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ABSTRACT

Neuronal firing patterns have significant spatiotemporal variety with no agreed upon theoretical
framework. Using a combined experimental and modeling approach, we found that spike interval
statistics can be described by discrete modes of activity. A “ground state” (GS) mode of low-rate
spiking is universal among forebrain excitatory neurons and characterized by irregular spiking at a
cell-specific rate. In contrast, “activated state” (AS) modes consist of spiking at characteristic
timescales and regularity and are specific to neurons in a given region and brain state. We find that
the majority of spiking is contributed by GS mode, while neurons can transiently switch to AS
spiking in response to stimuli or in coordination with population activity patterns. We hypothesize
that GS spiking serves to maintain a persistent backbone of neuronal activity while AS modes

support communication functions.
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INTRODUCTION

A widely held view in neuroscience holds that the fundamental unit of neural computation is
stochastic (Poisson-like) spiking following a continuously-varying rate (1, 2). It has been suggested that this
irregular spiking arises as a consequence of inhibition balancing excitation in a "fluctuation-driven" regime
(3-7) and allows neurons to maximize the efficiency of information transmission (1, 8). However, the
irregular spiking view stands in contrast to the widely-observed constraint of spike times by oscillations (9)
and biophysical properties (10), and the idea that neurons must form temporally-coordinated cell
assemblies to effectively discharge their downstream target partners (11). Further, neuronal spike patterns
vary between brain regions (12, 13), and depend on an animal’s behavior, sensorium, and brain state (14—
16). Thus, the Poisson model alone does not adequately capture the wide range of observed spike-time

statistics.

RESULTS

To search for an overarching characterization of neuronal spike patterns, we examined
electrophysiological recordings from six regions of the rodent forebrain during waking and sleep (see
Methods; Suppl. Fig. 1), and analyzed the distribution of log interspike intervals (ISIs) and their return maps
(ISIn vs ISIn+1) (Fig. 1A). Neurons in each region had qualitatively distinct ISI distributions, with characteristic
“modes” of increased IS| density at specific timescales (Figure 1B) that were specific to brain state (NREM
sleep vs WAKE/REM) and region (Suppl. Fig. 2).

Ground state and activated state modes of interspike intervals

Despite heterogeneity across brain regions, we noticed a universal pattern of ISls in excitatory
neurons (Fig. 1C,D, Suppl. Fig. 3). At long ISIs (low rate), distributions tended to show a single mode that
was unique to each neuron. This low rate activity corresponded to an “on-diagonal” mode in the ISI return
maps, and thus reflected sequential long ISIs rather than silent intervals between episodes of higher-rate
spiking. In contrast to the neuron-specific lowest-rate mode, higher-rate modes were shared among
neurons in the region. Each high-rate mode tended to have a distinct degree of regularity or irregularity, as
measured by the ISI-conditioned coefficient of variation, CV2 (Suppl Fig. 4), with higher rate modes tending
to have more regular spiking (CV2 < 1), compared to those with long I1SIs (CV2 = 1).

These observations prompted us to consider that the distinct modes of ISI distributions are the
spiking correlate of distinct neuronal and network mechanisms (Fig. 1E). We hypothesized two main
categories: a ‘ground state’ (GS) mode of irregular spiking at a cell-specific low rate, and a repertoire of

‘activated state’ (AS) modes common to neurons in a given brain region/state.
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Figure 1: ISI distributions of forebrain excitatory neurons suggest a modal view of neural spiking with ground and
activated states. A: loglSlI distribution and return map from an example CA1 cell during WAKE, REM, and NREM sleep. On-
diagonal clusters reflect sequential ISls at a similar timescale, off-diagonal clusters reflect transitions between modes. B: Mean
ISI distributions and return maps (ISl, vs ISl,.1) from all putative excitatory cells in each region during WAKE and NREM sleep.
Black triangles reflect mean firing rate over all cells in the region/state. Due to WAKE-REM similarity, only WAKE and NREM are
shown - REM can be found in supplemental figures. C: loglISI distributions for all CA1 pyramidal cells during WAKE and NREM
sleep, sorted by mean firing rate. Black line indicates the mean ISI (1/mean rate) for each cell. (See Supp Fig 3 for comparable
plots from all regions). D: Mean ISI distribution and return maps for CAl cells divided into firing rate sextile groups. Location (i.e.
rate) of the low rate mode (ground state, GS, brown) moves to shorter ISls in higher firing rate groups, while pattern and timescale
of higher rate modes (activated states, AS, black) are consistent across firing rate group. E: The ground state/activated state
modal theory of neural activity.

