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Abstract

CAR T cell therapy has transformed clinical care and management of patients with certain hematological
cancers. However, it remains unclear whether the success of CAR T cell therapy relies solely on CAR T
cell engagement with tumor antigen, or if it also requires the stimulation of an individual patient's
endogenous T cell response. Here, we performed combined analysis of longitudinal, single cell RNA and
T cell receptor sequencing on glioblastoma tumors, peripheral blood (PB), and cerebrospinal fluid (CSF)
from a patient with recurrent multifocal glioblastoma that underwent a remarkable response followed by
recurrence on IL13RA2-targeted CAR T cell therapy (Brown et al. 2016). Single cell analysis of a tumor
resected prior to CAR T cell therapy revealed the existence of an inflamed tumor microenvironment
including a CD8+ cytotoxic, clonally expanded and antigen specific T cell population that disappeared in
the recurrent setting. Longitudinal tracking of T cell receptors uncovered distinct T cell dynamics classes
in the CSF during CAR T cell therapy. These included T cell clones with transient dynamics, representing
intraventricular CAR T cell delivery and endogenous T cell recruitment from the PB into the CSF; and a
group of T cells in the cerebrospinal fluid, that tracked with clonally expanded tumor resident T cells and
whose dynamics contracted concomitantly with tumor volume. Our results suggest the existence of an
endogenous T cell population that was invigorated by intraventricular CAR T cell infusions, and combined
with the therapy to produce a complete response.
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We previously reported on a patient with recurrent multifocal glioblastoma, who was treated with CAR T
cells targeting tumor- associated antigen interleukin-13 receptor alpha 2 (IL13Rα2) and who sustained a
complete response despite non-uniform antigen expression and after 7.5 months recurred with tumors
arising at new sites (Brown et al. 2016). This patient’s disease course— a remarkable regression of all
brain and spinal tumors following CAR T cell therapy— provided the opportunity to characterize cancer
immune dynamics in one patient and two clinical settings — during response and recurrence (Fig. 1a).
Here, we performed combined immunogenomics analyses on single cell, bulk RNA and T cell receptor
(TCR) sequencing data from this patient’s tumor, CAR T cell infusion products, cerebrospinal fluid (CSF),
and peripheral blood (PB) samples collected longitudinally over the course of CAR T cell therapy.

RESULTS

Changes in tumor antigen expression and GBM cellular phenotype following CAR T cell therapy

Immunohistochemistry of tumor associated antigens (IL13Rα2, HER2, and EGFR) on pre- and post-CAR
T cell treated tumors revealed a reduction in IL13Rα2 and HER2, and a gain in EGFR expression, and
highlighted the diversity of glioma associated antigen surface expression characteristic in GBM tumors
(Schäfer et al. 2019). This supported a response to IL13BBζ-CAR T cells targeting of antigen-positive
populations with the ultimate emergence of antigen-low or -negative tumor relapse (Fig. 1b).
Simultaneously, chromogen staining of immune cell markers (GFAP, CD4, CD8, and CD68) uncovered
changes in the tumor immune landscape, including a loss of CD8+ T cell infiltrates at relapse (Fig. 1c).

We generated 5′ single cell RNA sequencing (scRNA seq) and T cell receptor sequencing (TCR seq)
libraries from two tumors for this patient – one pre-treatment tumor (Pre 1) and a second tumor (Post 2),
harvested during disease recurrence (Fig. 1c) and retained cell transcriptomes from a total of 8152 cells,
with paired TCR sequences in 1015 out of 1205 T cells (84%; Fig. 1d, Extended Data Fig. 2a-d,
Methods). We identified six cell clusters including two malignant/neoplastic clusters, and one cluster each
for monocytes, T cells (clustered with NK cells), vascular cells, and oligodendrocytes. Differences in the
relative frequencies of malignant and immune cell types were discovered in pre and post treatment
tumors: a reduction of T cells (37.6% Pre, 1.8% Post) and increases of monocytes (12.3% Pre, 21.1%
Post), and malignant cells (46.3% Pre, 70.4% Post) (Fig. 1e).

To explore tumor intrinsic genetic factors that could modulate antigen expression and the tumor immune
environment, we focused our analysis on single cell RNA seq gene expression profiles of 5091 malignant
cells (Fig. 1g). Meta module analysis of malignant cells identified changes in GBM cellular phenotypes in
pre- and post- treatment tumors (Methods); including a transition from a mesenchymal-like (MES)
phenotype, to a mixed MES-like, neural- progenitor-like (NPC) and astrocyte-like (AC) phenotype (Fig. 1f,
Extended Data Fig. 1c). We observed an increase in EGFR surface antigen expression
(log2(FC(Post/Pre))=1.05) associated with the AC-like post-treatment tumor (Extended Data Fig. 2e),
consistent with results demonstrating that the AC-like GBM phenotype is driven by high EGFR
amplification (Verhaak et al. 2010; Neftel et al. 2019), while IL13Ra2 expression is associated with a
mesenchymal gene expression (Brown et al. 2013). Gene fusion analysis on bulk RNA sequencing in pre
and post treatment tumors confirmed the presence of FGFR3-TACC3 oncogenic driver (Singh et al.
2012), with amplification of this gene fusion increasing at relapse (Extended Data Fig. 1b).

Combined analysis demonstrated this patient’s malignant cells exhibited mixed GBM cellular phenotypes,
heterogeneous tumor antigen expression and gene expression that clustered entirely by treatment status
(Fig. 1d,g, Extended Data Fig. 1a): this substantiates existing results that demonstrate intra-patient and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.22.460392doi: bioRxiv preprint 

https://paperpile.com/c/usNe8b/4Zrbt
https://paperpile.com/c/usNe8b/lVCG0
https://paperpile.com/c/usNe8b/r0HO4+OZHMD
https://paperpile.com/c/usNe8b/XLh6Q
https://paperpile.com/c/usNe8b/tV9v5
https://paperpile.com/c/usNe8b/tV9v5
https://doi.org/10.1101/2021.09.22.460392
http://creativecommons.org/licenses/by-nc-nd/4.0/


intra-tumoral diversity present in GBM. Moreover, changes in GBM phenotype and tumor associated
antigen expression suggest that CAR T cells targeted IL13Rα2 on MES-like tumors, which was followed
by recurrence of EGFR positive tumor dominant in AC-like cells; and highlight a possible role of CAR T
cells in sculpting GBM cellular phenotypes through antigen targeting.

Tumor transcriptional changes reveal a transition in the TME from inflamed to immune excluded

We then investigated tumor intrinsic factors that could modulate the tumor immune environment. We
performed differential gene expression analysis of pre- and post-treatment malignant single cells —
genes upregulated in pre-treatment malignant cells were enriched in major histocompatibility complex
(MHC) class I antigen processing and presentation (TAP1, B2M, HLA; Adjusted p-value= 4.8 x 10-11) and
type I IFN response (IRF1, STAT1; Adjusted p-value = 2.4x10-11), suggesting that although this patient
was rapidly progressing prior to the initiation of CAR therapy there was a pre-existing antitumor immune
reactivity, with induced interferon-γ (IFNγ) signaling and subsequent PD-L1 upregulation (Adjusted
p-value = 1.0 x 10-11) (Fig. 1h, Extended Data Fig. 1d). Furthermore, gene expression pathways
associated with reduced immune cell infiltration and immunosuppression, namely extracellular matrix
(ECM) organization (COL5A3, FN1; Adjusted p-value = 4.1 x 10-11), hypoxia response (HIF1A Adjusted
p-value = 2.1 x 10-2), were upregulated in the recurrent tumor. Somatic variant calling on pre-treatment
tumor whole exome sequencing revealed a high tumor mutation burden (TMB) (93 mutations/1.4 Mbp) for
GBM (Hodges et al. 2017) (Fig. 1i). Analysis on post-treatment tumors demonstrated a reduction in tumor
immunogenicity with a two-fold TMB reduction, a contraction of tumor neoantigen load (Fig. 1j,
Supplementary Table), and a loss of a clonal population (Fig 1k, Methods). These results suggest the
presence of multiple tumor intrinsic mechanisms that led to tumor recurrence, including the loss of the
CAR-targetable antigen along with compromised endogenous T cell recognition, effector function and
immune cell exclusion.

Evidence of tumor resident T cell activity prior to CAR therapy

To understand whether T cells present in the pre-treatment tumor constituted the potential for tumor
reactivity, we focused on single cell analysis of tumor infiltrating lymphocytes (TILs). By re-clustering 1192
TILs (excluding NK cells; Extended Data Fig. 3a), we identified five distinct T cell clusters containing cells
from pre- and post- treatment tumors: two mixed CD4+/CD8+ clusters of naïve/memory cells (IL7R,
CD44), memory/activated cells (CD44, JUNB), and three CD8+ clusters of activated/exhausted cells
(IFNG, PDCD1, HAVCR2, LAG3), exhausted cells (PDCD1, HAVCR2, CTLA4) and anergic cells (CBLB,
STAT3) (Fig. 2a, Extended Data Fig. 3b,c). The composition of TILs shifted from a mixture of mostly
activated/exhausted effector T cells (Pre: 67.4%, Post 3.5%) to a mixture of mostly naïve/memory T cells
(Pre: 25.9%, Post: 95.3%).

