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ABSTRACT

Background: Genome-wide association studies have identifiexverml breast cancer susceptibility
loci. However, biomarkers for risk assessment aillensissing. Here, we investigated cancer-relatealecular
changes detected in tissues from women at higHardireast cancer prior to disease manifestation.
Disease-free breast tissue cores donated by heatimen (N=146, median age=39 years) were procdssed
both methylome (MethylCap) and transcriptome (llinas HiSeq4000) sequencing. Analysis of tissue
microarray and primary breast epithelial cells wasd to confirm gene expression dysregulation.

Results: Transcriptomic analysis identified 69 differenijadxpressed genes between women at either high and
those at average risk of breast cancer (Tyrer-@uziodel) at FDR<0.05 and fold chan@e The majority of

the identified genes were involved in DNA damageatipoint, cell cycle, and cell adhesion. Two genes,
FAM83A and NEK2, were overexpressed in tissue sest(FDR<0.01) and primary epithelial cellp<.05)
from high-risk breasts. Moreover, 1698 DNA methigataberrations were identified in high-risk bretistues
(FDR<0.05), partially overlapped with cancer-retht@gnatures and correlated with transcriptionancjes
(p<0.05,r<0.5). Finally, among the participants, 35 womenaded breast biopsies at two time points, and age-
related molecular alterations enhanced in highsigljects were identified.

Conclusions: Normal breast tissue from women at high risk st cancer bears molecular aberrations that
may contribute to breast cancer susceptibility.sTétudy is the first molecular characterizationttué true
normal breast tissues and provides an opportuniigvestigate molecular markers of breast cansé&r which

may lead to new preventive approaches.

Keywords. Cancer riskfranscriptomeDNA methylation normal breast

BACKGROUND
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Genetic and epigenetic alterations in breast caidey have been widely investigated. However, witkning
the carinogenesis process, these events first eneengins unknown. The identification of molecular
aberrations associated with BC development canigecv conceptual framework for a deeper understgnofi

this complex disease.

Genome-wide association studies (GWAS) have dsdestore than 170 genomic loci harboring common
variants associated with BC risk including modifedieles with high (e.g., BRCALl, BRCA2, TP53, PTEN)
moderate penetrance (e.g., BRIP1, CHEK2, ATM, aAdB2) (1-4). Nevertheless, many variants are lodate
in noncoding or intergenic regions and their fuma#l role in cancer transformation remains largeignown.
Recently, transcriptome-wide association studiesevused to integrate GWAS and gene expression etatas
and identified 154 genes whose predicted expresassociated with the risk for BC (5-9). Howevehede
studies drew data from the Genotype-Tissue ExmmesE€sTEX) project, where the use of autopsy-derived
normal breast tissues may make the breast-spa&@hscriptome profilings questionable. The relatevek of

molecular profiling of normal breast tissue fronbjgets who are disease-free makes the field clafign

Many studies searching for cancer biomarkers hdeetified gene expression signatures, epigengiasires,
loss of heterozygosity and allelic imbalance rasglfrom the development of malignancy (10). Amadhg
molecular processes linked with cancer, DNA metigtahas a keyrole in early cancer developmentuiipnca
process known as epigenetic reprogramming (11lenpally leading to silencing and loss of expressod

tumor suppressor genes (12), and genomic instaliilg).

Here, we performed an integrated analysis of DNAhylation and transcriptome profiling of cancerefre
breast tissues donated by healthy women at eitrerage or high risk for BC. In addition to earlyiggmetic
events, we identified two molecules overexpresseligh-risk breasts independently from DNA methgiat

changes and, therefore, potential markers of BCepisility. Moreover, using a subcohort of repeated btea
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tissues donation by the same donors, we confirmatthe molecular changes identified in high-rigkjscts
are age-independent. These findings will lead teeper understanding of BC susceptibility and plewide

the scientific community with the molecular prafiy of a true normal breast tissue.

RESULTS

Study cohort used to investigate molecular aberrationsin association with breast cancer (BC) risk

To identify transcriptomic and epigenetic differeaclinked with BC risk, we analyzed cancer-free
breast tissue cores donated by 146 healthy womedi&m age: 39 years) including 112 Caucasian, 2itakf
American and 10 Asian subjeci&dditional File 1: Table S1). Out of 146 participants, 117 were pre- and 29
postmenopausal women. Tyrer-Cuzick model was engpldy estimate the lifetime risk of developing B@la
allocated the subjects to either high- (se@@%, N=68) or average-risk group (score<20%, NHFgy. 1A,
Table 1 andAdditional File1l: Table S1) .
Characterization of the transcriptome alterationsin high-risk breast

We performed a transcriptome analysis of the ffesken disease-free breast tissue donated byall th
participants. Differential expression analysis ywasformed using DESeq2. From a total of 22,344 getie
differential expression analysis between high- awérage-risk breasts revealed 1,874 transcripteto
significant at 5% false discovery rate (FDR). Gdgl, 1,798 transcripts also passed the cutdftesftp-value<
0.05 Additional File 1: Table S2). Sixty-nine genes, including 51 upregulated aBdddwnregulated genes,
were identified with a fold change2 (Table 1). Because both groups consisted of non-malignansbtisaue,
a limited number of differentially expressed gemess expected (14). Canonical pathway analysis ledea
enrichment in pathways related to kinetochore digga(p=1.3E-05), DNA damage checkpoim=0.0005),
granulocytes adhesiop<0.002), and the IL17 pathwap<0.004) Figure 1B, Additional File 1. Table S3).
Our data further confirm the previously describagact of dysregulated DNA damage in breast careinegjs

(15). Molecular network analysis showed an enriainie functional categories involved in cell cycl2NA
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replication and repairF{gure 1C, Additional File 1: Table S3). One of the major molecular networks
regulating cell cycle is centered around AKT aral tilanscription factor FOXM1 (16).

Except for DCX, the transcriptional changes detkttetween high- and average-risk breasts listéthlvie 2
are independent of both racial background and nmearsgl status of the tissue dondksiditional File 1: Table
$4 andAdditional File 2: Fig. S1).

