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ABSTRACT 24 

Background: Genome-wide association studies have identified several breast cancer susceptibility 25 

loci. However, biomarkers for risk assessment are still missing.  Here, we investigated cancer-related molecular 26 

changes detected in tissues from women at high risk for breast cancer prior to disease manifestation.  27 

Disease-free breast tissue cores donated by healthy women (N=146, median age=39 years) were processed for 28 

both methylome (MethylCap) and transcriptome (Illumina’s HiSeq4000) sequencing. Analysis of tissue 29 

microarray and primary breast epithelial cells was used to confirm gene expression dysregulation.  30 

Results: Transcriptomic analysis identified 69 differentially expressed genes between women at either high and 31 

those at average risk of breast cancer (Tyrer-Cuzick model) at FDR<0.05 and fold change≥2. The majority of 32 

the identified genes were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, 33 

FAM83A and NEK2, were overexpressed in tissue sections (FDR<0.01) and primary epithelial cells  (p<0.05) 34 

from high-risk breasts. Moreover, 1698 DNA methylation aberrations were identified in high-risk breast tissues 35 

(FDR<0.05), partially overlapped with cancer-related signatures and correlated with transcriptional changes 36 

(p<0.05, r≤0.5). Finally, among the participants, 35 women donated breast biopsies at two time points, and age-37 

related molecular alterations enhanced in high-risk subjects were identified.  38 

Conclusions: Normal breast tissue from women at high risk of breast cancer bears molecular aberrations that 39 

may contribute to breast cancer susceptibility. This study is the first molecular characterization of the true 40 

normal breast tissues and provides an opportunity to investigate molecular markers of breast cancer risk, which 41 

may lead to new preventive approaches. 42 

 43 

Keywords: Cancer risk, transcriptome, DNA methylation, normal breast 44 

 45 

 46 

BACKGROUND 47 
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Genetic and epigenetic alterations in breast cancer (BC) have been widely investigated. However, when, during 48 

the carinogenesis process, these events first emergeremains unknown. The identification of molecular 49 

aberrations associated with BC development can provide a conceptual framework for a deeper understanding of 50 

this complex disease. 51 

 52 

Genome-wide association studies  (GWAS) have detected more than 170 genomic loci harboring common 53 

variants associated with BC risk including modifier alleles with high (e.g., BRCA1, BRCA2, TP53, PTEN) to 54 

moderate penetrance (e.g., BRIP1, CHEK2, ATM, and PALB2) (1-4). Nevertheless, many variants are located 55 

in noncoding or intergenic regions and their functional role in cancer transformation remains largely unknown. 56 

Recently, transcriptome-wide association studies were used to integrate GWAS and gene expression datasets 57 

and identified 154 genes whose predicted expression associated with the risk for BC (5-9). However,  these 58 

studies drew data from the Genotype-Tissue Expression (GTEx) project, where the use of autopsy-derived 59 

normal breast tissues may make the breast-specific transcriptome profilings questionable. The relative lack of 60 

molecular profiling of normal breast tissue from subjects who are disease-free makes the field challenging. 61 

 62 

Many studies searching for cancer biomarkers have identified gene expression signatures, epigenetic signatures, 63 

loss of heterozygosity and allelic imbalance resulting from the development of malignancy (10). Among the 64 

molecular processes linked with cancer, DNA methylation has a keyrole in early cancer development through a 65 

process known as epigenetic reprogramming (11), potentially leading to silencing and loss of expression of 66 

tumor suppressor genes (12), and genomic instability (13).   67 

 68 

Here, we performed an integrated analysis of DNA methylation and transcriptome profiling of cancer-free 69 

breast tissues donated by healthy women at either average or high risk for BC. In addition to early epigenetic 70 

events, we identified two molecules overexpressed in high-risk breasts independently from DNA methylation 71 

changes and, therefore, potential markers of BC susceptibility. Moreover, using a subcohort of repeated breast 72 
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tissues donation by the same donors, we confirmed that the molecular changes identified in high-risk subjects 73 

are age-independent. These findings will lead to a deeper understanding of BC susceptibility and also provide 74 

the scientific community with the molecular profiling of a true normal breast tissue. 75 

 76 

RESULTS 77 

Study cohort used to investigate molecular aberrations in association with breast cancer (BC) risk 78 

To identify transcriptomic and epigenetic differences linked with BC risk, we analyzed cancer-free 79 

breast tissue cores donated by 146 healthy women (median age: 39 years) including 112 Caucasian, 24 African 80 

American and 10 Asian subjects (Additional File 1: Table S1). Out of 146 participants, 117 were pre- and 29 81 

postmenopausal women. Tyrer-Cuzick model was employed to estimate the lifetime risk of developing BC and 82 

allocated the subjects to either high- (score≥20%, N=68) or average-risk group (score<20%, N=78) (Fig. 1A, 83 

Table 1 and Additional File 1: Table S1) .  84 

Characterization of the transcriptome alterations in high-risk breast 85 

We performed a transcriptome analysis of the fresh frozen disease-free breast tissue donated by all the 86 

participants. Differential expression analysis was performed using DESeq2. From a total of 22,344 genes, the 87 

differential expression analysis between high- and average-risk breasts revealed 1,874 transcripts to be 88 

significant at 5% false discovery rate (FDR). Of these, 1,798 transcripts also passed the cutoff of t-test p-value ≤ 89 

0.05 (Additional File 1: Table S2). Sixty-nine genes, including 51 upregulated and 18 downregulated genes, 90 

were identified with a  fold change ≥ 2 (Table 1). Because both groups consisted of non-malignant breast tissue, 91 

a limited number of differentially expressed genes was expected (14). Canonical pathway analysis revealed 92 

enrichment in pathways related to kinetochore signaling (p=1.3E-05), DNA damage checkpoint (p=0.0005), 93 

granulocytes adhesion (p=0.002), and the IL17 pathway (p=0.004) (Figure 1B, Additional File 1: Table S3). 94 

Our data further confirm the previously described impact of dysregulated DNA damage in breast carcinogenesis 95 

(15). Molecular network analysis showed an enrichment in functional categories involved in cell cycle, DNA 96 
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replication and repair (Figure 1C, Additional File 1: Table S3). One of the major molecular networks 97 

regulating cell cycle is centered around AKT and the transcription factor FOXM1 (16). 98 

Except for DCX, the transcriptional changes detected between high- and average-risk breasts listed in Table 2 99 

are independent of both racial background and menopausal status of the tissue donors (Additional File 1: Table 00 

S4 and Additional File 2: Fig. S1). 01 

Among the 69 differentially expressed genes, FAM83A and NEK2, showed the highest gene 02 

amplification rate (number of cases with gene amplification>200) and genetic alteration frequency (>10%), as 03 

well as overexpression in BC (p>0.001) and Oncoscore >50, as  detected through METABRIC database, 04 

cBioportal, UALCAN and Oncoscore analyses FAM83A and NEK2 (Table 1 and Additional File 2: Fig. S2) 05 

