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ABSTRACT

Protein structure prediction has long been considered a gateway problem for understanding protein
folding. Recent advances in deep learning have achieved unprecedented success at predicting a protein’s
crystal structure, but whether this achievement relates to a better modelling of the folding process
remains an open question. In this work, we compare the pathways generated by state-of-the-art protein
structure prediction methods to experimental folding data. The methods considered were AlphaFold
2, RoseTTAFold, trRosetta, RaptorX, DMPfold, EVfold, SAINT2 and Rosetta. We find evidence that
their simulated dynamics capture some information about the folding pathwhay, but their predictive
ability is worse than a trivial classifier using sequence-agnostic features like chain length. The folding

trajectories produced are also uncorrelated with parameters such as intermediate structures and the
folding rate constant. These results suggest that recent advances in protein structure prediction do
not yet provide an enhanced understanding of the principles underpinning protein folding.
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1. INTRODUCTION

Protein folding, or how a protein attains its equilibrium three-dimensional structure, is considered one of the grand
challenges of modern molecular biology (1). If it were possible to accurately predict the folding pathway of a protein,

it would have far-reaching implications for basic science, further the development of novel therapeutics and broaden
the toolset for protein design and engineering. Some of the most prevalent aging-related pathologies, like Alzheimer’s
(2) or Parkinson’s disease (3), originate when the delicate proteostasis machinery fails to ensure that proteins are
correctly folded. The dynamical nature of the folding process also relates to other poorly understood phenomena like

allostery (4), fold-switching (5) or intrinsic disorder (6). Even protein expression, one of the cornerstones of modern
biotechnology, is highly dependent on folding: problems expressing recombinant proteins across different organisms
are often attributed to changes in the folding mechanism due to different translation machinery (7). However, we are

still unable to accurately predict the folding pathway of a protein de novo.
The related problem of protein structure prediction has experienced significant progress over the past two decades,

powered by the community-wide effort of the biennial CASP contest (8). This assessment exercise has witnessed

multiple step changes in accuracy as novel ideas have been incorporated into the participant’s pipelines (9; 10; 11). In
recent years, deep learning approaches have dramatically improved the quality of structure prediction. The introduction
of deep learning techniques into protein structure prediction methods raised the average free modelling GDT TS score,
which measures structural similarity on a scale from 0 to 100, from 52.9 in CASP12 (10), to 65.7 in CASP13 (11).
In CASP14, a deep learning model, AlphaFold 2, achieved an average GDT TS of 85.1 (12). This method, and other
similar techniques (13), have been hailed as an acceptable solution to the protein structure prediction problem (14).

These dramatic advances in structure prediction raise a fundamental question: has progress been driven by a better
understanding of protein folding? To the best of our knowledge, the ability of structure predictors to determine folding
pathways has not been evaluated previously. Related work has studied the search trajectories of fragment replacement
methods (15), or attempted to introduce biological constraints into folding (16). Furthermore, recent work has shown

that some deep learning predictors can pinpoint flexible residues (17) or conformational changes (18), suggesting that
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Figure 1. Two-state vs multistate protein folding pathways. Some proteins fold in a single cooperative step (two-state
folding, in reference to the two states: unfolded and folded states), while others exhibit complex pathways with one or more
intermediates (multistate). In the plots, we show the average of 200 refolding coarse-grained molecular dynamics simulations,
superposed with representative snapshots of the structure. (a) Human ubiquitin (PDB: 1UBQ), a two-state folder: the protein
folds immediately to a structure that resembles the crystal structure. (b) The RNAse H domain of HIV-1 reverse transcriptase
(PDB: 1HRH), which folds through a stable intermediate where the majority of the protein is compact, except for the C-terminal
α-helix that is unstructured.

these methods may capture dynamic phenomena encoded in the multiple sequence alignment. In this work we examine

whether protein structure prediction methods are able to reveal anything about a protein’s folding pathway.
We show that current protein structure prediction methods do not produce correct folding pathways. We first

demonstrate that generated pathways have a weak link to formal folding kinetics, achieving a modest accuracy in

discerning between protein chains that fold in a two-state or multistate mechanism. However, a simple sequence-
agnostic feature, the length of the protein chain, is a far better predictor of folding dynamics. In the case of two-state
folders, we also find that the dynamic trajectory is inconsistent with experimental folding rate constants. We then

demonstrate that predicted pathways produce erratic intermediates that are inconsistent with available hydrogen-
deuterium exchange data. Most of the structure prediction methods are not significantly better than an unbiased coin
and some of them are consistently worse at reproducing experimental measurements. Finally, we take a protein with
well-characterised folding pathway, ubiquitin, and compare experimental data, simulations and pathways derived from

protein structure prediction,

2. METHODS

2.1. Reference data

We compiled a dataset of 170 proteins for which experimental folding kinetics data is available. To produce this
dataset, we collated entries from the Protein Folding Database (PFDB) of kinetic constants (19) and the Start2Fold

directory of hydrogen-deuterium exchange experiments (20). We checked the annotations contained in the PFDB
and changed the classification for human ubiquitin (PDB: 1UBQ) from multistate to two-state, given that the PFDB
citation corresponds to a mutated species and the wild-type protein displays two-state kinetics (21). The entries in the
Start2Fold database do not include annotation for formal kinetics, so we manually annotated the results by querying
the literature. The complete dataset and original publications are provided in Appendix A. We also compiled folding
rate constants for a fraction of the proteins in this dataset that exhibit two-state kinetics, which are reported in
Appendix B.

We collected available hydrogen-deuterium exchange (HDX) data from Start2Fold and original papers (Appendix
C), to use as structural insight into the folding pathway. We observed that the residue-level annotation in the
original database was sparse; we therefore queried the original sources and reconstructed the annotation as indicated
in Appendix C. Each secondary structure element was labeled as structured or unstructured for each of the identified
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Figure 2. Protocol for the analysis of simulated folding pathways. (a) Trajectory generation process. Protein sequences
are used to generate the necessary input features for a modified protein structure predictor using default processing scripts. The
structure prediction software outputs detailed search trajectories, that are then summarised as the fraction of native contacts
between pairs of secondary structure elements. (b) The trajectories are smoothed, and the positions of maximum change are
identified via numerical differentiation. These peaks are subsequently clustered using kernel density estimation (KDE) with a
Gaussian kernel, allowing us to identify main phases of folding, and establishing whether the trajectory proceeds in one or more
steps; and into the structural intermediates, which can be compared to hydrogen-deuterium exchange (HDX) experiments.

intermediates, on the basis of the experimental protection factors of the probes (in NMR experiments) or peptides (in
mass spectrometry experiments) corresponding to a given portion of secondary structure.

Sequences and reference structures were downloaded from the RCSB PDB (22) and trimmed according to the
specifications of the entries. We used the codes referenced in the publications, even when higher resolution structures

were available in the PDB. When using NMR structures with multiple models, the structure with the highest score
was selected. Missing regions were repaired using MODELER (23) with standard parameters.