We applied diffusion maps (Haghverdi, Buettner, and Theis 2015) to visualize phenotype and order cells
in pseudotime: the first diffusion component (DC) separated activated/exhausted cells and memory
activated cells and was correlated with T cell cytotoxicity genes (GZMA, GZMB, PRF1; Adjusted
p-value=3.0 x 10-56, 6.8 x 10-113, 4.6 x 10-58), while the third DC separated exhausted and
activated/exhausted cells from anergic cells and differentially expressed genes associated T cell
immunological synapse impairment (Jeon et al. 2004) (CBLB; Adjusted p-value=1.4 X 10-25) (Fig 2c, d).
Pre-treatment TILs with high expression of T cell exhaustion markers (PDCD1, LAG3, HVAC) and
activation markers (IFNG, JUNB) were associated with CD8+ activated/exhausted cells and suggest the
potential for endogenous T cell tumor reactivity (Fig. 2d, Extended Data Fig. 3b,c).
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To determine whether pre-treatment TILs had the potential for a productive, tumor specific immune
response, we explored the link between T cell clonal expansion, phenotype, and tumor specificity. We
measured clonality using the Gini index from single cell TCR sequencing data (Methods) and observed
higher clonal expansion in activated/exhausted and exhausted CD8+ T cells compared to all other T cells
(Fig. 2e). We identified 9 expanded CD8+ clonotypes (≥10 cells) present in the pre-treatment tumor (Fig
2f). We numbered the top eight clonotypes in pre- and post-treatment tumor as clonotypes 1-8 and
clonotypes 9-15 respectively, with clonotype 2 amongst the top clonotypes in both tumors. This shared
clonotype encoded for T cells that transitioned phenotypes over treatment course — from
activated/exhausted, exhausted or anergic phenotypes to a memory activated phenotype at time of
relapse. Although only single-positive (CD39-CD103+) and not double-positive (CD39+CD103+) for
tumor-reactive markers (Duhen et al. 2018), the highly expanded pre-treatment top clonotypes exhibit a
CD8+ activated/exhausted phenotype. Notably, the proliferation of most expanded clonotype 1 was
enabled by expression of TCF-1, a marker associated with progenitor exhausted CD8 T cells with
self-renewal potential (Chen et al. 2019; Siddiqui et al. 2019; Beltra et al. 2020; Im et al. 2016)(Extended
Data Fig. 3f).

We next used GLIPH (grouping of lymphocyte interactions by paratope hotspots) to identify TIL TCR
groups most likely to share antigen specificity (Huang et al. 2020). We found two GLIPH specificity groups
with expanded clonotypes (size≥10), including one GLIPH group (RR%NWESTDT) consisting of three
unique clonotypes that included clonotype 2 (Extended Data Table 1); cross reference with public TRB
sequences indicated that no clonotype had viral specificity (Fig. 2g, h, Extended data Table 2). Similar to
recent studies (Yost et al. 2019), we observed that clonally expanded TILs and T cells within a GLIPH
group are likely to share a common phenotype, in this case activated/exhausted. Pre-treatment TILs
group with respect to antigen-specificity and are clonally expanded prior to CAR T cell therapy. We
therefore hypothesize the existence of a pre-existing, antigen specific, though ineffective T cell immune
response.

To further characterize tumor immune composition, we re-clustered 1457 tumor associated macrophages
(TAMs) and applied diffusion maps (Fig. 2i); the first two diffusion components showed enrichment by
treatment status of either upregulation of MHC Class II antigen processing (DC1; Pre), or
lipopolysaccharide (LPS) stimulation pathways (DC2; Post) (Fig. 2j). Upregulation of HLA-DR expression
(Fig. 2k) and stimulation of MHC II in pre-treatment TAMs, combined with the presence of clonally
expanded T cells highlight a coordinated cellular immune response in the pre-treatment tumor,
transactivated through reciprocal production of IFNγ.

Combined single cell analysis of malignant and immune cell populations demonstrated that this patient’s
pre-treatment tumor — in contrast with the relapsed tumor — was highly immunogenic and infiltrated with
clonally expanded, cytotoxic CD8+ T cells that showed evidence of tumor specificity. Notably, a sustained
regression of progressing lesions located in the brain and spine (T4 Left temporal, superior gyrus; T5 Left
temporal, middle gyrus; T6 Right frontal lobe; T7 Olfactory groove; T8 Lumbar Spine) that occurred
following intraventricular infusions of  IL13Rα2-CAR T cells, suggests that the therapeutic effect was likely
CAR T cell mediated. Since we were unable to biopsy and perform similar immunogenomics analyses on
these lesions, our objective turned to characterizing this patient’s T cell mediated immune response in
peripheral compartments. We hypothesized that tracing T cell dynamics in the CSF and PB during the
treatment course could elucidate the CAR and endogenous T cell contributions towards tumor targeting
and sustained clinical response.
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Tracing dynamics in the CSF and PB reveal high frequency T cell dynamics

To track and characterize T cell dynamics in peripheral compartments, we performed bulk T cell receptor
beta chain (TRB) sequencing on the CAR T cell product, along with blood and cerebrospinal fluid samples
collected longitudinally during treatment (21 timepoints over 228 days, 1057419 TRB sequences) (Fig.
3a,b, Extended data Fig. 4a). We analyzed high-abundance TRBs (Extended Data Fig. 4b-d, Methods),
which are less likely to be artifacts of undersampling and to address the difference in signal to noise ratio
between the different compartments (Fig 3c). The application of shape-based clustering on high
frequency T cell receptor signals revealed eight dynamics classes that emerged in the PB and in the CSF
(Fig. 3d,e, Extended Data Fig. 5a,b, Methods). High frequency T cell clones in the CSF clustered into four
distinct patterns; peak dynamics (CSF:1; 1513 TRBs) consisting of transient, high frequency T cell clones
present at a single timepoint; persistent dynamics (CSF:2; 37 TRBs) include T cell clones detected at
multiple time points over the course of therapy; contracting dynamics (CSF:3; 1178 TRB) that decreased
in frequency over the treatment course and reactivated dynamics (CSF:4; 134 TRB), whose decrease and
expansion coincided with tumor regression and relapse (Fig. 3d, Extended Data Fig. 4e,f). In the PB,
where the signal to noise ratio was lower than in the CSF, T cell clonal dynamics exhibited four patterns;
one included persistent high frequency dynamics (PB:2 135 TRB), peak dynamics (PB:1, 7 TRB), and T
cell clones that expanded and then contracted during recurrence (PB:4; 1 TRB) or expanded in
recurrence (PB:3; 9 TRB) (Fig. 3e, Extended Data Fig. 4e,f).

Intraventricular CAR T infusions introduce new T cell diversity into the CSF

We further characterized high frequency T cell dynamics in the CSF to examine whether locoregional
delivery of CAR T cells could modulate T cell immunity in the CNS. We calculated the frequency of new T
cell receptor clones over the treatment course and found that peak dynamics, in contrast to other high
frequency CSF dynamics, introduced new T cell receptor diversity into the CSF (Fig. 3f). Namely, the
peak dynamics’ T cell receptor repertoire was primarily composed of TRBs that overlapped with the PB
following every infusion (24% CAR and PB, 39% PB only, 2.4% CAR only), suggesting migration from the
PB into the CSF (Fig. 3f, Extended Data Fig. 6f, Methods).

Previous results have highlighted that intraventricular CAR T cell infusions drive the amplification of
cytokines related to T cell activity and chemoattraction in the CSF (Brown et al. 2016). We hypothesize
the peak dynamics represent CAR T cell infusions and new T cell recruitment from the PB—and highlight
CAR T cell potential to transiently modulate endogenous T cell activity in the CSF. Compared to peak
dynamics, T cell clones in the persistent, contracting and reactivated dynamics matched more with TRB
sequences from either CAR T infusion products or tumor resident T cells (CSF:1 27%, CSF:2 62%, CSF:3
31%, CSF:4 51%) (Extended Data Fig. 6g). We conjecture the locoregional expansion and contraction of
these T cell clones in the CSF associate with tumor antigen exposure and killing. Despite sustained
intraventricular infusions of CAR T cells, richness of the CSF TRB repertoire decreased during tumor
regression, suggesting the existence of a tumor-targeting T cell dynamics class to explain this loss of T
cell diversity (Extended Data Fig. 6ab).

T cell clonal dynamics in the CSF covary with tumor regression

To evaluate tumor killing potential of locally expanded T cells, we sought to identify whether high
frequency T cell clones in PB or CSF tracked with tumor volume regression as an indicator of T cell
mediated immunity targeted toward regressed tumors. We performed covariance independence testing of
each T cell clone timeseries with respect to tumor volume during regression (cycles 8-16) and found that
CSF contracting and reactivated T cell dynamics covaried with tumor volume with high probability (CSF:3
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p=0.91, CI=-0.02/+0.02; CSF:4 p=0.67, CI = -0.08/+0.07) (Fig. 3g, Methods). Strikingly, five of the top 8
expanded pre-treatment clonotypes traced with contracting and reactivated dynamics (CSF:3 clonotypes
3,6,7; CSF:4 clonotypes 2,4) (Fig. 3h,i).

Tracing pre- and post-treatment TILs in peripheral compartments

To explore the extent to which pre-treatment tumor resident T cells could constitute the basis for a
secondary T cell response targeting regressed tumors, we traced T cell clones from pre- to post-treatment
tumors and in peripheral (PB) and central (CSF) immune compartments by matching clonotypes based on
TRB sequences. We calculated signal to noise ratio of matched TRBs in tumor and peripheral
compartments and found that a large proportion of TILs were maintained at low frequency in blood
compared to the CSF (CSF:S/CSF:N = 1.05; PB:S/PB:N = 0.147) (Fig. 4a,b, Extended data Fig. 6d). Most
of the clonally expanded TILs (11 out of 15 top clonotypes)—with the exception of clonotype 13 that
expanded in PB during tumor regression and trafficked to the post-treatment tumor— overlapped with PB
noise dynamics (Fig 3i). Conversely, in the CSF, these T cell clones—matched with CD8+
activated/exhausted, exhausted and anergic tumor resident phenotypes—and tracked with high frequency
contracting or reactivated dynamics (Pre TIL: 5/8; Post TIL: 3/8 top 8 clonotypes) (Fig. 4a,c, Extended
Data Fig. 6d). The most clonally expanded pre-treatment clonotype (clonotype 1), in contrast, appeared in
the PB at low frequencies and was absent in the CSF, suggesting this clonotype might not have been
selected for due to lack of antigenic specificity in the case of a secondary immune response.