(17-19). The expression of FAM83A and NEK2 in the breasts of high- and average-risk women is shown in 06 

Fig. 1D. We detected a 4.5-fold increase in FAM83A and 2.2-fold increase in NEK2 expression in primary 07 

epithelial cells isolated from the breast of high-risk women when compared with cells isolated from breast 08 

tissue of average-risk women (Fig. 1E). Overexpression of both targets was detected also in a dataset of 09 

hTERT-immortalized epithelial cells as compared with the isogenic primary cells (20) (Fig. 1F). Moreover, 10 

immunostaining of a breast tissue microarray showed a 1.4 fold increase in FAM83A protein levels in the breast 11 

tissues from women at high risk of BC as compared with the breast tissues from subjects at average risk 12 

(p<0.0001, Fig. 1G, Additional File 2: Fig. S3A and Additional File 1: Table S5). FAM83A overexpression 13 

in normal breast tissues was associated with parity (p<0.001), tobacco use (p=0.01) and family history of BC 14 

(p=0.02) (Additional File 1: Table S6). On the contrary, NEK2 staining showed no difference in protein levels 15 

between the two groups (Fig. 1G). No difference in Ki67, estrogen receptor alpha (ERα), FOXA1 and GATA3 16 

staining between high- and average-risk breasts was observed (Additional File 2: Fig. S3B and Additional File 17 

1: Table S5). This data shows that FAM83A expression changes are specific to breasts of women at high risk of 18 

developing breast cancer.  19 

 20 
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Genome-wide DNA methylation analysis reveals 1698 aberrant DNA methylation sites in normal breast 21 

tissue of high-risk women 22 

With the goal of identifying alterations in regulatory regions leading to BC susceptibility, we performed 23 

a methylome analysis using the MethylCap-seq approach. Differential analysis of the methylated regions 24 

detected in the breasts from average-risk women and those from women at high risk of cancer revealed a wide 25 

chromosomal distribution of the epigenetic aberrations (Fig. 2A).  DNA methylation changes with a ∆Z ≥1 26 

(hypermethylated) or ≤-1  (hypomethylated) were selected. We identified 1698 regions methylated that 27 

differentiate the breast tissue of high-risk women from that of women at average risk (FDR�≤�5%), mapping 28 

to 1115 unique genes (Additional File 1: Table S7). The twenty most hypermethyated and hypomethylated 29 

regions are shown in Fig. 2B and Table 2. Interindividual variability in DNA methylation can be observed 30 

within each experimental group. 98.9% of the DNA methylation aberrations consisted of hypermethylated loci 31 

(p=�9�×�10−�8; Fig. 2C). More than 90% of hypermethylated loci localized in regulatory regions including 32 

the promoter, untranslated region, and introns, while only 41% of hypomethylated loci localized in these 33 

regions (Fig. 2C). However, hypomethylated regions were localized predominantly in the gene body (59%), a 34 

phenomenon that has been linked with the activation in cancers of aberrant intragenic promoters that are 35 

normally silenced (21, 22). 36 

Pathway analysis revealed the involvement of cell adhesion (aka synaptogenesis, p=1.2E-06), ErbB 37 

(p=3.7E-04) and protein kinase A (p=4.8E-04) signaling pathways (Fig. 2D, Additional File 1: Table S8). 38 

Notably, one of the molecular networks showed ESR2 as the central molecule (Fig. 2E). Although ESR2 39 

expression decreased in high-risk breasts (fold change=0.82), the intronic ESR2 hypermethylation showed no 40 

inverse correlation with ESR2 expression (r=-0.03, p=0.4; Additional File 2: Fig. S4A-C). One of the 41 

hypomethylated genes, MUC1 (∆Z=1.4, FDR=1.6E-17) is reported to be aberrantly overexpressed in over 90% 42 

of breast tumors (23, 24) (Additional File 2: Fig. S4D). However, no significant difference in MUC1 43 

expression was observed between high- and average-risk breasts (Additional File 2: Fig. S4E). In the analyzed 44 
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cohort, DNA methylation was not highly affected by either racial background or menopausal status of the tissue 45 

donors (FDR>0.05; Additional File 1: Table S9).  Finally, we found overlap between DNA methylation 46 

aberrations in high-risk breasts and breast cancer-related DNA methylation signatures such as those identified 47 

by Saghafinia et al (4%, 25/666, (25)), Chen et al (6%, 10/174, (26)), de Almeida et al (9%, 25/285, (27)), and 48 

Xu et al (9%, 37/414, (28)) (Additional File 1: Table S10).  49 

DNA methylation and gene expression changes in high-risk breast show a weak correlation  50 

To identify potential epigenetically regulated genes linked with BC risk, we performed a Pearson’s 51 

correlation test on paired DNA methylation and gene expression data (Fig. 3). Among the 69 genes in Table 2), 52 

the expression of eight genes was associated with aberrant intronic DNA methylation, including six genes 53 

showing a direct correlation (APELA, DIO2, FEZF2, LPAR3, UNC5D and PRSS51) and two genes (PROK2, 54 

and SULT1C2) with a negative correlation (Fig. 3A). Furthermore, among the DNA methylation aberrations in 55 

Table 2, only the intronic hypermethylation of PHACTR1 (∆Z =1.88, FDR= 1.0E-31) was negatevely 56 

correlated with PHACTR1 expression (fold change=0.77, FDR=0.006, r=-0.21) (Fig. 3B).  However, the 57 

correlations identified were weak (r: -0.2,-0.5) suggesting that other regulator events (chromatin modifications, 58 

gene amplification, nucleotide variants), rather than DNA methylation aberrations, may be the determinants of 59 

the transcriptomic changes observed in the high-risk breasts as compared with average-risk breasts.  60 

Age-related molecular changes in cancer-free breast tissues in relation with cancer risk 61 

Age is the strongest demographic risk factor for most human malignancies, including breast cancer. 62 

Age-related transcriptome and DNA methylation aberrations were investigated on breast tissues cores donated 63 

by 35 women at two separate time points (Additional File 1: Table S11).  Differential expression analysis 64 

(FDR<0.05) between the two donation time points revealed the dysregulation of 317 genes involved in  65 

LXR/RXR activation (p=7E-04), immune response (p=2E-03) and senescence (p=7E-03) (Additional File 1: 66 

Tables S12 and S13). Forty-eight age-related transcriptomic changes with a fold change (fc)≥2 and FDR <0.05 67 

included two upregulated genes, CETP (fc:2.4;FDR=0.04) and HP (fc=2.3, FDR=0.03); and downregulation of 68 
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five genes, SLC5A1 (fc=0.4; FDR=0.03), SLCO1A2 (fc=0.4; FDR=0.03), GRIA4 (fc=0.4; FDR=0.01), 69 

IL22RA2 (fc=0.4; FDR= 0.01), and CHRM1 (fc=0.4; FDR=0.03) (Additional File 2: Fig. S5). Furthermore, 70 

age-dependent dysregulation of the following five genes was enhanced in breast tissues from high-risk women: 71 

