

1 The N terminus of adhesion G protein-coupled receptor GPR126/ADGRG6

2 as allosteric force integrator

3

4

5

5 Jakob Mitgau^{*1}, Julius Franke^{*1}, Camilla Schinner², Gabriele Stephan³, Sandra Berndt¹,
6 Dimitris G. Placantonakis³, Hermann Kalwa⁴, Volker Spindler², Caroline Wilde¹ and Ines
7 Liebscher^{#1}

8

⁹ ¹Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of
¹⁰ Leipzig, Leipzig, Germany

11 ²Department of Biomedicine, University of Basel, Basel, Switzerland

¹² ³Department of Neurosurgery, Kimmel Center for Stem Cell Biology, Laura and Isaac
¹³ Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA

¹⁴ Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig,
¹⁵ Germany

16

17 *contributed equally

[#]Corresponding author: Ines Liebscher

19 E-mail: ines.liebscher@medizin.uni-leipzig.de

20

21 Running title: The N terminus of GPR126/ADGRG6 as allosteric signal integrator

22

23

24 **Abstract**

25 The adhesion G protein-coupled receptor (aGPCR) GPR126/ADGRG6 plays an important
26 role in several physiological functions, such as myelination or peripheral nerve repair. This
27 renders the receptor an attractive pharmacological target. GPR126 is a mechano-sensor that
28 translates binding of extracellular matrix (ECM) molecules to its N terminus into a
29 metabotropic intracellular signal. To date, the structural requirements and the character of the
30 forces needed for this ECM-mediated receptor activation are largely unknown.

31 In this study we provide this information by combining classic second messenger detection
32 with single cell atomic force microscopy. We establish a monoclonal antibody targeting the N
33 terminus to stimulate GPR126 and compare it to the activation through its known ECM
34 ligands collagen IV and laminin 211. As each ligand uses a distinct mode of action, the N
35 terminus can be viewed as an allosteric module that can fine-tune receptor activation in a
36 context-specific manner.

37

38 **Introduction**

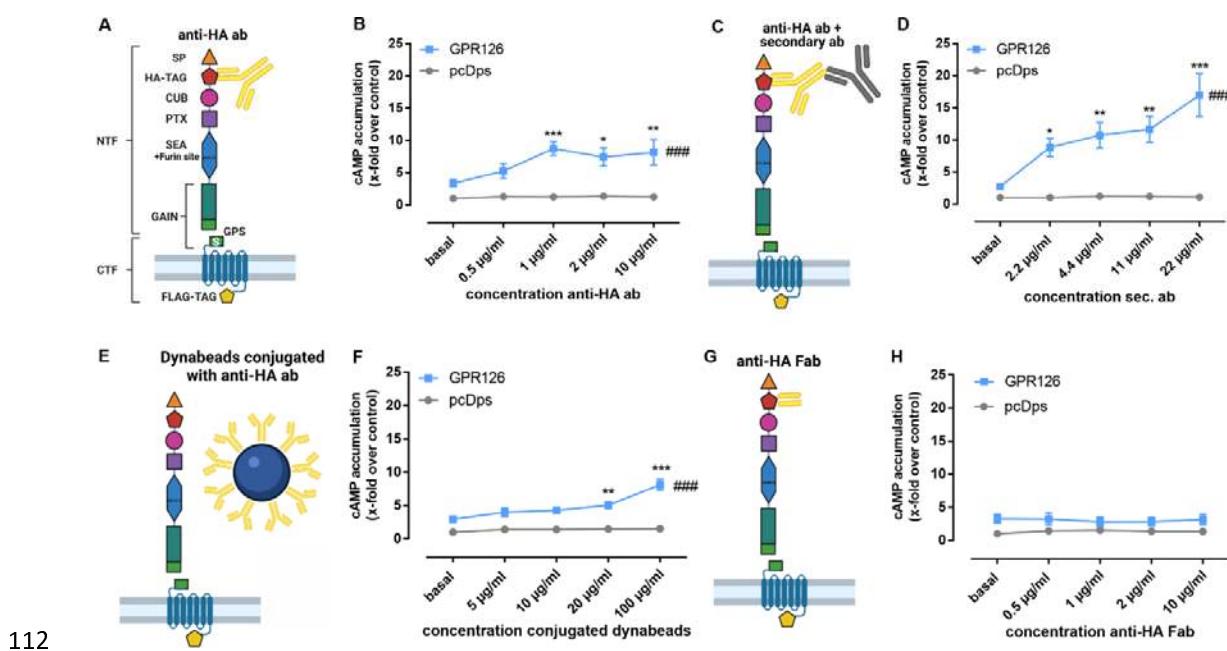
39 The adhesion G protein-coupled receptor (aGPCR) GPR126/ADGRG6 plays an
40 essential role in several important physiologic and pathogenic processes, including
41 myelination (Monk et al., 2009; Monk et al., 2011; Mogha et al., 2013; Ravenscroft et al.,
42 2015), peripheral nerve injury and repair (Mogha et al., 2016), the development of the
43 peripheral nervous system (PNS) (Ravenscroft et al., 2015), and the differentiation of
44 osteoblasts (Sun et al., 2020) as well as adipocytes (Suchý et al., 2020). Further, an
45 association of *GPR126* variants with the development of scoliosis was found in humans and
46 mice (Kou et al., 2013; Karner et al., 2015; Xu et al., 2015; Qin et al., 2017; Kou et al., 2018;
47 Liu et al., 2018; Man et al., 2019; Takeda et al., 2019; Xu et al., 2019c; Xu et al., 2019b; Xu
48 et al., 2019a). Thus, pharmacological targeting of this receptor is of high interest. The
49 physiological implications are mainly attributed to the modulation of cAMP levels by the
50 receptor, which is achieved through the receptor's coupling to G_s protein (Mogha et al., 2013).

51 Like other aGPCRs GPR126 harbors an endogenous tethered agonistic sequence
52 located distal of the GPS cleavage motif, termed the *Stachel* sequence (Liebscher et al., 2014).
53 Synthetic peptides derived from this integral agonist can be used as agonists on the receptor
54 (Liebscher et al., 2014; Demberg et al., 2017). More recently, small molecule agonists have
55 been identified (Bradley et al., 2019; Diamantopoulou et al., 2019), but similar to the
56 agonistic peptides, they lack specificity for the receptor (Demberg et al., 2017; Bradley et al.,
57 2019). Additional activation can be achieved through the receptor's N-terminal ligands
58 collagen IV (Paavola et al., 2014), prion protein PrP^C (Küffer et al., 2016) and laminin 211
59 (Petersen et al., 2015). Yet, none of these agonists are specific for GPR126 and ECM proteins
60 lack characteristics of a classic receptor agonist as they are long-lived, stable molecules with
61 essentially no diffusivity (Bassilana et al., 2019; Baxendale et al., 2021). Thus, it is unclear
62 how the interaction between aGPCR and the ECM can be interpreted as a specific signal to
63 modulate receptor activity levels. Mechanical forces are suggested to facilitate this interaction
64 (Liebscher et al., 2014; Stoveken et al., 2015); (Scholz et al., 2017; Dannhäuser et al., 2020),
65 however, the force input as well as the structural components needed for activation have not
66 been defined.

67 Targeting the large N terminus of an aGPCR with an antibody provides a specific way
68 for receptor activation, which has been successfully shown for two other representatives of
69 this receptor class (Yona et al., 2008; Bhudia et al., 2020; Chatterjee et al., 2021). The
70 mechanism behind this N-terminally mediated signal is currently as unclear as the signals
71 mediated by the ECM ligands. Understanding these fundamental activation processes will not

72 only increase our understanding of the physiological circumstances that govern GPR126-
73 mediated functions but it will set the stage for allosteric pharmaceutical targeting of this and
74 potentially other aGPCRs.

75 In the absence of a specific antibody recognizing the N terminus of GPR126, we used
76 an antibody recognizing an N-terminal HA epitope in GPR126, which was sufficient to
77 activate the receptor. Our study characterizes the structure-function prerequisites for this
78 antibody-mediated activation and describes in real time the type and strength of mechanical
79 input needed to activate GPR126 through either antibody or endogenous ligands collagen IV
80 and laminin 211. We show that the activation through the antibody is mediated through cross-
81 linking of the receptor, while collagen IV and laminin 211 need specific pushing and pulling
82 forces, respectively. As the occurrence of ECM molecules is timely and locally regulated in
83 tissues a temporo-spatial and force-specific activation of GPR126 can be achieved through the
84 N terminus as allosteric force integrator.


85

86 **Results**

87 **An antibody targeting the N-terminal HA epitope can activate GPR126**

88 Since GPR126 can be activated through interaction with its extracellular ligands and
89 mechanical stimuli, it can be assumed that the N terminus plays a decisive role in mediating
90 these signals. However, our understanding of these dynamic processes is limited. In order to
91 establish a specific N-terminal interacting partner of GPR126, we established an antibody-
92 based approach. Due to the lack of antibodies targeting the endogenous GPR126 sequence,
93 we used the hemagglutinin (HA) epitope for our experimental setup and inserted it right after
94 the predicted signal peptide of the receptor (Fig. 1A). Surprisingly, increasing concentrations
95 of the commercially available anti-HA antibody significantly elevated cAMP levels in COS-7
96 cells transfected with the HA-tagged wild type (WT) GPR126 (Fig. 1B), but not in the empty
97 vector transfected control cells. In a control experiment with an anti-FLAG antibody targeting
98 the C-terminal epitope of GPR126 no change in cAMP levels was observed (Supp. Fig. S1A).

