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ABSTRACT   65 

 66 

As the focus for CRISPR edited plants moves from proof-of-concept to real world applications, precise 67 

gene manipulation will increasingly require concurrent multiplex editing for polygenic traits. A common 68 

approach for editing across multiple sites is to design one gRNA per target; however, this complicates 69 

construct assembly and increases the possibility of off-target mutations. In this study, we utilized one 70 

gRNA to target MYB186, a known positive trichome regulator, as well as its paralogs MYB138 and 71 

MYB38 at a consensus site for mutagenesis in Populus tremula × P. alba INRA 717-1B4. Unexpected 72 

duplications of MYB186 and MYB138 resulted in a total of eight alleles for the three targeted genes in 73 

the hybrid poplar. Deep sequencing and PCR analyses confirmed editing across all eight targets in nearly 74 

all of the resultant glabrous mutants, ranging from small indels to large genomic dropouts, with no off-75 

target activity detected at four potential sites. This highlights the effectiveness of a single gRNA 76 

targeting conserved exonic regions for multiplex editing. Additionally, cuticular wax and whole leaf 77 

analyses showed a complete absence of triterpenes in the trichomeless mutants, hinting at a previously 78 

undescribed role for the non-glandular trichomes of poplar. 79 

 80 
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INTRODUCTION  97 

 98 

CRISPR (clustered regularly interspaced short palindromic repeats) technology has been adopted for 99 

plant genome editing in an increasing number of species for both basic and applied research (Bewg et 100 

al., 2018; Chen et al., 2019; Nasti and Voytas, 2021). The power of CRISPR is due in part to its simplicity 101 

with just two core components (Jinek et al., 2012): a nuclear-localized endonuclease, such as CRISPR-102 

associated Cas9 that works universally across all domains of life and a synthetic guide RNA (gRNA) that is 103 

customizable and scalable for sequence-specific targeting. With its proven precision and efficiency (Li et 104 

al., 2013; Nekrasov et al., 2013; Shan et al., 2013; Endo et al., 2016) and given the polygenic nature of 105 

many agronomic traits, there is growing interest in targeting multiple loci for simultaneous CRISPR 106 

editing to aid gene function investigation and/or trait engineering (Armario Najera et al., 2019).  107 

 108 

Multiplex editing usually involves coexpression of multiple guide RNAs (gRNAs). For the classic 109 

CRISPR/Cas9 system, this has been demonstrated using individual gRNA cassettes each driven by a 110 

separate RNA polymerase III (Pol III) promoter (Xing et al., 2014; Lowder et al., 2015; Ma et al., 2015). 111 

Alternatively, multiple gRNAs can be expressed in tandem with tRNAs as a single polycistronic transcript 112 

and processed into individual gRNAs using endogenous tRNA processing machinery (Xie et al., 2015). 113 

Polycistronic gRNA transcripts have also been engineered with built-in RNA cleavage sites for processing 114 

by ribozymes or the CRISPR-associated endoribonuclease Csy4 (Qi et al., 2012; Gao and Zhao, 2014; 115 

Tang et al., 2016; Čermák et al., 2017; Tang et al., 2019). In several cases, functional gRNAs were 116 

generated from a single transcriptional unit of Cas9 fused with an artificial gRNA array without specific 117 

flanking sequences (Mikami et al., 2017; Wang et al., 2018). It has been reported that up to eight gRNAs 118 

have been successfully deployed for multiplex editing (Ma et al., 2015; Xie et al., 2015; Čermák et al., 119 

2017).  120 

 121 

An understudied approach is the use of single gRNAs to target homologous sequences at discrete loci. 122 

The capability was showcased by effective inactivation of all 62 copies of porcine endogenous 123 

retroviruses in an immortalized pig cell line using two gRNAs to target a highly conserved region of the 124 

polymerase (pol) gene (Yang et al., 2015). Besides parasitic elements, a single consensus gRNA has also 125 

been used to edit paralogs derived from various gene duplication events in soybean and sorghum 126 

(Jacobs et al., 2015; Li et al., 2018) or homoeologs in polyploid wheat and oilseed rape (Braatz et al., 127 

2017; Zhang et al., 2017). Multiplex targeting of duplicated genes is especially important for 128 
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investigation of functional redundancy in plant genomes that are shaped by whole-genome, segmental, 129 

tandem, and/or transposon-mediated duplications (Flagel and Wendel, 2009; Panchy et al., 2016). 130 