Among the 69 differentially expressed genes, FAM83Ad NEK2, showed the highest gene
amplification rate (number of cases with gene afcplion>200) and genetic alteration frequency @)0as
well as overexpression in B(3X0.001) and Oncoscore >50, as detected through ABRIC database,
cBioportal, UALCAN and Oncoscore analyses FAM83Al d&NEK2 (Table 1 andAdditional File 2: Fig. S2)
(17-19). The expression of FAM83A and NEK2 in thredsts of high- and average-risk women is shown in
Fig. 1D. We detected a 4.5-fold increase in FAM83A and Bl8-increase in NEK2 expression in primary
epithelial cells isolated from the breast of higgkrwomen when compared with cells isolated froraalst
tissue of average-risk womefkig. 1E). Overexpression of both targets was detected ials® dataset of
hTERT-immortalized epithelial cells as comparedhwtite isogenic primary cells (20if. 1F). Moreover,
immunostaining of a breast tissue microarray shoavéd! fold increase in FAM83A protein levels i threast
tissues from women at high risk of BC as comparéith whe breast tissues from subjects at averade ris
(p<0.0001,Fig. 1G, Additional File 2: Fig. S3A andAdditional File 1. Table S5). FAM83A overexpression
in normal breast tissues was associated with pgrt§.001), tobacco usg%£0.01) and family history of BC
(p=0.02) Additional File 1: Table S6). On the contrary, NEK2 staining showed no diffexin protein levels
between the two groupfi@. 1G). No difference in Ki67, estrogen receptor alpBER(), FOXALl and GATA3
staining between high- and average-risk breastoolwssrvedAdditional File 2: Fig. S3B andAdditional File
1: Table S5). This data shows that FAM83A expression changesecific to breasts of women at high risk of

developing breast cancer.
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Genome-wide DNA methylation analysis reveals 1698 aberrant DNA methylation sitesin normal breast

tissue of high-risk women

With the goal of identifying alterations in regudag regions leading to BC susceptibility, we penfed
a methylome analysis using the MethylCap-seq apgpro®ifferential analysis of the methylated regions
detected in the breasts from average-risk womertlamgk from women at high risk of cancer revealedde
chromosomal distribution of the epigenetic abeoradi Fig. 2A). DNA methylation changes with &2 >1
(hypermethylated) ox-1 (hypomethylated) were selected. We identifie@B8l regions methylated that
differentiate the breast tissue of high-risk wonfram that of women at average risk (FDR5%), mapping
to 1115 unigue genesdditional File 1. Table S7). The twenty most hypermethyated and hypomethylate
regions are shown ifig. 2B and Table 2. Interindividual variability in DNA methylation cabe observed
within each experimental group. 98.9% of the DNAtlgkation aberrations consisted of hypermethyldoed
(p=11971x 110" % Fig. 2C). More than 90% of hypermethylated loci localizedegulatory regions including
the promoter, untranslated region, and introns,levbnly 41% of hypomethylated loci localized in ske
regions Fig. 2C). However, hypomethylated regions were localizegtlpminantly in the gene body (59%), a
phenomenon that has been linked with the activaitiocancers of aberrant intragenic promoters that a

normally silenced (21, 22).

Pathway analysis revealed the involvement of cdhesion (aka synaptogenesis;1.2E-06), ErbB
(p=3.7E-04) and protein kinase A=54.8E-04) signaling pathway$i@. 2D, Additional File 1. Table S8).
Notably, one of the molecular networks showed E3R2he central moleculd=ig. 2E). Although ESR2
expression decreased in high-risk breasts (folshg#a0.82), the intronic ESR2 hypermethylation shibwe
inverse correlation with ESR2 expressia-0.03, p=0.4; Additional File 2: Fig. $SA4A-C). One of the
hypomethylated genes, MUCAZ4=1.4, FDR=1.6E-17) is reported to be aberrantlgrexpressed in over 90%
of breast tumors (23, 24)A{ditional File 2: Fig. $4D). However, no significant difference in MUC1

expression was observed between high- and aveisigbreastsAdditional File 2: Fig. S4E). In the analyzed
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cohort, DNA methylation was not highly affected dather racial background or menopausal statuseofiisue
donors (FDR>0.05Additional File 1. Table S9). Finally, we found overlap between DNA methydati
aberrations in high-risk breasts and breast camtated DNA methylation signatures such as thosatified

by Saghafiniaet al (4%, 25/666, (25)), Cheet al (6%, 10/174, (26)), de Almeida al (9%, 25/285, (27)), and

Xu et al (9%, 37/414, (28)Additional File 1: Table S10).

DNA methylation and gene expression changesin high-risk breast show a weak correlation

To identify potential epigenetically regulated genmked with BC risk, we performed a Pearson’s
correlation test on paired DNA methylation and gexgression datd{g. 3). Among the 69 genes ihable 2),
the expression of eight genes was associated wighrant intronic DNA methylation, including six gen
showing a direct correlation (APELA, DIO2, FEZFRAR3, UNC5D and PRSS51) and two genes (PROK2,
and SULT1C2) with a negative correlatidfaid. 3A). Furthermore, among the DNA methylation aberretim
Table 2, only the intronic hypermethylation of PHACTR\ZA =1.88, FDR= 1.0E-31) was negatevely
correlated with PHACTR1 expression (fold changeZ0.FDR=0.006,r=-0.21) Fig. 3B). However, the
correlations identified were weak ¢0.2,-0.5) suggesting that other regulator evéctisomatin modifications,
gene amplification, nucleotide variants), ratheantibNA methylation aberrations, may be the deteamiis of

the transcriptomic changes observed in the hidghlmisasts as compared with average-risk breasts.

Age-related molecular changesin cancer-free breast tissuesin relation with cancer risk

Age is the strongest demographic risk factor forsimfmuman malignancies, including breast cancer.
Age-related transcriptome and DNA methylation adi@ns were investigated on breast tissues coneateld
by 35 women at two separate time poimisiditional File 1. Table S11). Differential expression analysis
(FDR<0.05) between the two donation time pointsead®d the dysregulation of 317 genes involved in
LXR/RXR activation p=7E-04), immune responsp=2E-03) and senescenge={E-03) Additional File 1:
Tables S12 and S13). Forty-eight age-related transcriptomic changel wfold change (fe)2 and FDR <0.05

included two upregulated genes, CETP (fc:2.4;FDB40Dand HP (fc=2.3, FDR=0.03); and downregulatibn o
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five genes, SLC5A1 (fc=0.4; FDR=0.03), SLCO1A2 (@t FDR=0.03), GRIA4 (fc=0.4; FDR=0.01),
IL22RA2 (fc=0.4; FDR= 0.01), and CHRM1 (fc=0.4; FB®03) @Additional File 2: Fig. S5). Furthermore,
age-dependent dysregulation of the following fiemgs was enhanced in breast tissues from higlwoshken:
NEURL1, USP50, GRIA4, SPDEF and DNMBig. 4A). Notably, the expression of GRIA#=0.43,p=0.04)
and DNM3 ¢=-0.47, p=0.03) showed a negative correlation with their DN#ethylation pattern, thus
suggesting a potential epigenetic regulation feséhtwo molecules=(g. 4B).