99 Adding increasing concentrations of a secondary antibody to a fixed concentration of 1
100 µg/ml of the anti-HA antibody yielded an even stronger activation of the receptor (Fig. 1C/D).
101 In order to elucidate whether the observed activation is a consequence of receptor cross-
102 linking through the antibodies or due to the additional weight being attached to the receptor's
103 N terminus, we added anti-HA antibody-conjugated paramagnetic Dynabeads®, which are
104 decisively larger in size than antibodies (Fig. 1E). We observed a significant increase in
105 cAMP levels (Fig. 1F), which was comparable with anti-HA antibody-mediated activation
106 alone (Fig. 1B) but lower than the combination of primary and secondary antibody (Fig. 1D),
107 indicating that simply adding weight is not the sole key to GPR126 activation. In line with
108 this observation, exposure to a 700 Gs magnetic field placed below the cell layer cannot
109 further enhance conjugated Dynabead-mediated activation (Suppl. Fig. S1B). Crosslinking,
110 however, seems to be a key element to anti-HA-antibody-mediated activation as incubation
111 with the respective monomeric Fab fragment cannot induce cAMP accumulation (Fig. 1G/H).

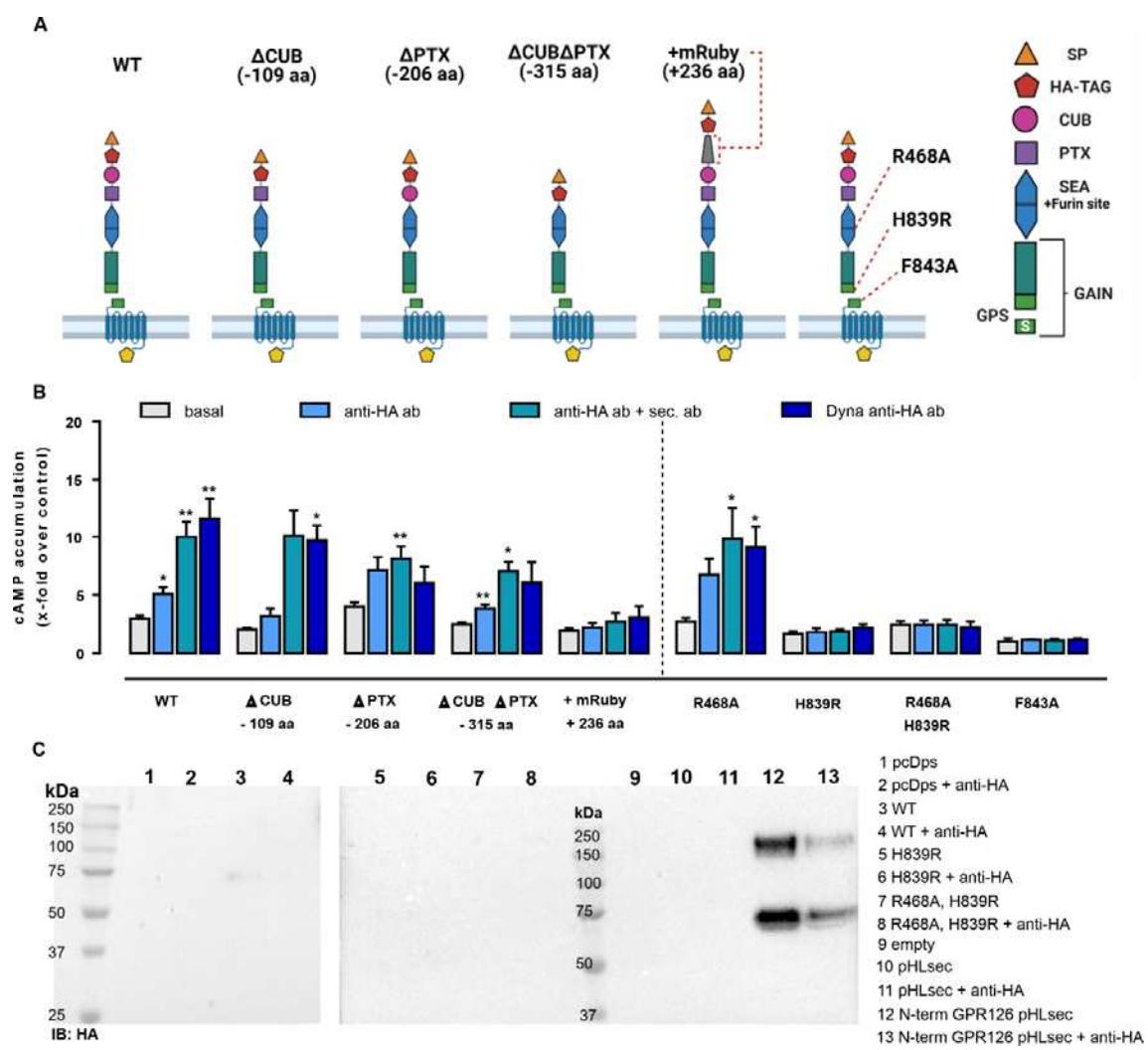
112

113 **Figure 1. Antibodies against the N terminus activate GPR126.** (A) Schematic setup for the anti-HA antibody
114 (anti-HA ab) stimulation of full-length WT GPR126 in cAMP accumulation assays. The N terminus contains the
115 signal peptide (SP, orange triangle), a complement C1r/C1s-Uegf-BMP1 domain (CUB, magenta oval), a
116 pentraxin domain (PTX, purple square) and the Sperm protein, Enterokinase and Agrin (SEA) domain (blue
117 hexagon) including the furin site. The highly conserved GAIN domain (green rectangle) contains the GPS, which
118 is followed by the *Stachel* sequence (S). In our receptor constructs, we inserted an N-terminal hemagglutinin tag
119 (HA-TAG, red pentagon) immediately distal to the signal peptide and a C-terminal Flag tag (FLAG-TAG,
120 yellow pentagon) right before the Stop codon. (B) Different concentrations of anti-HA antibody (0.5 µg/ml \leq
121 3.3 µM; 1 µg/ml \leq 6.67 µM; 2 µg/ml \leq 13.34 µM; 10 µg/ml \leq 66.7 µM) were used to treat vector control
122 (pcDps) and GPR126-transfected COS-7 cells (effect of construct p = 0.0410, effect of concentration p < 0.0001,
123 interaction construct \times concentration p = 0.0506; two-way ANOVA). Basal cAMP level in pcDps transfected
124 cells: 8.9 ± 0.8 nM/well. (C, D) Amplification of cAMP signal of GPR126 with 1 µg/ml of anti-HA ab and
125 subsequent incubation with different concentrations of secondary ab (2.2 µg/ml \leq 14.7 µM; 4.4 µg/ml \leq 29.3
126 µM; 11 µg/ml \leq 73.3 µM; 22 µg/ml \leq 146.7 µM) on vector control and GPR126-transfected COS-7 cells (effect
127 of construct p = 0.0104, effect of concentration p < 0.0001, interaction construct \times concentration p = 0.0072;
128 two-way ANOVA). Basal cAMP level in pcDps transfected cells: 4.2 ± 1.0 nM/well. (E, F) Paramagnetic
129 Dynabeads® were conjugated with anti-HA ab and used in different concentrations for stimulation of vector
130 control and GPR126-transfected COS-7 cells (effect of construct p = 0.0001, effect of concentration p < 0.0001,
131 interaction construct \times concentration p < 0.0001; two-way ANOVA). Empty vector (pcDps) served as negative
132 control. Basal cAMP level in pcDps transfected cells: 5.8 ± 0.4 nM/well. (G, H) cAMP accumulation upon
133 incubation with indicated concentrations of Fab fragment (0.5 µg/ml \leq 10 µM; 1 µg/ml \leq 20 µM; 2 µg/ml \leq 40
134 µM; 10 µg/ml \leq 200 µM) on vector control and GPR126-transfected COS-7 cells (effect of construct p <
135 0.0001, effect of concentration p = 0.9920, interaction construct \times concentration p = 0.9032; two-way ANOVA).
136 Basal cAMP level in pcDps transfected cells: 7.7 ± 1.2 nM/well. All data are given as means \pm SEM of three –
137 five independent experiments each performed in triplicates. Statistics were performed by applying a two-way
138 ANOVA followed by Dunnett post hoc analysis; *p < 0.05; **p < 0.01; ***p < 0.001. All significances given as

139 stars (*) above individual points in the graphs show the result of the post hoc analysis, while # indicates
140 significant concentration-dependent effects (###p < 0.001). Schematic images were created with
141 BioRender.com.

142

143 **Anti-HA antibody-mediated activation depends on the *Stachel* sequence and GPS
144 cleavage**

