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Abstract

Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in sensor space,

using the signal from individual sensors, is a convenient and standard way of working with this type of data. However, volume

conduction introduces considerable challenges for sensor space analysis. While the general idea of signal mixing due to volume

conduction in EEG/MEG is recognized, the implications have not yet been clearly exemplified. Here, we illustrate how different

types of activity overlap on the level of individual sensors. We show spatial mixing in the context of alpha rhythms, which are known

to have generators in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis

of a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by computing

a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior

electrodes, central electrodes show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor

mu-rhythm and temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong

occipital rhythms rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that are

solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used assessment of power,

power ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to illustrate the

effects of volume conduction in a concrete way, such that the provided practical illustrations may be of use to EEG researchers to in

order to evaluate whether sensor space is an appropriate choice for their topic of investigation.
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1. Introduction

Alpha rhythms (8–13 Hz) are a prominent feature of human

non-invasive electrophysiological recordings. Different types of

rhythms are found within this band, with generators in occipital,

parietal, temporal and sensorimotor cortices [1, 2]. The different

alpha rhythms show a functional specificity, with event-related

desynchronization due to motor action for the sensorimotor

rhythm, or strong modulation due to eye-opening or closing

for the occipital alpha rhythm. Within each rhythm type there

may be an even finer degree of organization, with differential

modulation of the sensorimotor mu rhythms by hand vs. foot

movements [3] or differential modulation of occipital alpha

rhythms by stimuli in different parts of the visual field [4, 5]. In

addition, alpha rhythms have been shown to be associated with

attention showing stronger amplitude in cortical areas where

neuronal activity should be suppressed [6]. In general, these

rhythms remain a topic of active research directed at elucidating

their role in cognition, perception and motor systems.

A fundamental challenge in the analysis and interpretation of

signals recorded with electroencephalography (EEG) or magne-
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toencephalography (MEG) is volume conduction [7]. Volume

conduction leads to overlap of signals from different generators

in space and time [8]. This overlap is especially problematic for

sensor space analysis, in which signals from sensors are used

directly, by aid of a standard reference, e.g., common average,

linked mastoids or nose-reference. Yet, despite distortions intro-

duced by volume conduction, sensor space analysis remains a

popular approach for the analysis of EEG/MEG signals [9]. The

wide-spread use of sensor space analysis is certainly due to the

convenience of the procedure. In contrast to sensor space, source

analysis requires: 1) data analysis training in inverse modelling

and understanding of its parameters, 2) more computational

resources required by inverse modelling algorithms 3) more

training in statistical analysis, as corrections for multiple com-

parisons across sources are required 4) possibly more resources

need to be spent on the acquisition of individual anatomical

magnetic resonance imaging data. However, despite the relative

ease with which sensor space analysis can be performed, it may

potentially obfuscate any fine degree of spatial specificity of neu-

ronal rhythms to behavior. Therefore, it is of interest to assess in

more detail how analysis in sensor space may blur contributions

of different types of rhythms.

The methodological validity of measures derived from sensor
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space data is especially relevant for studies involving EEG

recordings with a small number of electrodes. For instance,

in a clinical setting, time constraints often limit the number

of electrodes which can be placed on a patient. For instance,

[10] used 1-electrode EEG to study a large cohort of patients

with schizophrenia. In neurofeedback studies, typically partic-

ipants receive feedback in the form of oscillatory power of a

single/limited number of sensors. In closed-loop EEG studies

[11, 12], where magnetic stimulation is given dependent on fea-

tures of EEG rhythms, only a small number of EEG electrodes is

used for the extraction of features of interest to be robust against

experimental noise. If only a small number of sensors is to be

used, the sensitivity of measures for this specific recording setup

has to be considered in order to reliably detect the phenomena

of interest.

In this article, we illustrate the impact of spatial mixing on

neuronal rhythms on the sensor space level compared to the

source-level. A number of studies has evaluated consistency

and sensitivity of measures in sensor vs source space in the

realm of connectivity metrics with respect to volume conduction

and linear mixing [13, 14]. But here we focus on univariate

properties of neuronal rhythms, mainly band-power of rhythms

in the alpha-band. While many previous studies acknowledge

the problem of volume conduction for the EEG/MEG analysis

in sensor space in general, to the best of our knowledge there are

no reports directly showing how individual components/sources

are actually mixed at the level of sensors. We do so in this paper

using specifically alpha rhythms, while the main conclusions

can be generalized to other oscillations and evoked responses.

