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ABSTRACT 

Neuronal firing patterns have significant spatiotemporal variety with no agreed upon theoretical 

framework. Using a combined experimental and modeling approach, we found that spike interval 

statistics can be described by discrete modes of activity. A “ground state” (GS) mode of low-rate 

spiking is universal among forebrain excitatory neurons and characterized by irregular spiking at a 

cell-specific rate. In contrast, “activated state” (AS) modes consist of spiking at characteristic 

timescales and regularity and are specific to neurons in a given region and brain state. We find that 

the majority of spiking is contributed by GS mode, while neurons can transiently switch to AS 

spiking in response to stimuli or in coordination with population activity patterns. We hypothesize 

that GS spiking serves to maintain a persistent backbone of neuronal activity while AS modes 

support communication functions. 
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INTRODUCTION 

A widely held view in neuroscience holds that the fundamental unit of neural computation is 

stochastic (Poisson-like) spiking following a continuously-varying rate (1, 2). It has been suggested that this 

irregular spiking arises as a consequence of inhibition balancing excitation in a "fluctuation-driven" regime 

(3–7) and allows neurons to maximize the efficiency of information transmission (1, 8). However, the 

irregular spiking view stands in contrast to the widely-observed constraint of spike times by oscillations (9) 

and biophysical properties (10), and the idea that neurons must form temporally-coordinated cell 

assemblies to effectively discharge their downstream target partners (11). Further, neuronal spike patterns 

vary between brain regions (12, 13), and depend on an animal’s behavior, sensorium, and brain state (14–

16). Thus, the Poisson model alone does not adequately capture the wide range of observed spike-time 

statistics. 

 

RESULTS 

To search for an overarching characterization of neuronal spike patterns, we examined 

electrophysiological recordings from six regions of the rodent forebrain during waking and sleep (see 

Methods; Suppl. Fig. 1), and analyzed the distribution of log interspike intervals (ISIs) and their return maps 

(ISIn vs ISIn+1) (Fig. 1A). Neurons in each region had qualitatively distinct ISI distributions, with characteristic 

“modes” of increased ISI density at specific timescales (Figure 1B) that were specific to brain state (NREM 

sleep vs WAKE/REM) and region (Suppl. Fig. 2).  

 

Ground state and activated state modes of interspike intervals 

Despite heterogeneity across brain regions, we noticed a universal pattern of ISIs in excitatory 

neurons (Fig. 1C,D, Suppl. Fig. 3). At long ISIs (low rate), distributions tended to show a single mode that 

was unique to each neuron. This low rate activity corresponded to an “on-diagonal” mode in the ISI return 

maps, and thus reflected sequential long ISIs rather than silent intervals between episodes of higher-rate 

spiking. In contrast to the neuron-specific lowest-rate mode, higher-rate modes were shared among 

neurons in the region. Each high-rate mode tended to have a distinct degree of regularity or irregularity, as 

measured by the ISI-conditioned coefficient of variation, CV2 (Suppl Fig. 4), with higher rate modes tending 

to have more regular spiking (CV2 < 1), compared to those with long ISIs (CV2 ≥ 1).  

These observations prompted us to consider that the distinct modes of ISI distributions are the 

spiking correlate of distinct neuronal and network mechanisms (Fig. 1E). We hypothesized two main 

categories: a ‘ground state’ (GS) mode of irregular spiking at a cell-specific low rate, and a repertoire of 

‘activated state’ (AS) modes common to neurons in a given brain region/state.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.20.461152doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

To test our GS-AS hypothesis, we modeled the ISI distribution from each neuron with a mixture 

model, 

P𝑖[logISI = τ] = ∑ 𝑎𝑚,𝑖  𝜓𝑚,𝑖(τ)

𝑚

 

where 𝑎𝑚,𝑖 is the weight, or fraction of spikes, from neuron 𝑖 in mode 𝑚, and each mode, 𝜓𝑚,𝑖(τ), was taken 

to be a log-gamma distribution (17)(see Methods; Figure 2A-C, Suppl. Fig. 5). Fitting ISI distributions to this 

model allowed us to parameterize each mode by a characteristic rate (1/mean ISI) and variability (CV) 

which, when combined with the weights in each mode, revealed a “modal fingerprint” for the activity patterns 

of each neuron (Fig. 2B).  In every brain region, two distinct clusters of spiking modes were seen: a low 

rate cluster of supra-Poisson spiking (CV>1) that corresponded to the GS mode in each cell, and a cluster 

of sub-Poisson modes at higher spike rates with characteristic sub-clusters that were unique to each 

region/state (Fig. 2D). To further characterize the repertoire of AS modes in each region, we constrained 

the model such that the properties of each AS mode were shared across neurons in the same region/state 

(Fig 2D, Suppl. Fig. 6, Methods). 