Depending on the duplication age and subsequent selection constraints, sequence similarity can be very 131 

high among duplicates, enabling identification of consensus target sites for multiplex editing by a single 132 

gRNA. This approach greatly simplifies construct design and assembly, reduces off-target potential that 133 

increases with the number of gRNAs (McCarty et al., 2020), and can be bundled with other multi-gRNA 134 

editing strategies discussed above for higher-order multiplex targeting of distinct gene families.  135 

  136 

The present study explored the utility of a single gRNA for multiplex editing in an outcrossing woody 137 

perennial, Populus tremula × P. alba INRA 717-1B4 (hereon referred to as 717). As an interspecific 138 

hybrid, the 717 genome is highly heterozygous which presents additional challenges to gRNA design and 139 

edit outcome determination (Xue et al., 2015). Using trichomes as visual reporter, we targeted a known 140 

positive regulator of trichome development, PtaMYB186 (Plett et al., 2010), and its close paralogs 141 

PtaMYB138 and PtaMYB38 for knockout (KO). We show that a single gRNA with SNP-aware design is 142 

effective for multiplex KO of paralogous genes and robust against copy number variations in a hybrid 143 

genome with an unexpected tandem duplication in one of its sub-genomes. We employed multiple 144 

approaches to address the analytical challenge of discriminating among highly similar target sites to 145 

discern mutations that ranged from small indels to large genomic dropouts. Finally, analysis of the 146 

resultant trichomeless mutants revealed a complete absence of triterpenes, and implicated a role for 147 

poplar trichomes in triterpene accrual. 148 

 149 

 150 

RESULTS  151 

 152 

Multiplex CRISPR/Cas9 editing of trichome-regulating MYBs 153 

The known positive regulator of trichome initiation PtaMYB186 (Plett et al., 2010) corresponds to gene 154 

model Potri.008G089200 in the P. trichocarpa v3.1 genome. It belongs to clade 15 of the R2R3-MYB 155 

protein family tree (Wilkins et al., 2009), which is expanded in poplar and contains three additional 156 

members, MYB138, MYB38 and MYB83, with as yet unclear functions. The four clade 15 members are 157 

derived from multiple duplication events, based on whole paranome KS (synonymous distance) 158 

distribution and gene collinearity analyses using the wgd program (Zwaenepoel and Van de Peer, 2018). 159 

These include an ancient (gamma) whole genome duplication (MYB186 and MYB83, KS = 3.76), a Salicoid 160 
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duplication (MYB186/MYB138 and MYB38, KS = 0.21-0.22), and a tandem duplication (MYB186 and 161 

MYB138, KS = 0.0001) (Figure 1). MYB186, MYB138 and MYB38 share higher levels (88-96%) of amino 162 

acid sequence similarity than with MYB83 (55-57%). To ascertain these MYB involvement in trichome 163 

development, we mined RNA-seq data from different stages of 717 leaf development. Transcript levels 164 

of MYB186, MYB138 and MYB38 were highest in newly emerged leaves (Leaf Plastochron Index LPI-1) 165 

when trichome initiation occurs (Plett et al., 2010), but quickly declined thereafter in expanding (LPI-5) 166 

and mature (LPI-15) leaves (Figure 1). In contrast, MYB83 transcripts were detected throughout leaf 167 

maturation (Figure 1), weakening support for its potential involvement in trichome development. 168 

 169 

We designed a single gRNA to target a conserved region in exon two of MYB186, MYB138 and MYB38 170 

(Figure 2A) based on the P. trichocarpa v3.1 reference genome and cross-checked using the 717 variant 171 

database (Xue et al., 2015; Zhou et al., 2015) to assure the gRNA target sites were SNP-free in 717. Two 172 

CRISPR/Cas9 constructs were generated (see Methods); the first erroneously omitted a guanine 173 

between the gRNA and the scaffold sequences (referred to as ΔG, Figure 2B), which was corrected in the 174 

second construct (Figure 2A). Both constructs were used for 717 transformation in order to learn 175 

whether ΔG would affect CRISPR/Cas9 editing. In total, 28 independent events generated from the ΔG 176 

construct were all phenotypically indistinguishable from the wild type (WT) and Cas9-only controls 177 