The main contribution of the following article is the quantifica-

tion of spatial mixing of rhythms on the sensor space level. First,

we discuss an easy-to-use method for assessing origin and spa-

tial spread of extracted rhythms given a standard sensor scheme

via the calculation of spatial patterns and demonstrate practical

applications. We then use spatial patterns to assess spatial mix-

ing of neuronal rhythms on the sensor space level compared to

source level by using simulations in a realistic head model and a

large dataset of EEG resting-state rhythms. Here, we illustrate

constituent band-power contributions of different rhythms in the

alpha-band in single sensors. Additionally, we show how spatial

mixing is even more problematic when using ratio-measures of

oscillations, due to the dynamic nature of oscillations, with high

varying amplitude modulation of neuronal rhythms, affecting

relative contributions of specific rhythms. We hope that our

illustrations provide intuitions for basic and clinical researchers,

in order to evaluate whether sensor space analysis may or may

not be appropriate for their use case.

2. Materials and Methods

The analysis was performed using python and MNE version 0.23

[15] for the empirical analysis. The analysis code needed to re-

produce the analysis and figures is available here: https://github.com/nschawor/eeg-

leadfield-mixing. While we show examples for single partici-

pants in the following, it is possible to generate these types of

plots for all other participants with the provided code.

2.1. Experimental recordings

For the empirical data analysis, we analyzed EEG data which

was previously collected in the project “Leipzig Cohort for Mind-

Body-Emotion Interactions” (LEMON). We summarize partici-

pant details and EEG data acquisition briefly in the following. A

more extensive description of the dataset of all study components

can be found in the original publication [16].

2.1.1. Participants

EEG data was collected from 216 volunteers who did not have

a history of neurological disease or usage of drugs that target

the central nervous system. The study protocol was approved

by the ethics committee at the medical faculty at the University

of Leipzig (reference number 154/13-ff) and conformed to the

Declaration of Helsinki. Written informed consent was obtained

from all participants prior to the experiment. Data from 13

participants were excluded because the files lacked event infor-

mation, had a different sampling rate, mismatched header files or

insufficient data quality. In addition, the data from 4 participants

was excluded because it had a low signal-to-noise ratio in the

alpha-band as indicated by a 1/f-corrected spectral peak in the

alpha-band below 5 dB (see Spectral analysis section for exact

procedure). This resulted in datasets from 199 participants (127

male, 72 female, age range: 20–77 years)

2.1.2. EEG recording setup

Scalp EEG was recorded from a 62-channel active electrode

cap (ActiCAP, Brain Products GmbH, Germany). In this con-

figuration, 61 electrodes were in the international 10-20 system

arrangement, and one additional electrode below the right eye

was used to monitor vertical eye movements. The reference

electrode was located at FCz, and the ground electrode at the

sternum. The impedance for all electrodes was kept below 5 kΩ.

Data was acquired with a BrainAmp MR plus amplifier (Brain

Products GmbH, Germany) at an amplitude resolution of 0.1 µV

with an online band-pass filter between 0.015 Hz and 1 kHz

and with a sample rate of 2500 Hz. Recordings were made in a

sound-attenuated EEG booth.

In the experimental session, a total of 16 blocks were recorded,

each lasting 60 seconds. Two conditions were interleaved, eyes

closed and eyes open, starting in the eyes closed condition. Dur-

ing eyes open blocks, participants were instructed to fixate on

a digital fixation cross. Changes between conditions were an-

nounced with the software Presentation (v16.5, Neurobehavioral

Systems Inc., USA).
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Figure 1: Analysis pipeline for quantifying the contributions of independent rhythms on sensor activity. A. The dataset consisted of 62-channel resting-state

EEG recordings for eyes open and eyes closed conditions. B. Spatial filters and patterns were calculated with spatio-spectral decomposition (SSD) using narrow-band

data in the individual spectral peak in the alpha frequency-band. C. The entries of the spatial patterns for each sensor were extracted and normalized, the absolute

value was taken to calculate the sensor complexity for each EEG electrode.

2.2. Data analysis

2.2.1. Preprocessing

We used the available preprocessed data of the LEMON dataset,

with the preprocessing as applied by the data creators. The pre-

processing is described briefly in the following: Raw data was

downsampled from 2500 Hz to 250 Hz and band-pass filtered

in the frequency range 1–45 Hz with a Butterworth filter, with

filter order 4. Raw activity traces were visually inspected and

outlier electrodes with frequency shifts in voltage and of poor

signal quality were excluded. Data was inspected for intervals

with extreme peak-to-peak deflections and large bursts of high-

frequency activity and these intervals were discarded. In order to

reduce the dimensionality of EEG signals, principal component

analysis was used to keep principal components that explain 95%

of the total data variance. Next, independent component anal-

ysis based on the Extended Infomax algorithm was performed

(step size: 0.00065/log(number of electrodes), annealing policy:

weight change > 0.000001, learning rate is multiplied by 0.98,

stopping criterion: maximum number of iterations 512 or weight

change < 0.000001). Any component that reflected eye move-

ments, eye blinks, or heartbeat related activity was removed.

The remaining independent components (mean number: 21.4,

range: 14–28) were projected back to sensor space.