To test our GS-AS hypothesis, we modeled the ISI distribution from each neuron with a mixture
model,

PllogIS] =71 = > g i (0)

m

where a,, ; is the weight, or fraction of spikes, from neuron i in mode m, and each mode, ,,,; (1), was taken
to be a log-gamma distribution (17)(see Methods; Figure 2A-C, Suppl. Fig. 5). Fitting ISI distributions to this
model allowed us to parameterize each mode by a characteristic rate (1/mean ISl) and variability (CV)
which, when combined with the weights in each mode, revealed a “modal fingerprint” for the activity patterns
of each neuron (Fig. 2B). In every brain region, two distinct clusters of spiking modes were seen: a low
rate cluster of supra-Poisson spiking (CV>1) that corresponded to the GS mode in each cell, and a cluster
of sub-Poisson modes at higher spike rates with characteristic sub-clusters that were unique to each
region/state (Fig. 2D). To further characterize the repertoire of AS modes in each region, we constrained
the model such that the properties of each AS mode were shared across neurons in the same region/state
(Fig 2D, Suppl. Fig. 6, Methods).

P;[logISI = t] = ags s, (T) + z Aasm,i Pm (T)
m
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Figure 2: Modal decomposition of ISI distributions and spike trains. A: (log)Gamma distribution as a model for (log)ISI modes.
A logGamma distribution is characterized by a mean interval (i.e. a mean rate) and coefficient of variation (CV), which reflects the
irregularity of spiking in that mode and can range from regular (CV<<1), to poisson-like (CV~1), to supraPoisson (CV>1) spiking.
Four examples of spike trains and ISI distributions sampled from four logGamma distributions with a range of CVs are shown, each
with mean ISI = y. B: Mixture of logGammas model fit for an example CAL cell during WAKE. The loglSI distribution for the cell is
decomposed into a sum of logGamma distributions. Each mode is represented by its mean ISI (1/mean rate) and CV, and a weight,
which reflects the proportion of spikes fired by the cell in that mode. The example cell has a ground state at 0.1hz with a CvV=2, and
5 activated state modes at different rates/CVs. C: Hidden Markov Model for decomposing spike trains into modes. D: LogGamma
mixture model fit for all cells in each region/state. Grey points correspond to individual cell fits. Open circles correspond to model fit
with each AS mode constrained to have the same mean/CV over all cells ("shared” AS modes, see Methods), sized by the mean

weight over all cells.

We then used a hidden Markov model (HMM) approach to assign each ISl to its most likely mode (Methods,
Fig. 2C).

Many AS modes corresponded to known network patterns in each region. For example, CAl
neurons during WAKE had an AS mode with regular spiking at ~100 ms that was associated with theta
oscillations (~8Hz) (Supp Fig 7, (18)), and vCTX neurons had an AS mode of regular spiking at ~250ms
which was associated with delta oscillations (Supp Fig 8, (19)). Further, neurons in each region had

prominent AS modes at gamma timescales (~10-40 ms) that were associated with local interneuron
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activation (20)(Supp Fig 9). Finally, a “burst” mode of regular spiking at < 10 ms was most prominent in the

hippocampus during NREM sleep and likely reflects intracellular mechanisms (21)(Suppl. Fig. 10).