To characterize antigen specificity shared between TILs and expanded circulating T cells in CSF and PB,
we calculated the intra and inter-compartment connectivity of GLIPH-identified TCR antigen specificity
groups (Fig. 4d, Methods). Our analysis showed greater antigen specific connections between pre- and
post-treatment TIL and CSF high frequency clones —highlighting that shared antigen specificity is more
directly observed between tumor TILs and CSF compared to PB. To compare clonal expansion and
dynamics of GLIPH groups in the periphery, we aggregated the cumulative frequencies for each GLIPH
connection between tumor and CSF or PB. T cell clones in GLIPH specificity group RR%NWESTDT
traced through CSF reactivated dynamics (CSF:4) — contracting with spinal tumor regression and
re-expanding with relapse tumor growth (Fig. 4e). Notably, it included a shared, clonally expanded
clonotype (2), present in both pre and post treatment tumors. Investigation of T cell phenotypes per
GLIPH group showed that most CSF GLIPH groups expanded at the tumor exhibited mixed
activated/exhausted phenotype, while PB GLIPH groups exhibit memory phenotype with no expansion
(Fig. 4f). Together, these results suggest the existence of shared antigens and the potential to observe the
dynamics of immunological memory in the CSF.

Tracing clonality and antigen specificity of tumor resident T cells in peripheral compartments highlight
differences in anti-tumor dynamics in peripheral and central adaptive immune compartments. These
results suggest that the peripheral blood represents persistent maintenance of clonally expanded,
cytotoxic TILs, similar to previous studies (Chu et al. 2019). By contrast, the CSF reveals local T cell
mediated immunity with potential cytotoxicity towards shared antigens in the (resected) pre-treatment
tumor and responsive tumors. While this phenomenon of higher T cell clone sharing between brain
lesions and CSF than PB was observed in multiple sclerosis (Salou et al. 2015) an antigen-driven
autoimmune neurological disease, this is the first tracking of lesion repertoire comparing peripheral and
central TCR repertoire for glioblastoma.
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DISCUSSION

Here, we performed combined single cell and TCR clonotype analysis on GBM tumors, cerebrospinal fluid
and peripheral blood samples collected longitudinally from a patient with multifocal glioblastoma treated
with IL13Rα2-targeting CAR T cells that exhibited a complete response to therapy and then subsequently
recurred at new sites. This patient’s disease course provided the opportunity to uncover dynamics of T
cell mediated immunity during response and then subsequent recurrence. Our analysis revealed
hallmarks of an inflamed tumor immune microenvironment pre-CAR T cell therapy — including the
presence of CD8+ cytotoxic, clonally expanded and antigen-specific T cells that tracked in the
cerebrospinal fluid. These expanded then subsequently contracted with tumor volume, or re-expanded
upon tumor recurrence, suggesting the existence of a T cell immune response that combined with CAR T
cells to target unresected and progressing spinal and brain tumors. Although regressing tumors
responding to CAR T cell therapy could not be queried to elucidate changes in the TME associated with
response, the evaluation of post-CAR recurrent tumors provides insights into tumor features that are less
responsive to CAR T cell therapy. Our demonstration that a productive CAR T cell response, as achieved
in this unique responder, is associated with the induction of endogenous immune reactivity provides a
paradigm for improving CAR T cells activity against solid tumors generally. Other examples of T cell
therapy modifying host immune responses to achieve dramatic clinical responses have been observed
(Hunder et al. 2008; Hegde et al. 2020), including a recent report demonstrating alterations in T cell
repertoires and antibody reactivity following HER2-CAR T cell therapy that was associated with durable
remission of a patient with rhabdomyosarcoma (Hegde et al. 2020). Our findings also suggest that an
inflamed tumor microenvironment may be more responsive to CAR T cell therapy, as has been shown for
checkpoint immunotherapy (Ayers et al. 2017), a notion that requires further clinical confirmation.

In this study, we demonstrate that liquid biopsy of the cerebrospinal fluid provides a safe and effective
strategy for real-time monitoring of immune dynamics in the central nervous system (Miller et al. 2019). T
cell dynamics associated with intraventricular infusions of CAR T cells and tumor reactive T cells were
more distinguishable in the CSF in contrast to the PB. We propose that the CSF is an informative liquid
biopsy, and could be used in combination with methods that investigate TCR-antigen specificity (Scheper
et al. 2019; Gee et al. 2018) to capture and understand locoregional T cell dynamics that are more closely
related to tumor microenvironment in patients with CNS disease. As observed in the recurrent tumor, the
lack of T cell activity and antigen specificity presents a problem in the field of immunotherapy; however,
monitoring the evolution of antigen specificity via the CSF may guide the optimization of combinatory
targeted immuno- or chemotherapy. Increased cytokine activity, T cell recruitment, and anti-tumor efficacy
during intraventricular delivery emphasized the therapeutic potential to manipulate CNS immunity via the
CSF, prompting future investigation of its effect on T cell priming in the CNS meningeal lymphatic system
(Louveau et al. 2015, 2018) and potential synergy with lymphoangiogenic enhancement to increase T cell
priming (Song et al. 2020).

METHODS

Human participants

Tumor, CSF and blood samples were collected from a patient participating on our IL13Ra2-CAR T cell
phase I clinical trial (NCT02208362 and single subject protocol), with treatment history and clinical
outcome previously reported1. This clinical study was approved by the City of Hope Institutional Review
Board and the research participate gave written informed consent.

Tumor dissociation
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Leftover fresh tumor specimens were obtained at the time of tumor resections as necessitated by clinical
need. Tumors were dissociated by mincing and digesting with the Tumor Dissociation kit (Miltenyi Biotec)
per the manufacturer’s instructions using a gentleMACS dissociator (program h_tumor_01 and
h_tumor_2). DMEM F/12 supplemented with B-27serum and heparin was used in place of RPMI. The cell
suspension was then passed through a 40-μm filter and pelleted by centrifugation at 300g for 10 min.
Cells were then resuspended in Crystor10 (Biolife Solutions, Inc) and frozen in 0.5ml per cryovial and
subsequently stored in liquid nitrogen freezer until further processing. Freshly dissociated tumor cells
were then thawed and processed for scRNA-seq.

Flow cytometry and immunohistochemistry

Slides are first deparaffinized on the Ventana Discovery Ultra. Once the paraffin is removed from the
slides and tissue, the tissue gets treated with antigen retrieval and heat to open the binding sites for
linking. Once the binding sights are available the tissue is incubated with the first primary antibody. Next,
the linking secondary antibody is applied to the slides to link the primary antibody to the chromogen. Now
the chain can be completed with chromogen, which in this case is CD66B in DAB, CD8 in Purple, CD4 in
Teal, CD68 in RED, and GFAP in Yellow. Lastly the slides are counter stained with Hematoxylin to show
the surrounding cell morphology. These steps are all completed on a Ventana Discovery Ultra staining
machine. The last step is to coverslip each slide for tissue longevity and increased visualization under a
bright field microscope. Each antibody is stained to completion before the next antibody is started. For
IL13RA2 (1:600, R&D Systems AF146), HER2 (1:200, Dako A0485), and EGFR (1:100, Invitrogen
28-0005) staining, formalin-fixed, paraffin-embedded tissues were cut at 5uM and stained using
Envision+System-HRP (DAB) chemistry and AutostainerPlus hardware (both Dako) by the City of Hope
Pathology Core shared resource. Cells were stained with fluorochrome-conjugated antibodies specific for
human CD3, CD45, CD11b, HLA-DR (BD Biosciences), PD-1 (BioLegend), and with DAPI (Invitrogen)
used as a viability dye. Samples were then run on a MACSQuant Analyzer (Miltenyi Biotec Inc.) and
analyzed using FlowJo (v. 10.7) (FlowJo, LLC).

Tumor volume and interpolation

The last dynamic phase of the dynamic contrast enhanced (DCE) sequence was used to identify lesions.
Regions of interest (ROIs) were drawn manually on each slice where the lesion was visible in the
transaxial plane, covering the enhancing and non-enhancing components of each lesion. Regions of
normal vasculature were avoided whenever possible. The sum total number of voxels in the ROI was
used as a measure of total contrast enhancement (CE) and of total tumor volume. Only the voxels inside
the manual ROI that showed a confidence level of at least 80% in the DCE kinetic model fit were included
in the final tumor volume (Sahoo et al. 2013). This approach includes both early- and late-phase
enhancing voxels and excludes voxels with low or noisy enhancement. To interpolate tumor volume
between observed timepoints, we used linear interpolation implemented in SciPy (v.1.2.3) (Virtanen et al.
2020).

Bulk RNA sequencing

RNAs were converted to cDNA libraries using Ribo-ZeroTM rRNA Removal Kits (Illumina) and TruSeq
RNA Sample Preparation Kit V2 (Illumina) following manufacturer’s recommendations. Libraries were
sequenced on the Illumina HiSeq 2500 with paired-end 101 bp read mode at the City of Hope Integrative
Genomics Core facility.

Exome sequencing
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Exome capture was performed and sequenced on an Illumina HiSeq 2500 with paired-end 100-base pair
(bp) sequencing, with an average 100-fold coverage. Illumina adapters were added to genomic DNA to
make a library for paired-end sequencing (Illumina Inc., San Diego, CA). Fragments with approximately
200–250 bp insert DNA were selected and amplified. The library was hybridized to biotinylated cRNA
oligonucleotide baits from the SureSelect Human All Exon kit V6+somatic probe sets (Agilent
Technologies Inc., Santa Clara, CA), and amplified for 12 cycles. After purification, the library was paired-
end (100+100bp) sequenced using an Illumina Hiseq 2500 (Illumina Inc., San Diego, CA).

HLA Typing

High-resolution HLA typing was performed by City of Hope’s HLA Laboratory using a combination of the
following methods (resolving common ambiguous genotypes): sequencing-based typing, PCR- SSOP
(sequence-specific oligonucleotide probes), and/or PCR-SSP (sequence-specific primers). Different
alleles from the same G groups were considered matched.

Bulk TCR sequencing

Survey level sequencing of the TRB gene was performed using the immunoSEQ platform (Adaptive
Biotechnologies) on genomic DNA extracted from peripheral blood, cerebrospinal fluid and CAR T
products. Genomic DNA input amount ranged from 395.702 ng to 2039.886 ng in peripheral blood
samples, 99.816 ng to 593.866 ng in the cerebrospinal fluid, and 399.510 ng to 400.466 ng in CAR T
products (Extended data, Table). Raw data was exported from the immunoSEQ Analyzer; only data from
productive TCR rearrangements was considered in downstream analysis. On average, 110943 TCR
templates were detected from peripheral blood samples (range 46139–255259), representing an average
of 84962 unique clonotypes (range 36396–203184). For cerebrospinal fluid samples, on average 2218
TCR templates were detected (range 123–9234), representing an average of 1800 unique clonotypes
(range 116– 6736). For CAR T products, on average 73207 templates were detected (range
65678–78528), representing an average of 36051 unique clonotypes (range 23654–48816).