2.2.2. Spectral analysis

As the focus here is oscillatory activity in the alpha frequency-

band, we included only participants which exceeded a signal-

to-noise ratio in the alpha frequency-band. For this, we used a

criterion of > 5 dB as in our previous work [17]. To determine the

signal-to-noise ratio in the alpha band, the frequency spectrum

was computed with Welch’s method (Hann window, 1 second

window length, 50% overlap). To subtract the 1/f-contribution

from the spectrum, we used spectral parametrization [18]. Par-

ticipants were included if at least one electrode on the midline

displayed an oscillatory peak > 5 dB in the alpha band, as evalu-

ated over the whole recording length.

2.2.3. Extraction of neuronal sources

We used spatio-spectral decomposition (SSD) [19] which is a

well-validated technique allowing us to extract neuronal oscil-

lations with the maximized signal-to-noise ratio in a specified
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frequency band. The method is based on generalized eigenvalue

decomposition of covariance matrices across sensors and maxi-

mizes the oscillatory power of a component at a specified target

frequency band, while simultaneously minimizing the power at

flanking frequency bands, yielding oscillatory components with

highest signal-to-noise ratio. The computation can be performed

fast and with few parameters. For our use case, we defined the

frequency band of interest as the participant-individual peak in

the alpha band, with a bandwidth of ± 2 Hz.

2.2.4. Assessing spatial mixing with the aid of spatial patterns

To examine how different components mix on a chosen sensor,

we analyzed the spatial pattern coefficients associated with the

SSD spatial filters. The general pipeline is shown in Fig. 1.

Spatial patterns describe the contribution of sources S on the

activity recorded from sensors X in a linear way: X = AS, with

A being the matrix of spatial patterns, sometimes also called

mixing matrix. In our convention, the columns of the matrix

contain the spatial patterns for the individual sources, and the

rows of the matrix contain the contributions of the contribution

of the individual sensors to each source. Spatial patterns were

computed according to [20] on the basis of the covariance of

activity filtered in the alpha band multiplied with the spatial filter

obtained with SSD. As generalized eigenvalue decomposition

methods are polarity invariant, we analyzed the absolute value

of the spatial patterns in some cases.

To assess how rhythms contribute to each sensor, we then com-

puted a measure quantifying the deviation from a scenario where

all components contribute with equal power to the signal of a

given sensor. This measure is called sensor complexity in the

following and allowed us to assess the relative contribution of

each source in the observed EEG activity:

normalized spatial pattern coefficients Mij =
|Aij |∑
i |Aij |

sensor complexity Cj = −
∑

i

Mij logMij

with Aij as the spatial pattern coefficient for EEG electrode j

and SSD component i. In the case of simulations, this is the lead

field entry for a specific EEG electrode j and a specific source i.

A free parameter in this context is how many components per par-

ticipant are considered. Because not all components returned by

SSD contain pronounced oscillatory activity in the alpha-band,

we restricted the number of components to a fixed number of

10. The number of components influences the absolute value of

the sensor complexity. The number of components was chosen

empirically on the basis of the percentage of explained variance

in the alpha-band.

2.3. Simulations

For the simulations, we distributed several sources of rhythms

in the alpha-band in specified cortical locations in a realistic 3D

head model. We then extracted the lead field coefficients for

each EEG electrode and computed a sensor complexity for each

sensor, which enables us to investigate spatial mixing of rhythms

per sensor basis.

2.3.1. Head and lead field model

We used the New York Head, a realistic precomputed lead field

model of Huang et al. [21] and Haufe et al. [22]. Here we give a

brief description of the generation of the head model and lead

field, with full details given in the above articles. Briefly, the

anatomical basis for this model is the detailed ICBM152 head

model, based on the average of 152 adult brains, imaged with

magnetic resonance imaging [23]. For this head model, the

finite element lead field solution is provided for a set of 231

standardized electrode positions and 75,000 nodes distributed

on a cortical surface mesh. We extract the lead field entries

where dipole orientations are assumed to be perpendicular to the

cortical surface. The New York head lead field is provided for a

common average reference. For the demonstration in Fig. 4, the

‘fsaverage’ example data and head model provided by MNE was

used.

2.3.2. Placement of alpha generators in a 3D cortex model

Sixteen sources were placed in each hemisphere with locations

approximated according to [2]. We considered six occipital, two

inferior parietal, three somatosensory and five temporal alpha

sources. As physiological rhythms are known to have different

amplitudes, e.g., the more pronounced visual alpha rhythm, the

different rhythm types were multiplied with a specified gain fac-

tor, as listed in Table 1, with higher power for occipital, parietal

and sensorimotor sources and lower power for temporal sources.

Additionally, we modelled a state change from eyes open to eyes

closed state, during which the sources placed in the occipital re-

gion increase in strength, while other sources remain unchanged.