NEURL1, USP50, GRIA4, SPDEF and DNM3 (Fig. 4A). Notably, the expression of GRIA4 (r=-0.43, p=0.04) 72 

and DNM3 (r=-0.47, p=0.03) showed a negative correlation with their DNA methylation pattern, thus 73 

suggesting a potential epigenetic regulation for these two molecules (Fig. 4B). 74 

Age-dependent DNA methylation aberrations affected 301 loci corresponding to 280 unique transcripts 75 

(Additional File 1: Table S14). As previously reported (29), age-related DNA methylation alterations were 76 

predominantly hypermethylation events (85.4%) and affected the intronic regions (Fig. 4C). DNA methylation 77 

measurements were previously used to develop epigenetic biomarkers of aging, otherwise known as “DNA 78 

methylation age” or the “epigenetic clock” (30, 31). We observed a limited overlap between the 301 DNA 79 

methylation aberrations and the epigenetic clocks described by Horvath et al (1.4%, (31)) , while 73 genes 80 

associated with the bin in our dataset overlapped with age-associated DNA methylation alterations reported by 81 

Johnson et al (24.2%,(29)) (Fig. 4D). Finally, we identified age-related DNA methylation aberrations enhanced 82 

in high-risk breasts, localized on four genes: PTPRM, SPOCK1, KCNH1, and CFAP43. (p<0.001, Fig. 4E and 83 

Additional File 1: Table S14). In contrast, both transcriptomic and DNA methylation aberrations affecting 84 

FAM83A and NEK2 resulted age-independent. 85 

 86 

DISCUSSION 87 

This study aimed to define the distinct features of cancer-free breast tissues from women at high risk for 88 

BC and, thus, identify molecular markers that could potentially screen for women susceptible to cancer. We 89 

conducted transcriptome and methylome analyses using breast tissue cores donated by healthy women. The 90 

participants were divided into two cohorts based on their risk of developing breast cancer, according to the 91 

Tyrer-Cuzick lifetime risk assessment score: high-risk (≥20%) and average-risk (<20%) (32). Among the genes 92 

upregulated in high-risk breast, we identified two promising markers of BC susceptibility, FAM83A and NEK2. 93 
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Furthermore, when investigating DNA methylation aberrations in high-risk breasts, we detected 4-10% overlap 94 

with cancer-related signatures.   95 

Our transciptomic analysis of high- and average-risk breasts revealed significant changes in 69 genes 96 

(FDR<0.05). Pathway analysis suggested the activation of cell cycle and cell adhesion in the high-risk breasts. 97 

Furthermore, one of the molecular networks including the differentially expressed genes showed the 98 

involvement of FOXM1 signaling. FOXM1 itself is upregulated 1.6 fold in high-risk breasts (p=0.001).The 99 

transcription factor FOXM1 regulates the transcription of cell-cycle genes essential for exit from the G1/S 00 

phase into the G2/M phase such as cyclin A2, JNK1, ATF2 and CDC25A phosphatase as well as genes critical 01 

for chromosome segregation and cytokinesis (33). FOXM1 is overexpressed and plays critical role in 02 

tumorigenesis, metastasis, and drug resistance in a broad range of human cancer types, such as lung, gastric, and 03 

breast cancers (16). Compounds targeting FOXM1 expression or activity are under investigation (16). Our 04 

results suggest that the transcriptional dysregulation detected in high-risk breasts may be driven by FOXM1.  05 

Two genes, FAM83A and NEK2, both upregulated in high-risk breast, showed a high Oncoscore (75.5 06 

and 61.4, respectively), and have been reported amplified in breast cancer.  FAM83A is the smallest member of 07 

the eight-member FAM83 family of proteins that share a conserved amino-terminal Domain of Unknown 08 

Function (DUF1669 domain) (34). It was identified based on its transforming potential (35-37). FAM83A 09 

upregulation has been detected in multiple human tumor types, including breast, lung, pancreatic and cervical 10 

cancer (37-44). Lee et al (45, 46)  revealed the ability of FAM83A to confer resistance to epidermal growth 11 

factor receptor/ tyrosine kinase inhibitors (EGFR-TKIs) through interactions with c-RAF and PI3K p85 in 12 

breast cancer. The authors also showed that BC patients with high FAM83A expression had a worse prognosis. 13 

FAM83A depletion suppressed proliferation and invasiveness in vitro as well as tumor growth in vivo (36). 14 

Based on the aforementioned studies, FAM83A is considered a candidate oncogene and our findings suggest 15 

that FAM83A may be one of the first molecules dysregulated in cancer transformation. Our team is currently 16 

investigating the role of FAM83A in breast carcinogenesis. Moreover, our DNA methylation data, in agreement 17 

with  previous literature, suggest that FAM83A overexpression is mainly driven by genomic amplification 18 
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rather than epigenetic regulation (47, 48). Additional studies such as deep whole genome sequencing of DNA 19 

from breast tissues of high-risk women are required to support this hypothesis.  20 

The NIMA-related kinase 2 (NEK2) protein belongs to a family of serine/threonine kinases, which have 21 

a role in mitotic progression by initiating the separation of centrosomes (49).  NEK2 overexpression was 22 

previously reported in BC as result of gene amplification (47, 50).  NEK2 depletion blocks cell cycle 23 

progression and tumor cell growth, making it an ideal therapeutic target (51).  Notably, FOXM1 is reported to 24 

both bind NEK2 promoter and interact with NEK2 directly (52, 53). Our study further suggests a role of NEK2 25 

dysregulation in breast carcinogenesis. However, we did not observe changes in NEK2 protein levels in breast 26 

tissues of high-risk women suggesting a disconnect between mRNA and protein levels, which is not 27 

uncommon. Further investigation of the role of NEK2 in breast carcinogenesis is needed. 28 

We observed DNA methylation changes in high-risk breasts, consisting mostly of hypermethylation 29 

(98.8%) in the intronic regions (88%).  Previous studies reported aberrant hypermethylation in normal breast 30 

tissue adjacent to the tumor (54). Hypermethylation in specific gene promoters is indeed  linked to 31 

carcinogenesis through  transcriptional silencing of tumor suppressor genes or regulatory regions within the 32 

genome leading to dysregulation of cell growth, cancer initiation and progression (55-57). We identified a 4-33 

10% overlap between methylome aberrations in high-risk breasts and previously reported cancer-related 34 

signatures (25-28). The limited overlap may be linked to the different technical approaches (Methyl-capture vs 35 

Infinium HumanMethylation450 array) but may also suggest that cancer–related epigenetic marks are newly 36 

acquired during cancer initiation rather than being imprinted into the genome. Although the expression 37 

epigenetic modifiers such as DNMTs remain unaffected, we detected the upregulation in high-risk breasts of 38 

HASPIN (fc=1.7; FDR<0.005), a serine/threonine kinase involved into the phosphorylation of the histone H3 39 

during mitosis (58), suggesting that other genetic and epigenetic mechanisms rather than DNA methylation may 40 

drive the transcriptomic aberrations in high-risk breasts. 41 

Age is the strongest demographic risk factor for most human malignancies, including BC (59). The 42 

limited size of our cohort (N=35) prevented us from subdividing the subjects by age at tissue donation. 43 
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Nevertheless, we identified age-related transcriptomic aberrations enhanced in high-risk breasts including 44 