2.2. Trajectory generation

We generated protein folding trajectories using the latest versions, as of December 2020, of Rosetta (24), trRosetta
(25), DMPfold (26), EVcouplings (27), RaptorX (28), SAINT2 (16), and the recently published RoseTTAFold (13).

We modified the source codes of the seven programs to print the current structure after every fragment substitution
(for Rosetta and SAINT2); or after every 10 gradient updates (for trRosetta, RaptorX, DMPfold and EVfold, which
employ L-BFGS or related gradient descent algorithms); or after every refinement cycle in a SE(3)-equivariant iterative
transformer (for RoseTTAFold). Given the large amount of data produced by Rosetta, averaging more than 200,000
snapshots per decoy, we subsampled the trajectories produced at every 100 fragment substitutions.

We preprocessed the sequences of our 170 test case proteins employing the default pipelines provided by each piece of
software, and used default parameters throughout. The generated trajectories for each of the 170 annotated proteins
were compressed to the binary DCD format (29) and analysed using in-house scripts. For RoseTTAFold, which
produces only the atoms involved in the peptide bond, we used PULCHRA (30) to reconstruct the β-carbons which
are used in subsequent analysis. All information necessary to reproduce this study, including the diff files of the
original source code, is available from .

We also considered trajectories generated by AlphaFold 2 (14). Due to the architecture of the model, producing
a trajectory would require training a replica of the AlphaFold Structure Module for every individual Evoformer
iteration; this was done by Jumper et al. in the original publication, although the models have not been open-sourced.
Fortunately, individual folding trajectories for each of the 170 proteins in our dataset were kindly provided by the
DeepMind team. These trajectories were generated with the same methods and models as in the original publication
(14), save for the removal of any templates (although, of course, many of the structures were present in the training

set).
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2.3. Trajectory analysis

We analysed the trajectories using the fraction of native contacts between secondary structure elements (31). These
elements were identified using STRIDE (32) on the crystal structure, ignoring any element shorter than 4 amino
acids. Distances were calculated using MDAnalysis (33; 34), and two amino acids were defined to be in contact if
their β-carbons (α-carbons in the case of glycine) were less than 8.0 Å apart in the native structure. To account for
fluctuations, we introduced a flexibility parameter ξ = 1.2 whereby amino acids in contact in the crystal structure
were still considered to be in contact in the simulated trajectory if their distance was ξ times the crystal structure
distance. These parameter choices were inspired by the standard in the molecular dynamics literature e.g. (35). To
ensure that our conclusions were independent of the choice of parameters, we performed a parameter exploration on
a reduced subset of the data (10 trajectories per protein) – see Figure S1.

We computed the numerical time derivatives of the fraction of native contacts using finite differences and smoothed
them using Friedman’s supersmoother (36) as implemented in the R stats package (37). The maximum value of
the derivative for a pair of secondary structure elements was identified as the time point where the two of them are
folded. We then fitted the data using a Gaussian Kernel Density Estimation (KDE) with bandwidth determined by
Scott’s rule via SciPy (38). When all of the folding transitions belong to a single peak, the trajectory was considered
to be folding in two-states; when two or more peaks were found, the trajectory was labeled as multistate. Given the
variability of the trajectories between prediction runs, many proteins had both two-state and multistate trajectories;
hence we defined the fraction of two-state trajectories as the probability that a protein exhibits two-state kinetics.

2.4. Coarse-grained molecular dynamics simulations

Human ubiquitin (PDB: 1UBQ) is a small protein (76 amino acids) that has received significant attention in the
protein folding literature. We performed molecular dynamics simulations for this protein to use as a baseline, using
a native-centric coarse-grained force field where every amino acid is represented by a single bead centered on the

α-carbon; for more detail, see Appendix D. This formulation has been used to study protein folding in several previous
studies e.g. (39; 35; 40). Our force field contains an adjustable scaling factor η which is determined by comparison to
the experimental Gibbs free energy of folding. We ran replica exchange (REX) simulations and determined the ∆G of
folding using the weighted-histogram analysis method (WHAM) (41), and found the parameter that reproduces the

experimental ∆Gfolding (-7.11 kcal/mol) taken from the literature (19).
We produced temperature quenching simulations using a Langevin integrator (friction parameter 0.05 ps−1, inte-

gration timestep 15 fs) and the OpenMM software package (42). We ran 200 independent trajectories consisting of 15

ns at 800 K, to induce temperature unfolding, followed by 300 ns at 298 K, to allow refolding. We printed trajectory
snapshots every 5,000 timesteps (every 75 ps). The quenching trajectories were backmapped to a full backbone rep-
resentation using PULCHRA (30), and analysed using the same procedure as the trajectories obtained from protein
structure prediction methods.

3. RESULTS

3.1. Pathways from protein structure predictors are worse than chain length at predicting formal kinetics

We first evaluated whether the predicted pathways from protein structure prediction methods are consistent with
experimental refolding kinetics. The methods were asked to classify if a protein chain folds through two-state kinetics or
multistate kinetics; in other words, whether the folding reaction is fully concerted or progresses through an intermediate.
The ground truth is a dataset of in vitro refolding experiments extracted from the literature.

As described in Methods, we modified the latest versions of seven state-of-the-art protein structure prediction meth-
ods to output their search trajectory. The first group, Rosetta and SAINT2, make use of a Monte Carlo minimization
strategy based on fragment replacement. The second group, trRosetta, RaptorX, DMPfold and EVfold, use a flexible

model with a simplified energy function as provided by CNS (43) or the Rosetta energy function (44), in combination
with inter-residue restraints derived from co-evolutionary data. Of these, one model (EVfold) uses binary contacts
predicted by a Potts model (45), while the other three use deep learning to predict inter-residue distances (DMP-
fold) and possible inter-residue orientations (trRosetta, RaptorX). The last method, RoseTTAFold, uses an iterative
SE(3)-equivariant transformer that predicts protein structures in an end-to-end fashion without explicit minimization.
These methods were used to produce 200 folding trajectories for each of the 170 proteins in our test set; except for
the fragment replacement methods, SAINT2 and Rosetta, where due to high computational cost we generated only 10
trajectories per protein.
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RoseTTAFold trRosetta RaptorX DMPfold EVfold SAINT2 Rosetta Length