The lead field coefficients were multiplied with the type specific

gain factors for the respective conditions. The lead field entries

were calculated for each sensor and visualized as a proportion on

a topographic map. The original head model contains 231 EEG

electrodes, the number of visualized electrodes was reduced to

match the number of electrodes in the empirical data.

2.3.3. Assessing spatial mixing with the aid of the lead field

To examine how different oscillatory sources mix on a given

sensor, we analyzed the lead field coefficients for each sensor.

The lead field for a constrained dipole orientation is given by a

matrix L with dimensions number of dipoles times number of

sensors. Because the only sources contributing to activity in our

simulations are the 16 above listed for each hemisphere, all other

rows of the lead field matrix can be disregarded, resulting in 32

times number of electrodes lead field coefficients to consider.
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The complexity measure was calculated using the same formula

as for the empirical data using the lead field coefficients weighted

by the respective gain factors.

3. Results

3.1. Spatial patterns as a tool to investigate spatial correlations

First, we discuss the concept of spatial patterns. Spatial patterns

are an easy way to assess the spatial distribution of activity

associated with the signal from one particular sensor or spatial

filter by looking at the correlation across sensors. In EEG/MEG

analysis, neighboring sensors will always be correlated to a large

extent due to volume conduction. Spatial patterns show how

neuronal activation of sources/components in the brain maps

onto EEG/MEG sensors.

In order to compute a spatial pattern, first a spatial filter needs

to be defined. A spatial filter is a vector with as many entries

as sensors, with a numerical weight value for each sensor. Each

sensor has a certain weight in a spatial filter vector, these weights

can be zero as well. For instance, the spatial filter vector for

a sensor that is taken as is from the recording file without re-

referencing would have an entry of 1 for that respective sensor

and 0 otherwise. Referencing can be seen as the matrix multipli-

cation of a spatial filter with the data, which yields an activity

trace. Similarly, for common average referencing and Laplacian

referencing a spatial filter vector can be easily constructed (see

Fig. 2A). Spatial patterns are distinct from scalp potential maps,

as spatial patterns reflect the spatial spread of activity originat-

ing from a specified spatial filter vector, so in the simplest case

from a single sensor, whereas scalp potential maps reflect the

superposition of all activity at a particular time point.

Spatial patterns are then computed by a multiplication of a spe-

cific spatial filter vector with the covariance matrix of activity

across sensors. In this process, the covariance entries are added

according to the polarity and strength of the spatial filter weights.

The spatial filter would be equal to the spatial pattern, if the

activity of sensors would be uncorrelated and the covariance

matrix would be an identity matrix. But this is never the case

for EEG/MEG data, therefore we need to transform spatial fil-

ters into spatial patterns in order to make statements about the

location of extracted signals. For instance, the spatial pattern for

a non re-referenced sensor (using the referencing at the time of

data acquisition) would be exactly the covariance of this sensor

to other sensors, reflecting the signal spread across sensors. The

signal activity is typically band-pass filtered before computing

the covariance matrix to investigate the correlation structure of

the signals for a specific frequency band of interest. Different

constraints can be used to calculate spatial patterns, for instance

when enforcing sparsity of spatial patterns is desired, a regular-

ization term can be used [20]. In general, spatial patterns can be

seen as least squares coefficients when attempting to fit the data

time series using the source time series as for instance returned

by SSD.

Spatial patterns can help to verify and check the location of the

signal of interest, e.g., help check for appropriate presence of

oscillations to improve validity of measures. In Fig. 2B, we show

the spatial patterns associated with electrode C3 over the left

sensorimotor cortex, that has been referenced in three different

ways: using a FCz-reference (the reference at time of signal ac-

quisition), common average reference and Laplacian-reference,

for activity in the 8–13 Hz range. It can be seen that the focality

of the signal changes, depending on the respective referencing.

In the ideal case, the contribution from areas far away from the

chosen region should be minimized, approaching a value of 0

for the spatial pattern coefficients. It can be seen that the spatial

spread is relatively broad in the FCz-referenced case and be-

comes more focal for a Laplacian reference. Despite improved

focality for Laplacian referencing in general, the signal will not

have a local origin in all cases where a Laplacian reference is

used. In Fig. 2C, we show an example of a participant where

applying a Laplacian filter over the electrode C3 does result in

a signal originating in the vicinity of the sensorimotor cortex,

but has the strongest contribution from posterior activity. In

the above cases the posterior alpha activity is just very strong

compared to the sensorimotor mu rhythm, which is not really de-

tectable in this particular participant. Fig. 2D shows an example

where the aim was to extract theta activity in the frequency band

of 4–7 Hz using a frontal sensor, but insufficient data cleaning

regarding eye movement artefacts has been performed. There-

fore, the extracted activity in the theta-band is contaminated by

artefacts as evident from a topography reflecting eye movements.