GRIA4 and DNM3, which resulted potentially epigenetically regulated. In terms of DNA methylation 45 

aberrations, we found a limited overlap between the age-related DNA methylation changes here identified and 46 

epigenetic clock from Hovarth et al. (31) (Additional File 1: Table S14). However, a 24.2% overlap of our 47 

dataset with age-related DNA methylation aberrations described by Johnson el at (29) was detected . The 48 

limited overlap is probably due to the different platform used for DNA methylation detection (Infinium Human 49 

Methylation 450 array vs Methyl-Cap-seq) and the type of analysis (epithelium-specific deconvolution vs whole 50 

tissue)(29, 31). Notably, we identified specific age-related DNA methylation changes, located on PTPRM, 51 

KCNH1, SPOCK1,  CFAP43 gene, enhanced in the high- versus average-risk breasts.  52 

This study harbors some limitations: the relatively small sample size prevented us from investigating in 53 

details cancer-related varables such as racial background. The selection of normal breast tissue cores with high 54 

content in epithelial compartment limited the number of available samples (Additional File 2: Fig. S6).  55 

Outcome data for the women at high risk for BC is not available at this time; however, this cohort is under an 56 

ongoing annual medical follow up. Because of the faster processing time and smaller cost, we performed whole 57 

tissue analysis instead of the more epithelium-specific laser microdissection or single-cell analysis. This limits 58 

the compartment specificity of the data but generates a more comprehensive view of the molecular features of 59 

the entire breast tissue core.  Further deconvolution analysis may overcome this limitation (60, 61). 60 

CONCLUSIONS 61 

The present study reveals transcriptomic and epigenetic aberrations linked with BC risk. Transcriptional targets 62 

potentially promoting cancer susceptibility were identified. The described investigation provides an avenue for 63 

deciphering the functional relevance of genes involved in BC development and a rich resource for further 64 

investigation. 65 

METHODS 66 

Study cohorts 67 
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Breast specimens were obtained from the Susan G. Komen Tissue Bank at the IU Simon Comprehensive 68 

Cancer Center (KTB) and donated voluntarily upon informed consent by healthy women. Subjects were 69 

recruited under a protocol approved by the Indiana University Institutional Review Board (IRB protocols 70 

number 1011003097 and 1607623663). Subject demographics and breast cancer (BC) risk factors were 71 

collected using a questionnaire administered by the KTB  and summarized in Additional File 1: Table S1, S5 72 

and S11. Breast tissue cores are collected by using a needle biopsy as previously described (14). The study 73 

cohort consisted of two groups: 1) For the transcriptome and methylome analyses, 146 women (median age: 39 74 

years) were selected based on the lack of clinical and histological breast abnormalities and high content in 75 

breast epithelial compartment (cellularity>40%). Germline mutation status of the subjects was obtained from 76 

KTB. Data were retrieved from the LifeOmic’s Precision Health Cloud platform 77 

(https://lifeomic.com/products/precision-health-cloud/). Nine established breast cancer–predisposition genes 78 

(BRCA1, BRCA2, PALB2, ATM, CHECK2, BARD1, RAD51C, RAD51D, CDH1) were evaluated for variants 79 

identified as “pathogenic” or “likely pathogenic” in the ClinVar database 80 

(https://preview.ncbi.nlm.nih.gov/clinvar/) (Additional File 1: Table S1) (2, 3).   81 

Thirty-five of these 146  women, including 10 at high risk and 25 at average risk for BC, donated their breast 82 

tissue at two time points at intervals from 1-10 years (mean: 3.2) between the tissue donations (Fig. 1A and 83 

Additional File 1: Table S11). 2) In a second analysis, paraffin-embedded breast tissue blocks related to 395 84 

healthy women were obtained from the KTB and used to generate tissue microarrays. The cohort included 287 85 

Caucasian, 66 African American, 49 Asian, with age ranging from 18 to 61 (Additional File 1: Table S5). 86 

Breast cancer risk assessment 87 

Lifetime risk of developing BC was estimated by using the Tyrer-Cuzick risk score (IBISv8) (32) and a 88 

threshold of 20% to separate high- (≥20%) from average-risk (<20%) individuals. The Tyrer-Cuzick model was 89 

selected over the other risk estimation tools for its accuracy and inclusion of young subjects (62).  90 

Tissue processing and nucleic acid extraction 91 
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To limit stromal contamination, only breast tissue samples abundant in epithelial compartment 92 

(cellularity >40%) were selected and processed. Total DNA and RNA were isolated from fresh frozen breast 93 

tissue biopsies (80-1500mg) using AllPrep DNA/RNA/miRNA kit (Qiagen). Tissues were homogenized by 94 

using 2ml prefilled tubes containing 3mm zirconium beads (Benchmark Scientific, cat.# D1032-30), 350µl 95 

Lysis Buffer and 2-Mercaptoethanol, and BeadBug 6 homogenizer (Benchmark Scientific) in a cold room at the 96 

following conditions: 4000 rpm for 45 seconds was repeated twice with 90 seconds rest time. The concentration 97 

and quality of total RNA and DNA samples were first assessed using Agilent 2100 Bioanalyzer. A RIN (RNA 98 

Integrity Number) and DIN (DNA integrity number) of six or higher is required to pass the quality control.  99 

Whole transcriptome analysis 00 

cDNA library was prepared using the TruSeq Stranded Total RNA Kit (Illumina) and sequenced using 01 

Illumina HiSeq4000. Data included 146 paired-end fastq sequence libraries (raw read length: 38 x 2).  Reads 02 

were adapter trimmed and quality filtered using Trimmomatic ver. 0.38 03 

(http://www.usadellab.org/cms/?page=trimmomatic) setting the cutoff threshold for average base quality score 04 

at 20 over a window of 3 bases. Reads shorter than 20 bases post-trimming were excluded. About 94% of the 05 

reads have both the mates passing the quality filters.  Cleaned reads mapped to Human genome reference 06 

sequence GRCh38.p12 with gencode v.28 annotation, using STAR version STAR_2.5.2b (63). Only samples 07 

with about 99% of the cleaned reads aligned to the genome reference. Differential expression analysis was 08 

performed using DESeq2 ver. 1.12.3 (https://bioconductor.org/packages/release/bioc/html/DESeq2.html). 09 

Counts table containing mapped read counts for each gene, to be used as input for DESeq2 was generated using 10 

featureCounts tool of subread package (https://doi.org/10.1093/bioinformatics/btt656). Alternatively, we ran t-11 

tests comparing the normalized read counts for the set of replicates from High risk samples to those for the set 12 

of replicates from Average risk samples. The normalized read counts were obtained from the DESeq2 run 13 

described above. The pvalues from the t-test were corrected for multiple testing using Benjamini-Hochberg  14 

method. 15 

 16 
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DNA methylation analysis 17 

