coefficient of variation for the frequencies of
the editing reagents (typically plasmids, episomes or
virus) in the library. Defined as for Edit CV

The Reagent Richness (see below) scaled by the library
size, a value in the range [o, 1].

The number of unique reagents present in a sample.

The predicted Edit Fractional Richness for a 1x screen
(number of isolates screened = number of designs in
library) assuming a 30% Edit Fraction.

The predicted Edit Fractional Richness for a selection
assuming 1x10° cells and 30% Edit Fraction.

The ability to identify the reagents associated with a cell
in a complex cell library.

Definitions Useful for Library Characterization

Defining an edit

When using CRISPR-Cas based systems to generate a desired sequence variant through
precise editing, a guide and repair template are defined (commonly through software). In
many cases, auxiliary edits to the PAM site are included to prevent the nuclease from recutting
the edited locus. We define a ‘Complete Intended Edit’ as an instance where the repair
template sequence (the desired variant and any auxiliary edits) is faithfully and completely
placed into the genome (Figure 1) and no other changes occur in the genome. Cases where
only part of the repair template sequence is conferred to the genome are classified as
incomplete edits and are considered part of the burden, though there will be differences from
the reference sequence. Unintended events (off-target editing, reagent integration, or other
large-scale genome rearrangement), either occurring at the edit locus or elsewhere in the
genome, are also considered part of the Burden Population along with unedited cells.

When producing imprecise edits, such as in the case of non-homologous end joining (NHEJ)-
mediated knockout libraries, the concept of a Complete Intended Edit is not relevant.
However, in this case, the desired events would be insertion-deletion events occurring at the
target site. Events that do not lead to a true loss of functional protein (knockout) or that
happen outside of target region would fall into the Burden Population. In this framework, only
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116  Complete Intended Edits (in precise editing) or target site changes leading to a knockout (in
117  imprecise editing) are considered edits. A formal definition of what is meant by an edit allows
118  usto develop a more rigorous framework by which to evaluate these complex cell libraries. In
119  the discussion that follows, the term “edit” refers to Complete Intended Edit unless indicated
120  otherwise.

Repair template

target auxilia'ry _

Reference Sequence T A e GG T T E
Designed Sequence CTGG i B
Complete and Intended CT GG N RN R
Complete, but unintended ¢ G G 61 ki s
Incomplete and unintended C GGTTTC
Blraen Incomplete TACGG ~ TTT
Incomplete ET GG T T 7T €

unedited T A CGGTTT C

Other overlap with/outside repair template

121

122 Figure 1. Challenges of edit identification in a large pool of precisely edited cells. A complete and intended edit
123 occurs only when the complete repair template is faithfully placed in the genome; this includes the desired edit
124 and any auxiliary edits made to prevent recutting of the edited locus. Cases where only part of the repair template
125 are incorporated into the genome are considered incomplete and count as burden rather than an edit, even if they
126  include the desired variant. Any other unintended or unedited cells are also considered part of the burden.

127  Estimation of the Edit Fraction

128  The Edit Fraction is a critical component of characterizing a massively parallel genome

129  engineered library. Ideally, we would like to identify all edits that occurred within a population.
130 In practice, this is challenging because of the mosaic nature of the library; at any given locus,
131  the count of reference sequence representation will far exceed the count of edit-containing
132 sequences. Fortunately, determination of the overall Edit Fraction does not require complete
133 evaluation of all members of the library. We describe two approaches for identifying the Edit
134 Fractionin a library: a shallow sampling of the library by deeply sequencing isolates or a deeper
135  sampling of the library by shallow sequencing of a pool of cells (Figure 2).