10 decoys

Unsupervised accuracy 0.614 0.614 0.560 0.565 0.552 0.554 0.552 -

Unsupervised F1-score 0.637 0.588 0.472 0.679 0.525 0.586 0.513 -

Supervised accuracy 0.607 0.576 0.551 0.588 0.568 0.538 0.527 0.656

Supervised F1-score 0.637 0.620 0.558 0.667 0.643 0.620 0.655 0.731

AUROC 0.675 0.654 0.626 0.594 0.605 0.608 0.560 0.739

200 decoys

Unsupervised accuracy 0.623 0.546 0.576 0.556 0.608 - - -

Unsupervised F1-score 0.663 0.638 0.610 0.687 0.616 - - -

Supervised accuracy 0.612 0.573 0.563 0.581 0.610 - - 0.656

Supervised F1-score 0.649 0.640 0.565 0.667 0.645 - - 0.731

AUROC 0.669 0.631 0.602 0.622 0.658 - - 0.739

Table 1. Performance of the different protein structure prediction methods at determining folding kinetics.
Unsupervised metrics employ a simple rule c(x) that assigns a protein the most frequent kinetics i.e. if 50% or more of the
decoys display multistate kinetics, the protein is taken to fold in multiple steps; otherwise it is considered two-state. Supervised
metrics fit a logistic regression on c(x) and report the average of 1,000 5-fold cross-validation experiments; note that the
supervised score may sometimes be worse than the unsupervised one if the model does not generalise well. The baseline is a
logistic regression that uses only the length of the protein. Accuracy reports the average recall per class, to account for the
slight imbalance of the dataset (90 two-state folders and 80 multistate folders). The F1-score is the harmonic mean of recall
and precision. The area under the receiver-operating curve (AUROC) for length is computed by projecting the values to the
[0, 1] interval. We observe that chain length outperforms any of the protein structure prediction methods at predicting folding
kinetics.

Generated pathways are influenced by the choices of the different protein structure prediction programs. Fragment
replacement codes like SAINT2 and Rosetta start from the fully extended protein and slowly form compact states.

Others like trRosetta and RaptorX start from a random conformation whose torsion angles have been selected from
uniform sampling from a list of common torsion angles. RoseTTAFold initiates the trajectory in a compact structure
that has been generated by inference on the MSA (and that often exhibits significant steric clashes). Despite the
different initial states, all codes generate trajectories exhibiting complex folding dynamics.

The pathways were analysed using a method based on the fraction of native contacts between secondary structure
elements. In a concerted, two-state mechanism, we expect a sudden change where most of the interactions between
the secondary structure elements of a protein form in a single step, while in a multistate mechanisms we expect several
sets of interactions forming at disjoint points of the trajectory. Our analysis (see Methods) identifies the steepest
changes, and uses a statistical criterion to determine whether they should be considered as a single group (two-state)
or multiple groups (multistate, where the interleading peaks can be regarded as intermediates). Table 1 shows the
results of this classification.

Prediction accuracies are modest, but significant. Using a bootstrap test (N = 100, 000), we determined that all the
structure predictors are significantly superior to a random classifier (AUROC = 0.500) at the 99% level of confidence.
A randomised permutation test, however reveals that none of the predictors is significantly better at predicting folding
kinetics than a linear classifier using only chain length. The fact that this sequence-agnostic classifier is better than
any of the structure predictors suggests that, while protein structure prediction programs are capturing a non-trivial
signal about folding, this signal is very weak.

The best predictor of folding kinetics appears to be RoseTTAFold (a deep learning model based on a transformer
architecture which directly produces a structure from a multiple sequence alignment), closely followed by EVfold
(based on energy minimization subject to evolutionary constraints). EVfold could be considered the most physically
realistic method of those tested, since it does not modify the energy function to bias it towards the predicted native

state. DMPfold is similar to EVfold, as it uses the same simulation engine (CNS), but the former uses a different
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method for introducing distance restraints: in DMPfold they are predicted with deep learning, whereas EVfold uses
a Potts model. EVfold is a better predictor of folding kinetics than DMPfold, and also comparable to or better than
RaptorX and trRosetta, which rely on deep learning. This suggests that, with the exception of RoseTTAFold, which
belongs to a novel family of methods with physical assumptions baked into the model’s architecture, deep learning
models are performing worse.

We also tested AlphaFold 2’s ability to predict folding kinetics, although in this case we had only one trajectory per
protein. Using the method by Jumper et al. (14) we achieved an unsupervised accuracy of 0.613 and an unsupervised
F1-score of 0.591 (note that other metrics, such as supervised cores or AUROC, since the score is binary due to the
availability of only one trajectory per protein), which may hint at a similar performance to RoseTTAFold. If after
averaging over multiple decoys the performance metrics remained constant then this would reinforce the notion that
deep learning methods based on SE(3)-equivariance might be capturing folding information encoded in the multiple
sequence alignment.

Overall the quality of the structure prediction output does not appear to relate to the ability of the method to classify
folding kinetics (see Figure S2). In the 10 decoy dataset there is a tendency towards the methods that generate worse
structure predictions also being worse at predicting kinetics, but this effect may be a product of reduced sampling. If
we consider the 200 decoy dataset the method that has the lowest structure prediction accuracy, EVfold, is the second
best predictor of kinetics. Similarly for a given program, the quality of the predictions is largely independent of model
quality (see Figure S2).

We examined one of the methods that use deep learning, DMPfold, in more detail. DMPfold uses an iterative process

where prior predictions are used to refine the potential employed in subsequent cycles. We compared the predictive
power of multiple iterations, and observed that, while the area under the receiver-operating curve (AUROC) increases
slightly with successive iterations, the overall accuracy is reduced (see Figure S3). The AUROC can be interpreted as
the probability that a uniformly drawn two-state folder exhibits a higher proportion of two-state folding trajectories

than a uniformly drawn multistate folder. This result suggests that, by iteratively refining predicted distances, the
potential eliminates spurious predictions that might be a source of intermediates, as well as improve the final structure.
However, since the accuracy is reduced, the description of the free energy hypersurface is not improved.

Finally, we found that some programs have an intrinsic bias towards predicting one or other folding mechanism.
For example, for the majority of proteins, about 90% of the 200 DMPfold decoys exhibit two-state folding (hence the
increase in AUROC from the 10 decoys sample to the 200 decoys sample), while RaptorX and EVfold tend towards

predicting intermediates, and trRosetta presents a clear, but less marked bias towards two-state trajectories. These
tendencies may explain the differences between unsupervised and supervised accuracy in Table S1.

Overall, these results suggest that protein structure prediction programs are not learning information about the
folding mechanism.

3.2. Pathways from most protein structure predictors are uncorrelated with the rate constants of two-state folding

We next examined whether the protein structure prediction methods can predict the folding rate constant of the
two-state processes. Our work follows that of Plaxco, Simons and Baker, who demonstrated that the average contact
order of the native structure is strongly correlated with the folding rate constant of two-state proteins (46). Follow-up
papers have suggested that other measures, such as fractions of secondary structure (47) or even predicted contacts
(48), show similar correlations. We hypothesise that, if the folding pathways produced by protein structure methods
were representative of folding, they should exhibit a similar relation, where the presence of the folding event in the
trajectory is highly correlated with the folding rate constant.