(Figure 2C-J). In contrast, 37 independent events generated from the correct knock out (KO) construct 178 

were glabrous (Figure 2N-R), and one glabrous-like event (KO-27) had a greatly reduced trichome 179 

density across all shoot tissues (leaf, petiole and stem) independent of age (Figure 2K-M). SEM imaging 180 

revealed no trichome initiation or development on the abaxial leaf surface of the glabrous mutants 181 

(Figure 2Q). Epidermal cell morphology of young leaves from tissue cultured plants did not differ 182 

between control and mutant genotypes on either their abaxial (Figure 2F, N) or adaxial surfaces (Figure 183 

2J, R). These results are consistent with roles for MYB186 (Plett et al., 2010) and its paralogs MYB138 184 

and MYB38 in trichome initiation and development.  185 

 186 

Mutation spectrum of duplicated 717 MYB alleles 187 

A random selection of 30 glabrous events, 28 ΔG events, two Cas9-only events and four WT plants were 188 

subject to amplicon deep-sequencing using consensus primers for MYB186, MYB138 and MYB38. Initial 189 

analysis by AGEseq (Xue and Tsai, 2015) showed numerous chimeric edits (mix of edited and unedited 190 

sequences at a given site) not observed in other CRISPR/Cas9-edited 717 transgenics in our experience 191 

(Zhou et al., 2015; Bewg et al., 2018; Tsai et al., 2020). De novo assembly of amplicon reads from control 192 
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samples revealed seven distinct sequences, more than the expected six alleles of the three target genes. 193 

Blast search against the preliminary 717 genome assemblies by the Joint Genome Institute uncovered an 194 

unexpected copy number variation in 717 relative to the P. trichocarpa reference genome. The region 195 

containing paralogous MYB186 and MYB138 on Chromosome (Chr) 8 is found as a tandem duplicate in 196 

one of the 717 subgenomes (Figure 3A). This results in three alleles each for MYB186 and MYB138 (two 197 

on the main subgenome [Chr8m] and one on the alternative subgenome [Chr8a]) and two alleles for 198 

MYB38 on Chr10 (Chr10m and Chr10a, Figure 3A). Two of the eight alleles were identical in the (original) 199 

amplicon region, explaining the seven distinct sequences we recovered from de novo assembly. Based 200 

on the 717 assemblies, we redesigned primers to ensure the amplicons span allele-specific SNP(s) to aid 201 

mutation pattern determination of the eight alleles.  202 

 203 

Amplicon-sequencing showed no editing in the 28 ΔG events, except one (ΔG-24) with a 9 bp deletion at 204 

one of the eight target sites (Supplemental Dataset S1). This translates into a mutation rate of 0.45% 205 

(one out of 224 potential target sites), which suggests a negative effect of the ΔG on CRISPR/Cas9 206 

function (hereafter, the ΔG plants were treated as transformation controls). In contrast, we confirmed 207 

successful editing across the eight alleles in all glabrous mutants except KO-27 (Figure 3B-C, 208 

Supplemental Dataset S1). This event showed six edited and two WT (unedited) alleles, consistent with 209 

trichome detection in this line (Figure 2K-M). In aggregate, small insertions and deletions (indels) were 210 

the predominant edits at all sites (Figure 3B-D), with frameshift deletions of 1 bp (-1), 2 bp (-2) and 4 bp 211 

(-4) accounting for over three quarters of the indel mutations (Figure 3D). In-frame deletions (-3 or -6) 212 

accounted for 10% of indels and were detected in 14 events, including KO-27 (Figure 3B-DThese in-213 

frame mutations are unlikely functional because the gRNA target site is located within the third α-helix 214 

of the R2 domain critical for MYB-DNA interaction (Wang et al., 2020), and because 13 of the events 215 

with in-frame mutations are glabrous. We therefore conclude that all small indels we detected are null 216 

mutations.  217 

 218 

Large genomic dropouts between tandem genes 219 

The vast majority (80%) of the sequenced mutants also harbored potentially large deletions as 220 

evidenced by the dearth of mapped amplicon reads at the target sites, referred to as no-amplification 221 

(NA) alleles (Figure 3B-D, Supplemental Dataset S1). The NA frequencies differed by chromosome 222 

position and were positively correlated with copy number, being highest at the Chr8m sites (four 223 

tandem copies), followed by the Chr8a sites (two tandem copies) and least at the single-copy Chr10 sites 224 
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(Figure 3A-B). The NA alleles on Chr8 often spanned consecutive copies, suggesting large dropouts 225 

between two gRNA cleavage sites. To support this idea, we examined a subset of mutant lines using 226 

allele-specific primers for PCR amplification of the target genes. As expected, NA alleles yielded no PCR 227 

products, whereas alleles previously detected by amplicon sequencing produced observable PCR 228 

products (Supplemental Figure S1). We next used consensus primers for PCR amplification of all six Chr8 229 