P𝑖[logISI = τ] = 𝑎𝐺𝑆,𝑖𝜓𝐺𝑆,𝑖(τ) + ∑ 𝑎𝐴𝑆𝑚,𝑖  𝜓𝑚(τ)

𝑚

 

Figure 1: ISI distributions of forebrain excitatory neurons suggest a modal view of neural spiking with ground and 
activated states. A: logISI distribution and return map from an example CA1 cell during WAKE, REM, and NREM sleep. On-
diagonal clusters reflect sequential ISIs at a similar timescale, off-diagonal clusters reflect transitions between modes.  B: Mean 
ISI distributions and return maps (ISIn vs ISIn+1) from all putative excitatory cells in each region during WAKE and NREM sleep. 
Black triangles reflect mean firing rate over all cells in the region/state. Due to WAKE-REM similarity, only WAKE and NREM are 
shown - REM can be found in supplemental figures. C: logISI distributions for all CA1 pyramidal cells during WAKE and NREM 
sleep, sorted by mean firing rate. Black line indicates the mean ISI (1/mean rate) for each cell. (See Supp Fig 3 for comparable 
plots from all regions).  D: Mean ISI distribution and return maps for CA1 cells divided into firing rate sextile groups. Location (i.e. 
rate) of the low rate mode (ground state, GS, brown) moves to shorter ISIs in higher firing rate groups, while pattern and timescale 
of higher rate modes (activated states, AS, black) are consistent across firing rate group. E: The ground state/activated state 
modal theory of neural activity.  
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We then used a hidden Markov model (HMM) approach to assign each ISI to its most likely mode (Methods, 

Fig. 2C).  

Many AS modes corresponded to known network patterns in each region. For example, CA1 

neurons during WAKE had an AS mode with regular spiking at ~100 ms that was associated with theta 

oscillations (~8Hz) (Supp Fig 7, (18)), and vCTX neurons had an AS mode of regular spiking at ~250ms 

which was associated with delta oscillations (Supp Fig 8, (19)). Further, neurons in each region had 

prominent AS modes at gamma timescales (~10-40 ms) that were associated with local interneuron 

Figure 2: Modal decomposition of ISI distributions and spike trains. A: (log)Gamma distribution as a model for (log)ISI modes. 
A logGamma distribution is characterized by a mean interval (i.e. a mean rate) and coefficient of variation (CV), which reflects the 
irregularity of spiking in that mode and can range from regular (CV<<1), to poisson-like (CV~1), to supraPoisson (CV>1) spiking. 
Four examples of spike trains and ISI distributions sampled from four logGamma distributions with a range of CVs are shown, each 
with mean ISI = μ. B: Mixture of logGammas model fit for an example CA1 cell during WAKE. The logISI distribution for the cell is 
decomposed into a sum of logGamma distributions. Each mode is represented by its mean ISI (1/mean rate) and CV, and a weight, 
which reflects the proportion of spikes fired by the cell in that mode. The example cell has a ground state at 0.1hz with a CV=2, and 
5 activated state modes at different rates/CVs. C: Hidden Markov Model for decomposing spike trains into modes. D: LogGamma 
mixture model fit for all cells in each region/state. Grey points correspond to individual cell fits. Open circles correspond to model fit 
with each AS mode constrained to have the same mean/CV over all cells (”shared” AS modes, see Methods), sized by the mean 
weight over all cells.  
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activation (20)(Supp Fig 9). Finally, a “burst” mode of regular spiking at < 10 ms was most prominent in the 

hippocampus during NREM sleep and likely reflects intracellular mechanisms (21)(Suppl. Fig. 10). 

 

Activated states of spiking 

 To examine conditions that activate neurons out of the ground state, we examined ISI statistics 

during specific behaviors. The spike rate of a subset of hippocampal neurons increased at specific locations 

(22). When averaged across trials, spike rate varied smoothly with position. However, when we plotted ISIs 

as a function of position (Fig. 3A), this increased rate of spiking corresponded to the appearance of a 

discrete multi-modal cloud of 10-150ms ISIs, which was similar among all place cells (Fig. 3B-D). When we 

compared the in-field and out-field ISI distributions and return maps, we found that they differed in the 

relative occupancy in high- and low-rate modes, rather than reflecting a qualitative shift in the shape of the 

distribution (Fig. 3E). This change in mode occupancy reflected a decreased incidence of GS spiking and 

increased incidence of 30-100Hz and 8Hz AS modes within the place field, as identified by the HMM (Fig, 

3B) and by increased weight in these modes when in- and out-field ISI distributions were fit separately with 

the mixture of gammas model (Fig. 3F).  