Library was generated by using MethylCap Library Kit (Diagenode, Denville NJ, US) according to the 18 

manufacturer′s protocols followed by single-end 75-bp sequencing on Illumina Nextseq4000. Internal controls 19 

and duplicate samples were used to account for any batch effect and technical artifact. The data comprises of 20 

146 paired end read libraries in FASTQ format. These libraries represent replicates for two samples - High risk 21 

(68 libraries) and Average risk (78 libraries). The libraries were sequenced across multiple runs and the 22 

combined read counts for each library were generated. Reads were adapter trimmed and quality filtered using 23 

Trimmomatic 0.38 (http://www.usadellab.org/cms/?page=trimmomatic) with the cutoff threshold for average 24 

base quality score set at 20 over a window of 3 bases. Reads shorter than 20 bases post-trimming were 25 

excluded. Approximately, 96% of the sequenced reads passed the quality filters to be considered "cleaned" 26 

reads. This quality control reduced the number of samples to 57 high- and 55 average-risk. Cleaned reads were 27 

mapped to Human genome reference GRCh38.p12 using BWA ver. 0.7.15 (64). Insert sequences were imputed 28 

from the concordantly mapped read pair alignments. More than 95% of the cleaned read pairs were 29 

concordantly mapped.  A previously described differential methylation analysis using either Zratio or ΔZ (65, 30 

66) was applied to the current methyl-capture dataset with a slight improvisation on the validation of the 31 

significance of differential methylation. For any given local bin of a given width on the genome, the method 32 

compares across samples, variation in deduplicated insert coverage distribution quantified as the bin's z-score 33 

with respect to a larger genome region containing the bin. For this analysis, we used local non-overlapping bins 34 

with a fixed width of 250 bp with their z-scores computed relative to 25KB regions. Z-score is the number of 35 

standard deviations by which the bin coverage varies from the larger region's mean coverage.  A significant 36 

difference in Zscores, calculated as either as ΔZ or Zratio between the samples would indicate potential 37 

differential methylation for that bin, as previously described  (67),. The analysis identified 159,438 bins, each 38 

250bp wide, to be potentially differentially methylated between High risk and Average risk samples with z-39 

ratios or ΔZ significant at 5% FDR and p-values from t-test ≤ 0.05. Based on positional overlap, these bins were 40 

annotated using annotation from gencode v28.  41 
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Data analysis 42 

Ingenuity Pathways Analysis (IPA, Qiagen, Redwood City, CA) was used for canonical pathway and 43 

molecular network analyses (68). Publicly available transcriptomic data from primary and immortalized breast 44 

epithelial cells  were obtained from GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108541) 45 

(20). Analysis of The Cancer Genome Atlas (TCGA) was performed by interrogating both cBioPortal 46 

(https://www.cbioportal.org/) and UALCAN (http://ualcan.path.uab.edu/) databases (69). Copy number 47 

variations (CNV) analysis was obtained from the interrogation of the  Molecular Taxonomy of Breast Cancer 48 

International Consortium, METABRIC (17, 18). Oncoscore was used to rank genes according to their 49 

association with cancer, based on the available scientific literature (http://www.galseq.com/next-generation-50 

sequencing/oncoscore-software/; accessed on 3/31/2021) (19).   51 

Primary breast epithelial cells and immunofluorescence 52 

Primary breast epithelial cells were generated from cryopreserved breast tissue cores obtained from the 53 

KTB as previously described (14, 20). Immunofluorescence staining was performed as previously described 54 

(14). Briefly, 5,000 cells were cultures overnight into each well of an 8 well-chamber slide (BD Biosciences, 55 

San Jose, CA) and fixed with acetone: methanol (1:1) at -20°C for 10 min. After washing and blocking 56 

(PBS1X, 5% normal goat serum, 0.1%TritonX-100) steps cells were incubated with primary either rabbit anti-57 

vimentin (Cell Signaling, D21H3, 1:100) or mouse anti-E-cadherin (Cell Signaling, 14472, 1:50) overnight. 58 

Upon three washes with PBS, cells were incubated with secondary antibodies (goat anti- mouse Alexa Fluor 59 

568 or goat anti-rabbit Alexa Fluor 488; Thermo Fisher Scientific, 1:500) for 1 h at room temperature. After 60 

three washes with PBS, the coverslide was mounted using DAKO fluorescent mounting medium (S3023 61 

Agilent, Santa Clara, CA) and the staining was visualized using a fluorescent microscope (Eclipse TS100, 62 

Nikon Instruments inc, Melville, NY). 63 

Quantitative real time polymerase chain reaction (qPCR) 64 

Total RNA was extracted from cells using AllPrep DNA/RNA/miRNA kit (Qiagen). Reverse 65 

transcription was performed using SuperScript™ IV VILO™ Master Mix (Invitrogen cat#: 11756050) 66 
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according to the manufacturer’s instructions. qPCR was performed using the TaqMan™ Universal PCR Master 67 

Mix (Applied Biosystems, cat# 4304437) and the following TaqMan Gene Expression Assays (Applied 68 

Biosystems/Thermo Fisher Scientific, Grand Island, NY): ACTB (Hs99999903_m1), FAM83A 69 

(Hs04994801_m1), and NEK2 (Hs00601227_m1). qPCR reactions were run on a StepOne Plus Real-Time PCR 70 

System (Applied Biosystems/Thermo Fisher Scientific) and data analyzed using the StepOne Software v2.3 71 

(Applied Biosystems). Relative quantification was calculated with reference to ACTB and analyzed using the 72 

comparative CT method. qPCR experiments were performed in triplicate. 73 

Tissue microarray (TMA) immunohistochemistry (IHC) analysis 74 

Normal breast tissues microarrays from 683 women were generated from paraffin-embedded blocks 75 

obtained from the KTB at the Tissue procurement & Distribution core of the IU Simon Comprehensive Cancer 76 

Center. Due to loss of material during TMA construction and processing, 58% (n=395) of these tissue biopsies 77 

were interpretable. TMA was analyzed with the following antibodies FAM83A (Protein Tech 20618-1-AP, 78 

1:100), NEK2 (MyBioSource MBS9607934, 1:100), Ki67 (DAKO IR 626, ready-to-use), estrogen receptor 79 

alpha (ERα) (clone:EP1, DAKO IR 084, ready-to-use), FOXA1 (Santa Cruz Biotechnology sc-6553, 1:100), 80 

and GATA3 (Santa Cruz Biotechnology sc-268, 1:50) (70). IHC was performed in a Clinical Laboratory 81 

Improvement Amendments (CLIA)-certified histopathology laboratory and evaluated by 3 pathologists in a 82 

blinded manner. Quantitative measurements generating positivity and H-score were done using the automated 83 

Aperio Imaging system using an FDA-approved algorithm (71).  84 

Statistical analysis 85 

Comparisons between groups were done using either Student’s t-test or nonparametric Mann-Whitney 86 

test on GraphPad Prism 9.  Difference between groups is considered significant at p-values<0.05. Pearson’s 87 

correlation analysis was performed to determine the strength and direction of the linear relationship between 88 