Preparation of scRNA-seq libraries

The single cell RNA-seq and TCR-seq libraries were prepared using the 10x Single Cell Immune Profiling
Solution Kit, according to the manufacturer’s instructions. Cells were washed once with PBS containing
0.04% weight/volume bovine serum albumin (BSA) (InvitrogenTM UltraPure BSA, Cat. No. 2616) and
resuspended in PBS to a final concentration of 100–1000 cells per μl as determined by hemacytometer.
Cells were captured in droplets at a targeted cell recovery of 10,000 cells. Following reverse transcription
and cell barcoding in droplets, emulsions were broken and cDNA purified using Dynabeads MyOne
SILANE followed by PCR amplification (98 °C for 45 s; 13–18 cycles of 98 °C for 20 s, 67 °C for 30 s, 72
°C for 1 min; 72 °C for 1 min). Amplified cDNA was then used for both 5′ gene expression library
construction and TCR enrichment. For gene expression library construction, 40 ng of amplified cDNA was
fragmented and end-repaired, double-sided size-selected with SPRIselect beads, PCR-amplified with
sample indexing primers (98 °C for 45 s; 14–16 cycles of 98 °C for 20 s, 54 °C for 30 s, 72 °C for 20 s; 72
°C for 1 min), and double-sided size-selected with SPRIselect beads. For TCR library construction, TCR
transcripts were enriched from 2 μl of amplified cDNA by PCR (primer sets 1 and 2: 98 °C for 45 s; 10
cycles of 98 °C for 20 s, 67 °C for 30 s, 72 °C for 1 min; 72 °C for 1 min). Following TCR enrichment,
5–50 ng of enriched PCR product was fragmented and end-repaired, size-selected with SPRIselect
beads, PCR-amplified with sample-indexing primers (98 °C for 45 s; 9 cycles of 98 °C for 20 s, 54 °C for
30 s, 72 °C for 20 s; 72 °C for 1 min), and size-selected with SPRI select beads.
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Single cell sequencing

The single cell RNA libraries were sequenced on an Illumina NovaSeq to a minimum sequencing depth of
25,000 reads per cell using read lengths of 26 bp read 1, 8 bp i7 index, 98 bp read 2. The single-cell TCR
libraries were sequenced on an Illumina MiSeq or NovaSeq to a minimum sequencing depth of 5,000
reads per cell using read lengths of 150 bp read 1, 8 bp i7 index, 150 bp read 2.

Bulk RNA-seq data processing

Using cutadapt (version 1.9.1) (Martin 2011) , raw RNA-Seq reads were quality trimmed (cutoff=19, 5’ and
3’, single-end mode) before adapters trimming in pair-end mode. Fusions were detected per sample using
two steps: Potential fusion junctions were found during kallisto (version 0.46.0) pseudoalignment to
GRCh38 cDNA (Ensembl release 96) using fusion mode (Bray et al. 2016), then fusion junctions were
filtered by pizzly (https://github.com/pmelsted/pizzly) based on Gencode genome annotation (version 30)
to generate a FASTA file of fusion transcripts (Melsted et al., n.d.). After filtering redundant fusions, the
combined set of fusion transcripts from multiple samples were added to GRCh38 cDNA to build a new
kallisto index, used for kallisto re-quantification of transcript and fusion abundance with 100 bootstraps
per sample. Our fusion quantification workflow available at https://github.com/vdjonsson/rna-seq-pizzly
was written with Snakemake (Köster and Rahmann 2018). Normalization and differential analysis were
performed with sleuth (version 0.30.0) using gene-level p-value aggregation of likelihood ratio test
comparing a full model containing treatment label and a reduced model ignoring treatment label (Pimentel
et al. 2017; Yi et al. 2018). For downstream analysis, the transcript count matrix, in Transcripts per
Kilobase Million (TPM), was summed per gene and transformed with log2(TPM+0.5). Log-transformed
gene-level values were averaged per condition before taking the difference (Pre - Post) to calculate
log2(FC). Significantly up- or down-regulated genes with qval < 0.05 and |log2(FC)| > 1 were enriched for
Gene Ontology Biological Processes using GSEApy (version 0.9.6) (Fang n.d.).

Data processing of exome libraries

The paired-end sequences from tumor and normal samples were aligned to GRCh38 (hg38) using
Novoalign (http://www.novocraft.com) with default settings. Only reads aligned to a unique genomic
location were kept for further analysis. Aligned reads were piled up using Samtools version 0.1.19.
Variants (SNPs and short indels) were identified using MuTect2 v2 and further annotated with the GATK.
Variant functional annotation was performed using AnnoVAR. Germline copy number variants (CNV) were
identified using CoNifer, and virtual somatic copy number variants were identified using Bioconductor
package DNAcopy. Neoepitopes were identified using pVAC-seq and a peptide–MHC pair was
considered a neoepitope if the peptide was found to bind to the MHC allele with less than 500 nM binding
strength and the wild-type cognate peptide bound to the same allele with a binding strength greater than
that of neoepitope. Tumor clonal analysis was performed using lumosVar v2 (Halperin et al. 2019).

Preprocessing of scRNA-seq data

The cellranger count (10x Genomics, version 3.0.1) was used to align scRNA-seq reads to GRCh38
reference genome, generate gene count matrix, and filter barcodes. We used filtered gene-barcode
matrices containing only cell barcodes determined by cellranger’s cell- calling algorithm that utilizes total
UMI threshold and RNA profile model. Pre1 had a median of 1983 genes, 5092 unique transcripts per cell
from a total of 3526 cells. Post2 had a median of 1463 genes, 2987 unique transcripts per cell from a total
of 7116 cells.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.22.460392doi: bioRxiv preprint 

https://paperpile.com/c/usNe8b/8C3x
https://paperpile.com/c/usNe8b/f1szw
https://paperpile.com/c/usNe8b/tXBui
https://paperpile.com/c/usNe8b/MyJ6g
https://paperpile.com/c/usNe8b/lfEaA+cbzDX
https://paperpile.com/c/usNe8b/lfEaA+cbzDX
https://paperpile.com/c/usNe8b/CVfU
https://paperpile.com/c/usNe8b/x4sb9
https://doi.org/10.1101/2021.09.22.460392
http://creativecommons.org/licenses/by-nc-nd/4.0/


Processing of single cell count matrix

Single cell data processing was performed with Scanpy (version 1.4.4) (Wolf, Angerer, and Theis 2018).
We removed genes with zero expression, miRNA genes with “MIR” prefix, and genes annotated with
lincRNA or antisense gene biotypes to give a final set of 17434 genes. Gene matrix was total-count
normalized to 10000 reads per cell and then log transformed. We removed cells with less than 300 genes,
less than 1000 total UMI counts, greater than 20% mitochondrial RNA, or two standard deviation below
average complexity (ratio of UMI count to gene count). After filtering, 8152 out of 10642 cells remained in
the combined dataset (76.6%). With score_genes function, each cell was assigned a heat-shock score
calculated using genes annotated with Gene Ontology biological processes term ‘response to heat’. Using
score_cell_cycle function, we assigned each cell a cell cycle phase based on S and G2M scores
calculated with previously published gene set (Tirosh et al. 2016). To remove batch effected and other
unwanted biological variation, we regressed out total UMI count, percent mitochondrial RNA, S score,
G2/M score, and heat-shock score from the log- normalized matrix. Doublets identified per sample using
Scrublet40 were excluded from downstream analysis of cell subpopulations. Additionally, we trained a
linear-decoded variational auto-encoded model (scVI version 0.4.0) on raw counts to obtain normalized,
batch corrected, imputed data (Lopez et al. 2018). For visualization, we used the resulting mean of the
negative binomial distribution following regressing out of unwanted variation (cell cycle, % mitochondrial
RNA, heat-shock).

Dimension reduction and clustering

For the whole or subset (Malignant, T cell, Monocyte) data, we performed the following dimension
reduction procedures. The regressed log-normalized data is decomposed by principal component
analysis. The number of principal components (PCs) to retain was selected using knee-detection in
kneed. These selected PCs were used as input to compute a neighborhood graph of k=15 nearest
neighborhoods (method=umap). Leiden clustering algorithm was applied to the neighborhood graph over
a range of resolution (0.1-1.2) and the optimal clustering resolution was selected for a high mean
silhouette score. Using published gene signatures for glioblastoma and general immune populations
(Azizi et al. 2018; Darmanis et al. 2017), clusters were annotated based on average detection rate
(non-zero expression normalized by number of genes). Differential gene expression analyses between
clusters or other observational groups were performed on non-regressed log- normalized data using t-test
with Benjamin-Hochberg correction. Significantly up- and down-regulated genes (qval< 0.005, |log2(FC)| >
1) were enriched for Gene Ontology Biological Processes using GSEApy (version 0.9.6).

Diffusion component analysis

We recomputed the neighborhood graph of k=15 nearest neighborhoods using a Gaussian kernel on the
basis of the selected PCs. The neighborhood graph is used as input to find fifteen nonlinear diffusion
components. The 0th component is trivial and discarded. For each component, highly correlated genes
with |R| > 0.5 were identified and enriched for pathways as described above. For T cell subset, a
randomly selected naïve/mem T cell was selected as the root cell for computing diffusion pseudotime
using fifteen diffusion components and 1% of total number of cells as minimum group size.

Single cell CNV inference

Copy number variation (CNV) estimation was performed per sample using inferCNV
(https://github.com/broadinstitute/inferCNV) that sorts genes by chromosomal location and applies a
moving average (window of 100 genes) to the relative expression values. Raw UMI counts of non-doublet
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cells were used as input into the algorithm and hierarchically clustered per group after processing. Genes
with expression in less than 3 cells or a mean number of 0.1 counts across cells were excluded. Cells in
non-malignant clusters (T cell, Monocytes, Oligodendrocytes, Vascular) were used to define a normal
baseline karyotype, of which the average CNA profile was subtracted from that of the malignant cells
(Neoplastic). During the denoising step, the residual normal signal is removed. Furthermore, a six-state
CNV Hidden Markov Model was trained to predict CNV regions per defined cell type
(analysis_mode=samples).