We tested whether we could predict the folding rate constants of 79 two-state folding proteins from the PFDB (19)
(see Appendix B for the experimental ground truth data). For each protein, we discarded all of the decoy trajectories
that exhibited an intermediate and selected only two-state examples. In these trajectories, we localised the frame
where the folding event started, and correlated its relative position in the full trajectory with the natural logarithm
of the folding rate constant. As a baseline, we also computed the correlation with the average contact order and the
chain length. We found that chain length outperformed average contact order at predicting the folding rate constant,

counter to previous work that stated that length was not a useful predictor (46). This is potentially due to the use of
different examples and increased dataset size (our dataset is six times the size of that in the original paper).

We found that most programs exhibit only a very weak correlation between the simulated trajectories and the
folding rate constant. The Spearman correlation coefficients are not significant, at the 95% level of confidence, for
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Figure 3. Correlation between the folding rate constant and folding events in simulated trajectories of the seven structure
prediction methods considered, the length of the protein chain, and the average contact order of the native structure. Every
point represents the average over the maximum number of decoys possible (200 decoys for RoseTTAFold, trRosetta, RaptorX,
DMPfold and EVfold; and 10 decoys for SAINT2 and Rosetta).

trRosetta and RaptorX and DMPfold, and while EVfold, RaptorX and Rosetta display significant correlation, the
correlation has the wrong sign: later folding events lead to larger (faster) rate constants. In contrast, the correlation

between trajectories produced by RoseTTAFold and folding kinetics, although weaker in magnitude, has the correct
sign. Nevertheless, all of the methods are significantly worse than the length of the protein chain at predicting the
folding rate constant.

We also found that AlphaFold 2 behaves similarly to RoseTTAFold, as found in the previous section. The Spearman

correlation coefficient between the relative position of the folding event and the logarithm of the kf is −0.23, of the
same order as RoseTTAFold and with the correct sign. Although the reduced number of decoys does not allow us
to claim significance, the value suggests that the method is capturing some signal, and suggests that deep learning

methods based on SE(3)-equivariance might detect the footprint that folding mechanisms have left in the multiple
sequence alignment. However, it is unlikely that AlphaFold 2 would outperform the length of the protein chain at
predicting the folding rate constant.

These results reinforce the conclusion that the ability of protein structure prediction methods to model folding
pathways is inferior to trivial baselines.

3.3. Intermediates predicted by protein structure predictors are erratic and incompatible with available HDX data

As on occasion structure predictors do correctly identify folding kinetics we next examine if in these cases the
structures predicted in the pathway are consistent with experimental data. We hypothesise that if the structure
predictor has insight into the multistate process, it should (1) predict structures that are congruent with experimental
measurements, and (2) produce consistent predictions of the intermediates across independent replicas for the same
protein. Hydrogen-deuterium exchange (HDX) experiments probe unfolded regions of a protein at different stages of
the folding process and allow us to identify which regions of an intermediate are structured and which have not yet
folded (see Appendix C for details). We compared the predicted folding trajectories to these data.

We use the predicted trajectories to identify which pairs of secondary structure elements are interacting closely in the
intermediate. This allows comparison between the noisy protein structure prediction pathways and the low structural

resolution provided by experimental HDX data. For every protein and program, we consider a binary vector whose
elements correspond to pairs of secondary structure elements that are in contact in the native structure. We then use
the same trajectory analysis as in the previous section to identify which pairs interact in the folding intermediate (or,
in the case of fructose-biphosphate aldolase A, the first intermediate). The metrics of these classifiers are summarised
in Table 3.3.
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RoseTTAFold trRosetta RaptorX DMPfold EVfold SAINT2 Rosetta Random

10 decoys

Accuracy 0.448 0.532 0.486 0.474 0.532 0.479 0.522 0.502

F1-score 0.210 0.192 0.217 0.000 0.125 0.000 0.039 0.252

Jaccard 0.052 0.052 0.052 0.054 0.052 0.052 0.166 0.094

AUROC 0.432 0.512 0.477 0.505 0.500 0.447 0.470 0.498

200 decoys

Accuracy 0.453 0.534 0.495 0.489 0.540 - - 0.502

F1-score 0.222 0.169 0.110 0.026 0.307 - - 0.252

Jaccard 0.052 0.052 0.052 0.052 0.052 - - 0.094

AUROC 0.441 0.503 0.502 0.492 0.530 - - 0.498

Table 2. Performance of the structure predictors at identifying the secondary structure interactions present in
an intermediate. The ground truth corresponds to a dataset of eleven proteins whose intermediates have been characterised
with hydrogen-deuterium exchange (HDX) experiments. Accuracy reports the average recall per class, to account for the slight
imbalance of the dataset. The Jaccard score reflects the average Jaccard similarity of the predictions, expressed as a binary
string (where 1 means that the native contacts between secondary structure elements are formed in the intermediate, while
0 means they are not), with the true answer. The random baseline corresponds to an unbiased coin predicting whether two
secondary structure elements are in contact.

Intermediate structures are predicted with very low accuracy by all methods. A randomised permutation test shows
that only one of the predictors, EVfold, exhibits predictive power superior to the random baseline. In contrast,
RoseTTAFold is significantly worse than the random sample. This suggests that deep learning models are not learning
the physics of folding, but rather collecting statistical information about crystal structures.

As an additional sanity check, we considered whether the structures generated throughout the trajectories are
consistent with basic physical rules. We computed the clashscore (49) of every snapshot in the first ten decoys using
Phenix (50) and compared them against a threshold value of 30 clashes per 1,000 atoms, determined as the 99th

percentil of PDB structures with resolution ≤ 2.5Å (see Figure S5). We observed that the majority of the methods
produce a large number of structures with large clashes: methods based in CNS like DMPfold and EVfold produced
over 80% of unphysical structures, and even the best methods like RaptorX and AlphaFold produced nearly 30-40% of
structures with clashing atoms. This finding suggests that the potentials generated are not considering basic physical

principles throughout the intermediate stages of the predictive process. This may explain the relative bad quality of
intermediate predictions with respect to predictions of formal kinetics or the folding rate constant.

We then examined the variation between the predicted interactions by computing the Jaccard similarity between

the binary vector of predicted interactions and the ground truth. This similarity is very low, in most cases worse than
random, suggesting that independent replicas of the folding pathway by the protein structure prediction methods often
lead to markedly different structural intermediates. These results once again imply that while the predictors may be
good at modeling the energy hypersurface around the global minimum, they are not capturing other attractors and
therefore produce erratic pathways.

The comparison with AlphaFold 2 suggests that the latter produces similar results. Of the nine proteins, seven are
predicted with a Jaccard similarity of ∼ 0.1 to the ground truth (see Figure S6). The two proteins that are predicted
with some accuracy, horse cytochrome C and cardiotoxin analogue III, are also the smallest in the dataset, which once
again raises a concern of reduced entropic pressure. This suggests that AlphaFold 2 does not present any advantage
at predicting the folding intermediates of a protein chain.