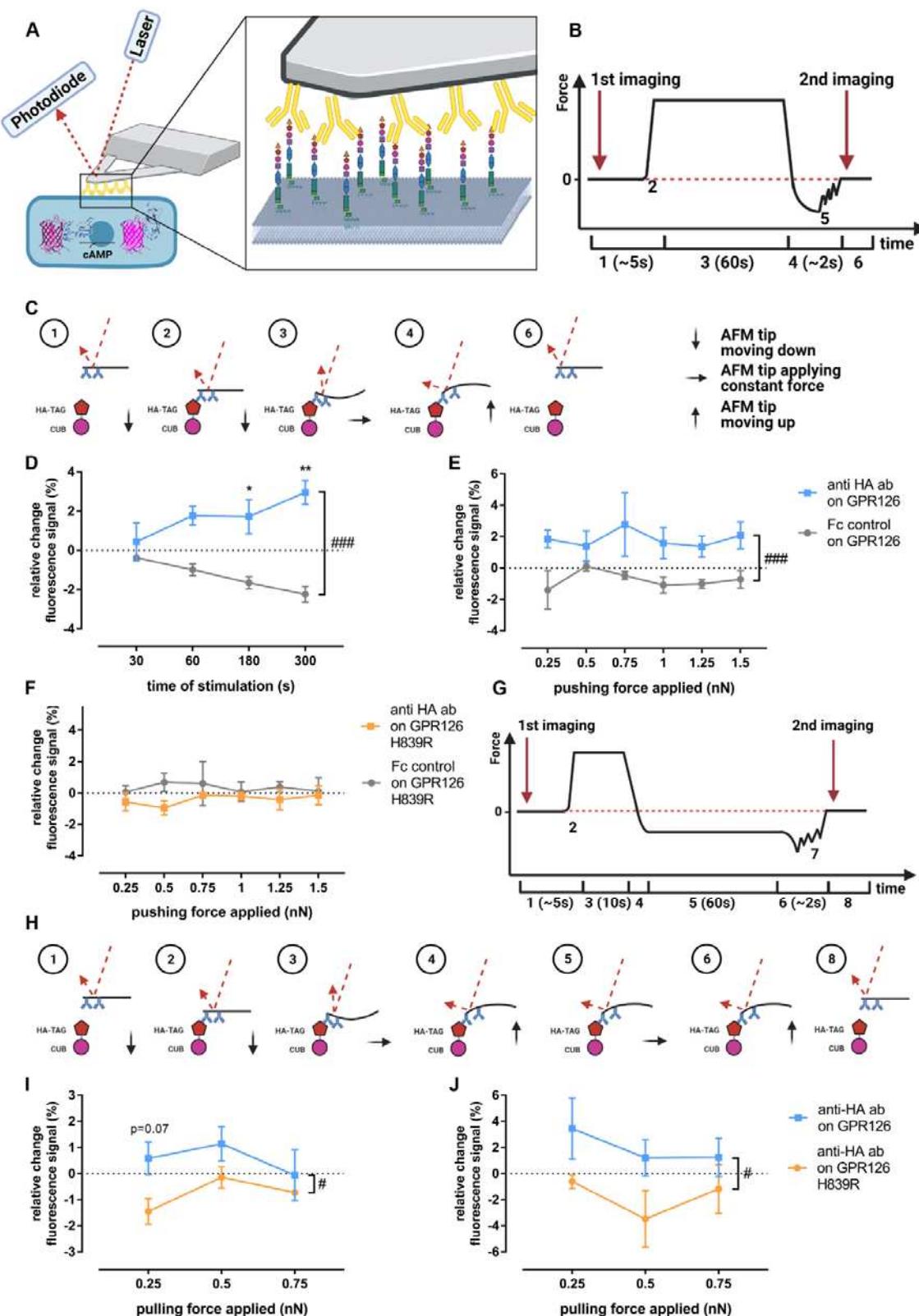

145 The N terminus of GPR126 includes five structurally different domains (Leon et al.,
146 2020), which can be subject to tissue-specific splicing (Knierim et al., 2019) and serve to
147 interact with the known ligands collagen IV (Paavola et al., 2014), laminin 211 (Petersen et
148 al., 2015) and prion protein (Küffer et al., 2016). To investigate their role in mechano-sensing,
149 we used different N-terminal deletion mutants of GPR126, whose basal activity and
150 expression levels were previously reported (Petersen et al., 2015). The constructs generated
151 were: ΔCUB (lacking 109 aa compared to the WT), ΔPTX (lacking 206 aa) and ΔCUBΔPTX
152 (lacking 315 aa). Additionally, we generated an N-terminally prolonged variant of GPR126
153 containing an mRuby-tag (236 aa prolongation compared to the WT) (Fig. 2A). Reliable cell
154 surface expression levels of the mutants were demonstrated with ELISA (Suppl. Fig. S2A).
155 The ability of receptor activation for each mutant was measured in cAMP accumulation
156 assays using the synthetic GPR126 *Stachel* peptide as stimulus, thereby ensuring undisturbed
157 signaling (Suppl. Fig. S2B). We stimulated these mutants with the same antibody-based setup
158 as described in Fig. 1 and found that deletion of the CUB and PTX domains yields results
159 highly similar to WT GPR126 (Fig. 2B). The N-terminally prolonged mRuby construct,
160 despite showing WT-like expression and peptide activation (Suppl. Fig. S2A/B), could not be
161 activated through antibodies (Fig. 2B).

162 The complex architecture of the N terminus of GPR126 includes two cleavage sites;
163 the GPCR proteolysis site (GPS) within the GAIN domain (Arac et al., 2012) at which the
164 receptor is cleaved into an N-terminal fragment (NTF) and a C-terminal fragment (CTF) at
165 the conserved HLT motif (Lin et al., 2004; Moriguchi et al., 2004), and a furin site, located in
166 the SEA domain (Fig. 2A). To analyze whether cleavage at either position may be required
167 for antibody-mediated activation, we generated the furin-cleavage-deficient receptor mutant
168 R468A, the GPS-cleavage-deficient mutant H839R, and the double-deficient mutant R468A
169 H839R to test in antibody-mediated activation. Proper protein expression, activation capacity
170 through *Stachel* peptide as well as cleavage-deficiency of the mutants was confirmed (Suppl.
171 Fig. S2A-C). While mutation of the furin site (R468A) has no effect on the antibody-mediated

172 stimulation approach, deletion of the GPS cleavage (H839R) abolishes signaling capacity
173 similar to the previously described tethered agonist mutant F843A (Liebscher et al., 2014).

174 This observation could support the notion that antibody-mediated activation of this
175 aGPCR requires the dissociation of the NTF from the CTF, as has been suggested for the
176 activation of GPR133 (Frenster et al., 2021). To test this assumption, we harvested the
177 supernatants from empty vector and GPR126 transfected cells with our without anti-HA
178 antibody stimulation and subjected them to Western blot analysis (Fig. 2C). As a positive
179 control we used the N terminus of GPR126 encoded on the secretion vector pHLsec. No
180 soluble NTF was found in the supernatants except for the positive control (Fig. 2C). However,
181 a faint band was visible for the WT GPR126 of approximate 75 kDa, suggesting residual
182 removal of the N terminus due to furin cleavage as seen for the cell lysate of the WT construct
183 (Suppl. Fig. S2C). We observed no increase in band intensities after prior stimulation with the
184 mouse anti-HA antibody. Thus, even though the autoproteolytic procession of GPR126 at the
185 GPS site is a prerequisite for antibody-mediated activation it does not lead to NTF removal. It
186 is conceivable that proteolytic procession at the GPS results in a favorable orientation of the
187 *Stachel* sequence, which is indispensable for GPR126 activity.

188


206 **Anti HA antibody activation of GPR126 does not require additional pushing and pulling
207 forces**

208 To evaluate whether cross-linking alone is sufficient or if additional mechanical forces
209 are needed to activate GPR126 through the anti-HA antibody, we employed an atomic force
210 microscopy (AFM) approach. We theorized that the antibody could exert either pulling
211 (through cross-linking) or pushing forces (through residing on the cell layer) on the receptor,
212 and that both can be quantified with AFM. To do so, tipless AFM cantilevers were coated
213 with anti-HA antibody using PEG linkers according to a well-established protocol (Ebner et
214 al., 2007). In contrast to cantilevers with a tip, this approach allows for multiple antibodies to
215 bind and thus interact with the cell surface. Therefore, the mechanical force induced by the
216 cantilever and mediated by the antibodies is applied to multiple receptors expressed on the
217 cell surface simultaneously. The coated cantilevers were then used to apply pressure
218 (pushing) or a force-clamp (pulling) to individual cells that were successfully co-transfected
219 with the given receptor construct and the Pink Flamindo cAMP sensor (Harada et al., 2017)
220 (Fig. 3A). This setup allows for the simultaneous application of force and the detection of
221 changes in intracellular cAMP levels. Single cells within a confluent monolayer were chosen
222 for the measurements based on the detection of the GFP signal from the pUltra vector, which
223 allows for bicistronic expression of EGFP and GPR126 (Lou et al., 2012) and the fluorescent
224 signal from the Pink Flamindo cAMP sensor (Harada et al., 2017) (Suppl. Fig. S3A). Since
225 COS-7 cells are not suited for AFM experiments due to their weak adherence to glass
226 coverslips, we used GripTite™ 293 MSR (HEK-GT) cells instead. Receptor cell surface
227 expression and activation in HEK-GT cells was confirmed prior to AFM experiments by
228 ELISA and cAMP accumulation assays, respectively (Suppl. Fig. S3B/C). Relative possible
229 Pink Flamindo fluorescence changes upon stimulation of GPR126 with either forskolin, anti-
230 HA antibody or *Stachel* peptide pGPR126 are displayed in Suppl. Fig. S3D.

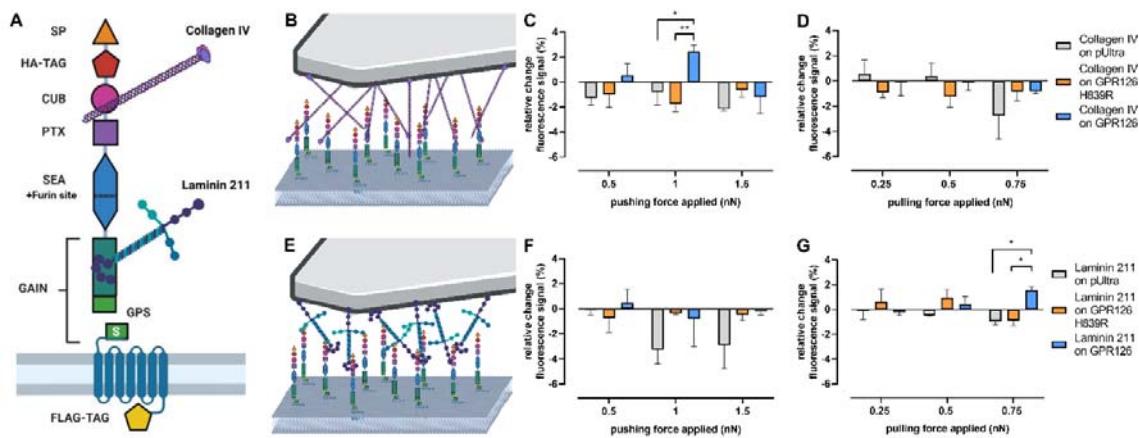
231 The course of the cantilever deflection and therefore the force applied to the cell for
232 the pushing setup is depicted in Figures 3B and 3C. The cAMP-evoked changes in the Pink
233 Flamindo fluorescence were monitored by imaging right before the AFM cantilever applied
234 pressure or a pulling force and immediately after its retraction (Fig. 3B). A cantilever coated
235 with human Fc-protein instead of anti-HA antibodies was used as negative control.
236 When a pushing force of 1 nN was applied over varying times, a significant increase in the
237 Pink Flamindo fluorescence signal could be observed in GPR126-transfected cells compared
238 to the negative control. This effect got stronger and more significant over time suggesting
239 continuous stimulation of the receptor (Fig. 3D). The control condition responded with a