Age-dependent DNA methylation aberrations affe@®@tl loci corresponding to 280 unique transcripts
(Additional File 1: Table S14). As previously reported (29), age-related DNA Imy&dtion alterations were
predominantly hypermethylation events (85.4%) affieicted the intronic region$=(g. 4C). DNA methylation
measurements were previously used to develop egigebiomarkers of aging, otherwise known as “DNA
methylation age” or the “epigenetic clock” (30, 3¥Ye observed a limited overlap between the 301 DNA
methylation aberrations and the epigenetic clockscdbed by Horvatlet al (1.4%, (31)) , while 73 genes
associated with the bin in our dataset overlappill age-associated DNA methylation alterations regabby
Johnsoret al (24.2%,(29)) Fig. 4D). Finally, we identified age-related DNA methytatiaberrations enhanced
in high-risk breasts, localized on four genes: PMPRPOCK1, KCNH1, and CFAP43)<0.001,Fig. 4E and
Additional File 1: Table S14). In contrast, both transcriptomic and DNA metligla aberrations affecting

FAM83A and NEK2 resulted age-independent.

DISCUSSION

This study aimed to define the distinct featuresasicer-free breast tissues from women at highfoisk
BC and, thus, identify molecular markers that cooddentially screen for women susceptible to candés
conducted transcriptome and methylome analyseg usieast tissue cores donated by healthy women. The
participants were divided into two cohorts basedttmir risk of developing breast cancer, accordmghe
Tyrer-Cuzick lifetime risk assessment score: higk-(>20%) and average-risk (<20%) (32). Among the genes

upregulated in high-risk breast, we identified feromising markers of BC susceptibility, FAM83A aN&K?2.

8
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Furthermore, when investigating DNA methylation rmagons in high-risk breasts, we detected 4-10%rlap
with cancer-related signatures.

Our transciptomic analysis of high- and averagk-beeasts revealed significant changes in 69 genes
(FDR<0.05). Pathway analysis suggested the aativati cell cycle and cell adhesion in the high-fiskasts.
Furthermore, one of the molecular networks inclgdithe differentially expressed genes showed the
involvement of FOXM1 signaling. FOXM1 itself is ggulated 1.6 fold in high-risk breasts=0.001).The
transcription factor FOXM1 regulates the transaoiptof cell-cycle genes essential for exit from B&/S
phase into the G2/M phase such as cyclin AK1, ATF2 and CDC25A phosphatase as well as gengsal
for chromosome segregation and cytokinesis (33)XMOD is overexpressed and plays critical role in
tumorigenesis, metastasis, and drug resistancérnoaa range of human cancer types, such as lastyi@g and
breast cancers (16). Compounds targeting FOXMlesgown or activity areinder investigation (16). Our
results suggest that the transcriptional dysreguiatetected in high-risk breasts may be driveir@xXM1.

Two genes, FAM83A and NEK2, both upregulated irhkigk breast, showed a high Oncoscore (75.5
and 61.4, respectively), and have been reportedifeadpn breast cancer. FAM83A is the smallestniber of
the eight-member FAM83 family of proteins that €ha conserved amino-terminal Domain of Unknown
Function (DUF1669 domain) (34). It was identifiedskd on its transforming potential (35-37). FAM83A
upregulation has been detected in multiple humarotutypes, including breast, lung, pancreatic agical
cancer (37-44). Leet al (45, 46) revealed the ability of FAM83A to conf@sistance to epidermal growth
factor receptor/ tyrosine kinase inhibitors (EGFRIS) through interactions with c-RAF and PI3K p8b i
breast cancer. The authors also showed that BEmpaitivith high FAM83A expression had a worse preggio
FAMB83A depletion suppressed proliferation and imvasessn vitro as well as tumor growtim vivo (36).
Based on the aforementioned studies, FAM83A isidensd a candidate oncogene and our findings stigges
that FAM83A may be one of the first molecules dgsitated in cancer transformation. Our team is cilye
investigating the role of FAM83A in breast carcieagsis. Moreover, our DNA methylation data, in agrent

with previous literature, suggest that FAM83A @gression is mainly driven by genomic amplificatio

9
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rather than epigenetic regulation (47, 48). Addiébstudies such as deep whole genome sequenciDiyAf
from breast tissues of high-risk women are requioeslipport this hypothesis.

The NIMA-related kinase 2 (NEK2) protein belongsatéamily of serine/threonine kinases, which have
a role in mitotic progression by initiating the aegtion of centrosomes (49)NEK2 overexpression was
previously reported in BC as result of gene angdiion (47, 50). NEK2 depletion blocks cell cycle
progression and tumor cell growth, making it amaldberapeutic target (51). Notably, FOXML1 is répd to
both bind NEK2 promoter and interact with NEK2 dihg (52, 53). Our study further suggests a rol&lBK?2
dysregulation in breast carcinogenesis. Howeverdidenot observe changes in NEK2 protein levelbrgast
tissues of high-risk women suggesting a disconrmttveen mRNA and protein levels, which is not
uncommon. Further investigation of the role of NEKDreast carcinogenesis is needed.

We observed DNA methylation changes in high-riskalsts, consisting mostly of hypermethylation
(98.8%) in the intronic regions (88%). Previousdsts reported aberrant hypermethylation in norbmabst
tissue adjacent to the tumor (54). Hypermethylationspecific gene promoters is indeed linked to
carcinogenesis through transcriptional silencifiguoor suppressor genes or regulatory regionsinvitine
genome leading to dysregulation of cell growth,cearinitiation and progression (55-57). We ideetifia 4-
10% overlap between methylome aberrations in higih-breasts and previously reported cancer-related
signatures (25-28). The limited overlap may beduhko the different technical approaches (Methyitaee vs
Infinium HumanMethylation450 array) but may alsoggest that cancer—related epigenetic marks avly ne
acquired during cancer initiation rather than beingprinted into the genome. Although the expression
epigenetic modifiers such as DNMTs remain unaffiictee detected the upregulation in high-risk breast
HASPIN (fc=1.7; FDR<0.005), a serine/threonine kmanvolved into the phosphorylation of the histbie
during mitosis (58), suggesting that other genetid epigenetic mechanisms rather than DNA metloylatiay
drive the transcriptomic aberrations in high-riskdsts.

Age is the strongest demographic risk factor forstrftuman malignancies, including BC (59). The

limited size of our cohort (N=35) prevented us frambdividing the subjects by age at tissue donation

10
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Nevertheless, we identified age-related transamptoaberrations enhanced in high-risk breasts oty
GRIA4 and DNM3, which resulted potentially epigeoally regulated. In terms of DNA methylation
aberrations, we found a limited overlap betweenatpe-related DNA methylation changes here identified
epigenetic clock from Hovartat al. (31) (Additional File 1: Table S14). However, a 24.2% overlap of our
dataset with age-related DNA methylation aberratidescribed by Johnsah at (29) was detected The
limited overlap is probably due to the differeragidbrm used for DNA methylation detection (Infiniuduman
Methylation 450 array vs Methyl-Cap-seq) and theetgf analysis (epithelium-specific deconvolutiawhole
tissue)(29, 31). Notably, we identified specificeaglated DNA methylation changes, located on PTPRM
KCNH1, SPOCK1, CFAP43 gene, enhanced in the highsus average-risk breasts.