Processing of TCR-seq data

The cellranger vdj (10x Genomics, version 3.0.1) was used to align TCR-seq reads to GRCh38 reference
and annotate clonotype consensus. We pooled clonotypes from all samples and renamed the clonotypes
defined by unique pairs of alpha chain (TRA) and beta chain (TRB) amino acid sequences. Cells with
multiple alpha or beta chains were assigned multiple clonotypes according to all possible pairings of
TRA/TRB.

Glioblastoma cellular states

Malignant cells were scored with function score_gene using six meta-modules (MES1-like, MES2-like,
NPC1-like, NPC2-like, AC-like, OPC- like) (Neftel et al. 2019). Malignant cells were assigned to the
highest scored meta-modules. We constructed a two-dimensional representation of the four GBM cellular
states (OPC, NPC, AC, or MES) as outlined in Neftel et al.

Bulk TRB sequencing analysis

To examine high frequency (signal) dynamics of TRB sequences over the course of therapy, we identified
sequences with low frequency (noise) and removed them from the dynamics analysis. For the more
discrete CSF dataset, we kept all TRBs with frequency greater than the mode frequency per time point
and defined the union set of these TRB sequences as signal. We identified noise time series in the PB
dataset as those that have infinity norms below a threshold determined by the minimum of the infinity
norm multimodal density function. Following the identification and removal of noise, the resulting signal
time series were clustered using k-means scikit-learn (version 0.23) in python. TRB time series in CSF
were z-score normalized prior to k-means clustering. Using an elbow plot of the total within cluster sum of
squared distances between time series against the number of clusters, the optimal number of clusters
was determined for TRB time series in peripheral blood and z-score normalized cerebrospinal fluid
separately. The TRB time series in peripheral blood and cerebrospinal fluid were then clustered
separately with their respective optimal number of clusters. The mean representative time series for each
of the computed k-means clusters were clustered using the k-shape time series clustering algorithm for
PB and CSF separately in order to determine dominant dynamics classes of TRBs. All TRB time series
analysis was implemented with scikit-learn (version 0.23) and python (version 3.8.3).

GLIPH analysis

GLIPH analysis (version 2) was performed on the combined dataset of TCR bioidentity (TRB, TRBV,
TRBJ, TRA) from CSF signal, PBMC signal, and pre- and post-treatment tumors (Huang et al. 2020).
Using a CD4/CD8 TCR reference, GLIPH analysis identified TCR specificity groups based on enriched
local motifs or global similarity (all amino acids interchangeable). For longitudinal bulk TCR sequencing
input, TRA was omitted and frequency was summed over time. To prevent false positive GLIPH groups
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resulting from TRA dropouts, single cell TRA were imputed with the most frequently found TRA for the
corresponding TRB if detected.

Combined Statistical analysis

Tumor volume was divided into three dominant timeframes: tumor growth cycles 1-8, tumor regression,
cycles 8-16, and tumor relapse cycles 16-21. TRB frequencies were extracted for cycles 8-16 during
tumor regression, and tested for covariance with respect to tumor volume using a chi squared
independence test and corrected for false discovery rate (FDR) using Benjamini-Hochberg procedure.
Probability that a random TRB of each shape class is not independent from the tumor volume was
estimated using calculated p-values and FDR threshold of 0.05. Confidence intervals were calculated for
these probabilities of each shape class using the Agresti-Coull method.

Data availability

All ensemble and scRNA-seq data is deposited in the GEO and will be available after IRB approval.
Exome-sequencing data are deposited in the Sequence Read Archive (SRA) and will be available upon
IRB approval. Bulk TCR-seq data can be accessed through the ImmuneACCESS database of Adaptive
Biotechnologies (URL). All other relevant data will be available upon IRB approval. All figures created and
assembled using biorender.com.

Code availability

Code for single cell analysis and combined analysis of T cell receptor sequencing dynamics analysis is
available at https://github.com/vdjonsson/scimmunity.
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FIGURES