240 reduction of cAMP sensor intensity over time, presumably due to bleaching effects induced
241 by the AFM detection laser. Having established that a significant increase in intracellular
242 cAMP can be achieved by pressure application via anti-HA antibody coated tips, we applied
243 varying forces over a constant time in order to quantify the strength of the pushing force
244 needed to activate GPR126 (Fig. 3E). Applying varying pushing forces (0.25nN - 1.5nN) with
245 anti-HA antibody coated tips over 60s lead to a significant increase in cAMP levels
246 consistently over the whole range of applied forces. This indicates that either the binding,
247 respective cross-linking, of the antibody to the receptor or the pushing forces that occur
248 during the encounter between coated cantilever and receptor are already sufficient to activate
249 GPR126. When we performed the same experiment with the cleavage-deficient mutant
250 H839R (Fig. 3F), which showed no activation in cAMP accumulation assays using antibodies
251 and dynabeads (Fig. 2B), we again observed no change in the cAMP-mediated Pink Flamindo
252 signal regardless of the pressure applied.

253 To investigate how pulling forces affect GPR126 activation, we used the force-clamp
254 setup as shown in Figs. 3G and H. An Fc-control antibody-coated cantilever could not be used
255 as a negative control in this case, as it does not bind to the receptor or the HA-epitope and
256 therefore no pulling forces would be applied. Instead we compared the WT receptor to the
257 insensitive H839R mutant, which was still able to bind the anti-HA antibody. We applied
258 varying pulling forces (0.25 nN - 0.75 nN) over 60s (Fig. 3I) and 300s, as fold changes were
259 very low after the shorter pulling time period (Fig. 3J). There was a significant difference in
260 the responses observed in WT and cleavage deficient receptor, however, highest fluorescence
261 signals were detected for the lowest pulling force (0.25 nN), while an increase in this stimulus
262 tended to reduced cAMP production. The magnitude of the observed Pink Flamindo signal
263 corresponds to those seen in the pushing approach. Thus, the detected increase under low
264 pulling conditions might be due to the same reasons as the observed pushing signal (cross-
265 linking or initial interaction push) while applying stronger pulling forces might actually
266 inactivate the receptor.

267

268 **Figure 3. Evaluating potential mechano-activation of GPR126 via anti-HA antibodies.** (A) Schematic AFM
269 experiment setup with a coated tipless cantilever pressing on a cell co-transfected with GPR126 and the Pink


270 Flamindo cAMP sensor. **(B, C)** Course of the AFM cantilever deflection during the pushing experiments and the
271 forces applied to the receptor and corresponding laser deflection: (1) cantilever approaches cell; (2) point of
272 contact between cantilever and cell; (3) constant pressure being applied to the cell; (4) cantilever is retracted
273 from the cell; (5) rupture of cantilever bindings; (6) all bindings are ruptured and the cantilever is back in its
274 starting position. **(D)** Changes in Pink Flamindo fluorescence intensity after applying a pushing force of 1 nN on
275 the WT receptor at different time points (effect of time $p = 0.775$, effect of coating $p = 0.0002$, interaction time \times
276 coating $p = 0.065$; two-way ANOVA). **(E, F)** Changes in Pink Flamindo fluorescence intensity after applying
277 indicated pushing forces for 60s on the WT receptor **(E)** (effect of force applied $p = 0.878$, effect of coating $p <$
278 0.001, interaction force \times coating $p = 0.882$; two-way ANOVA) and the H839R mutant **(F)** (effect of force
279 applied $p = 0.981$, effect of coating $p = 0.0867$, interaction force \times coating $p = 0.924$; two-way ANOVA). **(G, H)**
280 Course of the AFM cantilever deflection during the force clamp experiments and the forces applied to the
281 receptor and corresponding laser deflection: (1) cantilever approaches cell; (2) point of contact between
282 cantilever and cell; (3) initial pressure being applied to allow binding between cantilever and cell; (4) cantilever
283 is retracted from the cell until the desired pulling force is applied; (5) constant pulling force is applied; (6)
284 cantilever is retracted from the cell completely; (7) rupture of cantilever bindings; (8) all bindings are ruptured
285 and the cantilever is back in its starting position. Changes in Pink Flamindo fluorescence intensity after applying
286 indicated pulling forces over **(I)** 60s (effect of force applied $p = 0.297$, effect of receptor variant $p = 0.0135$,
287 interaction force \times receptor variant $p = 0.497$; two-way ANOVA) and **(J)** 300s (effect of force applied $p = 0.405$,
288 effect of receptor variant $p = 0.0386$, interaction force \times receptor variant $p = 0.804$; two-way ANOVA). Data are
289 given as means \pm SEM of three-five different experiments each measuring three individual cells for each force
290 and time. Statistics were performed as two-way ANOVA followed by Tukey post hoc analysis; $*p < 0.05$;
291 $**p < 0.01$. All significances given as stars (*) above individual points in the graphs show the result of the post
292 hoc analysis, while # indicates significant coating-dependent (D and E) or receptor-variant-dependent (I and J)
293 effects ($\#p < 0.05$; $\#\#\#p < 0.001$). Schematic images (A-C and G-H) were created with BioRender.com. The Pink
294 Flamindo depiction in A was taken from (Harada et al., 2017).

295

296 **Endogenous ligands of GPR126 convey a highly specific type of mechano-activation**

297 We established a reliable way to apply defined mechanical pulling and pushing forces
298 on GPR126 and measured the following relative changes in intracellular cAMP levels. We set
299 to investigate the forces needed to stimulate GPR126 using its natural ligands. Several ligands
300 have been shown to modulate GPR126 activity (Fig. 4A): collagen IV has been described as
301 directly activating ligand (Paavola et al., 2014), which could be interpreted as a pushing force
302 on the receptor as it ‘sits’ on it. Laminin 211 on the other hand was reported to require
303 mechanical stimuli such as shaking or vibration to induce cAMP signaling (Petersen et al.,
304 2015), which could be a proxy for pulling forces. To test these assumptions, tipless AFM
305 cantilevers were coated with collagen IV or laminin 211.

306 When pushing at WT GPR126 transfected cells with a collagen IV-coated cantilever
307 (Fig. 4B), it took specifically 1 nN to induce a significant increase in cAMP levels (Fig. 4C).
308 Lower or higher pressure did not activate the receptor. Again, GPR126 H839R could not be
309 activated through this mechanical stimulus. Applying pulling forces with collagen IV did not
310 produce any significant changes in the Pink Flamindo fluorescence signal for neither the WT
311 receptor nor the cleavage-deficient mutant (Fig. 4D). The laminin 211-coated cantilever (Fig.
312 4E) did not activate GPR126 through pushing (Fig. 4F), but a significant increase in the Pink
313 Flamindo fluorescence signal was seen in the force-clamp setup when applying a pulling
314 force of 0.75 nN (Fig. 4G). Lower pulling forces were not sufficient to activate the receptor.
315

316 **Figure 4. Mechano-activation of GPR126 via its ligands.** (A) The domain architecture of human GPR126 with
317 the binding sites of its ligands, collagen IV and laminin 211, is depicted. (B, E) Schematic demonstrating the
318 AFM setup with (B) collagen IV- and (E) laminin 211-coated cantilevers. (C, D) Changes in Pink Flamindo
319 fluorescence intensity after applying a varying pushing (C) or pulling (D) force over 60s with a collagen IV-
320 coated cantilever. (F, G) Changes in Pink Flamindo fluorescence intensity after applying a pushing (F) or
321 pulling (G) force over 60s with a laminin 211-coated cantilever. Data are given as means \pm SEM of three
322 different experiments, each measuring three individual cells for each force. Statistics were performed as two-way
323 ANOVA (C: effect of construct $p = 0.1452$, effect of force applied $p = 0.0635$, interaction construct \times force
324 applied $p = 0.0298$; D: effect of construct $p = 0.8096$, effect of force applied $p = 0.1748$, interaction construct \times
325 force applied $p = 0.2744$; F: effect of construct $p = 0.0537$, effect of force applied $p = 0.4536$, interaction
326 construct \times force applied $p = 0.7286$; G: effect of construct $p = 0.2225$, effect of force applied $p = 0.5884$,
327 interaction construct \times force applied $p = 0.0246$) in combination with Tukey post hoc analysis; * $p < 0.05$; ** $p <$
328 0.01. Significances in the graphs show the results of the post hoc analysis. Schematic images were created with
329 BioRender.com

331

332

333

334 **Discussion**

335 The aGPCR GPR126 can be activated through different mechanisms, including
336 agonistic *Stachel* sequence-derived peptides (Liebscher et al., 2014), its ligands collagen IV
337 (Paavola et al., 2014), laminin 211 (Petersen et al., 2015) and prion protein (Küffer et al.,
338 2016), the small molecule compound apomorphine (Bradley et al., 2019) and mechanical
339 stimuli such as vibration or shaking (Petersen et al., 2015). Yet, all of these activators lack
340 specificity for GPR126, which hampers their practicality as tools for *in vivo* experiments or
341 potential therapeutic approaches. The agonistic peptide pGPR126 can for example cross-
342 activate the aGPCR GPR64/ADGRG2 (Demberg et al., 2017), while the ECM molecules
343 collagen and laminin can also bind and activate integrins (Keely et al., 1995) and apomorphin
344 is an agonist on dopamine receptors (Millan et al., 2002). In this study, we show that a
345 commonly used monoclonal antibody targeting an N-terminal HA epitope can serve as an
346 activator of GPR126.