In summary, spatial patterns may be an easy-to-use tool for data

exploration for EEG analysis. Note that all these considerations

presented in Fig. 2 are in general applicable for neuronal activity

in different frequency ranges and therefore these examples can

be generalized to other bands, i.e., rhythms in the delta-, theta-,

beta- and gamma-bands.

3.2. Simulations: Contribution of different alpha rhythms to

sensor signals

While previously we looked at spatial patterns associated with a

specific component, next we illustrate how the spatial mixing of

rhythms can be assessed by analyzing multiple spatial patterns.

For this, we use simulations in a realistic head model. We place

16 sources into cortical locations per hemisphere, according to

[2], see Fig. 3A, with corresponding lead field entries plotted in

Fig. 3B. The free parameters here are the number of sources and

the strength of each source relative to others.

In Fig. 3C we visualize for each sensor the contribution of each

rhythm by showing the absolute spatial pattern coefficient as

taken from the lead field. Several observations can be noted:

First, a non-trivial amount of signal is contributed from the

opposite hemisphere, which may complicate the evaluation of

the lateralized effects. Second, it can be seen that the majority

of alpha activity at frontal sensors consists of contributions from

propagated posterior alpha sources. To a large extent this is due

to the orientation of the dipoles. Third, on central sensors, only

a small portion of the activity in the alpha band is contributed
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location of alpha source
rhythm type specific

gain factor

state change: eyes open →
eyes closed gain factor

occipital/superior parietal 1 4

inferior parietal 1 1 (no change)

somatosensory 1 1 (no change)

temporal 0.5 1 (no change)

Table 1: Gain factors for types of alpha activity sources, indicating their relative strength and state change properties.

Figure 2: Spatial patterns aid in assessing focality and origin of extracted sensor signals. A. Spatial filters for three different referencing scenarios: referenced to

electrode FCz (reference at the time of signal acquisition), common-average reference, with filter weights = 1/N with N being the number of sensors, Laplacian

referenced. B. Demonstration of how activity spread is attenuated by different referencing schemes. Reference types from left to right as in A. Activity extracted with

a Laplacian filter around electrode C3 shows a reduced spatial spread around the region of interest compared to referencing to electrode FCz or common average

referencing. C. Demonstration of how even a Laplacian does not extract activity below the activity center, the occipital alpha activity in this participant is so strong

that occipital activity shows up in the Laplacian referenced electrode C3. D. Demonstration how theta activity shows a topography reminiscent of eye movement type

activity, instead of more mid-frontal distribution. because of insufficient data cleaning.

by sensorimotor mu sources. In Fig. 3D, we show the effect of

changing signal-to-noise ratio for one type of rhythm, posterior

alpha. This could for instance occur in the case in an eyes-closed

condition where the power of posterior alpha sources increases

drastically. It can be seen that the relative contributions of visual

alpha activity increase, making up a majority of the signal in the
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alpha band.

To further illustrate how changing the orientation of a central

alpha source changes contributions in frontal sensors, we provide

Fig. 4. Here, we display the location and three different possible

dipole orientations in Fig. 4A with the corresponding lead field

topographies in Fig. 4B and the absolute lead field coefficients

for each dipole orientation in Fig. 4C and 4D. It can be seen

that, while for a radial orientation of the dipole, the contribution

on frontal sensors is minimal, the contribution increases for

tangential orientations of the dipole.

3.3. Resting state data: Contribution of different alpha rhythms

to sensor signals

To illustrate how rhythms in the alpha-band spatially overlap

on sensors in empirical data, we show data for two individual

participants in Fig. 5. This illustration is constructed similar

to the simulation illustration shown in Fig. 3C and 3D. Since

the ground truth mixing coefficients are not known for empir-

ical data, we estimate the components and the spatial patterns

using a statistical approach based on spatio-spectral decomposi-

tion (SSD). Example topographies of components are shown in

Fig. 5A, ordered by signal-to-noise ratio in the alpha frequency-

band. Components reflecting typical occipital alpha and sen-

sorimotor mu rhythm topographies can be seen. In Fig. 5B,

the contribution for each component onto individual sensors as

evaluated in terms of band-power is shown. Fig. 5C and 5D are

analog for a different participant. The figures generated are for

a fixed number of components (N=10).

Analog to the simulation, it is evident that for frontal sensors a

large part of the activity in the alpha-band is from posterior alpha

components with strongest contributions to occipital and parietal

sensors. Over the sensorimotor sensors, occipital alpha activity

also contributes a major part to sensor space alpha activity. Since

the spatial patterns are the results of an estimation procedure,

the proportions may change depending on the method used for

decomposition. But the overall results are in correspondence

to the simulation results, hinting at the fact that some rhythms

and phenomena may be easier to detect in EEG due to higher

amplitude in general.