Fig. 1 | Characterization of pre-therapy and recurrent GBM tumors in a patient that received IL13Ra2 CAR T cells for
recurrent glioblastoma. Pre-treatment tumors (Pre1, Pre2, Pre3) and post-treatment tumors (Post1, Post2) are characterized by
bulk RNA and exome sequencing. Single cell RNA sequencing performed on Pre1 and Post2 tumors, labeled as Pre and Post
respectively. a, Clinical course, measured an interpolated tumor volume over the course of CAR T cell therapy of a glioblastoma
patient reported in Brown et al, 2017 (Methods). b, Immunohistochemistry evaluation of GBM surface antigen expression of
IL13Ra2, HER2 and EGFR. c, Chromogen staining of CD4 CD8, CD68, GFAP and CD66B surface antigen markers. d, Uniform
manifold approximation and projection (UMAP) of all tumor-resident cells before and after treatment. Clusters are labelled by
inferred cell types – neoplastic cells, T cells, NK cells, monocytes, oligodendrocytes, and vascular cells (left). UMAP is colored by
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treatment status (top right), and TCR detection (bottom right). e, Frequency bar plot of cell types per treatment status. f,
Two-dimensional representation of GBM cellular state colored by cell density per treatment status; each quadrant corresponds to a
relative score for one of four cellular states (Mesenchymal/MES-like, Astrocytic/AS-like, Oligodendrocytic/OPC-like, and Neural
progenitor/NPC-like) derived in (Suva). g, UMAP of pre- and post-treatment malignant cell clusters (top left). Frequency of each
malignant cell cluster in each tumor (bottom left). Dot plot of genes differentially expressed in malignant clusters, where color
represents average expression and size represents percentage of cells expressing. h, Volcano plot of differential expression results
comparing pre- and post-treatment malignant cells. Selected GO Biological Processes significantly upregulated in each condition
are colored and annotated by representative genes. i, Summary of mutation burden detected in whole exome sequencing. Lines
indicate lower bounds for medium and high mutation burden in glioma. j, Swarm plot of neoantigen burden pre-therapy and during
recurrence based on exome sequencing; variants were scored with respect to whether the peptide was found to bind to the MHC
allele with a binding strength of less than 500 nM and its wild- type cognate peptide bound to the same allele with a binding strength
of greater than 500 nM. k, Changes in clonal mutation composition detected in exome sequencing in pre-treated and recurrent
tumors; persistent mutations are in blue, mutation clusters with decreasing cellular prevalence are in green, and increasing in
cellular prevalence are in orange and pink (left).
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Fig. 2 | Exhausted CD8+ tumor infiltrating T cells are clonally expanded in the pre-treated GBM tumor. a, Three dimensional
UMAP of tumor infiltrating T cells present in pre-treatment and recurrent GBM tumors, labelled with inferred cell phenotypes (left)
and colored by CD4 and CD8 expression (right). Proportions of each T cell cluster per treatment status (middle). b, Flow cytometry
characterization of CD3+ and CD3+PD1+ cell loss in post- vs pre-treatment tumors. c, Diffusion map of exhausted,
exhausted/activated, naïve/memory and memory/activated T cells, using diffusion components 1 and 3, with cells colored by inferred
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cell type (top), by expanded clonotype (bottom left), by treatment status and pseudotime (top right). Rolling average expression of
selected core activation and exhaustion genes as quantified along diffusion components 1 and 3 (bottom right). d, Dot plot of genes
differentially expressed in T cell clusters, where color represents average expression and size represents percentage of cells
expressing. e, Distribution of TIL phenotypes for each of the top eight clonotypes in pre- and post-treatment tumors (top). Bar plot of
Gini index calculated for each TIL phenotype and treatment status (bottom). f, Strip plot of size of CD4+ and CD8+ T cells clones
per treatment status. Clones with paired TRA and TRB are assigned CD4+ or CD8+ based on the majority expression of CD4 and
CD8A. g,h, GLIPH identifies TCR specificity groups defined by local motifs, global similarity, or exact sequence match (single), while
some TCRs remain unassigned. g, Diffusion map of pre- and post-treatment TILs, with cells colored by TCR specificity groups from
GLIPH defined by local or global similarity. h, Count bar plots per GLIPH classification colored by expansion defined by clonotype
size (≥10) (top). From second to last, frequency bar plots per GLIPH classification colored by unique TRB sequence, top clonotypes
as in e, and TIL phenotypes. i, Diffusion map of tumor resident macrophage population using first two diffusion components. Cells
are colored by Gaussian kernel estimate density per treatment status on diffusion map. j, Gene Ontology enrichment of highly
correlated genes along first two diffusion components for the macrophage population. k, Flow cytometry characterization of CD11b+
and CD11b+ HLA-DR+ cell loss in recurrent vs pre-treatment GBM tumors.
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Fig. 3 | Tracing clonality of tumor resident T cells longitudinally through peripheral compartments uncovers distinct
anti-tumor T cell dynamics in the CSF. a, Samples collected for bulk TCR beta sequencing over the course of CAR T cell therapy.
b, Richness of TRB in combined sets of PB, CSF, CAR T product, and TILs. c, Size of TRB low frequency (noise) and high
frequency (signal) dynamics clusters in PB and CSF. d, Mean traces of k-means clusters (with 95 CI band) and k-shape clusters
(bold) for CSF dynamics. e, Mean traces of k-means clusters (with 95 CI band) and k-shape clusters (bold) for PB dynamics. f,
Frequency of newly introduced TRB sequences into the CSF by each signal dynamics class (Methods) (top). Number of TRB
sequences newly introduced by peak dynamics CSF:1 that overlap with CAR T product sequences (CAR 1, cycles 1-11, CAR 2/3:
cycles 12-21) and closest previous peripheral blood timepoint. (Methods, Extended Data) (bottom). g, p-values, adjusted for FDR by
the Benjamini-Hochberg procedure, for significance of rejection of independence test between PB and CSF signal dynamics and
tumor volume during tumor regression phase (left). Estimate for the probability that a random member of each signal class is not
independent from the tumor volume, as determined by the calculated p-values and FDR of 0.5, with error bars showing confidence
intervals calculated using the Agresti-Coull method (right). h, TRB traces of TRB sequences that overlap with TIL and CAR T
product sequences, in CSF dynamics classes 3 and 4 (left). Traces of TRB sequences corresponding to top 8 clonotypes and CSF
dynamics classes 1, 3, and 4 (right). i, Time series of top clonotypes from pre- and post-treatment tumors that overlap with CSF and
PB noise and signal dynamics.
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Fig. 4 | Reactivated and contracting T cell dynamics in CSF overlap with antigen specific, exhausted and expanded
pre-treatment TILs. a,b, UMAP of TILs colored by TCR shared with each dynamics class (left) for CSF in a and PB in b.
Corresponding kernel density approximation of overlapping Pre and Post TIL count per signal dynamics (right). c, Kernel density
approximation of Pre and Post TIL count per phenotype, grouped by overlap with TCRs from CSF (left) or PB (right) noise and
signal dynamics. d, Bar plot showing the aggregated frequency of TCR connecting tumor, CSF, and PB compartment via GLIPH
groups with local or global similarity (Methods) (top). Bar plot showing relative frequency of TRB within pre- and post-treatment
tumor connected to tumor, CSF dynamics, or PB dynamics via local or global similarity (bottom). e,f, Scatter plot of GLIPH classes
connecting the pre-treatment tumor to CSF (left) or PB (right). Frequencies of TCRs are summed per GLIPH class, and colored by
distribution of dynamics classes in e, or by frequency distribution of TIL phenotype in f.
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Extended Data Fig. 1 | Transcriptomic and genetic landscape of GBM tumors pre- and post-CAR T therapy. a, Hierarchical
clustering of pre- and post-treatment bulk RNA-seq tumor samples based on similarity measure, calculated as Jensen-Shannon
divergence. b, Heatmap of top differentially expressed fusions detected in bulk RNA- Seq comparing pre- and post-treatment
tumors. c, Heatmap of bulk expression of GBM meta-modules. d, Volcano plot of differential expression results comparing bulk
expression of pre- and post-treatment tumors. Selected GO Biological Processes significantly upregulated in each condition are
colored and annotated by representative genes. e, Inference of CNV from single cell RNA sequencing data, with rows corresponding
to single cells. f, Summary of mutational burden, mutation frequencies and mutational signatures.
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Extended Data Fig. 2 | Tumor microenvironment characterization pre and post CAR T cell therapy. a, UMAP of all tumor
resident cells colored by cell-type-specific markers. b, Heat map of differentially expressed genes (columns) between single cells
belonging to inferred cell types, with canonical genes highlighted. c, UMAP of all GBM TME cells colored by original Leiden
clustering and labeled by assigned cell type with highest detection score (left). Average gene detection per cluster in pre and post
CAR T treated GBM tumors are based on previously published gene signatures of neuro and immune populations (right). d, Bar
plots of relative cell proportions per cell type colored by TCR detection (left), treatment status (middle), and cell cycle phases (right).
e, Dot plot of GBM surface antigen expression in malignant single cells pre- and post-treatment, with dots sized by percent
expressing and colored by average gene expression. f, Violin plot of imputed single cell expression of oncogenic drivers. g, UMAP
of all pre- and post-treatment malignant cells colored by gene module score corresponding to Mesenchymal/MES-like,
Astrocytic/AS-like, Oligodendrocytic/OPC- like, and Neural progenitor/NPC-like GBM cellular states. h, Bar plot of cell count per
treatment status with the highest score for each GBM meta-module.
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Extended Data Fig. 3 | Characterization of T cell phenotypes present in pre and post CAR T cell treated tumors. a, UMAP of
re-clustered T cells colored by T cell and NK cell marker gene expression identified small NK cell population. b, Dot plot of single
cell gene expression of T cell phenotype marker genes in each T cell cluster. c, Diffusion map of tumor resident T cell populations
using first three diffusion components colored by gene expression. d, Bar plots of relative cell proportions per T cell phenotypes
colored by TCR detection (top), treatment status (middle), and cell cycle phases (bottom). e, Average correlation between diffusion
component coordinate and gene expression of previously published inflammatory, metabolic, and T cell gene signatures for tumor
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resident T cells. f, Diffusion map (components 1 and 3) of tumor resident T cells colored by tumor-reactive genes (top) and
self-renewal genes (bottom left). Scatterplot of CD39 and CD103 single cell co-expression painted by log clonotype size (bottom
center). Matrix plot of average expression per top clonotype in pre- and post-treatment TILs, standardized per gene (bottom right).
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Extended Fig. 4 | CSF and PB TRB dynamics signal - noise distribution. a, Histogram representing number of TRB in PB on
Day 0, pre CAR T treatment, PB and CSF for each time point, and three CAR T products. b, Density plot of infinity norm (logarithmic
scale) for PB TRB time series with signal-noise determination threshold μ marked (red). c, Scatter plot of CSF TRB time series rank
vs. frequency at each time point colored by signal-noise determination filter. d, Scatter plot of PB TRB time series rank vs. frequency
at each time point colored by signal-noise determination filter. e, Histograms calculated per k-shape cluster in CSF (left) and PB
(right) of the number of time points at which the TRB is observed. f, Histograms calculated per k-means cluster in CSF (left) and PB
(right) of the number of time points at which the TRB is observed. Histograms are colored by k-shape assignment.
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Extended Data Fig. 5 | TRB clonal dynamics in peripheral blood (PB) and cerebrospinal fluid (CSF) measured by bulk TRB
sequencing. a, Mean traces with bootstrapped 95% confidence interval of PB TRB time series grouped by k-means clustering and
colored by k-shape signal dynamics. Pie charts indicate the fraction of TRB sequences from the cluster that overlaps with TRB
sequences found in each of CSF noise or signal dynamics. b, Mean traces with bootstrapped 95% confidence interval of CSF TRB
time series grouped by k-means cluster and colored by k-shape signal dynamics. Pie charts indicate the fraction of TRB sequences
from the cluster that overlaps with TRB sequences found in each of PB noise or signal dynamics.
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Extended Data Fig. 6 | Tumor infiltrating lymphocytes (TILs) and CAR T cell product TRB richness overlap with CSF and PB
TRB dynamics. a, Bar plot of CSF (left) and PB (right) of TRB richness per time point grouped by low frequency (Noise) or high
frequency (Signal). b, Bar plot of TRB richness per time point for each signal dynamics in CSF (left) and PB (right). c, Heatmap of
TRB richness of overlap between CSF and PB in noise and signal dynamics. d, Heatmap of TRB richness of overlap between TIL
and CSF (left) or PB (right) noise and signal dynamics. e, Heatmap of TRB richness of overlap between each CAR T cell product
and CSF (left) or PB (right) noise and signal dynamics, and overlap between the CAR T cell products (bottom). f, Pie charts of
fraction of TRB sequences from each CSF noise and signal dynamics that overlaps with TRB sequences from PB, CAR T products,
or both. g, Pie charts of fraction of TRB sequences from each CSF and PB noise and signal dynamics that overlaps with TRB
sequences from tumor, CAR T products, or both.

Extended Data Fig. 7 | Tumor infiltrating lymphocytes (TILs) and CAR T cell TRB dynamics in with CSF and PB. a, Histogram
of Pre (left) and Post (right) TIL overlap with PB C01D0, prior to CAR T cell therapy (top). Kernel density approximation of Pre and
Post TIL count that overlap with PB C01D0, colored by TIL phenotype (bottom). b, Bar plot of cell counts of Pre (left) and Post (right)
top 8 clonotypes that overlap with PB C01D0, colored by TIL phenotype. c, Mean traces with bootstrapped 95% confidence interval
of PB (left) and CSF (right) TRB time series that overlap with TIL TRB sequences. d, Mean traces with bootstrapped 95%
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confidence interval of PB (left) and CSF (right) TRB time series that overlap with CAR T product 1, 2, and 3 (from top to bottom)
TRB sequences.

REFERENCES

Ayers, Mark, Jared Lunceford, Michael Nebozhyn, Erin Murphy, Andrey Loboda, David R. Kaufman,
Andrew Albright, et al. 2017. “IFN-γ-Related mRNA Profile Predicts Clinical Response to PD-1
Blockade.” The Journal of Clinical Investigation 127 (8): 2930–40.

Azizi, Elham, Ambrose J. Carr, George Plitas, Andrew E. Cornish, Catherine Konopacki, Sandhya
Prabhakaran, Juozas Nainys, et al. 2018. “Single-Cell Map of Diverse Immune Phenotypes in the
Breast Tumor Microenvironment.” Cell 174 (5): 1293–1308.e36.

Beltra, Jean-Christophe, Sasikanth Manne, Mohamed S. Abdel-Hakeem, Makoto Kurachi, Josephine R.
Giles, Zeyu Chen, Valentina Casella, et al. 2020. “Developmental Relationships of Four Exhausted
CD8 T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control
Mechanisms.” Immunity 52 (5): 825–41.e8.

Bray, Nicolas L., Harold Pimentel, Páll Melsted, and Lior Pachter. 2016. “Near-Optimal Probabilistic
RNA-Seq Quantification.” Nature Biotechnology 34 (5): 525–27.

Brown, Christine E., Darya Alizadeh, Renate Starr, Lihong Weng, Jamie R. Wagner, Araceli Naranjo, Julie
R. Ostberg, et al. 2016. “Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell
Therapy.” The New England Journal of Medicine 375 (26): 2561–69.

Brown, Christine E., Charles D. Warden, Renate Starr, Xutao Deng, Behnam Badie, Yate-Ching Yuan,
Stephen J. Forman, and Michael E. Barish. 2013. “Glioma IL13Rα2 Is Associated with Mesenchymal
Signature Gene Expression and Poor Patient Prognosis.” PloS One 8 (10): e77769.

Chen, Zeyu, Zhicheng Ji, Shin Foong Ngiow, Sasikanth Manne, Zhangying Cai, Alexander C. Huang,
John Johnson, et al. 2019. “TCF-1-Centered Transcriptional Network Drives an Effector versus
Exhausted CD8 T Cell-Fate Decision.” Immunity. https://doi.org/10.1016/j.immuni.2019.09.013.