DNA methylation and transcription for given targets. Only correlations with a p<0.05 are shown. For 89 

transcriptome and methylome data, differential analysis was performed using DESeq2 and the previously 90 

described Z-score method (65, 66), respectively. P-values <0.05 are considered significanct and are corrected 91 
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for multiple testing using the Benjamini-Hochberg False Discovery Rate (FDR) algorithm. For the tissue 92 

microarrays analysis nonparametric Wilcoxon rank-sum tests were used for unpaired analyses, as positivity and 93 

H-scores were not normally distributed, whereas nonparametric Wilcoxon signed-rank tests were used for 94 

paired analyses. The statistical software SAS version 9.4 (SAS Institute Inc., Cary, NC) was used to complete 95 

the statistical analyses with p < 0.05 considered significant.  Baseline demographic characteristics were 96 

summarized as median (range) for continuous variables and number and percentage for categorical variables.  97 

Comparisons between groups were done using Chi-square tests (or Fisher’s Exact test, where appropriate) for 98 

categorical variables, or Wilcoxon test for continuous variables.  99 

LIST OF ABBREVIATIONS 00 

BC: breast cancer; KTB: Susan G. Komen Tissue bank at IU Simon Comprehensive cancer center; IHC: 01 

immunohistochemistry; IPA: Ingenuity pathway analysis 02 
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ADDITIONAL FILES 99 

Additional File 1: Supplementary Tables. File format:.xls. It includes subjects demographics and raw data in 00 

form of tables. 01 

Additional File 2: Supplementary Figues. File format:.pdf. It includes additional data related to the main 02 

findings shown in the main figures. 03 

 04 

FIGURE LEGENDS 05 

Figure 1: Transcriptome profiling of breast tissues from women at either high- or average risk of breast 06 

cancer. A) Schematics of the study design. Cancer-free breast tissue cores  (N=146) were divided in either 07 
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high-risk  or average-risk group according to the Tyrer-Cuzick breast cancer risk evaluation score (20% used as 08 

threashold). The tissues were processed and analyzed for whole transcriptome and methylome profiling and 09 

differentially expressed genes (DEG)  and differentially methylated sites between high- and average-risk 10 

samples were identified. Thirty five women  (10 high risk and 25 average risk) donated also a second biopsy 11 

(D2) allowing to detect age-dependent aberrations. B) Pathway analysis of the transcripts differentially 12 

expressed (FDR<0.05) between average and high- risk breasts. C) Major molecular network of the differentially 13 

expressed transcripts between the two experimental groups. Genes upregulated in high-risk breasts are in red, 14 

while downregulated genes are in green. D) FAM83A and NEK2 transcription level in breast tissues from 15 

women at either average- or high-risk of developing breast cancer. E) Upper panel: Representative image of the 16 

immunofluorescence staining of primary breast epithelial cells with the epithelial marker, E-Cadherin (red), 17 

mesenchymal marker, Vimentin (green) as control, and nuclear staining, DAPI (blue). E-Cadherin and 18 

Vimentin staining of primary cells revealed that isolated primary cells are epithelial in nature. Lower panel: 19 

FAM83A and NEK2 expression in primary epithelial cells isolated from either average-risk (n=4) and high-risk 20 

breast (n=3). F) FAM83A and NEK2 expression in primary and h-TERT immortalized isogenic breast epithelial 21 

cells (n=7) from the GSE108541 dataset. G) Representative images of immunohistochemical staining for 22 

FAM83A and NEK2 are shown at 20X magnification.  Staining quantification is expressed as positivity and H-23 

score. Data are shown as mean ± standard error.   #: FDR<0.005, *: p<0.05,**p<0.001, ***p<0.0001. Pvalue is 24 

calculated using either unpaired nonparametric Mann-Whitney test or nonparametric Wilcoxon test.  25 

Figure 2: Methylome profiling of breast tissues from women at either high- or average risk of breast 26 

cancer. A) Chromosomal distribution of the  DNA methylation aberrations observed in high-risk versus 27 

average-risk group. B) Heatmap of the 20 highest differentially methylated regions in high-risk breasts as 28 

compared with average-risk breasts at FDR<0.05. The overlapping gene name is indicated on the left. C) 29 

Genomic localization (intron, coding, promoter or UTR) of the DNA methylation aberrations including regions 30 

either hypo- or hyper-methylated in high-risk versus average-risk breasts. Data are shown as percentage of each 31 

genomic localizaton versus the total number of sites. D) Pathway analysis of the genes affected by DNA 32 
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methylation aberrations (FDR<0.05) in high-risk breasts as compared with breast from women at average risk 33 

for breast cancer. E) One of the molecular networks including the genes affected by DNA hypermethylation.  34 

Figure 3: Correlation between degree of DNA methylation and gene expression. A) Pearson’s correlation 35 

analysis between DNA methylation value and expression of the genes found differentially expressed between 36 

high- and average-risk breasts. B) Pearson’s correlation analysis of the DNA methylation and expression of 37 

PHACTR1, hypermethylated in the breasts of high-risk women. r is the correlation coefficient and p is pvalue.  38 

Figure 4: Age-related transcriptome and DNA methylation changes in healthy breast tissues. A) 39 

Differentially expressed genes between the first (D1) and second (D2) donation time point in the breast tissues 40 

from average (blue bars) and high- (orange bars) risk women. Ratio between D2 and D1 is shown. B) Pearson’s 41 

correlation test between DNA methylation and transcription of GRIA4 and DNM3 in average- and high-risk 42 

breasts at the two time points, D1 and D2, C) Number of genomic locations (intron, coding regions, promoter, 43 

UTR) of the age-related DNA methylation events. N.A.: not available. D) Venn diagram of the DNA 44 

methylation changes associated with age comparing our data set (D2/D1) with Horvath’ epigenetic clock (353 45 

CpGs) or Johnson’s age-associated loci (787 CpGs) E) Differentially methylated regions between the first (D1) 46 

and second (D2) donation time point in the breast tissues from average (blue bars) and high- (orange bars) risk 47 

women. Ratio between D2 and D1 is shown.  *p<0.05; **p<0.001 48 

  49 
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Table 1: Gene expression differences in high- versus average-risk breasts (FC>2; FDR<0.05) 

Gene name Description log2fca FDR % genetic 
alterationsb 

Tumor/ Normal 
expression 
(pvalue)c 

Copy Number Variation (CNV)d Onco
score 

 
CNV=2 (%), p 

value 
CNV=-2 (%), p 

value 

MEPE 
Matrix extracellular 
phosphoglycoprotein 2.28 2E-02 0.7 0.02 (n.s.) 12 (0.6), n.s. 2 (0.1), <0.001 15.6 

OPRPN Opiorphin prepropeptide 2.10 3E-03 1.3 N.A. 31 (1.4), n.s. 0 (0) N.A. 