3.4. Resting state data: Spatial mixing across participants

After demonstrating the qualitative effect of spatial mixing in

single participants, we aim to see if we can see generalities re-

garding spatial mixing across participants. For instance, whether

we can identify sensor locations where the mixing of different

rhythms is particularly pronounced and thus representing chal-

lenges for the interpretation of the electrophysiological results.

We compute a sensor complexity measure for all EEG electrodes

and different states (eyes open/closed) to quantify the degree of

spatial mixing.

Fig. 6A and Fig. 6B show the mean sensor complexity for both

eyes closed and eyes open conditions. The eyes closed condition

features a much higher power for occipital alpha sources, and a

large deviation from uniform contribution for occipito-parietal

sensors. This is expected since only a few sources contribute

a large proportion of the power in the alpha-band. For the cen-

tral sensorimotor sensors, there is a relatively high complexity

since here, there are contributions from the sensorimotor mu

rhythm as well as from the occipital alpha rhythms. In the eyes

open condition, the situation changes, since the occipital alpha

sources are now much weaker and we see less spatial mixing on

central sensors. In addition, we also show complexity values for

individual participants in Fig. 6C and 6D for an occipital and

sensorimotor sensor respectively, to demonstrate high variability

regarding spatial mixing across participants.

3.5. Adding a dimension: temporal fluctuations of EEG alpha

rhythms

For our calculations so far, we averaged power across time, dis-

regarding temporal fluctuations. But neuronal oscillations also

display prominent fluctuations over fast and slow time scales.

Therefore, in the following we briefly illustrate oscillatory fluc-

tuations over time for individual participants, in order to show

how contributions from individual rhythms change over time for

different EEG electrodes in Fig. 7A and 7B. The corresponding

topographies are shown in Fig. 7C, showing sensorimotor and

posterior alpha rhythms. When expressing the alpha power of

SSD components as a ratio of the SSD component #2 over com-

ponent #1, it can be seen the range of the power ratio between

the components changing substantially over time, see Fig. 7D

and 7E. Note that at different time segments the proportion/ratio

of different rhythms may change. If one examines the changes

in the amplitude in a frequency band of one sensor, the changes

can reflect different underlying scenarios. For instance, only

one source is changing or many sources are changing simulta-

neously. This can depend on different factors, ranging from the

strength of their amplitude envelope correlations [24] or other

time domain properties, e.g., whether the rhythms appear in

bursts or are of more continuous nature. In general, the stronger

the spatial mixing on a given sensor, the harder it is to make

inferences regarding specific rhythms from the activity recorded

at the specific single EEG electrode. While we show an example

of one participant here, the dynamic changes of the amplitude

of alpha rhythms are a general phenomenon and are present in

all other participants to some extent, if they display oscillatory

rhythms in the alpha-band.

4. Discussion

With this article, we aim to raise awareness for the effects of

spatial mixing on alpha rhythms as detected with EEG/MEG.

We first illustrated the usage of spatial patterns to analyze focal-

ity and origin of EEG activity as a practical tool for researchers.

Using this tool, we evaluated the contributions of different alpha

rhythms on EEG electrodes. First, we simulated the presence of

different alpha generators in a realistic head model and computed

contributions using the corresponding lead field. The simulation
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Figure 3: Different alpha rhythms contribute to activity recorded on each sensor, simulated example. A. 3D model of the head and cortical gray matter, with

EEG electrodes and the locations of the corresponding alpha sources (blue: occipital alpha source, orange: parietal alpha source, green: temporal alpha source, red:

sensorimotor mu source). B. Lead field topographies for each type of alpha source, showing contributions with positive (red) and negative (blue) polarity to the

signal of each electrode for each alpha source. C. Simulated rhythm contributions onto individual sensors, eyes open condition. Each pie ploot represents one EEG

electrode. The proportions displayed are colored according to rhythm type as in B, with more faint colors indicating contributions from sources located in the right

hemisphere and more saturated colors indicating contributions from sources located in the left hemisphere. D. Rhythm contributions onto individual sensors, eyes

closed condition, with an increased contribution of occipital alpha.

analysis was complemented by empirical data analysis in a large

dataset, where we analyzed spatial pattern coefficients for alpha

rhythms as extracted by SSD. A complexity measure on indi-

vidual sensor level was defined and used to illustrate how alpha

sources map onto EEG electrodes, also depending on state.

4.1. Implications

4.1.1. Amplitude of rhythms and alpha asymmetry measures

To date, many EEG/MEG studies are performed in sensor space.