Activated states of spiking

To examine conditions that activate neurons out of the ground state, we examined ISI statistics
during specific behaviors. The spike rate of a subset of hippocampal neurons increased at specific locations
(22). When averaged across trials, spike rate varied smoothly with position. However, when we plotted ISIs
as a function of position (Fig. 3A), this increased rate of spiking corresponded to the appearance of a
discrete multi-modal cloud of 10-150ms ISls, which was similar among all place cells (Fig. 3B-D). When we
compared the in-field and out-field ISI distributions and return maps, we found that they differed in the
relative occupancy in high- and low-rate modes, rather than reflecting a qualitative shift in the shape of the
distribution (Fig. 3E). This change in mode occupancy reflected a decreased incidence of GS spiking and
increased incidence of 30-100Hz and 8Hz AS modes within the place field, as identified by the HMM (Fig,
3B) and by increased weight in these modes when in- and out-field IS distributions were fit separately with

the mixture of gammas model (Fig. 3F).
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To examine the generality of these findings, we treated thalamic head direction neurons (23) in a
similar manner. Similar to CA1, we found that continuous variation in trial-averaged firing rate masked
underlying discrete ISI modes. Timescale of ISIs in each mode was constant regardless of head direction,
but occupancy was highest in the AS mode when the rat was gazing at the preferred direction of the neuron,
whereas GS spikes dominated the less preferred directions (Fig. 4A, B). Because of the unimodal nature
of the activated states in head direction neurons, we were able to directly compare a “continuous
rate” encoding model, in which spike rate varied continuously with HD, with a discrete “modal” encoding
model, in which the relative occupancy of a high rate (AS) mode and a low rate (GS) mode varied
continuously with head direction (Methods, Fig. 4C, Suppl Fig. 11). In all HD cells, the modal model fit the
observed spiking data better than the continuous rate model (Fig. 4D). This direct spike-count comparison
between the modal model and a continuous-rate model also favors the modal version, without relying on

analysis of ISls.

Ground State spiking reflects a default mode of balanced activity

In contrast to region/state-specific AS modes, GS mode (Fig. 5A) was present in neurons in every
brain region during all brain states. A neuron’s firing rate was strongly correlated with its GS rate but less
so with the occupancy of its AS modes or their rate (Fig. 5B,C), mainly because GS spikes represented
the majority of spikes in most cells (Fig. 5E), and the vast majority of time was spent in the long-duration
intervals between GS spikes (Suppl Fig. 12). A neuron’s GS rate was conserved across WAKE and NREM
states (Fig. 5F), and infraslow changes in firing rate (24) corresponded to changes in the occupancy of AS
modes, rather than fluctuation of GS rate (Suppl. Fig. 13). Whereas AS mode spikes were coupled to
particular frequency bands of the LFP, GS spikes were broadly coupled to the LFP at a wide range of

frequencies (Suppl Fig. 14 (25)).
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Figure 5: The Neuronal Ground State. A: Ground state activity in an example cell from CAL - NREM. Left, ISI distribution. Cross
indicates ground state rate. Right, sample spike train and ISI from the example cell. Note that the majority of time is spent in
intervals around the GS rate (dashed line). B: Mean rate as a function of GS rate (left) and total AS weight (right) in all cells during
WAKE and NREM. C: Mean rate as a function of modal rate from all modes from individual fit of all cells. Each cell can have up
to 6 points in each plot, reflecting GS rate and the rate of up to 5 AS modes. In each region, rate of the GS mode is tightly
correlated with mean rate, unlike AS modes. D: GS rate for all cells. E: GS weight (pgg, fraction of spikes in the ground state) for

all cells. Ground state spikes compose more than 50% of the ISI distribution in most cells from all regions/states. F: Ground state
rate and total AS weight of all cells in WAKE and NREM.

Due to its irregular spiking (CV=1), we hypothesized that the GS mode arises from balanced
inhibition and excitation. We tested this idea with a network model of integrate and fire neurons (Brunel
2000) in which each neuron used an inhibitory plasticity rule (26)(Fig 6A) to maintain a cell-specific target
rate (Fig 6B, Suppl. Fig. 15, Methods). Under conditions of moderate excitatory (E-E) recurrent connectivity
and near-threshold drive, the network showed a balanced regime of asynchronous activity (27), in which
each excitatory neuron spiked irregularly at a cell-specific rate (i.e., GS-like activity, Fig. 6B,C). When we
varied the strength of recurrent excitation or external drive, different activity patterns were induced in the
network, including gamma-like oscillations (20), a heterogeneous asynchronous regime (28) and network
bursts (Fig. 6D,E). Each of these regimes produced a characteristic pattern of AS modes in the ISI
distributions, common to all neurons in the network and reflecting their engagement in collective activity.
However, in each regime, GS activity was also preserved in the spiking of single neurons despite different

collective dynamics.