CXCL13 C-X-C motif chemokine ligand 13 2.07 4E-03 1.3 6.6 (0,003) 26 (1.2), n.s. 0 (0) 33.7 

APELA 
Apelin receptor early endogenous 
ligand 1.87 8E-04 0.3 N.A. N.A. 0 (0) N.A. 

CA6 Carbonic anhydrase 6 1.78 6E-04 0.8 0 (n.s.) 2 (0.1), n.s. 3 (0.1), <0.001 14.4 

DIO2 Iodothyronine deiodinase 2 1.60 2E-03 0.6 1.94 (n.s.) 13 (0.6), n.s. 0 (0) 7.7 

FEZF2 FEZ family zinc finger 2 1.55 7E-03 0.7 0.04 (<0.001) 3 (0.1), n.s. 0 (0) 16.1 
TNNT1 Troponin T1%2C slow skeletal type 1.52 9E-03 2.3 51.87 (n.s.) 36 (1.7), n.s. 0 (0) 12.3 

MMP3 Matrix metallopeptidase 3 1.43 2E-02 1.8 5.66 (<0.001) 26 (1.2), n.s. 1 
(0.04),<0.001 31.9 

SERPINA12 Serpin family A member 12 1.42 2E-02 0.9 1.26 (<0.001) 12 (0.6), n.s. 1 (0), <0.001 11.9 

C8B Complement C8 beta chain 1.42 3E-02 1.8 0.014 (n.s.) 37 (1.7), n.s. 1 (0), <0.001 7.3 

KCNJ13 Potassium voltage-gated channel 
subfamily J member 13 1.41 3E-03 0.6 0.16 (0.03) 2 (0.1), n.s. 1 (0), <0.001 9.0 

CXCL6 C-X-C motif chemokine ligand 6 1.37 5E-03 2.2 0.10 (0.04) 43 (2), n.s. 0 (0), n.s. 31.0 

SLC12A1 Solute carrier family 12 member 1 1.33 1E-02 0.9 0.48 (<0.001) 4 (0.2), n.s. 1 (0),<0.001 5.6 

CYP24A1 Cytochrome P450 family 24 
subfamily A member 1 

1.33 3E-02 7.0 0.22 (n.s.) 164 (7.5),<0.001 1 (0), n.s. 30.2 

ASB5 
Ankyrin repeat and SOCS box 
containing 5 1.29 4E-03 1.3 0.01 (n.s.) 6 (0.3), n.s. 5 (0.2),<0.001 0.0 

NPY2R Neuropeptide Y receptor Y2 1.27 3E-02 1.0 0.003 (<0.001) 10 (0.5), n.s. 0 (0) 7.9 

C2CD4A C2 calcium dependent domain 
containing 4A 

1.26 2E-02 0.6 0.9 (<0.001) 12 (0.6), n.s. 1 (0),<0.001 11.2 

GABRR1 gamma-aminobutyric acid type A 
receptor rho1 subunit 

1.26 3E-02 1.1 1.03 (0.03) 13 (0.6), n.s. 5 (0.2),<0.001 8.7 

KIAA1210 KIAA1210 1.25 7E-03 1.6 0.43 (n.s.) 18 (0.8), n.s. 3 (0.1),<0.001 0.0 
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MMP10 Matrix metallopeptidase 10 1.23 2E-02 1.6 7.07 (<0.001) 26 (1.2), n.s. 1 (0), <0.001 38.2 

FAM83A Family with sequence similarity 83 
member A 1.22 5E-03 16.0 1.23 (<0.001) 503(23.1),<0.001 0 (0) 74.5 

LPO Lactoperoxidase 1.21 1E-02 7.0 0.5 (<0.001) 168 (7.7),2E-24 1 (0), n.s. 11.5 

CRISP2 Cysteine rich secretory protein 2 1.19 3E-02 1.5 0.06 (0.01) 31 (1.4), 3E-05 0 (0) 8.2 

NMU Neuromedin U 1.19 2E-02 0.8 3.6 (<0.001) 18 (0.8), n.s. 1 (0), <0.001 41.6 

MAGEB4 MAGE family member B4 1.18 9E-03 0.8 8.6 (0.004) 10 (0.5), n.s. 2 (0.1),<0.001 55.9 

MAG Myelin associated glycoprotein 1.17 4E-02 2.3 5.3 (<0.001) 42 (1.9), 0.001 0 (0) 13.2 

DAPL1 Death associated protein like 1 1.17 5E-03 0.7 0.09 (n.s.) 10 (0.5), n.s. 0 (0) 14.0 

PRSS51 Serine protease 51 1.16 2E-02 1.6 N.A. 0 (0) 0 (0) N.A. 

PBK PDZ binding kinase 1.14 4E-03 3.0 15.7 (<0.001) 20 (0.9), n.s. 15(0.7),<0.001 28.3 

KRT77 Keratin 77 1.13 4E-02 0.8 0.04 (n.s.) 12 (0.6), n.s. 0 (0) 0.0 

CALML3 Calmodulin like 3 1.12 3E-02 4.0 0.15 (n.s.) 108 (5),<0.001 0 (0) 37.7 

ACBD7 Acyl-CoA binding domain 
containing 7 1.12 3E-03 2.3 1.13 (0.002) 78 (3.6),<0.001 0 (0) 0.0 

UNC5D Unc-5 netrin receptor D 1.11 2E-02 8.0 0.001 (n.s.) 152 (7), n.s. 6 (0.3),<0.001 44.8 

ESCO2 Establishment of sister chromatid 
cohesion N-acetyltransferase 2 1.11 2E-03 3.0 8.02 (<0.001) 20 (0.9), n.s. 14(0.6),<0.001 25.1 

BARX1 BARX homeobox 1 1.09 4E-02 5.0 1.54 (9E-08) 9 (0.4), n.s. 1 (0), <0.001 22.3 

CTXND1 Cortexin domain containing 1 1.09 3E-02 0.0 N.A. 0 (0) 0 (0) N.A. 

SYT13 Synaptotagmin 13 1.08 4E-03 1.3 4.6 (<0.001) 36 (1.7), <0.001 1 (0), n.s. 38.8 

PRAME Preferentially expressed antigen in 
melanoma 1.06 2E-02 1.2 1.8 (<0.001) 21 (1), n.s. 1 (0), <0.001 82.6 

SLC39A12 Solute carrier family 39 member 12 1.05 4E-03 2.4 0.18 (n.s.) 72 (3.3), <0.001 1 (0), n.s. 12.0 

IGHV2-26 Immunoglobulin heavy variable2-26 1.04 4E-02 0.1 N.A. 0 (0) 0 (0) N.A. 