Chu, Nathaniel D., Haixin Sarah Bi, Ryan O. Emerson, Anna M. Sherwood, Michael E. Birnbaum, Harlan
S. Robins, and Eric J. Alm. 2019. “Longitudinal Immunosequencing in Healthy People Reveals
Persistent T Cell Receptors Rich in Highly Public Receptors.” BMC Immunology.
https://doi.org/10.1186/s12865-019-0300-5.

Darmanis, Spyros, Steven A. Sloan, Derek Croote, Marco Mignardi, Sophia Chernikova, Peyman
Samghababi, Ye Zhang, et al. 2017. “Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at
the Migrating Front of Human Glioblastoma.” Cell Reports.
https://doi.org/10.1016/j.celrep.2017.10.030.

Duhen, Thomas, Rebekka Duhen, Ryan Montler, Jake Moses, Tarsem Moudgil, Noel F. de Miranda, Cheri
P. Goodall, et al. 2018. “Co-Expression of CD39 and CD103 Identifies Tumor-Reactive CD8 T Cells
in Human Solid Tumors.” Nature Communications 9 (1): 2724.

Fang, Zhuoqing. n.d. GSEApy: Gene Set Enrichment Analysis in Python. Github. Accessed September
22, 2021. https://github.com/zqfang/GSEApy.

Gee, Marvin H., Arnold Han, Shane M. Lofgren, John F. Beausang, Juan L. Mendoza, Michael E.
Birnbaum, Michael T. Bethune, et al. 2018. “Antigen Identification for Orphan T Cell Receptors
Expressed on Tumor-Infiltrating Lymphocytes.” Cell 172 (3): 549–63.e16.

Haghverdi, Laleh, Florian Buettner, and Fabian J. Theis. 2015. “Diffusion Maps for High-Dimensional
Single-Cell Analysis of Differentiation Data.” Bioinformatics 31 (18): 2989–98.

Halperin, Rebecca F., Winnie S. Liang, Sidharth Kulkarni, Erica E. Tassone, Jonathan Adkins, Daniel
Enriquez, Nhan L. Tran, et al. 2019. “Leveraging Spatial Variation in Tumor Purity for Improved
Somatic Variant Calling of Archival Tumor Only Samples.” Frontiers in Oncology.
https://doi.org/10.3389/fonc.2019.00119.

Hegde, Meenakshi, Sujith K. Joseph, Farzana Pashankar, Christopher DeRenzo, Khaled Sanber, Shoba
Navai, Tiara T. Byrd, et al. 2020. “Tumor Response and Endogenous Immune Reactivity after
Administration of HER2 CAR T Cells in a Child with Metastatic Rhabdomyosarcoma.” Nature
Communications. https://doi.org/10.1038/s41467-020-17175-8.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.22.460392doi: bioRxiv preprint 

http://paperpile.com/b/usNe8b/0F4PE
http://paperpile.com/b/usNe8b/0F4PE
http://paperpile.com/b/usNe8b/0F4PE
http://paperpile.com/b/usNe8b/HzQR4
http://paperpile.com/b/usNe8b/HzQR4
http://paperpile.com/b/usNe8b/HzQR4
http://paperpile.com/b/usNe8b/T9FI3
http://paperpile.com/b/usNe8b/T9FI3
http://paperpile.com/b/usNe8b/T9FI3
http://paperpile.com/b/usNe8b/T9FI3
http://paperpile.com/b/usNe8b/f1szw
http://paperpile.com/b/usNe8b/f1szw
http://paperpile.com/b/usNe8b/4Zrbt
http://paperpile.com/b/usNe8b/4Zrbt
http://paperpile.com/b/usNe8b/4Zrbt
http://paperpile.com/b/usNe8b/XLh6Q
http://paperpile.com/b/usNe8b/XLh6Q
http://paperpile.com/b/usNe8b/XLh6Q
http://paperpile.com/b/usNe8b/Fbbzt
http://paperpile.com/b/usNe8b/Fbbzt
http://paperpile.com/b/usNe8b/Fbbzt
http://dx.doi.org/10.1016/j.immuni.2019.09.013
http://paperpile.com/b/usNe8b/Fbbzt
http://paperpile.com/b/usNe8b/xMmtw
http://paperpile.com/b/usNe8b/xMmtw
http://paperpile.com/b/usNe8b/xMmtw
http://paperpile.com/b/usNe8b/xMmtw
http://dx.doi.org/10.1186/s12865-019-0300-5
http://paperpile.com/b/usNe8b/xMmtw
http://paperpile.com/b/usNe8b/ZOjkR
http://paperpile.com/b/usNe8b/ZOjkR
http://paperpile.com/b/usNe8b/ZOjkR
http://paperpile.com/b/usNe8b/ZOjkR
http://dx.doi.org/10.1016/j.celrep.2017.10.030
http://paperpile.com/b/usNe8b/ZOjkR
http://paperpile.com/b/usNe8b/awZsL
http://paperpile.com/b/usNe8b/awZsL
http://paperpile.com/b/usNe8b/awZsL
http://paperpile.com/b/usNe8b/CVfU
http://paperpile.com/b/usNe8b/CVfU
https://github.com/zqfang/GSEApy
http://paperpile.com/b/usNe8b/CVfU
http://paperpile.com/b/usNe8b/pUNS1
http://paperpile.com/b/usNe8b/pUNS1
http://paperpile.com/b/usNe8b/pUNS1
http://paperpile.com/b/usNe8b/HyX93
http://paperpile.com/b/usNe8b/HyX93
http://paperpile.com/b/usNe8b/x4sb9
http://paperpile.com/b/usNe8b/x4sb9
http://paperpile.com/b/usNe8b/x4sb9
http://paperpile.com/b/usNe8b/x4sb9
http://dx.doi.org/10.3389/fonc.2019.00119
http://paperpile.com/b/usNe8b/x4sb9
http://paperpile.com/b/usNe8b/1mzHP
http://paperpile.com/b/usNe8b/1mzHP
http://paperpile.com/b/usNe8b/1mzHP
http://paperpile.com/b/usNe8b/1mzHP
http://dx.doi.org/10.1038/s41467-020-17175-8
http://paperpile.com/b/usNe8b/1mzHP
https://doi.org/10.1101/2021.09.22.460392
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hodges, Tiffany R., Martina Ott, Joanne Xiu, Zoran Gatalica, Jeff Swensen, Shouhao Zhou, Jason T.
Huse, et al. 2017. “Mutational Burden, Immune Checkpoint Expression, and Mismatch Repair in
Glioma: Implications for Immune Checkpoint Immunotherapy.” Neuro-Oncology 19 (8): 1047–57.

Huang, Huang, Chunlin Wang, Florian Rubelt, Thomas J. Scriba, and Mark M. Davis. 2020. “Analyzing
the Mycobacterium Tuberculosis Immune Response by T-Cell Receptor Clustering with GLIPH2 and
Genome-Wide Antigen Screening.” Nature Biotechnology 38 (10): 1194–1202.

Hunder, Naomi N., Herschel Wallen, Jianhong Cao, Deborah W. Hendricks, John Z. Reilly, Rebecca
Rodmyre, Achim Jungbluth, Sacha Gnjatic, John A. Thompson, and Cassian Yee. 2008. “Treatment
of Metastatic Melanoma with Autologous CD4+ T Cells against NY-ESO-1.” The New England
Journal of Medicine 358 (25): 2698–2703.

Im, Se Jin, Masao Hashimoto, Michael Y. Gerner, Junghwa Lee, Haydn T. Kissick, Matheus C. Burger,
Qiang Shan, et al. 2016. “Defining CD8 T Cells That Provide the Proliferative Burst after PD-1
Therapy.” Nature. https://doi.org/10.1038/nature19330.

Jeon, Myung-Shin, Alex Atfield, K. Venuprasad, Connie Krawczyk, Renu Sarao, Chris Elly, Chun Yang, et
al. 2004. “Essential Role of the E3 Ubiquitin Ligase Cbl-B in T Cell Anergy Induction.” Immunity.
https://doi.org/10.1016/j.immuni.2004.07.013.

Köster, Johannes, and Sven Rahmann. 2018. “Snakemake-a Scalable Bioinformatics Workflow Engine.”
Bioinformatics 34 (20): 3600.

Lopez, Romain, Jeffrey Regier, Michael B. Cole, Michael I. Jordan, and Nir Yosef. 2018. “Deep
Generative Modeling for Single-Cell Transcriptomics.” Nature Methods 15 (12): 1053–58.

Louveau, Antoine, Jasmin Herz, Maria Nordheim Alme, Andrea Francesca Salvador, Michael Q. Dong,
Kenneth E. Viar, S. Grace Herod, et al. 2018. “CNS Lymphatic Drainage and Neuroinflammation Are
Regulated by Meningeal Lymphatic Vasculature.” Nature Neuroscience 21 (10): 1380–91.

Louveau, Antoine, Igor Smirnov, Timothy J. Keyes, Jacob D. Eccles, Sherin J. Rouhani, J. David Peske,
Noel C. Derecki, et al. 2015. “Structural and Functional Features of Central Nervous System
Lymphatic Vessels.” Nature 523 (7560): 337–41.

Martin, Marcel. 2011. “Cutadapt Removes Adapter Sequences from High-Throughput Sequencing
Reads.” EMBnet.journal. https://doi.org/10.14806/ej.17.1.200.

Melsted, Páll, Shannon Hateley, Isaac Charles Joseph, Harold Pimentel, Nicolas Bray, and Lior Pachter.
n.d. “Fusion Detection and Quantification by Pseudoalignment.” https://doi.org/10.1101/166322.

Miller, Alexandra M., Ronak H. Shah, Elena I. Pentsova, Maryam Pourmaleki, Samuel Briggs, Natalie
Distefano, Youyun Zheng, et al. 2019. “Tracking Tumour Evolution in Glioma through Liquid Biopsies
of Cerebrospinal Fluid.” Nature 565 (7741): 654–58.