136 One way to assess the Edit Fraction is to sample isolates selected from the population (Figure
137  2A). After sufficient cell divisions, standard sequencing approaches, such as whole genome
138  shotgun (WGS) of each isolate, can be employed. This requires only collection and growth of
139  isolates (typically by low density plating and picking single colonies into a 96-well plate) and
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140  library preparation. While this produces a large number of reads outside of the targeted locus
141  that do not contribute to edit detection, these reads can be assessed for off-target events.
142 Alternatively, one could take an approach to identify the design reagent in each isolate (see
143 below), and then use a targeted sequencing approach, such as hybrid capture or genomic

144 amplification, to confirm the validity of the edit. This approach has the benefit of more

145  efficiently utilizing sequencing reads but takes longer and requires two library preparations, in
146  addition to the creation of custom reagents for each edit locus. Regardless of whether whole
147  genome or targeted sequencing is performed, this isolate evaluation approach generally

148  results in very shallow sampling of a library.

149  An alternative approach to characterizing the Edit Fraction in a library employs limited WGS on
150  the entire population of cells at a shallow read depth, an approach we term pooled WGS

151  (pWGS) (Figure 2B). While the population of cells used as input for this analysis may number in
152 the millions, the cost of sequencing will typically limit the number of cells ultimately sampled,
153  ofteninthe range of a few hundred to a few thousand. For example, if an experiment involves
154  sequencing to an average genomic coverage depth of 1000x, it will profile approximately 12000
155  cells" worth of DNA at each targeted edit locus. In contrast to isolate sampling, the pooled

156  approach limits the manual work of colony isolation and growth at the expense of greater

157  complexity in sequence analysis. If a pWGS assay is tuned to sequence roughly 1000 genomes’
158  worth of DNA per locus, then for an edit library of 1000 or more members, the assay should be
159  viewed as a sampling of mainly the right tail of the edit frequency distribution. Sampling

160  deeper would require substantially more sequencing, on the order of billions of read pairs or
161  more (Figure 3D and supplemental section 8). Even though the pWGS sampling depth is

162  typically shallow and thus incapable of providing reliable data on a per-design basis, the sum of
163  the per-design Edit Fractions produces a reliable estimate of the overall Edit Fraction in the
164  library (Figure 3A). In either the isolate or pWGS approach, many edits that are present in the
165  pool will be missed in the sequencing results due to being present at very low frequency

166  relative to the per-locus sampling depth. Despite the absence of many of the edits in the

167  sample, making the assumption that the underlying edit frequencies follow a parametric

168  distribution can allow for reliable estimation of the Edit CV (Table 1 and Figure 3D). In

169  situations where the edits are clustered in a subset of the genome, targeted sequencing

170  approaches can provide a more cost-efficient readout of the edit frequencies. Assay replicates
171  will provide differing parameter estimates due to sampling biases in the context of shallow
172 coverage; therefore, inspection of confidence intervals is helpful to guide appropriate

173 interpretation.


https://doi.org/10.1101/2021.09.23.458228
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.23.458228; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

174
A.Isolate Edit Detection

plate 100s
of cells

0°0\\ sample 96 cells
.0%eo >

©
>

20

Fraction Edited Cells Detected: 50/96 = 52%

B. Pooled Edit Detection

Ll L2L 3 iiiiiieeaaiiiee e e e et e e e e e einee e e Ln
0/2 0/5 0/0 0/5 1/6 0/5 0/6 0/3 2/7 0/5 0/4 0/3 0/5
— e s s | | s i S
sample 100s - [—] I S S | — | — —— —
1000s of cells  _ e S s
> [ ]
|  — —|  —

— |

—
Precision Edited Fraction Edited Cells Detected: 1/6 + 2/7 = 45%

Cell Library
8 - -
10° cells C. Design Reagent Detection

D_1D_2 D_3 ittt D_n

sample 1000s
of cells 2

Y

L_x: Locus x
D_x: Design x
<"+ Design reagent
O Burden cell, with reagent

..
PR

..
=

@ Edited Cell (CIE)