One of the clear advantages of such an approach is its relative

technical simplicity not requiring source analysis using biophys-

ical or statistical constraints (for example using independent

component analysis or SSD). Typical examples include spectral

analysis, amplitude dynamics, e.g., event-related desynchroniza-

tion/synchronization [25], microstates [26], diverse complexity

measures such as long-range temporal correlations [27], approx-

imate and sample entropy [28]. A typical approach in such

studies is to define regions of interest on the basis of spatial

locations of sensors, for instance frontal, central temporal, pari-

etal and occipital regions. This is often done with the hope that

the activity picked-up by the sensors in these regions of inter-

est would reflect cortical processes generated in the proximity

of these sensors. However, as one can see from the simula-

tion illustrated in Fig. 3A very large part of activity detected in

frontal sensors can originate from the occipital sources. This

situation is particularly important for the inference regarding

alpha sources calculated on the basis of sensor space activity in

electrodes F3 and F4. The asymmetry in alpha power between

these EEG electrodes is often used as an indication for making

conclusions about approach/avoidance behavior [29]. In this
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Figure 4: Changing the dipole orientation of a central alpha source affects sensor space activity on frontal electrodes. A. Different dipole orientations are

shown on a 3D gray matter model. The color corresponds to the color in the topographies in B. B. The corresponding lead field entries for each dipole, plotted

as a topography. C. Absolute lead field contribution to one sensorimotor electrode for different dipole orientations. Sensor activity is highly dependent on dipole

orientation. D. Same as in C but for a frontal electrode.

context, a stronger activation of the left hemisphere (smaller

alpha power) indicates a tendency toward approach behavior

while a stronger activation of the right hemisphere indicates

rather avoidance. These conclusions are naturally based on the

assumption that alpha activity in these frontal electrodes reflect

neuronal processing, for instance in dorsolateral prefrontal cor-

tex. However, this assumption can be very misleading. In fact,

our analysis shows that the contribution of a combination of

occipital and central sources can be as high as 75% in frontal

sensors. This in turn makes inferences about the activation of the

dorsolateral prefrontal cortex on the basis of frontal electrode

activity quite problematic. Moreover, using real data, Fig. 5

shows that many occipital and central sources contribute to the

power of alpha rhythms in frontal electrodes. On the one hand,

it’s possible to investigate alpha asymmetry in different pairs

of electrodes to show that primarily asymmetry in the frontal
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Figure 5: Different alpha rhythms contribute to sensor space activity, empirical example for two participants. A. The first ten patterns in the alpha-band for

one participant, for the eyes open condition. Each rhythm was assigned a color which corresponds to the colors in the next subplot. B. The proportion of the ten SSD

components present at each EEG electrode, as assessed with aid of the relative contribution. While sensors in the sensorimotor regions show the highest proportion of

sensorimotor rhythms, also alpha rhythms originating from occipital regions contribute to the activity recorded at these sensors. C and D are analog to A and B for a

different participant.
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Figure 6: Mean sensor complexity across participants indicates less spatial mixing for posterior channels. A. Mean sensor complexity over participants for

eyes open condition. B. Mean sensor complexity over participants for the eyes closed condition. Higher complexity is observed for sensorimotor sensors in the eyes

closed condition, indicating a higher spatial mixing. C. Sensor complexity for individual participants for occipital electrode Oz (paired rank-sum test, p<0.0001) and

D. sensorimotor electrode Cz (paired rank-sum test, p<0.0001).

electrodes corresponds best to the behavioral quantification of

approach/avoidance traits. However, such conclusions would

not necessarily be correct since mixing of alpha rhythms might

be more complex/different in occipital areas compared to frontal

ones and thus asymmetry of alpha sources outside of frontal ar-

eas can still be a major contributing factor for alpha asymmetry

in frontal electrodes [30]. In general, we would recommend to

perform some simple decomposition of alpha sources with inde-

pendent component analysis or SSD to calculate the proportion

of components with clear central and occipital patterns to the

whole power at frontal electrodes. If this proportion is more

than 50% a caution should be applied when interpreting frontal

alpha asymmetry. Such decompositions can be performed even

when the recording consists of approximately 20 EEG electrodes

since spatial patterns of the components could be identifiable as

having central, frontal or occipital sources.

A similar logic can be applied to other locations of electrodes

and other phenomena where the power of oscillations or their

asymmetry should be deduced. For instance, for the sensori-

motor mu rhythm, an oscillatory power difference between two

hemispheres can indicate asymmetry in excitation/inhibition-

balance between the hemispheres on the basis of which a certain

therapeutic transcranial magnetic stimulation protocol can be

prescribed [31]. In this case, a careful evaluation of alpha-band

mixing complexity is also important if one is using standard ref-

erence schemes such as those based on common average, linked

mastoids etc. Again, we would like to emphasize that for a more

refined spatial estimation a source analysis is preferred.

4.1.2. Neurofeedback in sensor space

Another important example for the use of alpha power, obtained

in sensor space, is neurofeedback. Here, the main idea is to voli-

tionally up- or down-regulate power of oscillations at a specific

sensor location [32]. The main premise is that the changes in al-

pha power are likely to be associated with functional changes of

the corresponding neuronal networks. Typically, a relationship is

assumed between the power of alpha rhythms and a spatially re-

stricted neuronal network generating these alpha rhythms. How-

ever, our simulations show that power in a given sensor reflects

activity from generators in a variety of different brain areas.