(MYB186 and MYB138) alleles, approximately 850 – 950 bp, from three control plants and four KO lines 230 

each with 4-5 NA alleles on Chr8. These KO lines had reduced PCR band intensity when compared with 231 

controls (Figure 4A-B). Sanger sequencing of the PCR products resulted in clean chromatograms with 232 

clear nucleotide peaks throughout the sequenced length for KO-5 and KO-69 (Figure 4C), two mutant 233 

lines with only one detectable Chr8 allele (Figure 4B). In contrast, the chromatograms for KO-63, KO-70 234 

(both containing two detectable Chr8 alleles) and WT samples were noisy as would be expected for 235 

mixed template (Figure 4B-C). The Sanger sequencing data of KO-5 and KO-69 not only confirmed the 236 

indel pattern (-2 in both cases) detected by amplicon sequencing, but also supported the occurrence of 237 

gene fusion between two gRNA cleavage sites, based on SNP patterns upstream and downstream of the 238 

gRNA target (Figure 4B-C). KO-5 harbors a fusion junction between MYB186m1 and MYB138m1 with a 239 

~29 Kb genomic dropout, whereas KO-69 contains a fusion of MYB138m1 and MYB138m2 with a ~62 Kb 240 

genomic dropout (Figure 4B-C, Supplemental Figure S2). Both events likely contain additional large 241 

deletions or genomic fusions, as allele(s) downstream (KO-5) or upstream (KO-69) of the respective 242 

fusion point could not be PCR amplified (Figure 4B). Regardless, our findings show that a single gRNA is 243 

highly effective for multiplex KO of tandem duplicates via either small indels or large deletions.  244 

 245 

Assessment of off-target activity in mutants 246 

A combination of computational prediction and experimental verification was used to assess off-target 247 

effects. Potential off-target sites of the gRNA were predicted by CCTop (Stemmer et al., 2015) using the 248 

P. trichocarpa v3.1 reference genome as well as the two SNP-substituted Pta717 v2 (P. alba and P. 249 

tremula) subgenomes (Xue et al., 2015). The same four exonic locations were ranked among the top 250 

potential off-target sites (excluding intergenic or unassembled scaffold sequences) across the three 251 

genomes, each having three mismatches with the gRNA sequence. We designed three sets of primers to 252 

examine potential editing at the four off-target sites; OT1 (Potri.004G115600 and Potri.004G118000), 253 

OT2 (Potri.004G138000), and OT3 (Potri.014G024400). Amplicon sequencing of 20 trichomeless mutants 254 

found no off-target activity across these four sites (Supplemental Dataset S2).  255 

 256 
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Absence of triterpenes in trichomeless leaves 257 

Trichomes as epidermal outgrowths are covered with waxy cuticles like other epidermis cells (Hegebarth 258 

et al., 2016). The striking glabrous phenotype of the mutants prompted us to compare leaf wax 259 

composition between control and trichomeless plants. Total wax load of mature leaves (extractable wax 260 

from leaf surface) did not change significantly between genotypes (Figure 5A). Alkanes were the most 261 

abundant class of leaf cuticular waxes detected in 717 and differed little between control and 262 

trichomeless plants (Figure 5B). In contrast, levels of triterpenes, fatty alcohols and β-sitosterol were 263 

significantly reduced in the mutants (Figure 5B-D). Specifically, the wax of mutant leaves was devoid of 264 

any triterpenes, including α-amyrin, β-amyrin, β-amyrone and lupenone (Figure 5E). Two primary 265 

alcohols, 1-octacosanol (C28) and 1-hexacosanol (C26), were depleted in the mutants by >50% (Figure 266 

5C), and β-sitosterol, by 42% (Figure 5D). To further investigate the absence of triterpenes in the mutant 267 

wax, whole leaf tissues were also profiled for compounds that were significantly reduced in cuticular 268 

wax. Again, triterpenes were not detected in the leaves of trichomeless mutants (Figure 5E), whereas 1-269 

octacosanol, 1-hexacosanol and β-sitosterol were detected at levels comparable with controls (Figure 270 