—JRead w/o Edit

175 mmRead with Edit (CIE) Fraction Design Reagents Detected: 12/13 = 92%

176

177  Figure 2. Measurements of interest when evaluating a multiplex precisely edited library. This simplified example
178 is based on a contrived library targeting 13 distinct edits, with half of the cells in the pool containing a Complete
179  Intended Edit and 12 of the designs represented. Open circles represent cells of the Burden Population, most of
180  which will contain editing reagents if selection pressure is maintained or if the trackability reagent is intentionally
181 integrated into the genome. Dashed circles represent the design reagent. Rectangular boxes represent sequence

182  reads, open are wild type while filled are Complete Intended Edit-containing reads. A. A shallow library sampling
183 but deep sequencing approach involves edit detection by selecting isolates and performing whole genome

184  shotgun (WGS) analysis. For the isolates selected, this can provide detailed edit data, as well as information on
185  anyunintended events, but the approach samples only a small number of cells in the library. It is important to use
186  sufficiently deep sequencing on each isolate to provide good power for detecting edits. B. An alternative

187  approach involves doing a broad library sampling but shallow sequence assessment of the library to obtain an
188  estimate of the fraction of cells containing an edit. As with the previous approach, many individual edits that are
189  presentin the pool will be absent from the sample; nevertheless, an estimate of Edit Fraction f can be obtained by
190  summing the fraction of edited reads at each locus (designated by L_n). At approximately 1000x coverage and
191 with Edit Fraction f, 2000f edited cells will be sampled. Increasing read depth will increase the number of cells
192 sampled, but very high coverage would be required to deeply assay at each edit locus. C. Design distribution can
193 be measured directly from the reagents, typically through a short-read sequencing (NGS) assay using

194  amplification handles. The reagents will be detected in both the edited and Burden Populations, and this assay
195  will not distinguish those populations in the absence of strong selection for edited cells.
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Figure 3: Example usage of pWGS and design reagent amplicon sequencing assays to characterize an E. coli edit
library. After exclusion of controls, the library consists of 928 designs including insertions, deletions and

substitutions spanning the genome. The resulting edits are not expected to result in any notable effects on

cellular fitness. A: Number of sequencing reads with exact match to expected edits in a pWGS run. The pWGS run
included 157M 2x150 read pairs. After exclusion of reads failing quality filters the mean coverage depth fully
spanning the targeted edits is 3434. Summing the per-locus Edit Fractions produces an estimate of 0.44 for the
overall Edit Fraction in the pool, thus the pWGS run profiles approximately 1501 genomes’ worth of DNA overall.
Atotal of 1615 edited reads is seen, comprising 546 unique edits (y-axis) with read depth per edit ranging from 1
to 15 (x-axis). B: Scatterplot comparing the edit frequencies estimated from pWGS with design reagent
frequencies estimated from amplicon sequencing of reagents. C: Histogram and cumulative distribution function
(CDF) of reagent representation (defined as the product of reagent frequency and library size), measured by
amplicon sequencing of the design reagents. The assay consists of 3.0M reads. Fitting the design reagent
frequencies to a beta distribution via maximum likelihood estimation (MLE), the data are well described by a beta
distribution with mean 1/928 and CV 0.73. D: Histogram and CDF as in C, but for the representation of edits as
measured by pWGS. Given that the pWGS run is sampling roughly 1501 genomes’ worth of DNA per locus, it
should be viewed as a sampling of mainly the right tail of the edit frequency distribution. The fraction of the edit
library that is observed at least once is 0.59. Fitting edit frequencies with a beta distribution via MLE, the estimate
of CVis 1.01. Observation of a greater fraction of all possible edits in the library would require substantially more
sequencing. For example, if the goal were to directly observe 9o% of the edits in pWGS, it would require detection
of edits whose frequencies among the 44% of edited cells is around the 10th percentile of the reagent frequency
distribution, or 1e-4. Aiming for an expected edit read count of 10, to have a reasonable chance of observing edits
at the 1oth percentile, it would take a mean coverage depth of 213K. This is 62-fold larger than the actual
coverage depth for the pWGS run, which would require a total sequencing throughput of 9.8B read pairs. E:
Screener’s curve, showing the predicted Reagent Fractional Richness (solid curve) and Edit Fractional Richness
(dashed curve) as a function of the number of clonal isolates phenotyped in a screening experiment. The red
curves are based on a beta binomial model fit. The blue curve is a prediction based on the nonparametric estimate
of the distribution of reagent frequencies, a nonparametric fit to the edit frequencies is not useful given the
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225  limited sampling depth of the pWGS data. The point indicated on the curve corresponds to the Screener’s score,
226  whichis the predicted Edit Fractional Richness when sampling depth is equal to the library size times the Edit
227  Fraction. F: Selector’s curve, showing the same data as in E but with the x-axis changed to log scale and domain
228  extended to cover the deep sampling that is typically relevant for the large number of cells sampled in selection
229  applications. The solid point indicated on the curve corresponds to the Selector’s score, which is the predicted
230  Edit Fractional Richness when sampling 1M cells.