Therefore, no exact correspondence between the increase of os-

cillations e.g., at electrode Pz and spatial activation in a given

cortical patch can be established, even if activation is defined

quite broadly, i.e., frontal, central or occipital locations. More-

over, the power ratio of different SSD components varies as a

function of time (see Fig. 7) thus further obscuring a relation-

ship between changes of alpha rhythms and underlying neuronal

processing. Such complexity of spatial mixing should inevitably

lead to a decrease in the efficacy to learn neurofeedback since

reinforcing a specific power of alpha rhythms at a given sen-

sor biologically would correspond to reinforcing undetermined

and ever-changing patterns of corresponding neuronal activity.

This can be one of the reasons for the observation that many

participants are not able to learn neurofeedback effectively [32].

In fact, on the basis of our results we hypothesize that the par-

ticipants with the lower spatial complexity of alpha rhythms

should be more efficient in performing reliably in neurofeedback

sessions. This can be tested directly in future studies. Since
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Figure 7: Relative alpha rhythm contributions to sensor space activity change over time. A. Time resolved contributions from different rhythms for central

sensorimotor electrode C3. Vertical bars indicate block breaks. The y-axis limits are adjusted to highlight alpha power variations. B. Same as in A but for posterior

electrode PO8. C. Topographies of components, color-coded as shown in A and B. E. Ratios of amplitude contributions over time for different SSD components #2

over SSD component #1 F. Same as E but for SSD component #3 over SSD component #1. Relative power contributions to sensor space activity vary substantially

over time.

neurofeedback typically requires multiple sessions and this is a

time-consuming procedure, as a practical recommendation we

suggest performing at least one recording with a high number

of sensors (for instance 60) in order to quantify the presence

and spatial complexity of alpha rhythms at different sensors.

One can then determine sensors with sufficiently low complexity

to be used later with low-electrode montages (for multisession

training) or in case of participants with high spatial complexity,

one can proceed with more electrodes in order to enable visual-

izations of spatial patterns corresponding to spatially restricted
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neuronal activity for validation of the paradigm.

4.1.3. Spatial complexity and connectivity

Previous studies have already explored effects of volume con-

duction on the calculation of connectivity relationships based

on coherence or phase locking values [13, 14]. Here, a spurious

connectivity can be detected when the same neuronal source is

mapped to many sensors and therefore a high connectivity value

does not reflect functional interactions but rather the fact that the

same neuronal trace is mapped to different sensors thus leading

to high coherence of phase locking. Clearly, volume conduction

is also the reason for complex spatial patterns obtained in the

present study. While we will not describe strategies to overcome

detection of spurious interactions here, as it has been done in

previous studies [13, 33], we want to emphasize another impor-

tant aspect relating to our findings. Sensors, reflecting a high

degree of spatial mixing of different components, are also likely

to reflect a rich structure of neuronal interactions which can be

picked up with different graph theoretical metrics even when

controlled for volume conduction. Therefore, we suggest that if

connectivity studies are based on a sensor space analysis, a com-

plementary spatial sensor complexity can be computed in order

to assess the possibility of obtaining hub structures particularly

in sensors with the highest sensor complexity.

4.2. Limitations

For the empirical data analysis sections, we used a simple

method for source reconstruction. With SSD, as with any other

decomposition technique, it is not possible to separate all indi-

vidual alpha rhythms. After all, we only record data with 60

EEG electrodes and there are many more generators than that.

Therefore, the decomposition will feature components that are

not of a dipolar structure, where multiple sources that are highly

co-active have been combined into a single source by the de-

composition algorithm. While improvements can be made in

this regard, by using more sophisticated source reconstruction

algorithms, our general statement is not dependent on the spe-

cific source reconstruction method we used: the activity of a

single EEG electrode will reflect multiple sources in the alpha-

band, for which the contributions will dynamically vary across

time. In general, the existence of statistical based source sepa-

ration techniques like SSD makes investigation of rhythms in

source/component space easy and allow separation of individual

rhythmic contributions without anatomical head models, to best

utilize information from electrophysiological data.

5. Conclusion

Spatial mixing due to volume conduction is inherent to data

recorded with EEG/MEG. Here, we have shown the extent of

spatial mixing of different alpha-type rhythms and elaborated

on the consequences in terms of activity contributions to sensor

space activity. For detecting relationships between EEG/MEG

signatures and behavior, the signal-to-noise ratio available needs

to be carefully considered. While prominent posterior rhythms

show less spatial mixing in sensor space, the situation is more

complicated for sensorimotor and temporal alpha rhythms of

smaller amplitude, potentially compromising analyses that are

solely conducted in sensor space. We hope that the provided

practical illustrations may be of use to EEG researchers for

evaluation whether sensor space is sufficient for their topic of

investigation.
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