This study harbors some limitations: the relativatyall sample size prevented us from investigating
details cancer-related varables such as racialgoackd. The selection of normal breast tissue cergshigh
content in epithelial compartment limited the numloé available samplesA@dditional File 2: Fig. S5).
Outcome data for the women at high risk for BC a¢ awvailable at this time; however, this cohortimgler an
ongoing annual medical follow up. Because of tleeiaprocessing time and smaller cost, we perforwieale
tissue analysis instead of the more epitheliumifipdaser microdissection or single-cell analysiis limits
the compartment specificity of the data but gemsrat more comprehensive view of the molecular feataf
the entire breast tissue core. Further deconwriwnalysis may overcome this limitation (60, 61).
CONCLUSIONS
The present study reveals transcriptomic and epigeaberrations linked with BC risk. Transcriptdmtargets
potentially promoting cancer susceptibility werentified. The described investigation provides aanae for
deciphering the functional relevance of genes wewlin BC development and a rich resource for frrth
investigation.

METHODS

Study cohorts
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Breast specimens were obtained from the Susan eKdissue Bank at the IlU Simon Comprehensive
Cancer Center (KTB) and donated voluntarily upoforimed consent by healthy women. Subjects were
recruited under a protocol approved by the Indi&lmaversity Institutional Review Board (IRB protosol
number 1011003097 and 1607623663). Subject demgsa@nd breast cancer (BC) risk factors were
collected using a questionnaire administered byKiiB and summarized iAdditional File 1. Table S1, S5
and S11. Breast tissue cores are collected by using aledmdpsy as previously described (14). The study
cohort consisted of two groups: 1) For the trapsome and methylome analyses, 146 women (mediar38ge
years) were selected based on the lack of cliracal histological breast abnormalities and high eaintn
breast epithelial compartment (cellularity>40%).rGkne mutation status of the subjects was obtaiinech
KTB. Data were retrieved from the LifeOmic’'s Preors Health Cloud platform
(https://lifeomic.com/products/precision-healthwadd). Nine established breast cancer—predisposijenes
(BRCAL, BRCA2, PALB2, ATM, CHECK2, BARD1, RAD51C,AD51D, CDH1) were evaluated for variants
identified as “pathogenic” or “likely pathogenic” ni the Clinvar database

(https://preview.ncbi.nim.nih.gov/clinvarfAdditional File 1. Table S1) (2, 3).

Thirty-five of these 146 women, including 10 agjthirisk and 25 at average risk for BC, donated thieast
tissue at two time points at intervals from 1-1@rge(mean: 3.2) between the tissue donatiéing (A and
Additional File 1: Table S11). 2) In a second analysis, paraffin-embedded btesstie blocks related to 395
healthy women were obtained from the KTB and useglenerate tissue microarrays. The cohort incli&8
Caucasian, 66 African American, 49 Asian, with eaggging from 18 to 61Additional File 1: Table S5).
Breast cancer risk assessment

Lifetime risk of developing BC was estimated byngsthe Tyrer-Cuzick risk score (IBISv8) (32) and a
threshold of 20% to separate high20%) from average-risk (<20%) individuals. The Ty@zick model was
selected over the other risk estimation toolst®accuracy and inclusion of young subjects (62).

Tissue processing and nucleic acid extraction

12


https://doi.org/10.1101/2021.09.14.460320
http://creativecommons.org/licenses/by-nc-nd/4.0/

32

33

)4

35

6

37

38

9

)0

1

)2

)3

)4

)5

)6

)7

)8

)9

10

11

12

13

14

15

16

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.14.460320; this version posted September 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

To limit stromal contamination, only breast tisssamples abundant in epithelial compartment
(cellularity >40%) were selected and processedalToNA and RNA were isolated from fresh frozen lstea
tissue biopsies (80-1500mg) using AllPrep DNA/RNMARMNA kit (Qiagen). Tissues were homogenized by
using 2ml prefilled tubes containing 3mm zirconilm@ads (Benchmark Scientific, cat.# D1032-30), 350ul
Lysis Buffer and 2-Mercaptoethanol, and BeadBug®dgenizer (Benchmark Scientific) in a cold roonthat
following conditions: 4000 rpm for 45 seconds wegeaated twice with 90 seconds rest time. The cdratem
and quality of total RNA and DNA samples were fiissessed using Agilent 2100 Bioanalyzer. A RINARN
Integrity Number) and DIN (DNA integrity number) sii or higher is required to pass the quality calnt
Whole transcriptome analysis

cDNA library was prepared using the TruSeq Stranbaal RNA Kit (lllumina) and sequenced using
lllumina HiSeq4000. Data included 146 paired-ergtdasequence libraries (raw read length: 38 xRbads

were adapter trimmed and quality filtered using  mimomatic ver. 0.38

(http://www.usadellab.org/cms/?page=trimmomasietting the cutoff threshold for average basdityuscore

at 20 over a window of 3 bases. Reads shorter2Bdmases post-trimming were excluded. About 94%hef
reads have both the mates passing the qualitysfilt€leaned reads mapped to Human genome reference
sequence GRCh38.p12 with gencode v.28 annotat®ng (BTAR version STAR_2.5.2b (63). Only samples
with about 99% of the cleaned reads aligned togtirgome reference. Differential expression analy&s

performed using DESeq2 ver. 1.12.3 (https://biocetar.org/packages/release/bioc/html/DESeq2html

Counts table containing mapped read counts for gaoh, to be used as input for DESeg2 was genanaied

featureCounts tool of subread package (https:0dpil0.1093/bioinformatics/btt6%6Alternatively, we rart-

tests comparing the normalized read counts fosétef replicates from High risk samples to thasetlie set
of replicates from Average risk samples. The noizedl read counts were obtained from the DESeq2 run
described above. Thevalues from thd-test were corrected for multiple testing using j@emni-Hochberg

method.
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DNA methylation analysis
Library was generated by using MethylCap Library hiagenode, Denville NJ, US) according to the

manufacturés protocols followed by single-end 75-bp sequenandllumina Nextseg4000. Internal controls
and duplicate samples were used to account fotbatgh effect and technical artifact. The data cosegrof
146 paired end read libraries in FASTQ format. Ehidsraries represent replicates for two sampldggh risk
(68 libraries) and Average risk (78 libraries). Thigraries were sequenced across multiple runs taed

combined read counts for each library were gengr&eads were adapter trimmed and quality filteradgus