5C,D). The data support a previously unsuspected link between triterpene accrual and non-glandular 271 

trichomes in poplar.  272 

 273 

 274 

 275 

DISCUSSION  276 

 277 

The present study demonstrates that a single gRNA targeting conserved genomic sites is highly effective 278 

for multiplex editing in poplar. The 30 independent KO lines experienced an average of 5.4 CRISPR/Cas9-279 

mediated cleavages per line based on indel alleles, which is likely an underestimate because many NA 280 

alleles may also result from CRISPR/Cas9 cleavages as shown for KO-5 and KO-69 (Figures 3 and 4). The 281 

unexpected genomic complexity in the hybrid 717 highlights the importance of ensuring SNP-free 282 

targets for gRNA design (Zhou et al., 2015), as well as the challenge of decoding multiplexed edits among 283 

highly homologous gene duplicates.  284 

 285 

The negligible editing by the ΔG construct (Supplementary Dataset S1) provides insight into scaffold 286 

structure and stability. The ΔG configuration can lead to two hypothetical outcomes: either the guanine 287 

is omitted from the scaffold and the gRNA remains intact and capable of base pairing to the target sites 288 
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for Cas9 cleavage, or the guanine is sequestered for secondary structure folding of the scaffold, resulting 289 

in a 3U-truncated gRNA no longer PAM-adjacent at the target sites (Figure 2B). The lack of mutations in 290 

ΔG transformants supports the latter scenario and is consistent with transcription and folding of gRNA 291 

molecules preceding their base-pairing with genomic targets. Our finding suggests that 3’-truncated 292 

gRNA could serve as an alternative approach for generating transgenic controls. 293 

 294 

A number of methods are commonly used for decoding CRISPR-mediated mutation patterns, including 295 

restriction digestion, endonuclease-based mismatch detection, gene-/allele-specific PCR sometimes in 296 

conjunction with cloning and/or Sanger sequencing (Figure 4), or amplicon deep sequencing (Figure 3). 297 

The pros and cons of these methods have been discussed elsewhere (e.g., Germini et al., 2018). Analysis 298 

of genome editing across multiple target sites poses additional challenges over mono-targeted 299 

experiments, especially when highly homologous target and flanking sequences are encountered. These 300 

multiplex scenarios generally exceed the resolution of most methods or may require additional assays 301 

(e.g., allele-specific PCR) to determine editing outcomes. In the case exemplified here, deep sequencing 302 

of a pooled library of amplicons obtained with consensus primers for all eight target alleles was highly 303 

effective for decoding multiplexed edits. The use of consensus primers provides built-in controls for 304 

each PCR, allowing for high confidence calling of NA alleles (see Supplemental Dataset S1) which are 305 

otherwise difficult to distinguish from failed PCR in individual reactions. As another advantage, the 306 

amplicon deep sequencing data can be used for de novo assembly which in our case led to the discovery 307 

of unexpected copy number variations of MYB186 and MYB138 in the experimental poplar 717 308 

genotype. Although technical limitations remain in short-read mapping to highly homologous sites, 309 

inclusion of allele-specific SNPs within the amplicon region and adoption of bioinformatic programs with 310 

parameter tuning capabilities (e.g., AGEseq) are key to multiplexed mutation pattern determination. 311 

 312 

The glabrous mutants (Figure 2) provide strong support for an essential role of PtaMYB186/138/38 in 313 

the initiation of trichome development in 717. Additionally, the low trichome density of KO-27 suggests 314 

that MYB38 plays a redundant but minor role in leaf/stem trichome initiation (Figures 2 and 3). Follow-315 

up research, including allele-specific KOs, is needed to dissect the functional redundancy and allele-dose 316 

response of clade 15 MYB members more fully. The unedited (WT) MYB38 alleles in KO-27 appear stable 317 

during vegetative propagation as this event has maintained a low trichome density for over two years in 318 

both tissue culture and greenhouse environments. This adds to previously reported stability of CRISPR 319 

editing outcomes in clonally propagated poplar (Bewg et al., 2018) 320 
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 321 

The loss of trichomes did not significantly affect the total epidermal wax load but led to a complete 322 

absence of triterpenes both in cuticular wax and whole leaves of the mutants. It is unlikely that 323 