347 Antibody-mediated GPCR activation is a known phenomenon. For example, in several
348 disease contexts, autoantibodies target GPCRs, such as the thyroid stimulating hormone
349 receptor, calcium-sensing receptor and muscarinic M1 and M2 receptors (Unal et al., 2012).
350 Previously, the aGPCRs EMR2 and GPR56 were shown to be activated through antibodies
351 targeting the receptors' N-termini (Yona et al., 2008; Bhudia et al., 2020; Chatterjee et al.,
352 2021). In the absence of known antibodies against GPR126, we probed a commercial anti-HA
353 antibody targeting an artificially introduced HA epitope at the N terminus of GPR126 and
354 found that this universal antibody was indeed capable of activating the receptor (Fig. 1B).
355 We, thus, wondered how the anti-HA antibody mediates this activation. Agonistic properties
356 of GPCR-targeting antibodies have been previously assigned to their interaction with the
357 cognate ligand's binding pocket or stabilization of ligand-induced active receptor
358 conformations (Gupta et al., 2008) for example through cross-linking/dimerization of the
359 receptor as has been described for β 1-adrenergic (β_1 AR) receptor (Hutchings et al., 2014).
360 With respect to the known and anticipated activation scenarios for aGPCRs, it would also be
361 conceivable that the antibody leads to a dissociation of the NTF resulting in exposure of the
362 tethered agonist (Petersen et al., 2015; Mathiasen et al., 2020; Frenster et al., 2021) or that it
363 mediates mechanical stimuli such as pushing or pulling.

364 Our results support the notion that the anti-HA antibody-mediated activation is most
365 likely due to cross-linking of the receptor as a monomeric Fab fragment of the anti-HA

366 antibody alone is not able to activate GPR126 (Fig. 1H). The observation that addition of a
367 secondary antibody further enhanced cAMP production (Fig. 1D) indicated that the receptor
368 might also respond to the weight of molecules pushing onto it. However, neither
369 paramagnetic Dynabeads® coated with the anti-HA antibody alone (Fig. 1F) nor in
370 combination with a magnet below the cell monolayer (suppl. Fig. 1B) enhanced cAMP levels
371 compared to anti-HA antibody incubation alone. These results as well as a lack of activation
372 through direct pushing or pulling with an anti-HA antibody-coated cantilever in the AFM
373 setup (Fig. 3) demonstrate that cross-linking through the antibody is sufficient to activate
374 GPR126 while no additional forces are required. Our mutagenesis data shows that the anti-
375 HA antibody-mediated stimulation of GPR126 depends on an intact tethered agonist
376 sequence, thus we can rule out the option that the antibody can interact with the endogenous
377 agonist binding pocket (Fig. 2B). Similarly, cleavage at the GPS is essential for this activation
378 (Fig. 2B), but we found no indication that this would lead to a dissociation of the NTF (Fig.
379 2C). It can be speculated that this cleavage event would be required instead to induce a
380 conformation that is necessary for the tethered agonist to reach its binding pocket. This is in
381 contrast to other aGPCRs like GPR56 (Chatterjee et al., 2021) and latrophilin (Scholz et al.,
382 2015), whose antibody- and mechano-mediated activations, respectively, are not affected by
383 mutations of their GPS cleavage motifs. Thus, it seems that autoproteolysis at the GPS serves
384 distinct purposes among different receptors.

385 When studying aGPCR activation by ligands or antibodies, splice variants normally
386 have to be considered, since the complex exon-intron composition results in a large subset of
387 functionally divergent receptors. As an example, activation of GPR56 through an antibody
388 targeting the GAIN domain is dependent on a Serine–Threonine–Proline-rich (STP) region,
389 which otherwise does not influence basal signaling levels of the receptor (Chatterjee et al.,
390 2021). In the case of GPR126, alternative splicing influences the domain composition of the
391 N terminus (Knierim et al., 2019). Within the N terminus, the CUB/PTX domain is of
392 functional relevance as it serves as point of interaction for collagen IV (Paavola et al., 2014),
393 yet, for anti-HA antibody-mediated activation it appears to be neglectable. In contrast,
394 elongating the receptor's N terminus through the addition of a fluorescent protein abolishes
395 this activation. Similar observations have been made for the adhesion GPCR dCIRL, where
396 elongation of the N terminus reduces the response to mechanical stimuli (Scholz et al., 2017).
397 Thus, large artificial N-terminal domains influence signaling properties, even when they do
398 not act as binding sites for the activating antibodies. It is currently unknown whether this is
399 due to the simple change in length or an altered three-dimensional structure of the N terminus.

400 The endogenous interaction partners collagen IV and laminin 211 also bind to the N
401 terminus of GPR126 but show different activation mechanisms. While incubation with
402 collagen IV directly activates the receptor (Paavola et al., 2014), laminin 211 only induces
403 cAMP production in combination with mechanical forces (Petersen et al., 2015). As the
404 quality and the quantity of the required forces have not been defined on a single cell level it
405 was hard to judge whether the *in vitro* findings could possibly be relevant in an *in vivo*
406 context. Using the AFM approach we found that laminin 211 requires increasing pulling
407 forces of at least 0.75 nN (Fig. 4G), while collagen IV only raises cAMP levels upon a
408 pushing force of 1 nN (Fig. 4C). Both mechano-stimulations require a cleavable GPR126.
409 Both activation patterns fit the physiological setting for these ligands in the process of
410 myelination (Bunge et al., 1990; Paavola et al., 2014; Petersen et al., 2015) and the detected
411 forces needed to induce a ligand-specific response are within the physiologic force range.
412 They are below the traction forces that are normally transmitted by cell adhesions to the
413 surrounding ECM (1 – 10 nN) (Balaban et al., 2001), indicating that already small changes
414 can be detected by an aGPCR.

415 In summary, we were able to define the different ways in which a subset of
416 structurally divergent molecules binding to the N terminus of GPR126 can modify the activity
417 of this receptor. This establishes the N terminus as an allosteric integrator of signals coming
418 from the immediate extracellular surrounding that is able to induce a spatio-temporal-force-
419 dependent signal. It should therefore be considered as prime target for future pharmaceutical
420 interventions as it provides the basis for receptor and potentially signalling-specific
421 modulation of GPR126 activity.

422

423 **Materials and Methods**

424 If not stated otherwise, all standard substances were purchased from Sigma Aldrich
425 (Taufkirchen, Germany), Merck (Darmstadt, Germany), and C. Roth GmbH (Karlsruhe,
426 Germany). Cell culture material was obtained from Thermo Fisher Scientific (Schwerte,
427 Germany) and primers were obtained from Microsynth Seqlab GmbH (Göttingen, Germany).
428 The magnetic stimulator was created via embedding N45 NdFeB magnets
429 (https://www.supermagnete.de/data_sheet_S-08-05-N.pdf) into a custom 3D printed holder
430 matching the outer diameter of a corresponding cell culture plate.

431 **Plasmid generation**

432 The constructs of human GPR126 and ΔCUB, ΔPTX, ΔCUBΔPTX mutants have been
433 described previously (Mogha et al., 2013; Liebscher et al., 2014; Petersen et al., 2015). Point
434 mutations for R468A and H839R constructs were inserted by quick change mutagenesis. In
435 brief, plasmid DNA was amplified with PCR and then digested with DpnI restriction enzyme
436 for 4 h at 37°C prior heat shock transformation in *E. coli*. The mRuby epitope was inserted in
437 the human GPR126 construct after the hemagglutinin (HA) epitope by a PCR-based site-
438 directed mutagenesis and fragment replacement strategy. The sequences of all generated
439 mutants of human GPR126 were verified by Sanger sequencing (Microsynth Seqlab,
440 Göttingen, Germany). The GPR126/pULTRA construct was generated using One-step
441 isothermal DNA assembly (Gibson et al., 2009). The reaction buffer was prepared according
442 to protocol. All enzymes were acquired from NEB: T5 exonuclease (M0363), Taq DNA
443 Ligase (M0208) and Phusion DNA Polymerase (M0530). The WT receptor DNA for the
444 assembly was obtained via PCR using the previously described construct of the full-length
445 human GPR126 in the pcDps vector (Liebscher et al., 2014). The pULTRA (pUltra was a gift
446 from Malcolm Moore, Addgene plasmid #24129, (Lou et al., 2012)) vector was restriction
447 digested using Xba1 (NEB, R0145).

448

449 **Anti-HA Fab fragment generation**

450 Sequences encoding Anti-HA Fab (clone 12CA5) heavy and light chains were codon
451 optimized for human cells, synthesized and cloned into pcDNA3.4 (Thermo Fisher Scientific)
452 by Genscript. DNA of heavy and light chains was mixed 1:1, transfected into Expi293 cells
453 (Thermo Fisher Scientific) using PEI Max (Polysciences) and expressed at 37°C for 7 days.
454 Fab was purified from clarified culture supernatants using a CaptureSelect CH1-XL column
455 (Thermo Fisher Scientific) and buffer-exchanged into Tris-buffered saline (100 mM NaCl, 20

456 mM Tris, pH7.5) using a HiPrep 26/10 desalting column (Cytiva, Freiburg, Germany).
457 Binding of Fab fragment to the present HA-tag was proven concentration-dependently on
458 P2Y₁₂-transfected cells, which served as receptor expression positive control (Suppl. Fig.
459 S1C).