231  Estimation of Reagent Distribution

232  Direct detection of edits in massively parallel editing libraries is ideal for assessing library

233 diversity, but in practice it is often prohibitively expensive due to the depth of sequencing

234 required. In lieu of extensive genomic sequencing, many approaches make it relatively

235  straightforward to detect the reagents conferring edits, so profiling the reagent distribution
236  can be a useful proxy for the edit distribution. For microbes, each cell typically contains

237  multiple clonal reagent copies, and most reagents will be present in hundreds to thousands of
238  cells. For mammalian cells, the copy number of the trackable reagent is typically lower, on the
239  order of one to less than 10. Ideally, all designs would be equally represented, but in practice
240  most libraries have a distribution of representation. Every manipulation of the library (reagent
241  manufacturing, transformation, growth of the cell population) introduces an opportunity to
242 alterthis distribution. Understanding the distribution of reagents is critical for interpreting
243  phenotyping results and will help define the effect size and significance of results. For example,
244  if a phenotyping approach is assessing depletion of reagents as a measure proxy for genotype
245  (acommon approach in essential gene screens), designs in the extreme left tail of the

246  distribution will likely be underpowered for association with a phenotype.

247  Sequencing the reagent library throughout the experimental process provides useful insight
248  into how various manipulations can impact design reagent distribution. This approach can be
249  useful for approximating edits post-phenotyping, particularly in the case of strong selective
250  pressure. In a library containing a mixture of active and inactive gRNA-donor cassettes, the

251  number of viable edited cells is tightly coupled to gRNA activity, rate of homology directed

252 repair (HDR) and the relative survival rate of edited members of the population. DNA synthesis
253 errors that result in unintended editing events during the homology-directed repair process or
254 poor transformation efficiency can impact uniform representation of intended edits (Roy et al.
255  2018). These effects can reduce the effective diversity in an edited library, directly impacting
256  the success of phenotyping. For instance, edited variant libraries may lack the desired intended
257  diversity due to editing process failures or takeover by a sub-population of a particular

258  Complete Intended Edit, unintended edits or unedited cells. In each of these cases, the cost
259  and effectiveness of phenotypic investigations will be adversely affected.

260  Typically, short read sequencing (NGS) of the reagent is used to determine the library

261  distribution from a sample of the library (Fig 2C). Approaches that either detect a barcode
262  (Garstetal. 2017; Sadhu et al. 2018) or the reagents themselves (Bao et al. 2018; Sharon et al.
263  2018) are used. It is assumed that the read counts for a design reagent are proportional to the
264  number of cells containing that design; thus, a read count is equivalent to a design reagent
265  count. The dispersion of the distribution is measured by the Reagent CV (Table 1, Figure 3C).
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266  Larger Reagent CV values indicate greater variance in the relative abundances of the designs,
267  which can lead to under- or overrepresentation of individual designs. Prior to applying selective
268  pressure, a small Reagent CV is preferable for all phenotyping approaches, though libraries

269  with larger Reagent CVs can still be useful for some experiments. It is important to note that
270  while the Reagent CV is a useful and accessible metric, what matters most for many

271  applications is the Edit CV (Table 1). If every design reagent has an equal probability of

272 producing an edit, the Reagent CV and Edit CV will be equal to one another. In most real-world
273  situations there are various sources of bias, including those mentioned above, which result in
274  the Edit CV being larger than the Reagent CV, to an extent that will depend on the

275  experimental context (Figure 3D).