We then investigated if these results extend from the proteins with HDX annotations, to the entire dataset of proteins
we simulated. We computed the binary vectors for all pathways of multistate proteins exhibiting an intermediate, and
computed the average Jaccard similarity for every protein (Figure 4). The average pairwise Jaccard similarity is 0.1,

and in most cases there are only a handful of proteins with an average over 0.5. The yeast cell-cycle control protein
p13suc1 (PDB: 1PUC) is one of this handful; it presents only four native interactions, suggesting that this is again
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Figure 4. Average pairwise Jaccard similarity between multistate folding trajectories across all proteins in the
dataset, for the seven structure prediction programs. Most methods exhibit significant variability between independent
trajectories.

due to reduced entropic pressure. Overall, the pathways produced by protein structure prediction methods are erratic
and generally inconsistent, suggesting that any ability to correctly predict multistate behaviour does not arise from
an understanding of the intermediates in the folding pathway.

3.4. Case study: ubiquitin

Ubiquitin is a 76-residue protein involved in signaling, notably by marking proteins for degradation by the 26S

proteasome (51). The folding and dynamics of ubiquitin have been widely studied both experimentally (21) and
computationally (52; 53), including by millisecond all-atom unbiased molecular dynamics simulations of folding (54).
The kinetics of folding were an object of controversy in the late nineties, with claims of a three-state mechanism (55),
although the consensus opinion in the literature is now that ubiquitin is a two-state folder (56; 57).

We analysed the protein structure prediction trajectories for ubiquitin generated during our analysis, and as a
physically-inspired baseline we considered a coarse-grained molecular dynamics (CGMD) simulation. Representative
trajectories for each program are provided in Supplementary Videos 1 to 9. We found that ubiquitin displays two-state

folding kinetics in most of the simulated trajectories of RoseTTAFold, trRosetta, DMPfold and EVfold, but only in
less than one quarter in RaptorX (see Figure 5b). Surprisingly, CGMD simulations also suggested that the folding
is multistate, with 62% of the trajectories exhibiting an intermediate. These results suggest that all codes, except
potentially RoseTTAFold and DMPfold, are generating stable intermediates that do not reflect experimental kinetics.

We then examined the structures of the intermediates, and found significant variability. Most programs, including
the CGMD reference, have a tendency towards the β-strands A and B interacting (see Figure 6a), signaling the
formation of a β-hairpin. This feature has been observed experimentally in NMR studies of unfolded ubiquitin (58)
in up to 8M urea, and could suggest that the predictors are identifying strong interactions that govern the formation
of metastable structures. However, most of the structure predictors also exhibit some spurious interactions that are
not observed in either the CGMD reference or the experimental data, such as interactions between the α-helix and
the β-strands A and B (see Figure 6a). This suggests that, while the structure predictors do capture some interesting
interactions, these are likely to be of limited use, since they are hidden within large amounts of spurious information.

We next inspected the simulated trajectories visually. As Figure 6 shows, despite RoseTTAFold exhibiting clear

two-state dynamics according to the collective variables, all of its trajectories display unphysical behaviour. Initial
structures are characterised by unrealistic steric clashes and violations of the geometry of the peptide bond, and are
followed by a relaxation of the backbone into the final structure.

trRosetta and RaptorX present trajectories with comparable dynamics, probably due to the similarities between their
protocols. In these trajectories, the protein exhibits random movements in the unfolded state, followed by collapse
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Figure 5. Simulations of human ubiquitin folding. (a) Native structure of human ubiquitin (PDB: 1UBQ). (b) Proportion
of trajectories generated by each program that exhibit two-state dynamics. (c) Pairs of secondary structure elements that are
formed in the identified intermediate. Color represents the proportion of trajectories where an intermediate presents a given
interaction, where white is 0 (does not appear in any trajectory) and black is 1 (appears in all trajectories). Note that none of
the RoseTTAFold trajectories exhibits an intermediate, hence none of the interactions is identified.

and formation of secondary structure, concomitant with the activation of the biasing potential, and finally small local

exploration of the positions of the loops. This mechanism is consistent with the CGMD simulations, although in several
snapshots the protein gets trapped in local minima of the biasing potential, which gives rise to detected intermediates.

DMPfold and EVfold, despite using a similar approach (the CNS optimisation engine in combination with predicted
contacts), exhibit very different folding trajectories. DMPfold starts in a structure consistent with predicted distances,

and explores the neighbourhood of this structure, whereas EVfold starts in an elongated state, experiences collapse,
and then explores several potential conformations, with no apparent relation between them, until it finds the best
structure according to its energy function. Both mechanisms are inconsistent with the CGMD simulations.

The AlphaFold 2 trajectory is similar to RoseTTAFold. The initial frames exhibit significant steric clashes, which are
resolved after about 10 Evoformer iterations, and are followed by small oscillations around the equilibrium structure
that are reminiscent of a protein subject to harmonic restraints. These results once again support the hypothesis that

these methods are not learning the free energy hypersurface, but only the small free energy funnel that surrounds the
native state.

4. DISCUSSION

In this manuscript we have investigated whether state-of-the-art protein structure prediction methods can provide
any insight into protein folding pathways. We generated tens of thousands of folding trajectories with seven protein
structure prediction programs (RoseTTAFold, trRosetta, RaptorX, DMPfold, EVfold, SAINT2 and Rosetta) and
obtained a set of AlphaFold 2 trajectories, and used them to determine major features of folding using a simple set of
statistical rules. We found that protein structure prediction methods can in some cases distinguish the folding kinetics
(two-state vs multistate) of a chain better than a random baseline, but not significantly better, and often significantly
worse, than a simple, sequence-agnostic linear classifier using only the number of amino acids in the chain.

Using a similar approach, we examined the relationship between simulated trajectories and other experimental ob-
servables: the folding rate constant of two-state folders, and the structure of intermediates in multistate trajectories.
The simulated trajectories were in most cases not better than random at predicting the contacts formed in an inter-

mediate, and in the case of predicting folding rate constants, none of the methods was superior to a linear classifier
using the length of the protein chain.

Our results demonstrate that state-of-the-art protein structure prediction methods do not provide an enhanced
understanding of the principles underpinning folding. Simulated trajectories from protein structure prediction methods
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(a) RoseTTAFold

(b) trRosetta

(c) RaptorX

(d) DMPfold

(e) EVfold

(f) SAINT2

(g) Rosetta

Figure 6. Representative snapshots of the simulated folding trajectories for human ubiquitin, for the seven
structure prediction programs. The α-carbons are represented as blue beads joined by dark rods. Every structure has been
aligned to the crystal structure (PDB: 1UBQ), which is shown as an orange cartoon in the background.
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are inconsistent with all available experimental data, in terms of folding mechanism, kinetics or structural data. In
the general context of computational protein biophysics, our results suggests that current protein structure prediction
programs, while now very successful at their primary role, are not an appropriate tool to investigate folding.