460 **cAMP accumulation assays**

461 The human N- and C-terminally tagged GPR126 was heterologously expressed in COS-7
462 cells grown in Dulbecco's minimum essential medium (DMEM) supplemented with 10% fetal
463 bovine serum (FBS), 100 units/ml penicillin, and 100 µg/ml streptomycin or the GripTite 293
464 MSR Cell Line (Thermo Fisher Scientific) (HEK-GT) grown in DMEM supplemented with
465 10% fetal bovine serum, 1% G418 (Thermo Fisher Scientific, 10131035) and 1% Non-
466 Essential Amino Acids (Thermo Fisher Scientific, 11140050) at 37°C and 5% CO₂ in a
467 humidified atmosphere. Cells were split into 48-well plates (3×10⁴ cells/well for COS-7 or
468 1.3×10⁵ cells/well for HEK-GT) for antibody stimulation assays or into 96-well plates
469 (1.5×10⁴ cells/well for COS-7 or 4.5×10⁴/well for HEK-GT) for peptide stimulation.
470 Transfection was done with Lipofectamine 2000 (Thermo Fisher Scientific) according to the
471 manufacturer's protocol using 50 ng (96-well plates) or 500 ng (48-well plates) of receptor
472 plasmid DNA/well. 48 h after transfection, GPR126 and empty vector-transfected cells were
473 stimulated with the indicated concentrations of anti-HA antibody (H3663, stock concentration
474 1 mg/ml, Sigma-Aldrich), anti-HA Fab fragment (stock concentration 1 mg/ml, kind gift from
475 T. Schiffner), anti-HA conjugated super paramagnetic Dynabeads® (14311D, stock
476 concentration 10 mg/ml, Thermo Fisher Scientific) or anti-FLAG antibody (F1804, Sigma-
477 Aldrich) in DMEM for 1 h, followed by incubation with 3-isobutylmethyl-xanthine (1 mM)-
478 containing medium or including the secondary antibody anti-mouse IgG (Fc specific, M2650,
479 Sigma-Aldrich) for 30 min. For peptide stimulation, *Stachel*-sequence derived peptide was
480 diluted in IBMX-containing medium. Peptide solution from purified powder was achieved by
481 preparing a 100 mM in 100% DMSO solution, which was further diluted into 10 mM stocks
482 using a 50 mM, pH 8 Tris buffer and finally pH controlled. Peptide concentrations used in
483 assays are 1 mM. The 1 mM peptide solution contains 1% DMSO and 10% of Tris buffer
484 used for dilution. After stimulation cells were lysed in LI buffer (PerkinElmer, Rodgau,
485 Germany) and kept frozen at -80°C until measurement. To measure cAMP concentration, the
486 Alpha Screen cAMP assay kit (PerkinElmer) was used according to the manufacturer's
487 protocol. The accumulated cAMP was measured in 384-well white OptiPlate microplates
488 (PerkinElmer) with the EnVision Multilabel Reader (PerkinElmer). Super paramagnetic
489 Dynabeads® were conjugated with anti-HA antibody according to the manufacturer's

490 protocol. Briefly, Dynabeads were weighed, washed with C1 solution, mixed with appropriate
491 amount of anti-HA antibody in C1 solution, C2 solution was added and the mixture was
492 incubated overnight at 37°C on a roller followed by washing steps afterwards.

493 **Enzyme-linked immunosorbent assay (ELISA)**

494 Cells were split 48-well plates (3×10^4 cells/well for COS-7 or 1.3×10^5 cells/well for HEK-
495 GT). To estimate cell surface expression of receptors carrying an N-terminal HA tag an
496 indirect cellular enzyme-linked immunosorbent assay (ELISA) was used (Schöneberg et al.,
497 1998). Briefly, cells were transfected with indicated constructs. 48 h after transfection cells
498 were fixed with 4% formaldehyde, washed with PBS, blocked with 10% FBS medium and
499 incubated with anti-HA POD-conjugated antibody followed by *o*-phenylenediamine treatment.
500 Optical densities were measured at a wavelength of 492 nm with the EnVision Multilabel
501 Reader (PerkinElmer).

502

503 **Western blot**

504 For Western blot analysis, cells were split into 24-well plates (6×10^4 cells/well for COS-7)
505 and transfected with either 250 ng of empty pcDps vector, GPR126, GPR126 R468A or
506 GPR126 R468A/H839R using the standard protocols described earlier. Every other
507 transfected construct was incubated with primary anti-HA antibody for an hour as explained
508 before. Supernatants were harvested and cells were lysed with the addition of 300 μ l of 2x
509 SDS loading dye (#S3401, Sigma-Aldrich). After freeze thaw cycling the lysates were run on
510 a 10% SDS-PAGE gel, followed by Western blotting. The PVDF membranes were activated
511 using 100% Methanol and transfer was performed for 1 h at 80 V. Membranes were blocked
512 for 1 h with 5% non-fat dry milk in TBST buffer, washed three times with TBST buffer and
513 incubated over night with either primary antibody (rabbit ant-HA, #3724 and anti-GAPDH,
514 #97166 antibody, Cell Signaling). The following day, membranes were again washed with
515 TBST buffer and incubated with secondary anti-rabbit antibody, which has an HRP
516 conjugation (#7074, Cell Signaling) for 1 h at room temperature. Following three washing
517 steps with TBST buffer, SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo
518 Fisher Scientific) was added to membranes to visualize protein bands using the Bio-Rad Gel
519 Doc Imager.

520 **AFM**

521 For all Atomic Force Microscopy (AFM) experiments, HEK-GT cells were cultured at the
522 same conditions as for the *in vitro* functional assays. Cells were seeded on 24 mm glass

523 coverslips (coated with Poly-L-Lysin (Sigma-Aldrich, P4707), (1% PLL solution incubated at
524 37°C for 5 minutes then washed with PBS and dried under a sterile hood) in 6-well plates
525 (1.5x10⁶ cells/well) and co-transfected with the cAMP sensor Pink Flamindo (Addgene
526 plasmid #102356) and either empty vector or the given GPR126 construct in the pULTRA
527 vector on the next day using Lipofectamine 2000 according to the manufacturer's protocol.
528 The media was changed to the described culture media ~24 h after transfection and AFM
529 measurements took place ~48 h after transfection: the coverslips were transferred into a
530 35mm cell culture dish and washed with DMEM without phenol red three times and placed
531 into AFM coverslip holders. 750 µl culture media without phenol red was added and the cells
532 were stored at 37°C and 5% CO₂ until right before the measurements took place.
533 Tipless silicon nitride AFM cantilevers (NanoWorld, PNP-TR-TL) were coated with
534 monoclonal anti-HA antibodies produced in mouse (H3663, Sigma-Aldrich) or Fc-control for
535 the antibody-based mechano-activation experiments using flexible PEG spacers as described
536 before (Ebner et al., 2007). Recombinant human Fc was expressed by transfected Chinese
537 hamster ovary (CHO) cells, supernatant was collected and purification was done via His-tag
538 using HisLink Protein Purification Resin (V8823, Promega) according to manufacturer's
539 instructions. Protein purity was confirmed by Western blot analysis. For the ligand-based
540 mechano-activation experiments, tipless silicon nitride AFM cantilevers were washed twice in
541 Chloroform and dried. The cantilevers were then placed into a collagen IV (C6745, Sigma
542 Aldrich) or laminin-211 (LN221, BioLamina, Sundbyberg, Sweden) solution (0.15 mg/ml)
543 and incubated at 4°C overnight. The next day the cantilevers were washed in HBSS twice and
544 stored in HBSS at 4°C until use.
545 AFM measurements were performed using a Nanowizard IV AFM (Bruker, Billerica, MA)
546 mounted on an IX 83 inverted optical microscope equipped with a 63x PL APO NA 1.42 oil
547 objective (both Olympus Lifes Sciences, Wallisellen, Switzerland) and coupled to a X-Cite
548 Exakte Light source (Excelitas Technologies, Waltham, MA).
549 Cantilevers were calibrated using the thermal noise method according to (Slattery et al.,
550 2013).
551 Successfully double-transfected cells were identified by the GFP from the pULTRA vector
552 and the Pink Flamindo fluorescence signal. The cell was then imaged three times in the
553 following order: Brightfield, GFP and Pink Flamindo using a Zyla sCMOS camera (Andor
554 Technology, Belfast, Northern Ireland). The AFM cantilever was then placed centrally on the
555 cell and approached until contacting the cell surface. Proper positioning was verified by a
556 brightfield image and the baseline Pink Flamindo signal was recorded. During stimulation all

557 light sources except the AFM laser were turned off. Immediately after the stimulation was
558 finished, another image of the Pink Flamindo signal was obtained using the same exposure
559 time as before.

560 For force clamp measurements, the cantilevers were initially pressed onto the cell with a force
561 of 1 nN for 5 s in order to allow antibody/ligands and receptor to bind. The cantilever was
562 then retracted (1 μ m/s) until the desired clamp force was reached. This value was kept
563 constant for the indicated times before the cantilever was fully retracted. Extend and retract
564 length was 15 μ m and extend and retract speed was 5 μ m/s for all experiments.

565 For analysis, the Pink Flamindo images made before and after the stimulation were compared
566 by measuring the mean intensity of a rectangular area on the stimulated cell using Fiji Image J
567 (Schindelin et al., 2012). To account for variations affecting all cells independently from the
568 stimulation, such as bleaching, a rectangular area was measured on five other cells that were
569 not touched by the cantilever but expressed Pink Flamindo. The average of the change in
570 these five reference cells was subtracted from the measured change in the stimulated cell to
571 isolate the effect the AFM cantilever stimulation has on the receptor-transfected cell (Suppl.
572 Fig. S3A).

573

574 To evaluate the mechano-independent changes of the Pink Flamindo fluorescence signal,
575 HEK-GT cells were split into 96-well plates (4.5×10^4 /well) and transfected the following day
576 analog to the cAMP accumulation assays described earlier. Two days after transfection the
577 media was removed from the wells and 40 μ l of DMEM without phenol-red were added to
578 each well. Then the GFP signal (transfection control) as well as the Pink Flamindo
579 fluorescence signal were imaged using a Celigo Image Cytometer (Nexcelom Bioscience).
580 Forskolin, pGPR126 and anti-HA antibody diluted in DMEM without phenol-red were added
581 to a final volume of 50 μ l/well and following concentrations: 10 μ M forskolin, 1 μ M anti-HA
582 antibody and 1 mM pGPR126. The cells were imaged again 60 s after addition of the
583 respective stimulus and the intensity of the Pink Flamindo signal beforehand and afterwards
584 was compared.