276  We have introduced measures that can be useful for describing aspects of a massively parallel
277  edited cell library. We next introduce approaches for combining these measures to produce
278  metrics that can be utilized for evaluating these libraries.

279 Metrics for Library Evaluation

280  Inthis section we define several concepts that utilize the above measurements to provide a

281  fuller characterization of a library. Neither Edit Fraction nor reagent distribution alone can fully
282  characterize the utility of a library. When sampling a library with a high Edit Fraction but poor
283  representation of some or many library members, any phenotyping regime will be continually
284  sampling only a small subset of the desired variation. Alternatively, even representation of the
285  designs with a poor Edit Fraction will lead to over-sampling of the Burden Population. Different
286  phenotyping approaches will be more or less tolerant to deviations in either Edit Fraction or
287  design reagent distribution. Below, we describe metrics that combine these two measures into
288  ascore that can be used to quickly assess the utility of a given library.

289  Edit Library Richness

290  When sampling cells or isolates from an engineered cell library, the quantity that is typically
291  most important is the number of unique edits represented in the sample. Borrowing from the
292 ecological literature, the term “richness” is used to refer to the number of unique edits in the
293  sample from the library (Levin et al. 2012). The expected richness yu,, of a sample of m cells or
294  isolates from a library of S edits can be predicted given f, the fraction of cells that contain an
295  edit, and the frequencies p; of each edit among the edited cells.

S
o =S — Z(l — fpa)"™
296 =1

297  Aswith other measures, the variance of the sample’s richness can be calculated (supplemental
298  section 1). For some approaches, a variant will need to be observed more than once to provide
299  statistical power for making the genotype-phenotype correlation. In these cases, there is a
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300 tractable generalization for when richness is defined in terms of needing at least n

301  observations of each edit (supplemental section 2). This is useful in cases where the dynamic
302  range of quantification relies on a set number of observations of the edit. There is an accurate
303  approximation for the mean and variance of richness, useful both for its mathematical

304  convenience and because it reduces computational complexity from 0 (n?S?%) to 0(nS)

305  (supplemental section 3).

306  Under the assumption that all designs have equal probability of conferring their edits,

307 measurements of reagent frequencies and of the Edit Fraction can be used to predict the
308  richnessin a variety of circumstances. It is useful to plot the predicted richness against the
309  number of cell isolates evaluated in a screen or selection, producing a “Screener’s Curve”
310  (Figure 3E, 4E and 5C) or a “Selector’s Curve” (Figure 3F, 4F and 5D). These plots serve as a
311  guide to set expectations of what fraction of an edit library will be probed in a screen or
312 selection.

313 The appropriate sample size m from which to make richness predictions will depend strongly
314  onthe particular situation. In some cases, the cost of phenotyping each sample is high, and the
315  sample size needs to be kept small for practical reasons. In other cases, deep sampling is

316  affordable, and many cells can be sampled. To be able to quantify a library’s suitability for

317  screening and selection applications, and to be able to do so in the absence of an estimate of
318  Edit Fraction, two metrics are introduced - the Screener’s Score and the Selector’s Score. The
319  Screener’s Score is defined as the expected Edit Fractional Richness when sampling S times (a
320  1-fold sampling of the library) and with Edit Fraction set to 0.3. The maximum possible value
321 forthe Screener's Scoreis 1 — e~ %3 or 0.26 (supplemental section 4). The Selector’s Score is
322  defined as the expected Edit Fractional Richness when sampling 10° times (a reasonable

323  number of input cells for a selection protocol), with the same Edit Fraction of 0.3. The

324  Selector’s Score can take on any value in the range [0,1]. These scores are intended to be

325  general measures and more detailed information concerning the Edit Fraction would make this
326  estimate more accurate. Figure 4 illustrates how these concepts can be used to quantitatively
327  assess different libraries for screening and selection purposes.