Trimmomatic 0.38 (http://www.usadellab.org/cms/petgmmomati¢ with the cutoff threshold for average

base quality score set at 20 over a window of 3$%aReads shorter than 20 bases post-trimming were
excluded. Approximately, 96% of the sequenced rgmdsed the quality filters to be considered "&@édn
reads. This quality control reduced the numberaofges to 57 high- and 55 average-risk. Cleanedsreare
mapped to Human genome reference GRCh38.p12 ushy &r. 0.7.15 (64). Insert sequences were imputed
from the concordantly mapped read pair alignmeMsre than 95% of the cleaned read pairs were
concordantly mapped. A previously described diifdial methylation analysis using either ZratioAat (65,

66) was applied to the current methyl-capture datasth a slight improvisation on the validation thfe
significance of differential methylation. For aniven local bin of a given width on the genome, thethod
compares across samples, variation in deduplidgasait coverage distribution quantified as thesbiriscore
with respect to a larger genome region containreghtin. For this analysis, we used local non-oygilag bins
with a fixed width of 250 bp with their z-scoresngouted relative to 25KB regions. Z-score is the banof
standard deviations by which the bin coverage sdirem the larger region's mean coverage. A Sicamt
difference in Zscores, calculated as eitherAZsor Zratio between the samples would indicate micie
differential methylation for that bin, as previopslescribed (67),. The analysis identified 159,88&%, each
250bp wide, to be potentially differentially metaidd between High risk and Average risk sampleb wit
ratios orAZ significant at 5% FDR anp-values from t-test 0.05. Based on positional overlap, these bins were

annotated using annotation from gencode v28.
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Data analysis
Ingenuity Pathways Analysis (IPA, Qiagen, Redwoodty,GCA) was used for canonical pathway and
molecular network analyses (68). Publicly availaipdascriptomic data from primary and immortalizeeast

epithelial cells were obtained from GEQO (httpswimncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108541

(20). Analysis of The Cancer Genome Atl§8§CGA) was performed by interrogating both cBioRobrt

(https://www.cbioportal.org/) and UALCAN _ (http://lean.path.uab.ed)y/ databases (69). Copy number

variations (CNV) analysis was obtained from thesirggation of the Molecular Taxonomy of Breast €an
International Consortium, METABRIC (17, 18). Oncose was used to rank genes according to their

association with cancer, based on the availablensific literature (http://www.galseg.com/next-gesteon-

sequencing/oncoscore-softwaraéressed on 3/31/2021) (19).

Primary breast epithdial cellsand immunofluor escence

Primary breast epithelial cells were generated fooyopreserved breast tissue cores obtained frem th
KTB as previously described (14, 20). Immunoflucesece staining was performed as previously destribe
(14). Briefly, 5,000 cells were cultures overnighiio each well of an 8 well-chamber slide (BD Biesces,
San Jose, CA) and fixed with acetone: methanol) (at1-20°C for 10 min. After washing and blocking
(PBS1X, 5% normal goat serum, 0.1%TritonX-100) steglls were incubated with primary either rabliti-a
vimentin (Cell Signaling, D21H3, 1:100) or mousdi#ficadherin (Cell Signaling, 14472, 1:50) ovehtig
Upon three washes with PBS, cells were incubatdéld secondary antibodies (goat anti- mouse Alexarlu
568 or goat anti-rabbit Alexa Fluor 488; Thermohiis Scientific, 1:500) for 1 h at room temperatukéer
three washes with PBS, the coverslide was moungatlg uDAKO fluorescent mounting medium (S3023
Agilent, Santa Clara, CA) and the staining was ajliged using a fluorescent microscope (Eclipse TS10
Nikon Instruments inc, Melville, NY).
Quantitativereal time polymer ase chain reaction (QPCR)

Total RNA was extracted from cells using AllPrep ARNA/MIRNA kit (Qiagen). Reverse

transcription was performed using SuperScript™ IML.Q™ Master Mix (Invitrogen cat#: 11756050)
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according to the manufacturer’s instructions. qR@R performed using the TagMan™ Universal PCR Maste
Mix (Applied Biosystems, cat# 4304437) and the deihg TagMan Gene Expression Assays (Applied
Biosystems/Thermo Fisher Scientific, Grand Islan8llY): ACTB (Hs99999903 m1l1), FAMBS83A
(Hs04994801 _m1), and NEK2 (Hs00601227 myPCR reactions were run on a StepOne Plus Real-FP@ie
System (Applied Biosystems/Thermo Fisher Scientifind data analyzed using the StepOne Software v2.3
(Applied Biosystems). Relative quantification wadcalated with reference to ACTB and analyzed usirey
comparative € method. gPCR experiments were performed in tapdic
Tissuemicroarray (TMA) immunohistochemistry (IHC) analysis

Normal breast tissues microarrays from 683 womerewenerated from paraffin-embedded blocks
obtained from the KTB at the Tissue procurementi&tiibution core of the IU Simon Comprehensive Ganc
Center. Due to loss of material during TMA constiart and processing, 58% (n=395) of these tissapsies
were interpretable. TMA was analyzed with the foilog antibodies FAM83A (Protein Tech 20618-1-AP,
1:100), NEK2 (MyBioSource MBS9607934, 1:100), Ki@JAKO IR 626, ready-to-use), estrogen receptor
alpha (ER) (clone:EP1, DAKO IR 084, ready-to-use), FOXAL rig&a Cruz Biotechnology sc-6553, 1:100),
and GATA3 (Santa Cruz Biotechnology sc-268, 1:500)( IHC was performed in a Clinical Laboratory
Improvement Amendments (CLIA)-certified histopathgy) laboratory and evaluated by 3 pathologists in a
blinded manner. Quantitative measurements gengratsitivity and H-score were done using the autetha
Aperio Imaging system using an FDA-approved alpomii(71).
Statistical analysis

Comparisons between groups were done using eithele®’st-test or nonparametric Mann-Whitney
test on GraphPad Prism 9. Difference between grasigonsidered significant ptvalues<0.05. Pearson’s
correlation analysis was performed to determinestihength and direction of the linear relationshgiween
DNA methylation and transcription for given target3nly correlations with g<0.05 are shown. For
transcriptome and methylome data, differential ysial was performed using DESeq2 and the previously

described Z-score method (65, 66), respectivélyalues <0.05 are considered significanct and areected
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for multiple testing using the Benjamini-Hochberglde Discovery Rate (FDR) algorithm. For the tissue
microarrays analysis nonparametric Wilcoxon rankrsasts were used for unpaired analyses, as pbsdivd
H-scores were not normally distributed, whereaspaoametric Wilcoxon signed-rank tests were used for
paired analyses. The statistical software SAS orrSi4 (SAS Institute Inc., Cary, NC) was useddmplete
the statistical analyses with< 0.05 considered significant. Baseline demog@apinaracteristics were
summarized as median (range) for continuous vasabhd number and percentage for categorical Vesiab
Comparisons between groups were done using Chresdests (or Fisher's Exact test, where appropriate
categorical variables, or Wilcoxon test for conting variables.