585

586 **Data Analysis**

587 Receptor expression and activation were analyzed using, one- and two-way ANOVA as well
588 as t-test as indicated at each figure legend. p values < 0.05 were considered statistically
589 significant (* $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$). All statistical analyses were performed by

590 GraphPad Prism version 6.00 for Windows (GraphPad Software, Inc., La Jolla, USA) or
591 Microsoft Excel 2016 (Microsoft Corporation, Redmond, USA).

592

593 **Acknowledgements**

594 Our research is funded by the German Research Foundation (CRC1052 project number
595 209933838 to IL, CRC1423 project number 421152132 B05 to IL, FOR2149 project number
596 246212759, P5) to IL and (STE 2843/1-1 project number) to GS. Further funding comes from
597 the European Union (European Social Fund) to IL and the Swiss National Science Foundation
598 (SNF 310030_197764/1) to VS. Further support was provided by the junior research grant by
599 the Medical Faculty, Leipzig University to CW and by the COST association providing an
600 STSM grant within the COST action CA18240 to JM. DGP was supported by NIH/NINDS
601 R01 NS102665, NYSTEM (NY State Stem Cell Science) IIRP C32595GG, NIH/NIBIB R01
602 EB028774, NYU Grossman School of Medicine, and DFG FOR2149. We thank Torben
603 Schiffner and Clara T. Schoeder for producing the anti-HA Fab fragment.

604 **Author Contributions**

605 JM, CW, CS, VS, DGP and IL designed the research plan. JF, GS, JM, HK, SB and CW
606 performed the experiments. JF, GS, JM, SB, CW and IL analyzed results. JM, CW and IL
607 wrote the paper with input from all authors. All authors edited and approved of the
608 manuscript.

609

610 **Competing interests**

611 The authors declare no competing interest.

612

613 **References**

614 Arac, D., Boucard, A.A., Bolliger, M.F., Nguyen, J., Soltis, S.M., Südhof, T.C., and Brunger, A.T.
615 (2012). A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis.
616 *EMBO J* 31, 1364-1378.

617 Balaban, N.Q., Schwarz, U.S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran,
618 S., Bershadsky, A., and Addadi, L., et al. (2001). Force and focal adhesion assembly: a close
619 relationship studied using elastic micropatterned substrates. *Nature Cell Biology* 3, 466-472.

620 Bassilana, F., Nash, M., and Ludwig, M.-G. (2019). Adhesion G protein-coupled receptors:
621 opportunities for drug discovery. *Nat Rev Drug Discov* 18, 869-884.

622 Baxendale, S., Asad, A., Shahidan, N.O., Wiggin, G.R., and Whitfield, T.T. (2021). The adhesion
623 GPCR Adgrg6 (Gpr126): Insights from the zebrafish model. *Genesis* (New York, N.Y. : 2000),
624 e23417.

625 Bhudia, N., Desai, S., King, N., Ancellin, N., Grillot, D., Barnes, A.A., and Dowell, S.J. (2020). G
626 Protein-Coupling of Adhesion GPCRs ADGRE2/EMR2 and ADGRE5/CD97, and Activation of G
627 Protein Signalling by an Anti-EMR2 Antibody. *Sci Rep* 10, 1004.

628 Bradley, E.C., Cunningham, R.L., Wilde, C., Morgan, R.K., Klug, E.A., Letcher, S.M., Schöneberg,
629 T., Monk, K.R., Liebscher, I., and Petersen, S.C. (2019). In vivo identification of small molecules
630 mediating Gpr126/Adgrg6 signaling during Schwann cell development. *Annals of the New York
631 Academy of Sciences* 1456, 44-63.

632 Bunge, M.B., Clark, M.B., Dean, A.C., Eldridge, C.F., and Bunge, R.P. (1990). Schwann cell function
633 depends upon axonal signals and basal lamina components. *Ann N Y Acad Sci* 580, 281-287.

634 Chatterjee, T., Zhang, S., Posey, T.A., Jacob, J., Wu, L., Yu, W., Francisco, L.E., Liu, Q.J., and
635 Carmon, K.S. (2021). Anti-GPR56 monoclonal antibody potentiates GPR56-mediated Src-Fak
636 signaling to modulate cell adhesion. *The Journal of biological chemistry* 296, 100261.

637 Dannhäuser, S., Lux, T.J., Hu, C., Selcho, M., Chen, J.T.-C., Ehmann, N., Sachidanandan, D., Stopp,
638 S., Pauls, D., and Pawlak, M., et al. (2020). Antinociceptive modulation by the adhesion GPCR CIRL
639 promotes mechanosensory signal discrimination. *eLife* 9.

640 Demberg, L.M., Winkler, J., Wilde, C., Simon, K.-U., Schön, J., Rothemund, S., Schöneberg, T.,
641 Prömel, S., and Liebscher, I. (2017). Activation of Adhesion G Protein-coupled Receptors: AGONIST
642 SPECIFICITY OF STACHEL SEQUENCE-DERIVED PEPTIDES. *J Biol Chem* 292, 4383-4394.

643 Diamantopoulou, E., Baxendale, S., La Vega León, A. de, Asad, A., Holdsworth, C.J., Abbas, L.,
644 Gillet, V.J., Wiggin, G.R., and Whitfield, T.T. (2019). Identification of compounds that rescue otic
645 and myelination defects in the zebrafish adgrg6 (gpr126) mutant. *eLife* 8.

646 Ebner, A., Wildling, L., Kamruzzahan, A.S.M., Rankl, C., Wruss, J., Hahn, C.D., Hözl, M., Zhu, R.,
647 Kienberger, F., and Blaas, D., et al. (2007). A new, simple method for linking of antibodies to atomic
648 force microscopy tips. *Bioconjugate chemistry* 18, 1176-1184.

649 Frenster, J.D., Stephan, G., Ravn-Boess, N., Bready, D., Wilcox, J., Kieslich, B., Wilde, C., Sträter,
650 N., Wiggin, G.R., and Liebscher, I., et al. (2021). Functional impact of intramolecular cleavage and
651 dissociation of adhesion G protein-coupled receptor GPR133 (ADGRD1) on canonical signaling. *J
652 Biol Chem*, 100798.

653 Gibson, D.G., Young, L., Chuang, R.-Y., Venter, J.C., Hutchison, C.A., and Smith, H.O. (2009).
654 Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat Methods* 6, 343-345.

655 Gupta, A., Heimann, A.S., Gomes, I., and Devi, L.A. (2008). Antibodies against G-protein coupled
656 receptors: novel uses in screening and drug development. *Combinatorial chemistry & high throughput
657 screening* 11, 463-467.

658 Harada, K., Ito, M., Wang, X., Tanaka, M., Wongso, D., Konno, A., Hirai, H., Hirase, H., Tsuboi, T.,
659 and Kitaguchi, T. (2017). Red fluorescent protein-based cAMP indicator applicable to optogenetics
660 and in vivo imaging. *Sci Rep* 7, 7351.

661 Hutchings, C.J., Cseke, G., Osborne, G., Woolard, J., Zhukov, A., Koglin, M., Jazayeri, A., Pandya-
662 Pathak, J., Langmead, C.J., and Hill, S.J., et al. (2014). Monoclonal anti-β1-adrenergic receptor
663 antibodies activate G protein signaling in the absence of β-arrestin recruitment. *mAbs* 6, 246-261.

664 Karner, C.M., Long, F., Solnica-Krezel, L., Monk, K.R., and Gray, R.S. (2015). Gpr126/Adgrg6
665 deletion in cartilage models idiopathic scoliosis and pectus excavatum in mice. *Hum Mol Genet* 24,
666 4365-4373.

667 Keely, P.J., Wu, J.E., and Santoro, S.A. (1995). The spatial and temporal expression of the alpha 2
668 beta 1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse
669 mammary morphogenesis. *Differentiation* 59, 1-13.

670 Knierim, A.B., Röthe, J., Çakir, M.V., Lede, V., Wilde, C., Liebscher, I., Thor, D., and Schöneberg, T.
671 (2019). Genetic basis of functional variability in adhesion G protein-coupled receptors. *Scientific reports* 9, 11036.

673 Kou, I., Takahashi, Y., Johnson, T.A., Takahashi, A., Guo, L., Dai, J., Qiu, X., Sharma, S., Takimoto,
674 A., and Ogura, Y., et al. (2013). Genetic variants in GPR126 are associated with adolescent idiopathic
675 scoliosis. *Nat Genet* 45, 676-679.

676 Kou, I., Watanabe, K., Takahashi, Y., Momozawa, Y., Khanshour, A., Grauers, A., Zhou, H., Liu, G.,
677 Fan, Y.-H., and Takeda, K., et al. (2018). A multi-ethnic meta-analysis confirms the association of
678 rs6570507 with adolescent idiopathic scoliosis. *Sci Rep* 8, 11575.

679 Küffer, A., Lakkaraju, A.K.K., Mogha, A., Petersen, S.C., Airich, K., Doucerain, C., Marpakwar, R.,
680 Bakirci, P., Senatore, A., and Monnard, A., et al. (2016). The prion protein is an agonistic ligand of the
681 G protein-coupled receptor Adgrg6. *Nature* 536, 464-468.

682 Leon, K., Cunningham, R.L., Riback, J.A., Feldman, E., Li, J., Sosnick, T.R., Zhao, M., Monk, K.R.,
683 and Araç, D. (2020). Structural basis for adhesion G protein-coupled receptor Gpr126 function. *Nat
684 Commun* 11, 194.

685 Liebscher, I., Schön, J., Petersen, S.C., Fischer, L., Auerbach, N., Demberg, L.M., Mogha, A., Cöster,
686 M., Simon, K.-U., and Rothmund, S., et al. (2014). A tethered agonist within the ectodomain
687 activates the adhesion G protein-coupled receptors GPR126 and GPR133. *Cell Rep* 9, 2018-2026.