11
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330  Figure 4: Comparative evaluation of two runs of a 10,000 member E. coli library, the runs are named X and Y. A
331 and B: histogram and CDF (blue) of design frequencies as determined by deep amplicon sequencing of the

332 reagents. The red curves correspond to beta distributions fit by Maximum Likelihood Estimation (MLE). The

333 estimates for Reagent CV are 0.79 and 0.90 for runs X and Y respectively. C and D: histogram and CDF (blue) of
334 genomic edit frequencies as determined by pWGS. The red curves are beta distributions fit by MLE, the shaded
335 area spans the 95% confidence interval for the edit CV estimates. The estimated edit CVs are 1.54 and 2.48 for
336  runsXandY respectively. The pWGS assay is a shallow sampling of edits, with an estimated sampling depth of
337 488 and 724 inruns X and Y respectively, which is very small compared to the library size of 10,000. The pWGS
338  assay also enables estimation of Edit Fraction, the estimates are 0.25 and 0.57 for runs X and Y. Run X has a lower
339  Edit Fraction but also a lower edit CV compared to run Y, so determination of which run is better to use in

340  downstream applications will depend on the situation. E: Screener’s curves plotting predicted Edit Fractional

341 Richness against sample size for the two runs. The points on the curves correspond to the Screener’s Scores using
342 the estimated Edit Fractions. For a screen of 20,000 or fewer isolates (twice the library size), run Y is predicted to
343 yield greater Edit Fractional Richness, with its larger Edit Fraction making up for its larger edit CV. F: Selector’s
344 curves, like E but with the x-axis expanded to span a range more typical for a selection application. The points on
345 the curves denote the Selector's Scores, the predicted Edit Fractional Richness when sampling 10° cells. The lower
346  edit CV of run X makes it a better choice for a selection application, despite it having less than half the Edit

347  FractionofrunY.

348  When an estimate of Edit Fraction is available to complement the estimates of design reagent
349  frequencies, the Empirical Screener’s Score and Empirical Selector’s Score can be evaluated in
350  asimilar manner, replacing the fixed assumption of 0.3 Edit Fraction with the empirically

351 determined estimate (Figure 3D). These curves aid in understanding the best phenotypic

352  approaches to take given various library characteristics and experimental goals.

353  Maximizing Library Richness

12
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354  The four variables appearing in the expression for richness motivate different approaches for
355  maximizing the richness of a sample, though in practical applications some of the approaches
356  may be inaccessible (supplemental section 4). The first approach is the obvious one of

357 increasing the sample size — the larger the sample, the greater the richness. The second

358  approachis toincrease the probability f that a design reagent confers an edit - something that
359  canbe achieved, for example, by improving models for gRNA design. The third approach is to
360 increase the library size S. Lastly, the edit CV has a direct impact, with more evenly distributed
361 libraries resulting in greater richness.

362  Forasample of size m from a library of size S with Edit Fraction f, the maximum richness
mf
363  possibleis S (1 — e_T), attained for a perfectly even library where all design reagent

364  frequencies are equal to 1/S (supplemental section 4).
365 Predicting Library Richness

366  The predictor of library richness introduced above requires an estimate of the frequency of
367  every member of the library. In some situations where deep sampling from the library is

368  feasible it will be possible to get good frequency estimates, but for large libraries it is often
369  desirable to be able to predict richness from shallow sampling, to help guide decisions about
370  when to proceed with deep sampling.

371  The problem of predicting future richness from an initial sampling is commonly referred to as
372 the unknown species problem in ecology, one of the earliest solutions was the Good-Toulmin
373  estimator (Good and Toulmin 1956). The Good-Toulmin estimator is a nonparametric

374  approach which works well for predicting up to twice the depth as available in the initial

375  sample but beyond that it becomes unstable. An improved nonparametric approach

376  introduced the use of rational function approximations to produce stable estimates at

377  sampling depths orders of magnitude larger than the initial sample (Daley and Smith 2013) and
378  subsequent work extended the approach to predict richness when requiring more than one
379  observation of each library member (https://arxiv.org/pdf/1607.02804.pdf).