DISCUSSION
Most previous research has focused on the problem of how neurons respond to sensory stimuli or
induce motor outputs by changing a continuously varying rate of Poisson-like spiking. In contrast, our results

suggest a framework in which single neurons engage in distinct spiking modes. One of these modes, the
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Figure 6: Ground/activated state activity is robustly produced by a heterogeneous self-balancing network. A: The
heterogeneous self-balancing network. Each cell maintains spiking at a cell-autonomous rate by adjusting its incoming inhibitory
synapses to balance excitatory inputs. B: GS rate reflects E/I synaptic input ratio. Firing rate is determined by the ratio of incoming
excitatory and inhibitory synaptic weights in each cell. C: Ground state activity with irregular spiking in the heterogeneous self-
balancing network. Left: Spike raster from excitatory (black) and inhibitory (red) cells. Right: ISI distribution of a subset of cells in
the network, sorted by GS rate, as identified by the mixture of gammas model. D: Mean GS weight over cells in the network, as
determined by the mixture model, as a function of E-E synaptic weights (recurrence) and the level of external drive. External drive
and recurrence reduce GS weight by producing network activation patterns, each with associated AS modes (panel E), but GS
mode is maintained. Recurrence is in units of K*(-alpha), where higher values of alpha signify lower excitatory weight. E: Simulated
rasters (left) and ISI distributions fitted to the mixture of gamma model (right) for cells in self-balancing networks under conditions
of strong drive (i), strong recurrence with low drive (ii), and strong recurrence (jii).

“ground state” (GS) mode is characterized by irregular spiking at a cell-specific low rate, and was found to
be universal among neurons in all observed regions. In addition to the ground state, we found that neurons
have a repertoire of higher-rate “activated state” (AS) modes. Each AS mode has a characteristic timescale
and regularity and is common among neurons in the local population. We observed that specific AS modes
were evoked in hippocampal place cells and thalamic head direction cells within their place fields and
preferred head direction, respectively. We hypothesize that GS mode maintains the brain’s internal
dynamic, while AS modes serve communication functions.

We suggest that AS modes are the spiking correlates of various region-specific activity patterns,
which emerge from network and cellular properties in a given region. In the self-balancing network model,
a variety of different network activation patterns produced AS modes with spiking at similar timescale and
regularity. These results suggest that the relationship between AS modes and network activity depends on
the specific mechanisms that generate each AS mode. Regardless of generation mechanisms, the higher-
rate, more regular spiking of AS modes at particular timescales is ideal for effective transmission (29, 30)
and multiplexing (31, 32) of functionally-distinct signals to downstream readers. For example, AS mode
spiking might have mode-specific impact on postsynaptic cells (33) and networks (34), or activate
intracellular processes in the spiking cell itself with mode-specific implications (35, 36).

In contrast to the higher-rate spiking of AS modes, slow irregular spikes are often considered as

nonfunctional “noise”, although the potentially beneficial role of noise has been acknowledged (37, 38).
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Because of the long ISIs of GS spikes, a target pyramidal neuron with short integration time constant (<50
ms) will not be able to see the “rate” of GS spikes from each of its upstream partners. Yet, given that GS
spikes represent the majority of spikes in the brain, their functional significance is expected to be important
(Suppl. Fig. 16). The combined effect of ongoing GS activity might keep neurons in a near-threshold state
from which they can respond quickly to relevant inputs (38, 39), and even solitary spikes can induce
responses in target interneurons (33) or strongly-connected pyramidal cells (40). This sustained
background activity from GS spikes may serve to maintain a homeostatically balanced backbone of
neuronal activity in networks with vastly heterogeneous neurons (41-43). We hypothesize that the primary
function of brain networks is to maintain their own dynamics and this is established by the GS mode of
spiking. Finally, we propose that sequences or synchrony of GS spikes may offer an ongoing internal library,
or reservoir, of activation patterns that are available to be selected and reinforced when associated with

salient behaviors or stimuli (44—-46).
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