688 Lin, H.-H., Chang, G.-W., Davies, J.Q., Stacey, M., Harris, J., and Gordon, S. (2004). Autocatalytic
689 cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site
690 motif. *J Biol Chem* 279, 31823-31832.

691 Liu, G., Liu, S., Lin, M., Li, X., Chen, W., Zuo, Y., Liu, J., Niu, Y., Zhao, S., and Long, B., et al.
692 (2018). Genetic polymorphisms of GPR126 are functionally associated with PUMC classifications of
693 adolescent idiopathic scoliosis in a Northern Han population. *J Cell Mol Med* 22, 1964-1971.

694 Lou, E., Fujisawa, S., Morozov, A., Barlas, A., Romin, Y., Dogan, Y., Gholami, S., Moreira, A.L.,
695 Manova-Todorova, K., and Moore, M.A.S. (2012). Tunneling nanotubes provide a unique conduit for
696 intercellular transfer of cellular contents in human malignant pleural mesothelioma. *PLoS ONE* 7,
697 e33093.

698 Man, G.C.-W., Tang, N.L.-S., Chan, T.F., Lam, T.P., Li, J.W., Ng, B.K.-W., Zhu, Z., Qiu, Y., and
699 Cheng, J.C.-Y. (2019). Replication Study for the Association of GWAS-associated Loci With
700 Adolescent Idiopathic Scoliosis Susceptibility and Curve Progression in a Chinese Population. *Spine*
701 44, 464-471.

702 Mathiasen, S., Palmisano, T., Perry, N.A., Stoveken, H.M., Vizurraga, A., McEwen, D.P., Okashah,
703 N., Langenhan, T., Inoue, A., and Lambert, N.A., et al. (2020). G12/13 is activated by acute tethered
704 agonist exposure in the adhesion GPCR ADGRL3. *Nature chemical biology* 16, 1343-1350.

705 Millan, M.J., Maifiss, L., Cussac, D., Audinot, V., Boutin, J.-A., and Newman-Tancredi, A. (2002).
706 Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A
707 multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor
708 subtypes. *The Journal of pharmacology and experimental therapeutics* 303, 791-804.

709 Mogha, A., Benesh, A.E., Patra, C., Engel, F.B., Schöneberg, T., Liebscher, I., and Monk, K.R.
710 (2013). Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein
711 activation. *J Neurosci*. 33, 17976-17985.

712 Mogha, A., Harty, B.L., Carlin, D., Joseph, J., Sanchez, N.E., Suter, U., Piao, X., Cavalli, V., and
713 Monk, K.R. (2016). Gpr126/Adgrg6 Has Schwann Cell Autonomous and Nonautonomous Functions
714 in Peripheral Nerve Injury and Repair. *J Neurosci*. 36, 12351-12367.

715 Monk, K.R., Naylor, S.G., Glenn, T.D., Mercurio, S., Perlin, J.R., Dominguez, C., Moens, C.B., and
716 Talbot, W.S. (2009). A G Protein-Coupled Receptor Is Essential for Schwann Cells to Initiate
717 Myelination. *Science* *325*, 1402-1405.

718 Monk, K.R., Oshima, K., Jors, S., Heller, S., and Talbot, W.S. (2011). Gpr126 is essential for
719 peripheral nerve development and myelination in mammals. *Development* *138*, 2673-2680.

720 Moriguchi, T., Haraguchi, K., Ueda, N., Okada, M., Furuya, T., and Akiyama, T. (2004). DREG, a
721 developmentally regulated G protein-coupled receptor containing two conserved proteolytic cleavage
722 sites. *Genes to Cells* *9*, 549-560.

723 Paavola, K.J., Sidik, H., Zuchero, J.B., Eckart, M., and Talbot, W.S. (2014). Type IV collagen is an
724 activating ligand for the adhesion G protein-coupled receptor GPR126. *Sci Signal* *7*, ra76.

725 Petersen, S.C., Luo, R., Liebscher, I., Giera, S., Jeong, S.-J., Mogha, A., Ghidinelli, M., Feltri, M.L.,
726 Schöneberg, T., and Piao, X., et al. (2015). The Adhesion GPCR GPR126 Has Distinct, Domain-
727 Dependent Functions in Schwann Cell Development Mediated by Interaction with Laminin-211.
728 *Neuron* *85*, 755-769.

729 Qin, X., Xu, L., Xia, C., Zhu, W., Sun, W., Liu, Z., Qiu, Y., and Zhu, Z. (2017). Genetic Variant of
730 GPR126 Gene is Functionally Associated With Adolescent Idiopathic Scoliosis in Chinese Population.
731 *Spine* *42*, E1098-E1103.

732 Ravenscroft, G., Nolent, F., Rajagopalan, S., Meireles, A.M., Paavola, K.J., Gaillard, D., Alanio, E.,
733 Buckland, M., Arbuckle, S., and Krivanek, M., et al. (2015). Mutations of GPR126 are responsible for
734 severe arthrogryposis multiplex congenita. *The American Journal of Human Genetics* *96*, 955-961.

735 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
736 Rueden, C., Saalfeld, S., and Schmid, B., et al. (2012). Fiji: an open-source platform for biological-
737 image analysis. *Nat Methods* *9*, 676-682.

738 Scholz, N., Gehring, J., Guan, C., Ljaschenko, D., Fischer, R., Lakshmanan, V., Kittel, R.J., and
739 Langenhan, T. (2015). The adhesion GPCR latrophilin/CIRL shapes mechanosensation. *Cell Rep* *11*,
740 866-874.

741 Scholz, N., Guan, C., Niebler, M., Grottemeyer, A., Maiellaro, I., Gao, S., Beck, S., Pawlak, M.,
742 Sauer, M., and Asan, E., et al. (2017). Mechano-dependent signaling by Latrophilin/CIRL quenches
743 cAMP in proprioceptive neurons. *eLife* *6*.

744 Schöneberg, T., Schulz, A., Biebermann, H., Grüters, A., Grimm, T., Hübschmann, K., Filler, G.,
745 Gudermann, T., and Schultz, G. (1998). V2 vasopressin receptor dysfunction in nephrogenic diabetes
746 insipidus caused by different molecular mechanisms. *Hum. Mutat.* *12*, 196-205.

747 Slattery, A.D., Blanch, A.J., Quinton, J.S., and Gibson, C.T. (2013). Accurate measurement of Atomic
748 Force Microscope cantilever deflection excluding tip-surface contact with application to force
749 calibration. *Ultramicroscopy* *131*, 46-55.

750 Stoveken, H.M., Hajduczok, A.G., Xu, L., and Tall, G.G. (2015). Adhesion G protein-coupled
751 receptors are activated by exposure of a cryptic tethered agonist. *Proc Natl Acad Sci U S A* *112*, 6194-
752 6199.

753 Suchý, T., Zieschang, C., Popkova, Y., Kaczmarek, I., Weiner, J., Liebing, A.-D., Çakir, M.V.,
754 Landgraf, K., Gericke, M., and Pospisilik, J.A., et al. (2020). The repertoire of Adhesion G protein-
755 coupled receptors in adipocytes and their functional relevance. *Int J Obes (Lond)*.

756 Sun, P., He, L., Jia, K., Yue, Z., Li, S., Jin, Y., Li, Z., Siwko, S., Xue, F., and Su, J., et al. (2020).
757 Regulation of body length and bone mass by Gpr126/Adgrg6. *Science Advances* *6*, eaaz0368.

758 Takeda, K., Kou, I., Hosogane, N., Otomo, N., Yagi, M., Kaneko, S., Kono, H., Ishikawa, M.,
759 Takahashi, Y., and Ikegami, T., et al. (2019). Association of Susceptibility Genes for Adolescent

760 Idiopathic Scoliosis and Intervertebral Disc Degeneration With Adult Spinal Deformity. *Spine* 44,
761 1623-1629.

762 Unal, H., Jagannathan, R., and Karnik, S.S. (2012). Mechanism of GPCR-directed autoantibodies in
763 diseases. *Advances in experimental medicine and biology* 749, 187-199.

764 Xu, E., Lin, T., Jiang, H., Ji, Z., Shao, W., Meng, Y., Gao, R., and Zhou, X. (2019a). Asymmetric
765 expression of GPR126 in the convex/concave side of the spine is associated with spinal skeletal
766 malformation in adolescent idiopathic scoliosis population. *European Spine Journal* 28, 1977-1986.

767 Xu, E., Shao, W., Jiang, H., Lin, T., Gao, R., and Zhou, X. (2019b). A Genetic Variant in GPR126
768 Causing a Decreased Inclusion of Exon 6 Is Associated with Cartilage Development in Adolescent
769 Idiopathic Scoliosis Population. *BioMed research international* 2019, 4678969.

770 Xu, J.-F., Yang, G.-h., Pan, X.-H., Zhang, S.-J., Zhao, C., Qiu, B.-S., Gu, H.-F., Hong, J.-F., Cao, L.,
771 and Chen, Y., et al. (2015). Association of GPR126 gene polymorphism with adolescent idiopathic
772 scoliosis in Chinese populations. *Genomics* 105, 101-107.

773 Xu, L., Wu, Z., Xia, C., Tang, N., Cheng, J.C.Y., Qiu, Y., and Zhu, Z. (2019c). A Genetic Predictive
774 Model Estimating the Risk of Developing Adolescent Idiopathic Scoliosis. *Current Genomics* 20, 246-
775 251.

776 Yona, S., Lin, H.-H., Dri, P., Davies, J.Q., Hayhoe, R.P.G., Lewis, S.M., Heinsbroek, S.E.M., Brown,
777 K.A., Perretti, M., and Hamann, J., et al. (2008). Ligation of the adhesion-GPCR EMR2 regulates
778 human neutrophil function. *FASEB J* 22, 741-751.