There are some limitations to our study. First of all, the concepts of folding intermediate and folding formal kinetics
are imprecise. For example, many proteins have a tendency to form compact, molten globule structures, that may
then fold cooperatively in a process that is referred to as ”two-state” (e.g. 59). The folding mechanisms of multiple
proteins have been widely discussed in the literature with conflicting results, (e.g. for ubiquitin (21) or T4 lysozyme
(60; 61; 62)). Folding is itself highly sensitive to an array of experimental conditions that includes temperature, pH
and concentration of denaturant, and it may be difficult to discern when the methods are not correctly modeling the
physics or simply portraying the wrong conditions.

While our results have shown the lack of consistency between the folding trajectories generated by protein structure
prediction methods and experimental data, we have also seen that most structure predictors are better than random
suggesting that a weak signal exists. The next stage will be to investigate how to extract the limited amount of folding
information that is encoded in current protein structure prediction programs.
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APPENDIX

A. EXPERIMENTAL FOLDING KINETIC DATA

PDB code Kinetics Publication

1A64 Multistate 10.1021/bi9629283

1A6N Multistate 10.1006/jmbi.1998.2273

1ADO Multistate 10.1021/bi027388q

1ADW Multistate 10.1006/jmbi.1998.2588

1AM7 Multistate 10.1021/bi101126f

1APS Two-state 10.1110/ps.041205405

1ARR Two-state 10.1021/bi961375t

1AU7 Multistate 10.1073/pnas.1101752108

1AUE Multistate 10.1021/ja016480r

1AVZ Two-state 10.1110/ps.041205405

1AYI Multistate 10.1038/83074

1B9C Multistate 10.1021/bi048733+

1BA5 Two-state 10.1073/pnas.1835776100

1BDD Two-state 10.1002/pro.5560060709

1BE9 Multistate 10.1016/j.jmb.2004.11.040

1BKS Multistate 10.1016/j.jmb.2005.01.064

1BNI Multistate 10.1016/j.jmb.2003.08.024

1BTA Multistate 10.1006/jmbi.1994.0196

1C8C Two-state 10.1006/jmbi.2000.4234

1C9O Two-state 10.1038/nsb0398-229

1CBI Multistate 10.1002/(SICI)1097-0134(19981001)33:1<107::AID-PROT10>3.0.CO

1COE Multistate 10.1016/j.abb.2006.01.003

1CSP Two-state 10.1038/nsb0398-229

1CUN Two-state 10.1016/j.jmb.2004.09.037

1D6O Two-state 10.1110/ps.041205405

1DIV Two-state 10.1110/ps.041205405

1DKT Two-state 10.1016/s0022-2836(02)01202-0

1DWR Multistate 10.1073/pnas.0305376101

1E0G Two-state 10.1016/j.jmb.2008.05.020

1E0L Two-state 10.1016/j.jmb.2006.05.050

1E0M Two-state 10.1021/bi9822630

1E3Y Two-state 10.1007/s00249-011-0756-6

1E+041 Two-state 10.1016/j.jmb.2009.04.004

1EHB Two-state 10.1021/bi990550d

1EKG Multistate 10.1038/srep20782

1ENH Multistate 10.1073/pnas.1835776100

1F21 Multistate 10.1073/pnas.1305887110

1FA3 Multistate 10.1021/bi701142a

1FEX Two-state 10.1073/pnas.1835776100

1FGA Two-state 10.1074/jbc.274.48.34083

1FHT Two-state 10.1110/ps.041205405

1FNF Two-state 10.1006/jmbi.1997.1148
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PDB code Kinetics Publication

1FTG Multistate 10.1021/bi010216t

1G6P Two-state 10.1038/nsb0398-229

1GM1 Two-state 10.1093/protein/gzi047

1GXT Multistate 10.1016/s0022-2836(03)00627-2

1HCD Two-state 10.1016/j.jmb.2004.09.091

1HCE Two-state 10.1110/ps.31702

1HDN Two-state 10.1021/bi9717946

1HEL Two-state 10.1038/349633a0

1HFX Multistate 10.1021/bi00072a025

1HFZ Multistate 10.1006/jmbi.1999.2687

1HNG Multistate 10.1021/bi971294c

1HRC Multistate 10.1021/ja410437d

1HRH Multistate 10.1002/pro.5560071014

1I1B Multistate 10.1021/bi026197k

1IDY Two-state 10.1073/pnas.1835776100

1IFC Multistate 10.1021/bi012042l

1IGS Multistate 10.1016/s0022-2836(02)00557-0

1IMQ Two-state 10.1110/ps.041205405

1IO2 Two-state 10.1016/j.jmb.2008.02.039

1J5U Two-state 10.1110/ps.041205405

1JO8 Two-state 10.1110/ps.041205405

1JOO Multistate 10.1110/ps.28202

1K0S Two-state 10.1110/ps.041205405

1K85 Two-state 10.1016/j.jmb.2007.09.088

1K8M Two-state 10.1016/s0014-5793(02)03444-0

1K9Q Two-state 10.1073/pnas.1008026107

1KDX Two-state 10.1021/acschembio.7b00289

1L63 Multistate 10.1006/jmbi.1999.3204

1L8W Two-state 10.1110/ps.041205405

1LMB Two-state 10.1110/ps.041205405

1LOP Two-state 10.1006/jmbi.2000.3580

1LZ1 Multistate 10.1021/bi00185a026

1M9S Two-state 10.1110/ps.041205405

1MBC Multistate 10.1073/pnas.0804033105

1MJC Two-state 10.1002/pro.5560070228

1N88 Two-state 10.1110/ps.041205405

1NFI Two-state 10.1016/j.jmb.2011.02.021

1NTI Multistate 10.1073/pnas.152321499

1O6X Two-state 10.1110/ps.041205405

1OKS Multistate 10.1074/jbc.M116.721126

1OMP Multistate 10.1073/pnas.1319482110

1ONC Multistate 10.1021/bi900596j

1OPA Multistate 10.1002/(sici)1097-0134(19981001)33:1<107::aid-prot10>3.0.co

1OSP Multistate 10.1016/s0022-2836(02)00882-3

1PGB Multistate 10.1038/13311

1PHP Multistate 10.1021/bi961330s

1PIN Two-state 10.1006/jmbi.2001.4873
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PDB code Kinetics Publication