380  Analternative approach is to assume a parametric model to describe the library frequencies. A
381  benefit of the parametric approach is that it can produce good estimates from shallow

382  sampling, as long as the model is a good fit for the underlying data. The beta distribution,

383  described by two parameters, is a natural model to consider and one that is often an excellent
384  fitfor genome editing libraries (Figures 3, 4, S4). When using a model for design reagent

385  frequencies where the total library size is known, a constraint is needed to ensure that the

386  frequencies sum to 1, or equivalently, to ensure their mean is 1/S; as a result, there is only one
387  free parameter. It turns out to be convenient to use the CV as the free parameter. When design
388  reagent frequencies follow a beta distribution, there is a closed-form solution available for the
389  expected Edit Fractional Richness, where Edit Fractional Richness is defined as the Edit

390  Richness scaled by the library size (supplemental section 6). For a beta model, Edit Fractional
391  Richness depends on only two parameters - the CV of the design reagent frequencies c, and

13
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392 the sampling fraction F, defined as mf/S, which can be thought of as the effective fraction of
393  thelibrary thatis profiled in a sampling of m cells (Figure 5). The expected Edit Fractional
394  Richness u,, , where at least n observations of an edit are required, is well approximated as

Br 4 yE 1 \* /1)@ +k-1
Hm,n: I_Z - 1— /C + K-
S v 14+ Fc? 1+ Fe? k

396  Consistent with the expression for Edit Fractional Richness, the number of observations of
397  each editin the sample follows a negative binomial distribution with failure probability set to
398  1/(1 + Fc?) and failure count set to 1/c?. There is also an expression for the variance of
399  richness (supplemental section 6). These expressions can be used with the delta method to
400  account for uncertainty in the estimates of CV and Edit Fraction, enabling construction of
401  confidence intervals for Screener’s and Selector’s curves.

395

402  Supplemental section 9.3 presents a comparison of parametric and nonparametric estimators
403  of richness on some empirical data.

w4 Applying These Estimates and Metrics

405  Massively parallel genome engineered libraries provide rich diversity for a variety of

406  applications. The framework described above can be applied to experimental design, library
407  evaluation and comparing results from different approaches. Below, we describe using this
408  framework to evaluate libraries for utility in either forward engineering or genome discovery
409  applications.

410 Forward Engineering Experiments

411  Forward Engineering of biological systems relies on effective methods to generate beneficial
412 genetic diversity to provide the fuel for evolutionary optimization (Fox and Giver 2011).

413 Screening of isolated genetic variants that drive improved phenotypes becomes an exercise in
414  maximizing richness while managing sampling depth. As noted above, increasing the library
415  sizeis a way of maximizing richness. Shallow screening of large libraries has proven to be an
416  efficient way to maximize the beneficial diversity rate, as most of the genotypes observed are
417  likely to be unique at lower sampling depth (Alvizo et al. 2014).

418  The effects of library size, Edit Fraction and Edit CV for screening experiments is shown in

419  Figure 5. The discovery rates for libraries with differing Edit CVs are plotted, showing the effect
420  to which libraries with higher variance in the distribution of the population forces much deeper
421  screeningin order to continue to observe unique variants. For forward engineers seeking