LIST OF ABBREVIATIONS

BC: breast cancerKTB: Susan G. Komen Tissue bank at IlU Simon Comprehersawncer centefHC:
immunohistochemistry;PA: Ingenuity pathway analysis
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ADDITIONAL FILES

Additional File 1: Supplementary Tables. File fotmds. It includes subjects demographics and rata dn
form of tables.
Additional File 2: Supplementary Figues. File fotm@df. It includes additional data related to tmain

findings shown in the main figures.

FIGURE LEGENDS

Figure 1: Transcriptome profiling of breast tissues from women at either high- or average risk of breast

cancer. A) Schematics of the study design. Cancer-free bitessste cores (NE46) were divided in either
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high-risk or average-risk group according to tlyeef-Cuzick breast cancer risk evaluation scoré&q2@ed as
threashold). The tissues were processed and adafgzevhole transcriptome and methylome profilingda
differentially expressed genes (DEG) and diffaedlyt methylated sites between high- and averagje-ri
samples were identified. Thirty five women (10Hhigsk and 25 average risk) donated also a secmpby
(D2) allowing to detect age-dependent aberratidis.Pathway analysis of the transcripts differentially
expressed (FDR<0.05) between average and highbmesistsC) Major molecular network of the differentially
expressed transcripts between the two experimgnbalps. Genes upregulated in high-risk breastsnared,
while downregulated genes are in greB).FAM8B3A and NEK2 transcription level in breast tissufrom
women at either average- or high-risk of develogongast canceE) Upper panelRepresentative image of the
immunofluorescence staining of primary breast eigh cells with the epithelial marker, E-Cadhe(ned),
mesenchymal marker, Vimentin (green) as controlj anclear staining, DAPI (blue). E-Cadherin and
Vimentin staining of primary cells revealed thableged primary cells are epithelial in nature. Lowweanel:
FAMB83A and NEK2 expression in primary epithelialleésolated from either average-risk (n=4) andhhigk
breast (n=3)F) FAM83A and NEK2 expression in primary and h-TERImortalized isogenic breast epithelial
cells (n=7) from the GSE108541 datas8) Representative images of immunohistochemicahisigi for
FAMB83A and NEK2 are shown at 20X magnificationaiBing quantification is expressed as positivitg &
score. Data are shown as mean + standard erroEDR<0.005, *:p<0.05,*p<0.001, ***p<0.0001.Pvalue is

calculated using either unpaired nonparametric Mafitney test or nonparametric Wilcoxon test.

Figure 2. Methylome profiling of breast tissues from women at either high- or average risk of breast
cancer. A) Chromosomal distribution of the DNA methylationealations observed in high-risk versus
average-risk groupB) Heatmap of the 20 highest differentially methylatedions in high-risk breasts as
compared with average-risk breasts at FDR<0.05. vezlapping gene name is indicated on the IEjt.
Genomic localization (intron, coding, promoter ofFR) of the DNA methylation aberrations includingji@ns
either hypo- or hyper-methylated in high-risk verswverage-risk breasts. Data are shown as perecoftagch

genomic localizaton versus the total number ofssi®y Pathway analysis of the genes affected by DNA
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methylation aberrations (FDR<0.05) in high-riskdsts as compared with breast from women at aversige

for breast canceE) One of the molecular networks including the gerfiected by DNA hypermethylation.

Figure 3: Correlation between degree of DNA methylation and gene expression. A) Pearson’s correlation
analysis between DNA methylation value and expoessif the genes found differentially expressed betw
high- and average-risk breasB) Pearson’s correlation analysis of the DNA mettigla and expression of

PHACTR1, hypermethylated in the breasts of higk-wemen.r is the correlation coefficient aquis pvalue.

Figure 4. Agerelated transcriptome and DNA methylation changes in healthy breast tissues. A)
Differentially expressed genes between the firgt)(@d second (D2) donation time point in the kréasues
from average (blue bars) and high- (orange bask)wbmen. Ratio between D2 and D1 is shoBnPearson’s
correlation test between DNA methylation and trapsion of GRIA4 and DNM3 in average- and high-risk
breasts at the two time points, D1 and B2, Number of genomic locations (intron, coding regippromoter,
UTR) of the age-related DNA methylation events. N.Aot available.D) Venn diagram of the DNA
methylation changes associated with age compannglata set (D2/D1) with Horvath’ epigenetic clq@63
CpGs) or Johnson's age-associated loci (787 CEEifferentially methylated regions between thetfifD1)
and second (D2) donation time point in the braasties from average (blue bars) and high- (oraage) bbisk

women. Ratio between D2 and D1 is showp<0:.05; **p<0.001
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Table 1: Gene expression differences in high- versus average-risk breasts (FC>2; FDR<0.05)