1PNJ Two-state 10.1016/j.jmb.2010.08.046

1PRB Two-state 10.1021/jp049652q

1PRS Two-state 10.1016/s0014-5793(98)01287-3

1PUC Multistate 10.1016/s0969-2126(00)00084-8

1QAU Two-state 10.1016/j.febslet.2007.02.011

1QLP Multistate 10.1016/j.jmb.2012.08.019

1QTU Two-state 10.1006/jmbi.2001.4928

1R2T Multistate 10.1016/j.jmb.2003.12.076

1RA9 Multistate 10.1016/s0022-2836(02)01444-4

1RBX Multistate 10.1073/pnas.87.21.8197

1RFA Two-state 10.1016/j.jmb.2006.10.079

1RG8 Two-state 10.1016/s0022-2836(03)00321-8

1RIS Two-state 10.1110/ps.041205405

1RYK Two-state 10.1110/ps.041205405

1SHG Two-state 10.1110/ps.041205405

1SPR Two-state 10.1110/ps.041205405

1SRL Two-state 10.1110/ps.041205405

1SS1 Two-state 10.1016/j.jmb.2006.05.051

1ST7 Two-state 10.1002/prot.20340

1TEN Two-state 10.1006/jmbi.2000.3517

1THF Multistate 10.1021/bi300189f

1TIT Multistate 10.1016/s0969-2126(01)00596-2

1TP3 Two-state 10.1073/pnas.0804774105

1TTG Multistate 10.1110/ps.9.1.112

1U4Q Two-state 10.1016/j.jmb.2004.09.037

1UBQ Multistate 10.1021/cr040430y

1UCH Multistate 10.1111/j.1742-4658.2009.06990.x

1UZC Multistate 10.1073/pnas.0401732101

1V9E Multistate 10.1016/j.bbrc.2008.02.096

1VII Two-state 10.1016/s0022-2836(03)00519-9

1W4E Two-state 10.1016/j.jmb.2005.12.016

1W4J Two-state 10.1016/j.jmb.2008.06.081

1WIT Two-state 10.1016/S0969-2126(99)80181-6

1WQ5 Multistate 10.1016/0022-2836(94)90023-x

1YGW Multistate 10.1021/bi00075a006

1YMB Multistate 10.1021/ac101679j

1YOB Multistate 10.1021/ja8089476

1YYJ Two-state 10.1021/bi025872n

1YYX Two-state 10.1021/bi025872n

2A3D Two-state 10.1073/pnas.2136623100

2A5E Multistate 10.1006/jmbi.1998.2420

2ABD Multistate 10.1006/jmbi.2000.4003

2BJD Multistate 10.1021/bi030238a

2BKF Two-state 10.1021/bi1016793

2CRO Multistate 10.1021/bi001388d

2CRT Multistate 10.1074/jbc.273.17.10181

2EQL Multistate 10.1006/jmbi.1999.2741
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PDB code Kinetics Publication

2FS6 Multistate 10.1002/prot.1040

2GA5 Two-state 10.1039/C3CP54055C

2J5A Two-state 10.1016/j.jmb.2006.09.016

2JMC Two-state 10.1093/protein/gzp041

2KDI Multistate 10.1016/j.bpc.2011.05.004

2KLL Multistate 10.1371/journal.pone.0144067

2L6R Two-state 10.1021/ja801401a

2LLH Two-state 10.1073/pnas.0910516107

2LZM Multistate 10.1016/j.jmb.2006.10.048

2MYO Two-state 10.1073/pnas.0604653104

2PQE Multistate 10.1016/j.jmb.2003.07.002

2PTL Two-state 10.1110/ps.041205405

2QJL Two-state 10.1110/ps.041205405

2RN2 Multistate 10.1038/12277

2VH7 Two-state 10.1021/bi9822630

2VIL Multistate 10.1006/jmbi.2000.4190

2VKN Two-state 10.1110/ps.041205405

2WQG Two-state 10.1016/j.febslet.2015.06.002

2WXC Two-state 10.1016/j.jmb.2008.12.056

2X7Z Two-state 10.1074/jbc.m110.110833

3BLM Multistate 10.1016/0022-2836(85)90384-5

3CHY Multistate 10.1021/bi00185a025

3CI2 Two-state 10.1110/ps.041205405

3F6R Multistate 10.1016/j.jmb.2009.11.008

3H08 Multistate 10.1021/bi900305p

3NPO Multistate 10.1006/jmbi.1999.3515

3O49 Two-state 10.1016/j.jmb.2011.02.002

3O4B Two-state 10.1016/j.jmb.2011.02.002

3O4D Two-state 10.1016/j.jmb.2011.02.002

3ZRT Two-state 10.1016/j.febslet.2007.02.011

4BLM Multistate 10.1021/bi0358162

5DFR Multistate 10.1002/pro.5560040204

5L8I Multistate 10.1002/prot.22286

9PCY Multistate 10.1021/bi00097a005

Table S1. Experimental folding data used in this work
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B. EXPERIMENTAL TWO-STATE FOLDING RATE CONSTANTS

PDB code ln kf PDB code ln kf

1ARR 9.20 1BA5 5.90

1E41 6.90 1FEX 8.20

1IDY 8.70 1IMQ 7.33

1L8W 3.60 1LMB 10.40

1PRB 14.30 1RYK 9.10

1SS1 11.50 1ST7 10.90

1U4Q 11.00 1VII 12.30

1W4E 10.20 1W4J 12.30

1YYJ 8.40 2A3D 12.20

2LLH 7.90 2WXC 11.70

2WQG 8.80 1KDX 8.20

1IO2 -1.40 2MYO 4.80

2QJL 2.60 1APS -1.60

1D6O 1.60 1DKT 5.80

1E0G 7.90 1FHT 4.60

1HDN 3.30 1J5U 6.90

1N88 2.00 1O6X 6.80

1RFA 7.70 1RIS 6.10

1SPR 8.70 2BKF 6.20

2J5A 7.30 2PTL 4.10

2VH7 0.72 3CI2 5.80

1EHB 4.50 2GA5 5.40

1NFI 1.80 1C8C 7.20

1K0S 7.40 1LOP 7.40

1C9O 7.20 1CSP 6.50

1G6P 6.30 1E0L 10.70

1E0M 8.90 1HCD 1.60

1JO8 2.50 1K85 1.40

1K8M -0.71 1TP3 3.00

1K9Q 8.40 1M9S 4.00

1MJC 5.30 1PIN 9.20

1PNJ -0.69 1QTU 0.08

1RG8 1.30 1AVZ 4.90

1SHG 1.10 1SRL 4.40

1TEN 1.80 1WIT 0.85

2VKN 2.10 1FNF -0.90

1GM1 1.00 2JMC 3.30

1FGA -1.40 1QAU 1.80

3O4D 4.90 2L6R 9.90

2X7Z 0.74

Table S2. Folding rate constants
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C. EXPERIMENTAL STRUCTURAL FOLDING DATA

C.1. Fructose-bisphosphate aldolase A

Pan and Smith (63) studied the folding of rabbit muscle aldolase (PDB: 1ADO) using HDX-MS. The authors proposed
a folding mechanism whereby an initial collapsed state is formed cooperatively from the union of four widely separated
regions of the backbone, followed by two sequential folding steps of individual domains. The authors annotated the
regions of the protein as corresponding to each of these intermediates, by means of the peptides obtaining during
HPLC-MS analysis.