  

Figure 3: Place fields evoke theta/gamma 
activated states in CA1 cells. A: An 
example place cell. (Top) LFP, spikes, and 
spiking modes for a single traversal of the 
place field. (Bottom) adjacent ISIs from all 
spikes from all traversals, as a function of 
position. B: Trial-by-trial spiking modes, as 
classified by the HMM, for the example cell in 
A, aligned to entering the place field. C: ISIs 
as a function of position for three example 
place cells. Despite variation in peak rate, in-
field spikes have ISIs of similar timescales. D: 
Average position-conditional rate (P[spike | 
position]) and ISI distributions (P[ISI | 
position]) for CA1 place cells, centered on 
their place field peak. E: Mean in- and out-
field ISI distributions and ISI return maps. In- 
vs out-field ISI distributions do not differ in the 
general shape of the ISI distribution, but in the 
relative occupancy in activated state and 
ground state modes. F: Place fields increase 
occupancy of theta and gamma-timescale 
spiking modes, and decrease occupancy of 
GS modes. Change in weight for each mode 
between in- and out-field ISI distribution, as 
measured by the mixture of gamma model, for 
all CA1 place cells. (Inset) GS rate remains 
consistent in and out of the place field.  
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To examine the generality of these findings, we treated thalamic head direction neurons (23) in a 

similar manner.  Similar to CA1, we found that continuous variation in trial-averaged firing rate masked 

underlying discrete ISI modes. Timescale of ISIs in each mode was constant regardless of head direction, 

but occupancy was highest in the AS mode when the rat was gazing at the preferred direction of the neuron, 

whereas GS spikes dominated the less preferred directions (Fig. 4A, B). Because of the unimodal nature 

of the activated states in head direction neurons, we were able to directly compare a “continuous 

rate” encoding model, in which spike rate varied continuously with HD, with a discrete “modal” encoding 

model, in which the relative occupancy of a high rate (AS) mode and a low rate (GS) mode varied 

continuously with head direction (Methods, Fig. 4C, Suppl Fig. 11). In all HD cells, the modal model fit the 

observed spiking data better than the continuous rate model (Fig. 4D). This direct spike-count comparison 

between the modal model and a continuous-rate model also favors the modal version, without relying on 

analysis of ISIs.  

 

Ground State spiking reflects a default mode of balanced activity  

In contrast to region/state-specific AS modes, GS mode (Fig. 5A) was present in neurons in every 

brain region during all brain states. A neuron’s firing rate was strongly correlated with its GS rate but less 

so with the occupancy of its AS modes or their rate (Fig.  5B,C), mainly because GS spikes represented 

the majority of spikes in most cells (Fig. 5E), and the vast majority of time was spent in the long-duration 

intervals between GS spikes (Suppl Fig. 12). A neuron’s GS rate was conserved across WAKE and NREM 

states (Fig. 5F), and infraslow changes in firing rate (24) corresponded to changes in the occupancy of AS 

modes, rather than fluctuation of GS rate (Suppl. Fig. 13). Whereas AS mode spikes were coupled to 

particular frequency bands of the LFP, GS spikes were broadly coupled to the LFP at a wide range of 

frequencies (Suppl Fig. 14 (25)). 

Figure 4: Sensory tuning reflects modal encoding. 
A: Rate (P[spike | HD], red line) and ISI distribution as 
a function of head direction for example head 
direction cells in the AD thalamus B: Average rate and 
conditional ISI for all HD cells, centered on their 
preferred head direction. While rate varies 
continuously with position and head direction, ISI 
distribution shows distinct modes of activity as a 
function of HD. (Right) Mean in- and out-field ISI 
distributions and ISI return maps. In- vs out-field ISI 
distributions do not differ in the general shape of the 
ISI distribution, but in the relative occupancy in 
activated state and ground state modes. C: (Left) 
Observed spike count given head direction for an 
example HD cell. (Right) Spike count given head 
direction for the modal and continuous model, with the 
best-fitting parameters for the example cell. D: Modal 
encoding model fits HD cell activity better than 
continuous rate encoding model. Bayesian 
information criterion (BIC) ratio for model fits from 
each HC cell; lower ratio supports the modal model  
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Due to its irregular spiking (CV≥1), we hypothesized that the GS mode arises from balanced 

inhibition and excitation. We tested this idea with a network model of integrate and fire neurons (Brunel 