Neftel, Cyril, Julie Laffy, Mariella G. Filbin, Toshiro Hara, Marni E. Shore, Gilbert J. Rahme, Alyssa R.
Richman, et al. 2019. “An Integrative Model of Cellular States, Plasticity, and Genetics for
Glioblastoma.” Cell 178 (4): 835–49.e21.

Pimentel, Harold, Nicolas L. Bray, Suzette Puente, Páll Melsted, and Lior Pachter. 2017. “Differential
Analysis of RNA-Seq Incorporating Quantification Uncertainty.” Nature Methods 14 (7): 687–90.

Sahoo, Prativa, Ram K. S. Rathore, Rishi Awasthi, Bhaswati Roy, Sanjay Verma, Divya Rathore, Sanjay
Behari, et al. 2013. “Subcompartmentalization of Extracellular Extravascular Space (EES) into
Permeability and Leaky Space with Local Arterial Input Function (AIF) Results in Improved
Discrimination between High- and Low-Grade Glioma Using Dynamic Contrast-Enhanced (DCE)
MRI.” Journal of Magnetic Resonance Imaging: JMRI 38 (3): 677–88.

Salou, Marion, Alexandra Garcia, Laure Michel, Anne Gainche‐Salmon, Delphine Loussouarn, Bryan
Nicol, Flora Guillot, et al. 2015. “Expanded CD 8 T‐cell Sharing between Periphery and CNS in
Multiple Sclerosis.” Annals of Clinical and Translational Neurology. https://doi.org/10.1002/acn3.199.

Schäfer, Niklas, Gerrit H. Gielen, Laurèl Rauschenbach, Sied Kebir, Andreas Till, Roman Reinartz,
Matthias Simon, et al. 2019. “Longitudinal Heterogeneity in Glioblastoma: Moving Targets in
Recurrent versus Primary Tumors.” Journal of Translational Medicine 17 (1): 96.

Scheper, Wouter, Sander Kelderman, Lorenzo F. Fanchi, Carsten Linnemann, Gavin Bendle, Marije A. J.
de Rooij, Christian Hirt, et al. 2019. “Low and Variable Tumor Reactivity of the Intratumoral TCR
Repertoire in Human Cancers.” Nature Medicine 25 (1): 89–94.

Siddiqui, Imran, Karin Schaeuble, Vijaykumar Chennupati, Silvia A. Fuertes Marraco, Sandra
Calderon-Copete, Daniela Pais Ferreira, Santiago J. Carmona, et al. 2019. “Intratumoral
Tcf1PD-1CD8 T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination
and Checkpoint Blockade Immunotherapy.” Immunity 50 (1): 195–211.e10.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.22.460392doi: bioRxiv preprint 

http://paperpile.com/b/usNe8b/oH6bG
http://paperpile.com/b/usNe8b/oH6bG
http://paperpile.com/b/usNe8b/oH6bG
http://paperpile.com/b/usNe8b/wiob1
http://paperpile.com/b/usNe8b/wiob1
http://paperpile.com/b/usNe8b/wiob1
http://paperpile.com/b/usNe8b/EmwwC
http://paperpile.com/b/usNe8b/EmwwC
http://paperpile.com/b/usNe8b/EmwwC
http://paperpile.com/b/usNe8b/EmwwC
http://paperpile.com/b/usNe8b/f8NIM
http://paperpile.com/b/usNe8b/f8NIM
http://paperpile.com/b/usNe8b/f8NIM
http://dx.doi.org/10.1038/nature19330
http://paperpile.com/b/usNe8b/f8NIM
http://paperpile.com/b/usNe8b/snsNu
http://paperpile.com/b/usNe8b/snsNu
http://paperpile.com/b/usNe8b/snsNu
http://dx.doi.org/10.1016/j.immuni.2004.07.013
http://paperpile.com/b/usNe8b/snsNu
http://paperpile.com/b/usNe8b/MyJ6g
http://paperpile.com/b/usNe8b/MyJ6g
http://paperpile.com/b/usNe8b/ltp0D
http://paperpile.com/b/usNe8b/ltp0D
http://paperpile.com/b/usNe8b/VOBSP
http://paperpile.com/b/usNe8b/VOBSP
http://paperpile.com/b/usNe8b/VOBSP
http://paperpile.com/b/usNe8b/DS0WZ
http://paperpile.com/b/usNe8b/DS0WZ
http://paperpile.com/b/usNe8b/DS0WZ
http://paperpile.com/b/usNe8b/8C3x
http://paperpile.com/b/usNe8b/8C3x
http://dx.doi.org/10.14806/ej.17.1.200
http://paperpile.com/b/usNe8b/8C3x
http://paperpile.com/b/usNe8b/tXBui
http://paperpile.com/b/usNe8b/tXBui
http://dx.doi.org/10.1101/166322
http://paperpile.com/b/usNe8b/tXBui
http://paperpile.com/b/usNe8b/KH7nN
http://paperpile.com/b/usNe8b/KH7nN
http://paperpile.com/b/usNe8b/KH7nN
http://paperpile.com/b/usNe8b/OZHMD
http://paperpile.com/b/usNe8b/OZHMD
http://paperpile.com/b/usNe8b/OZHMD
http://paperpile.com/b/usNe8b/lfEaA
http://paperpile.com/b/usNe8b/lfEaA
http://paperpile.com/b/usNe8b/WhtUU
http://paperpile.com/b/usNe8b/WhtUU
http://paperpile.com/b/usNe8b/WhtUU
http://paperpile.com/b/usNe8b/WhtUU
http://paperpile.com/b/usNe8b/WhtUU
http://paperpile.com/b/usNe8b/ekGFN
http://paperpile.com/b/usNe8b/ekGFN
http://paperpile.com/b/usNe8b/ekGFN
http://dx.doi.org/10.1002/acn3.199
http://paperpile.com/b/usNe8b/ekGFN
http://paperpile.com/b/usNe8b/lVCG0
http://paperpile.com/b/usNe8b/lVCG0
http://paperpile.com/b/usNe8b/lVCG0
http://paperpile.com/b/usNe8b/tRUKv
http://paperpile.com/b/usNe8b/tRUKv
http://paperpile.com/b/usNe8b/tRUKv
http://paperpile.com/b/usNe8b/xdpED
http://paperpile.com/b/usNe8b/xdpED
http://paperpile.com/b/usNe8b/xdpED
http://paperpile.com/b/usNe8b/xdpED
https://doi.org/10.1101/2021.09.22.460392
http://creativecommons.org/licenses/by-nc-nd/4.0/


Singh, Devendra, Joseph Minhow Chan, Pietro Zoppoli, Francesco Niola, Ryan Sullivan, Angelica
Castano, Eric Minwei Liu, et al. 2012. “Transforming Fusions of FGFR and TACC Genes in Human
Glioblastoma.” Science 337 (6099): 1231–35.

Song, Eric, Tianyang Mao, Huiping Dong, Ligia Simoes Braga Boisserand, Salli Antila, Marcus
Bosenberg, Kari Alitalo, Jean-Leon Thomas, and Akiko Iwasaki. 2020. “VEGF-C-Driven Lymphatic
Drainage Enables Immunosurveillance of Brain Tumours.” Nature 577 (7792): 689–94.

Tirosh, Itay, Benjamin Izar, Sanjay M. Prakadan, Marc H. Wadsworth 2nd, Daniel Treacy, John J.
Trombetta, Asaf Rotem, et al. 2016. “Dissecting the Multicellular Ecosystem of Metastatic Melanoma
by Single-Cell RNA-Seq.” Science 352 (6282): 189–96.

Verhaak, Roel G. W., Katherine A. Hoadley, Elizabeth Purdom, Victoria Wang, Yuan Qi, Matthew D.
Wilkerson, C. Ryan Miller, et al. 2010. “Integrated Genomic Analysis Identifies Clinically Relevant
Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1.”
Cancer Cell 17 (1): 98–110.

Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, et al. 2020. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python.” Nature Methods 17 (3): 261–72.

Wolf, F. Alexander, Philipp Angerer, and Fabian J. Theis. 2018. “SCANPY: Large-Scale Single-Cell Gene
Expression Data Analysis.” Genome Biology 19 (1): 15.

Yi, Lynn, Harold Pimentel, Nicolas L. Bray, and Lior Pachter. 2018. “Gene-Level Differential Analysis at
Transcript-Level Resolution.” Genome Biology 19 (1): 53.

Yost, Kathryn E., Ansuman T. Satpathy, Daniel K. Wells, Yanyan Qi, Chunlin Wang, Robin Kageyama,
Katherine L. McNamara, et al. 2019. “Clonal Replacement of Tumor-Specific T Cells Following PD-1
Blockade.” Nature Medicine 25 (8): 1251–59.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.22.460392doi: bioRxiv preprint 

http://paperpile.com/b/usNe8b/tV9v5
http://paperpile.com/b/usNe8b/tV9v5
http://paperpile.com/b/usNe8b/tV9v5
http://paperpile.com/b/usNe8b/CtMxf
http://paperpile.com/b/usNe8b/CtMxf
http://paperpile.com/b/usNe8b/CtMxf
http://paperpile.com/b/usNe8b/LMM6
http://paperpile.com/b/usNe8b/LMM6
http://paperpile.com/b/usNe8b/LMM6
http://paperpile.com/b/usNe8b/r0HO4
http://paperpile.com/b/usNe8b/r0HO4
http://paperpile.com/b/usNe8b/r0HO4
http://paperpile.com/b/usNe8b/r0HO4
http://paperpile.com/b/usNe8b/mAxmj
http://paperpile.com/b/usNe8b/mAxmj
http://paperpile.com/b/usNe8b/mAxmj
http://paperpile.com/b/usNe8b/hzuh
http://paperpile.com/b/usNe8b/hzuh
http://paperpile.com/b/usNe8b/cbzDX
http://paperpile.com/b/usNe8b/cbzDX
http://paperpile.com/b/usNe8b/sp6fH
http://paperpile.com/b/usNe8b/sp6fH
http://paperpile.com/b/usNe8b/sp6fH
https://doi.org/10.1101/2021.09.22.460392
http://creativecommons.org/licenses/by-nc-nd/4.0/