C.2. Alpha-subunit of tryptophan synthase

Wintrode et al. (64) studied the folding of the α-subunit of tryptophan synthase (PDB: 1BKS, for an E. coli

homologous with 85% sequence identity), a TIM barrel protein from E. coli, using HDX-MS. The authors identify an
obligate intermediate, which comprises most of the N-terminal region.
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C.3. Cytochrome C

Roder et al. (65) studied the folding of horse’s cytochrome C (PDB: 1HRC) using HDX-NMR. The authors observe

that the contact between the C-terminal and N-terminal helices is formed early in folding, followed by structuring of
the rest of the protein. A study by Elove et al. (66) identified multiple possible folding pathways originating from
different coordinations to the heme group. A study by Fazelinia et al. (67) investigated folding during the first 140 µs
using a microfluidics device and HDX-NMR, showing that interactions between α-helices drives condensation at the

start of folding.

C.4. Staphilococcal nuclease H124L

Walkenhorst et al. (68) studied the folding of staphilococcal nuclease with a H124L mutation (PDB: 1JOO). Their

data shows that the formation of the β-barrel domain, in particular the β-hairpin formed by strands 2 and 3 and a
site in the C-terminus, precedes the formation of the α-helical domain.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.09.20.461137doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461137
http://creativecommons.org/licenses/by-nc/4.0/


20 Outeiral et al.

C.5. Triosephosphate isomerase

Pan et al. (69) studied the folding of rabbit triosephosphate isomerase (PDB: 1R2T) using HDX-MS. They found
that the C-terminal half folds to form the intermediate, which then forms a TIM barrel with the N-terminal half.

C.6. Ribonuclease A

Udgaonkar et al. (70) analysed the folding of bovine pancreatic ribonuclease A (PDB: 1RBX) using HDX-NMR.
They identify an intermediate with the first N-terminal α-helices unformed.
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C.7. Myoglobin

Pan et al. (71) studied the folding of horse apo-myoglobin (PDB: 1YMB) using HDX-MS.

C.8. Cardiotoxin III

Sivaraman et al. (72) studied the folding of cardiotoxin analogue III (PDB: 2CRT), a protein present in the venom
of Naja naja atra. This protein is a small all-β protein with two recognisable β-sheets: a double-stranded β-sheet
closer to the C-terminus, and a triple-stranded β-strand closer to the N-terminus. Experimental results show that the

triple-stranded β-sheet folds about 10 ms faster than the double-stranded element.

C.9. Flavodoxin-2

Nabuurs et al. (73) studied the folding of flavodoxin 2 (PDB: 1YOB) from A. vinelandii using HDX-NMR. The

authors identify an off-pathway intermediate where most of the secondary structure is formed, except for two regions
that adopt a random coil conformation.
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D. COARSE-GRAINED POTENTIAL

We employed the following native-centric potential:

E =
∑
i

kb(ri − r0)2 +
∑
i

4∑
j=1

kφ,ij(1 + cos(jφi − δij))

+
∑
i

− 1

γ
ln
[
exp(−γ(kα(θi − θα)2 + εα) + exp(−γkβ(θi − θβ)2

]
+
∑
ij

qiqje
2

4πε0εrrij
exp

[
−rij
lD

]
+
∑
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εNC
ij

[
13

(
σij
rij

)12

− 18

(
σij
rij

)10

+ 4

(
σij
rij

)6
]

+
∑
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εNN
ij

[
13

(
σij
rij

)12
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(
σij
rij

)10

+ 4

(
σij
rij

)6
]

(D1)

These terms are, in order, the contributions from bonds, dihedral angles (74), bond angles (75), electrostatics, native
and non-native interactions (76). The bond term is a simple harmonic potential, where kb is the force constant, which

is assigned to 100kJ/(Å · mol), r0 is the equilibrium bond length and ri is the actual distance between the beads.
The dihedral angle term is the Karanicolas-Brooks potential (74), which corresponds to a standard periodic torsion
potential where the force constants kφ,ij , and the phases φij are determined only by the second and third residue

in every group of four residues defining a dihedral. The bond angle term is the Best-Hummer-Cheng potential (75),
where θi is the bond angle, and the parameters γ, α, kα, kβ and εα are constants (see (75) for more details).

The electrostatics term is a simple screened Coulombic potential with the charges defined by the net charge of the

residues at pH=7 (i.e. lysine and arginine have a positive +1 charge, aspartate and glutamate have a negative −1
charge and the other residues are neutral). Finally, in the native and non-native potential, the value of εNC

ij , which
sets the depth of the energy minimum for a native contact, is calculated as εNC

ij = nijεHB + ηεij . Here, εHB, and εij
represent energy contributions arising from hydrogen bonding and van der Waals contacts between residues i and j

identified from the all-atom structure of the protein, respectively. nij is the number of hydrogen bonds formed between
residues i and j and εHB = 0.75 kcal/mol. The value of εij is set on the basis of the Betancourt-Thirumalai pairwise
potential (77).
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E. ADDITIONAL FIGURES

Figure S1. Parameter stability in trajectory analysis. We compare the area under the receiver-operating curve (AUROC)
for the mechanism classification problem (determining if a protein folds via a two-state or multistate mechanism) for several
choices of the distance threshold and flexibility hyperparameters. These results are produced using ten decoys per program for
each of the 170 proteins presented in Appendix A. These numbers suggest that different parameter choices perform better for
different programs, but there is little difference overall.
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Figure S2. Predictive performance of the seven protein structure prediction programs. We compute the average
TMscore (78) of the first ten decoys for each code, and use it as a proxy for the predictive performance of the algorithms. Left:
cumulative number of proteins (y-axis) that were predicted with an average TMscore greater than the threshold (x-axis). The
area under this curve can be interpreted as the global efficacy of the predictor. Right: area under the receiver-operator curve
(y-axis) for all proteins above a given threshold (x-axis). For most proteins, the ability of simulated trajectories to distinguish
formal folding kinetics is approximately independent from the predictive performance of the algorithm.
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Figure S3. Change in predictive power across the different DMPfold cycles. While the reliability of the score,
measured as the area under the receiver-operating curve (AUROC), seems to increase with successive cycles, the accuracy of
the prediction does not improve.
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Figure S4. Distribution of lengths at each of the formal kinetics classes. There is not a trivial threshold that separates
the classes.
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Figure S5. Mean proportion of the trajectories exhibiting significant clashes. A snapshot is considered to exhibit
significant clashes if its clashscore (49) is higher than the 99th percentile for all PDB structures with resolution ≤ 2.5Å (30 in
the snapshot downloaded on the 2nd of July of 2021).
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Figure S6. Jaccard similarity between the intermediates predicted by AlphaFold 2 and the ground truth. The
assignments have been expressed as a binary string (where 1 means that the native contacts between secondary structure
elements are formed in the intermediate, while 0 means they are not). AlphaFold 2 achieves a high score only on cardiotoxin
analogue III (PDB: 2CRT), a small protein.
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