2000) in which each neuron used an inhibitory plasticity rule (26)(Fig 6A) to maintain a cell-specific target 

rate (Fig 6B, Suppl. Fig. 15, Methods). Under conditions of moderate excitatory (E-E) recurrent connectivity 

and near-threshold drive, the network showed a balanced regime of asynchronous activity (27), in which 

each excitatory neuron spiked irregularly at a cell-specific rate (i.e., GS-like activity, Fig. 6B,C). When we 

varied the strength of recurrent excitation or external drive, different activity patterns were induced in the 

network, including gamma-like oscillations (20), a heterogeneous asynchronous regime (28) and network 

bursts (Fig. 6D,E). Each of these regimes produced a characteristic pattern of AS modes in the ISI 

distributions, common to all neurons in the network and reflecting their engagement in collective activity. 

However, in each regime, GS activity was also preserved in the spiking of single neurons despite different 

collective dynamics. 

 

DISCUSSION 

Most previous research has focused on the problem of how neurons respond to sensory stimuli or 

induce motor outputs by changing a continuously varying rate of Poisson-like spiking. In contrast, our results 

suggest a framework in which single neurons engage in distinct spiking modes. One of these modes, the 

Figure 5: The Neuronal Ground State. A: Ground state activity in an example cell from CA1 - NREM. Left, ISI distribution. Cross 
indicates ground state rate. Right, sample spike train and ISI from the example cell. Note that the majority of time is spent in 
intervals around the GS rate (dashed line). B: Mean rate as a function of GS rate (left) and total AS weight (right) in all cells during 
WAKE and NREM. C: Mean rate as a function of modal rate from all modes from individual fit of all cells. Each cell can have up 
to 6 points in each plot, reflecting GS rate and the rate of up to 5 AS modes. In each region, rate of the GS mode is tightly 
correlated with mean rate, unlike AS modes. D: GS rate for all cells. E: GS weight (pGS, fraction of spikes in the ground state) for 

all cells. Ground state spikes compose more than 50% of the ISI distribution in most cells from all regions/states. F: Ground state 
rate and total AS weight of all cells in WAKE and NREM.  
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“ground state” (GS) mode is characterized by irregular spiking at a cell-specific low rate, and was found to 

be universal among neurons in all observed regions. In addition to the ground state, we found that neurons 

have a repertoire of higher-rate “activated state” (AS) modes. Each AS mode has a characteristic timescale 

and regularity and is common among neurons in the local population. We observed that specific AS modes 

were evoked in hippocampal place cells and thalamic head direction cells within their place fields and 

preferred head direction, respectively.  We hypothesize that GS mode maintains the brain’s internal 

dynamic, while AS modes serve communication functions.  

We suggest that AS modes are the spiking correlates of various region-specific activity patterns, 

which emerge from network and cellular properties in a given region. In the self-balancing network model, 

a variety of different network activation patterns produced AS modes with spiking at similar timescale and 

regularity. These results suggest that the relationship between AS modes and network activity depends on 

the specific mechanisms that generate each AS mode. Regardless of generation mechanisms, the higher-

rate, more regular spiking of AS modes at particular timescales is ideal for effective transmission (29, 30) 

and multiplexing (31, 32) of functionally-distinct signals to downstream readers. For example, AS mode 

spiking might have mode-specific impact on postsynaptic cells (33) and networks (34), or activate 

intracellular processes in the spiking cell itself with mode-specific implications (35, 36). 

In contrast to the higher-rate spiking of AS modes, slow irregular spikes are often considered as 

nonfunctional “noise”, although the potentially beneficial role of noise has been acknowledged (37, 38).  
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Because of the long ISIs of GS spikes, a target pyramidal neuron with short integration time constant (<50 

ms) will not be able to see the “rate” of GS spikes from each of its upstream partners. Yet, given that GS 

spikes represent the majority of spikes in the brain, their functional significance is expected to be important 

(Suppl. Fig. 16). The combined effect of ongoing GS activity might keep neurons in a near-threshold state 

from which they can respond quickly to relevant inputs (38, 39), and even solitary spikes can induce 

responses in target interneurons (33) or strongly-connected pyramidal cells (40). This sustained 

background activity from GS spikes may serve to maintain a homeostatically balanced backbone of 

neuronal activity in networks with vastly heterogeneous neurons (41–43). We hypothesize that the primary 

function of brain networks is to maintain their own dynamics and this is established by the GS mode of 

spiking. Finally, we propose that sequences or synchrony of GS spikes may offer an ongoing internal library, 

or reservoir, of activation patterns that are available to be selected and reinforced when associated with 

salient behaviors or stimuli (44–46).  
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