422 simply to maximize the discovery rate of beneficial diversity, a shallow sampling from a large
423 library is a particularly effective approach. For shallow sampling, the impact of Edit CV on Edit
424 Fractional Richness is modest, as few of the sampled variants are duplicates. Conversely, with
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deeper sampling (where researchers desire observing the highest fraction of designs) the
effect of a larger Edit CV becomes more limiting. As the Edit CV of the library population
increases, it becomes increasingly difficult to observe those designs present at the lower
frequencies in the population. Edit Fraction has a linear effect on screening outcomes - halving
the edit rate while doubling the sample size results in no net change in expected richness.
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Figure 5: Exploration of richness under the assumption that edit frequencies follow a beta distribution. A: Edit
Richness for different library sizes, assuming an Edit CV of 1.5 and an Edit Fraction of 0.6. B: Edit Fractional
richness for the same scenarios as used in A. C: Screener’s curves, showing Edit Fractional Richness as a function
of Fractional Sampling, with different values for edit CV. Fractional Sampling is defined as the product of
sampling depth (the number of cells or isolates sampled) and Edit Fraction divided by the library size. Fractional
Sampling and Edit CV are all that is required to predict Edit Fractional Richness under the beta assumption. D:
Selector’s curves, which are the same figure as C with a log-scale x-axis to enable prediction of Edit Fractional
Richness with the deep sampling that is typically used for a selection experiment

Genome Discovery
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443  While forward engineering is driven largely by the identification of desired phenotypes,

444  genome discovery is often focused on testing specific variants to determine if they drive a

445  phenotype. In this case, a researcher may be more interested in observing all, or most, variants
446  within alibrary several times in order to develop robust hypotheses around genotype-

447  phenotype correlations. In this case, maximizing library coverage may be the most beneficial
448  approach. When employing an isolate phenotyping approach, this will likely require minimizing
449  library size so that the edits can be sampled multiple times. When employing a selection

450  strategy, increasing library size may be appropriate if Edit CV is held low. This will be driven by
451  the number of times a researcher wants to observe edits in the left tail of the distribution. For
452  more precise genotype-phenotype correlations, assessing more libraries containing a smaller
453 number of edits will likely yield more robust results. Strategic use of the Screener’s and

454  Selector’s Scores in planning experiments can maximize outcomes by informing sampling

455  depth needed to robustly associate genotypic changes with phenotypes of interest.

156 Conclusions

457  Astechnology continues to improve, the ability to create larger libraries with precise edits will
458  become commonplace. To date, no common standards exist for describing and evaluating cell
459 libraries. This makes comparing libraries produced using different approaches challenging.
460  Perhaps more importantly, a lack of common standards makes planning experiments and

461  evaluating libraries as fit-for-purpose challenging, and these measures differ from lab to lab.
462  Here, we have proposed a framework for evaluating massively parallel libraries of genome
463  engineered cells. We have provided precise definitions around what constitutes an edit. While
464  previous groups have often looked at the reagents within a complex cell library, we

465  demonstrate the value of measuring the fraction of cells within the pool that actually contain
466  an edit and we introduce methodology to directly profile the distribution of edit frequencies.
467  This provides for robust characterization of library properties without needing to employ

468  expensive and labor-intensive approaches to understand editing at every target site. We

469  introduce the concept of edit library richness to more fully describe a library quantitatively, as
470  the Edit Fraction is insufficient to fully characterize a library’s quality. When generating a

471  complex editing library, it is valuable to have a large percentage of the designs represented in
472  thefinal population, not just have a large Edit Fraction that all contain the same, or a few edits.
473 We also provide models and methods that allow predictions of library quality when some key
474  metrics, typically Edit Fraction, are not available. Development of a robust framework for

475  evaluating complex cell libraries will be necessary to inform which approaches will be useful for
476  phenotypic analysis of a library. Establishment of common methods will facilitate comparing
477  libraries created from various methods. While we have focused on libraries of precise genome
478  edits, the metrics, models and methods proposed here can be applied to any type of library
479  conforming to the general statistical assumptions introduced.

480  Copyright @2022 Inscripta, Inc

481

16


https://doi.org/10.1101/2021.09.23.458228
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.23.458228; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

s2 Supplemental Materials

483  Mathematical derivations and deeper discussion of the metrics are available in the attached
484  Supplement. Code and data used for analyses can be accessed online at
485  https://github.com/InscriptaLabs/cell_lib_eval_paper
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