APLN Apelin 1.04 7E-04 0.6 0.93 (n.s.) 16 (0.7), n.s. 2 (0.1),<0.001 13.8 

IGHV3-30 Immunoglobulin heavy variable3-30 1.04 2E-02 0.1 N.A. 0 (0) 0 (0) 48.0 

LPAR3 Lysophosphatidic acid receptor 3 1.04 8E-03 0.9 0.28 (n.s.) 13 (0.6), n.s. 0 (0) 12.9 

ECEL1 Endothelin converting enzyme like1 1.03 2E-02 0.8 0.9 (n.s.) 1 (0), n.s. 1 (0), <0.001 N.A. 
DCX Doublecortin 1.03 6E-03 0.5 0.1 (0.02) 13 (0.6), n.s. 2 (0.1), <0.001 8.7 
NEK2 NIMA related kinase 2 1.02 7E-03 12.0 25.78 (<0.001) 473 (21.8),<0.001 0 (0) 61.4 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted S
eptem

ber 15, 2021. 
; 

https://doi.org/10.1101/2021.09.14.460320
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2021.09.14.460320
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

CWH43 Cell wall biogenesis 43 C-terminal 
homolog 1.02 3E-02 1.0 0.5 (<0.001) 6 (0.3), n.s. 0 (0) 12.9 

PRSS21 Serine protease 21 1.01 3E-02 5.0 0.2 (n.s.) 154 (7.1),5E-102 0 (0) 46.3 

FOXI3 Forkhead box I3 1.01 2E-02 0.3 0.01 (<0.001) 10 (0.5), n.s. 0 (0) 8.5 

FCER2 Fc fragment of IgE receptor II -0.98 1E-03 1.3 0.07 (0.04) 11 (0.5), n.s. 2 (0.1),<0.001 17.1 

DACH2 Dachshund family transcription 
factor 2 -1.01 1E-02 0.8 0.3 (n.s.) 17 (0.8), n.s. 9 (0.4),<0.001 25.3 

LILRB5 Leukocyte immunoglobulin like 
receptor B5 -1.02 8E-04 2.1 0.15 (<0.001) 39 (1.8), n.s. 0 (0) 0.0 

SBK3 SH3 domain binding kinase family 
member 3 -1.03 7E-03 2.3 N.A. 48 (2.2), n.s. 0 (0) 0.0 

TRDN Triadin -1.03 3E-02 2.3 0.02 (n.s.) 41 (1.9), n.s. 1 (0),< 0.001 1.0 

NXF3 nuclear RNA export factor 3 -1.04 3E-03 0.6 0.9 (n.s.) 8 (0.4), n.s. 4 (0.2),< 0.001 32.2 

LILRA6 
leukocyte immunoglobulin like 
receptor A6 -1.05 2E-03 2.1 1 (n.s.) 39 (1.8), n.s. 1 (0), n.s. 0 

SYNDIG1L synapse differentiation inducing 1 
like -1.07 9E-03 0.5 N.A. 8 (0.4), n.s. 1 (0),< 0.001 0 

ARPP21 cAMP regulated phosphoprotein 21 -1.13 2E-02 1.1 0.42 (n.s.) 11 (0.5), n.s. 1 (0),< 0.001 24.04 

SLC22A12 solute carrier family 22 member 12 -1.13 2E-02 1.1 0.9 (<0.001) 20 (0.9), n.s. 0 (0) 8.9 

CCL24 C-C motif chemokine ligand 24 -1.17 1E-02 0.7 0.98 (<0.001) 21 (1), n.s. 0 (0) 16.2 

TPSD1 tryptase delta 1 -1.17 2E-02 5.0 0.55 (0.04) 170 (7.8),<0.001 0 (0) 0 

PROK2 prokineticin 2 -1.19 2E-02 0.7 0.24 (0.01) 5 (0.2), n.s. 1 (0), 0.001 18.8 

HBG2 hemoglobin subunit gamma 2 -1.59 4E-02 1.0 0.2 (n.s.) 19 (0.9), n.s. 0 (0) 11.3 

FGF8 fibroblast growth factor 8 -1.68 3E-04 0.3 0.88 (0.005) 2 (0.1), n.s. 1 (0),< 0.001 14.3 

SULT1C2 sulfotransferase family1C member2 -1.74 2E-03 0.5 1.6 (0.02) 9 (0.4), n.s. 0 (0) 21.8 

MS4A6E membrane spanning 4-domains 
A6E -2.24 4E-02 0.9 N.A. 23 (1.1),n.s. 0 (0) 0 

N.A. : not available; a: log fold change; b: breast cancer data from cBioportal; c:  from UALCAN portal; d: data retrieved from the METABRIC, 
number of samples with either CNV= 2 or -2 (%), p value. 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted S
eptem

ber 15, 2021. 
; 

https://doi.org/10.1101/2021.09.14.460320
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2021.09.14.460320
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Table 2: The 20 most differentially methylated regions between the high- and average-risk 
breast tissues 

Genomic Locus Overlapping 
Gene Feature 

Gene Name Description ∆Z# FDR 

Chr8:120,669,501 Intron SNTB1 syntrophin beta 1 2.4 7E-53 

Chr18:6,803,751 Intron ARHGAP28 Rho GTPase activating 
protein 28 2.0 3E-35 

Chr6:12,944,751 Intron PHACTR1 phosphatase and actin 
regulator 1 

1.9 1E-31 

Chr21:30,743,501 promoter 
KRTAP21-

4P 
keratin associated protein 
21-4 2C pseudogene 1.9 6E-31 

Chr2:115,663,751 Intron DPP10 dipeptidyl peptidase like 10 1.8 2E-30 

Chr4:87,111,001 Intron AFF1 AF4/FMR2 family member 1 1.8 2E-29 

Chr3:33,638,251 Intron CLASP2 cytoplasmic linker 
associated protein 2 

1.8 2E-29 

Chr14:106,498,501 Intron LINC01881 long intergenic non-protein 
coding RNA1881 1.8 2E-29 

Chr6:129,416,001 Intron LAMA2 laminin subunit alpha 2 1.8 4E-29 

Chr14:31,750,251 Intron NUBPL 
nucleotide binding protein 
like 1.8 2E-28 

Chr8:37,842,001 Coding ADGRA2 
adhesion G protein-coupled 
receptor A2 -1.2 1E-12 

Chr1:44,724,501 Coding C1orf228 chromosome 1 open 
reading frame 228 -1.2 9E-13 

ChrX:46,575,001 Coding CHST7 carbohydrate 
sulfotransferase 7 

-1.2 5E-13 

Chr14:104,729,501 Coding ADSSL1 adenylosuccinate synthase 
like 1 

-1.3 1E-15 

Chr2:202,774,251 Intron/promoter ICA1L islet cell autoantigen 1 like -1.3 1E-15 

Chr1:155,190,001 Coding MUC1 mucin 1, 2C cell surface 
associated 

-1.4 2E-17 

Chr20:3,751,751 Coding HSPA12B 
heat shock protein family A 
(Hsp70) member 12B -1.4 8E-18 

Chr11:58,141,001 Intron OR9Q1 
olfactory receptor family 9 
subfamily Q member 1 -1.6 4E-22 

Chr1:45,803,751 Coding MAST2 microtubule associated 
serine/threonine kinase 2 -1.6 3E-23 

Chr7:636,001 Intron PRKAR1B 
protein kinase cAMP-
dependent type I regulatory 
subunit beta 

-1.7 1E-24 

#: High- versus average-risk value 
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