. Tumor/ Normal Copy Number Variation (CNV)® Onco
Gene name | Description log2fc* | FDR % genetlcb expression score
alterations (pvalue)® CNV=2 (%), p CNV=-2 (%), p
P value value
MEPE | Matrix extracellular 228 | 2E-02 0.7 0.02 (n.s.) 12 (0.6), n.s. | 2(0.1), <0.001 | 15.6
phosphoglycoprotein
OPRPN Opiorphin prepropeptide 2.10 | 3E-03 1.3 N.A. 31(1.4), n.s. 0 (0) N.A.
CXCL13 | C-X-C motif chemokine ligand 13 2.07 | 4E-03 1.3 6.6 (0,003) 26 (1.2), n.s. 0 (0) 33.7
APELA ﬁgpaer']'g receptor early endogenous |4 g7 | gg_4 0.3 N.A. N.A. 0 (0) N.A.
CA®b6 Carbonic anhydrase 6 1.78 | 6E-04 0.8 0 (n.s.) 2(0.1), n.s. 3(0.1),<0.001 | 144
DIO2 lodothyronine deiodinase 2 1.60 | 2E-03 0.6 1.94 (n.s.) 13 (0.6), n.s. 0 (0) 7.7
FEZF2 FEZ family zinc finger 2 155 | 7E-03 0.7 0.04 (<0.001) 3(0.1), n.s. 0 (0) 16.1
TNNT1 Troponin T1%2C slow skeletal type | 1.52 | 9E-03 2.3 51.87 (n.s.) 36 (1.7), n.s. 0 (0) 12.3
. . 1
MMP3 Matrix metallopeptidase 3 1.43 | 2E-02 1.8 5.66 (<0.001) 26 (1.2), n.s. (0.04),<0.001 31.9
SERPINA12 | Serpin family A member 12 1.42 | 2E-02 0.9 1.26 (<0.001) 12 (0.6), n.s. 1 (0),<0.001 | 11.9
C8B Complement C8 beta chain 142 | 3E-02 1.8 0.014 (n.s.) 37 (1.7), n.s. 1 (0), <0.001 7.3
KCNJ13 | Fotassium voltage-gated channel |4 4y | ¢ g3 0.6 0.16 (0.03) 2 (0.1), n.s. 1(0), <0.001 | 9.0
subfamily J member 13
CXCL6 C-X-C motif chemokine ligand 6 1.37 5E-03 2.2 0.10 (0.04) 43 (2), n.s. 0 (0), n.s. 31.0
SLC12A1 | Solute carrier family 12 member 1 1.33 1E-02 0.9 0.48 (<0.001) 4(0.2), n.s. 1 (0),<0.001 5.6
cyp2saa1 | SYtochrome P450 family 24 133 | 3E-02 7.0 022 (ns) | 164 (7.5)<0.001 | 1(0)ns. | 30.2
subfamily A member 1
Asps | Ankyrin repeat and SOCS box 129 | 4E-03 13 0.01 (n.s.) 6(0.3),ns. | 5(0.2),<0.001 | 0.0
containing 5
NPY2R Neuropeptide Y receptor Y2 1.27 | 3E-02 1.0 0.003 (<0.001) 10 (0.5), n.s. 0 (0) 7.9
c2cpaa | ©2 calcium dependent domain 1.26 | 2E-02 0.6 0.9 (<0.001) 12 (0.6), n.s. 1(0),<0.001 | 11.2
containing 4A
GABRR1 | 9amma-aminobutyric acid type A 1.26 | 3E-02 1.1 1.03 (0.03) 13(0.6), n.s. | 5(0.2),<0.001 | 8.7
receptor rhol subunit
KIAA1210 | KIAA1210 1.25 7E-03 1.6 0.43 (n.s.) 18 (0.8), n.s. 3(0.1),<0.001 0.0

28

"8sud9I| [euonBuIBIUl 0"t AN-DN-Ag-DDR Japun a|qe|iene
apeuw sl ‘Aunadiad uruudaid ayy Aejdsip 01 asuadl| e AIxHoIq pajuelh sey oym ‘1spunyoyine ayi si (mainal 1aad Aq paljiniad jou sem Yyaiym)
Juudaud siys 1oy Japjoy 1ybuAdod 8yl "TZ0z ‘ST Jequisidas palsod uoISIaA SIU) :0ZE09Y ¥T'60°T202/TOTT 0T/B10°10p//:sdny :10p Juudaid AxHolq


https://doi.org/10.1101/2021.09.14.460320
http://creativecommons.org/licenses/by-nc-nd/4.0/

MMP10 Matrix metallopeptidase 10 1.23 | 2E-02 1.6 7.07 (<0.001) 26 (1.2), n.s. 1 (0), <0.001 38.2
FAMg3A | FamilV wiin sequence simiarty 83 | 55 | s5e.03 | 16,0 1.23 (<0.001) | 503(23.1),<0.001 0(0) 745
LPO Lactoperoxidase 1.21 1E-02 7.0 0.5 (<0.001) 168 (7.7),2E-24 1(0), n.s. 115
CRISP2 Cysteine rich secretory protein 2 1.19 | 3E-02 15 0.06 (0.01) 31 (1.4), 3E-05 0 (0) 8.2
NMU Neuromedin U 1.19 | 2E-02 0.8 3.6 (<0.001) 18 (0.8), n.s. 1 (0), <0.001 41.6
MAGEB4 | MAGE family member B4 1.18 | 9E-03 0.8 8.6 (0.004) 10 (0.5), n.s. 2 (0.1),<0.001 | 55.9
MAG Myelin associated glycoprotein 1.17 | 4E-02 2.3 5.3 (<0.001) 42 (1.9), 0.001 0 (0) 13.2
DAPL1 Death associated protein like 1 1.17 5E-03 0.7 0.09 (n.s.) 10 (0.5), n.s. 0 (0) 14.0
PRSS51 Serine protease 51 1.16 2E-02 1.6 N.A. 0 (0) 0 (0) N.A.
PBK PDZ binding kinase 1.14 | 4E-03 3.0 15.7 (<0.001) 20 (0.9), n.s. 15(0.7),<0.001 | 28.3
KRT77 Keratin 77 1.13 | 4E-02 0.8 0.04 (n.s.) 12 (0.6), n.s. 0 (0) 0.0
CALML3 | Calmodulin like 3 1.12 | 3E-02 4.0 0.15 (n.s.) 108 (5),<0.001 0 (0) 37.7
ACBD7 fgﬂ;ﬁrﬂﬁ‘gb'?”d'”g domain 1.12 | 3E-03 2.3 1.13 (0.002) | 78(3.6),<0.001 0 (0) 0.0
UNC5D Unc-5 netrin receptor D 1.11 2E-02 8.0 0.001 (n.s.) 152 (7), n.s. 6 (0.3),<0.001 | 44.8
ESCO2 E;tfe‘z'l'gg‘rgegégt;ft'zﬁgf‘;?;g’:;t'd 111 | 2E-03 3.0 8.02(<0.001) | 20(0.9),n.s. | 14(0.6),<0.001 | 25.1
BARX1 BARX homeobox 1 1.09 | 4E-02 5.0 1.54 (9E-08) 9 (0.4), n.s. 1 (0), <0.001 22.3
CTXND1 Cortexin domain containing 1 1.09 | 3E-02 0.0 N.A. 0 (0) 0 (0) N.A.
SYT13 Synaptotagmin 13 1.08 | 4E-03 1.3 4.6 (<0.001) 36 (1.7), <0.001 1 (0), n.s. 38.8
PRAME rireﬁ‘;erzgrr‘gf”y expressed antigenin | 4 56 | 5E oo 1.2 1.8 (<0.001) 21 (1), n.s. 1(0), <0.001 | 82.6
SLC39A12 | Solute carrier family 39 member 12 1.05 | 4E-03 2.4 0.18 (n.s.) 72 (3.3), <0.001 1 (0), n.s. 12.0
IGHV2-26 | Immunoglobulin heavy variable2-26 | 1.04 | 4E-02 0.1 N.A. 0 (0) 0 (0) N.A.
APLN Apelin 1.04 | 7E-04 0.6 0.93 (n.s.) 16 (0.7), n.s. 2(0.1),<0.001 | 13.8
IGHV3-30 | Immunoglobulin heavy variable3-30 | 1.04 | 2E-02 0.1 N.A. 0 (0) 0 (0) 48.0
LPARS3 Lysophosphatidic acid receptor 3 1.04 | 8E-03 0.9 0.28 (n.s.) 13 (0.6), n.s. 0 (0) 12.9
ECEL1 Endothelin converting enzyme likel | 1.03 | 2E-02 0.8 0.9 (n.s.) 1(0), n.s. 1 (0), <0.001 N.A.
DCX Doublecortin 1.03 | 6E-03 0.5 0.1 (0.02) 13 (0.6), n.s. 2(0.1),<0.001 | 8.7
NEK2 NIMA related kinase 2 1.02 | 7E-03 12.0 25.78 (<0.001) | 473 (21.8),<0.001 0(0 61.4
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Cell wall biogenesis 43 C-terminal

CWH43 1.02 | 3E-02 1.0 0.5 (<0.001) 6 (0.3), n.s. 0 (0) 12.9
homolog
PRSS21 Serine protease 21 1.01 3E-02 5.0 0.2 (n.s.) 154 (7.1),5E-102 0 (0) 46.3
FOXI3 Forkhead box I3 1.01 | 2E-02 0.3 0.01 (<0.001) 10 (0.5), n.s. 0 (0) 8.5
FCER2 Fc fragment of IgE receptor I -0.98 | 1E-03 1.3 0.07 (0.04) 11 (0.5), n.s. 2(0.1),<0.001 | 17.1
DACH2 gifgfg“”d family transcription -1.01 | 1E-02 0.8 0.3 (n.s.) 17 (0.8), n.s. | 9(0.4),<0.001 | 25.3
LILRB5 | -eukocyte immunoglobulin like .02 | 8E-04 2.1 0.15(<0.001) | 39 (1.8), n.s. 0(0) 0.0
receptor B5
sk | SH3domainbinding kinase family |, 53 | 7p.o3 2.3 N.A. 48 (2.2), n.s. 0 (0) 0.0
member 3
TRDN Triadin -1.03 | 3E-02 2.3 0.02 (n.s.) 41 (1.9), n.s. 1(0),<0.001 | 1.0
NXF3 nuclear RNA export factor 3 -1.04 | 3E-03 0.6 0.9 (n.s.) 8 (0.4), n.s. 4(0.2),<0.001 | 32.2
LILRAG | ‘ukocyte immunoglobulin like -1.05 | 2E-03 2.1 1(n.s.) 39 (1.8), n.s. 1 (0), n.s. 0
receptor A6
SYNDIGIL | pYnaPse differentiation inducing 1| ; 57 | gg_o3 05 N.A. 8 (0.4), n.s. 1(0)<0.001 | ©
ARPP21 CAMP regulated phosphoprotein 21 | -1.13 | 2E-02 11 0.42 (n.s.) 11 (0.5), n.s. 1(0),<0.001 | 24.04
SLC22A12 | solute carrier family 22 member 12 | -1.13 | 2E-02 1.1 0.9 (<0.001) 20 (0.9), n.s. 0 (0) 8.9
CCL24 C-C motif chemokine ligand 24 -1.17 | 1E-02 0.7 0.98 (<0.001) 21 (1), n.s. 0 (0) 16.2
TPSD1 tryptase delta 1 -1.17 | 2E-02 5.0 0.55 (0.04) 170 (7.8),<0.001 0 (0) 0
PROK?2 prokineticin 2 -1.19 | 2E-02 0.7 0.24 (0.01) 5(0.2), n.s. 1 (0), 0.001 18.8
HBG2 hemoglobin subunit gamma 2 -1.59 | 4E-02 1.0 0.2 (n.s.) 19 (0.9), n.s. 0(0) 11.3
FGF8 fibroblast growth factor 8 -1.68 | 3E-04 0.3 0.88 (0.005) 2 (0.1), n.s. 1 (0),<0.001 14.3
SULT1C2 | sulfotransferase familylC member2 | -1.74 | 2E-03 0.5 1.6 (0.02) 9(0.4), n.s. 0 (0) 21.8
MS4AGE | MEMbrane spanning 4-domains 2.24 | 4E-02 0.9 N.A. 23 (1.1),n.s. 0 (0) 0

AGE

N.A. : not available; a: log fold change; b: breast cancer data from cBioportal; ¢: from UALCAN portal; d: data retrieved from the METABRIC,

number of samples with either CNV= 2 or -2 (%), p value.
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Table 2: The 20 most differentially methylated regions between the high- and average-risk

breast tissues

Genomic Locus Overlapping Gene Name Description AZ"  FDR
Gene Feature
Chr8:120,669,501 Intron SNTB1 syntrophin beta 1 2.4 TE-53
Chr18:6,803,751 Intron ARHGAP2g RNo GTPase activating 20 3E-35
protein 28
Chr6:12,944, 751 Intron PHACTR1 Phosphatase and actin 19 1E-31
regulator 1
. KRTAP21- keratin associated protein
Chr21:30,743,501 promoter 4P 21-4 2C pseudogene 19 6E-31
Chr2:115,663,751 Intron DPP10 dipeptidyl peptidase like 10 1.8 2E-30
Chr4:87,111,001 Intron AFF1 AF4/FMR2 family member1 1.8 2E-29
Chr3:33,638,251 Intron CLAspz  oytoplasmic linker 1.8 2E-29
associated protein 2
. long intergenic non-protein i
Chr14:106,498,501 Intron LINC01881 coding RNA1881 1.8 2E-29
Chr6:129,416,001 Intron LAMA2 laminin subunit alpha 2 1.8 4E-29
Chr14:31,750,251 Intron NUBPL lri‘ll(‘edeo“de binding protein 4 g 5¢_7g
. . adhesion G protein-coupled
Chr8:37,842,001 Coding ADGRA2 receptor A2 -1.2  1E-12
. . chromosome 1 open
Chrl:44,724,501 Coding Clorf228 reading frame 228 -1.2  9E-13
ChrX:46,575,001 Coding cHsT7  Carbohydrate 1.2 5E-13
sulfotransferase 7
Chr14:104,729,501 Coding ADSSL1 ﬁfg”ly'osucc'”ate synthase 4 5 4E.15
Chr2:202,774,251 Intron/promoter ICALL islet cell autoantigen 1 like -1.3  1E-15
Chri:155,190,001 Coding mMuci  mucin 1, 2C cell surface 14 2E-17
associated
] . heat shock protein family A i i
Chr20:3,751,751 Coding HSPA12B (Hsp70) member 12B 1.4 8E-18
Chr11:58,141,001 Intron OrgQ1  Olfactoryreceptorfamily 9, g jr 55
subfamily Q member 1
Chr1:45,803,751 Coding MAST2  Microtubule associated 1.6 3E-23
serine/threonine kinase 2
protein kinase CAMP-
Chr7:636,001 Intron PRKAR1B dependent type | regulatory -1.7 1E-24

subunit beta

#: High- versus average-risk value
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