MYB186/138/38 have an additional role in triterpene biosynthesis (i.e., lack of triterpenes as a direct KO 324 

effect) because of their recent duplication history (Figure 1) and because a recent report implicated 325 

phylogenetically distinct MYBs in triterpene regulation (Falginella et al., 2021). We interpret the absence 326 

of triterpenes in trichomeless leaves as suggesting a role for non-glandular trichomes in triterpene 327 

accrual in poplar. While glandular trichomes are well known for their roles in biosynthesis and storage of 328 

terpenes (Lange and Turner, 2013), the presence of terpenes in non-glandular trichomes has only been 329 

reported recently (Santos Tozin et al., 2016; Dmitruk et al., 2019). The genetic evidence presented 330 

herein provides strong support for a functional link between triterpenes and non-glandular trichomes 331 

that warrants further investigation. 332 

 333 

The glabrous phenotype of the null mutants we obtained highlights the potential utility of trichomes as 334 

a visual reporter. Assessments of CRISPR/Cas functionality often target the chlorophyll biosynthetic 335 

enzyme phytoene desaturase (PDS) (Norris et al., 1995), as mutations result in an albino phenotype 336 

(Shan et al., 2013; Ma et al., 2015; Xie et al., 2015). Whilst phenotypically obvious, PDS mutations are 337 

lethal for the regenerated plant, thus limiting follow-up investigations. Alternatively, the glabrous 338 

phenotype achieved by KO of trichome-regulating MYBs is non-lethal and no inhibition to plant growth 339 

was detected. This allows stacked mutagenesis of these mutants, including reparative transformations 340 

to restore trichome initiation. The use of trichomes as a visual reporter for CRISPR/Cas9 mutation or 341 

repair of a defective allele has been established in Arabidopsis (Hahn et al., 2017; Hahn et al., 2018) 342 

which provides support for further developing this system in poplar. 343 

 344 

 345 

MATERIALS AND METHODS  346 

 347 

Generation of KO mutants 348 

The ∆G and KO constructs in p201N-Cas9 (Jacobs et al., 2015) were prepared by Gibson assembly. PCR 349 

was used to amplify the p201N-Cas9 binary vector following SwaI (New England BioLabs) digestion, and 350 

the Medicago truncatula MtU6.6 promoter and scaffold fragments from HindIII and EcoRI (New England 351 

BioLabs) digested pUC-gRNA shuttle vector (Jacobs et al., 2015), with Q5 High-Fidelity DNA Polymerase 352 
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(New England BioLabs) and primers (Sigma) listed in Supplemental Table S1. The p201N-Cas9 (Addgene 353 

59175) and pUC-gRNA (Addgene 47024) plasmids were both gifts from Wayne Parrott. Two pairs of 354 

oligos (Sigma) corresponding to the consensus gRNA target site in exon two of MYB186 355 

(Potri.008G089200), MYB138 (Potri.008G089700) and MYB38 (Potri.010G165700) were assembled with 356 

p201N-Cas9. The NEBuilder HiFi DNA Assembly Cloning Kit (New England Biolobs) was used to assemble 357 

p201N-Cas9, MtU6.6 promoter and scaffold fragments with a pair of oligos containing the gRNA target 358 

sequence (Supplemental Table S1). Following transformation into DH5α E. coli (Zymo Research Mix & 359 

Go! Competent Cells), PCR-positive colonies were used for plasmid purification before Sanger 360 

sequencing (Eurofins) confirmation. Plasmids were then heat-shocked into Agrobacterium tumefaciens 361 

strain C58/GV3101 (pMP90) (Koncz and Schell, 1986) and confirmed by colony PCR. 362 

 363 

Populus tremula x alba (IRNA 717-1B4) transformation and regeneration was performed as outlined in 364 

Meilan and Ma (2006), except 0.05 mg/L 6-benzylaminopurine was used in shoot elongation media, and 365 

200 mg/L L-glutamine was added to all media, with 3 g/L gellan gum (PhytoTechnology Lab) as a gelling 366 

agent. Following a 2-day agrobacterial cocultivation, leaf discs were washed in sterile water followed by 367 

washing in 200 mg/L cefotaxime and 300 mg/L timentin with shaking for 1.5 hr. Transformants were 368 

selected on media supplemented with 100 mg/L kanamycin, 200 mg/L cefotaxime and 300 mg/L 369 

timentin for callus induction and shoot regeneration and with kanamycin and timentin for shoot 370 

elongation and rooting. All cultures were grown and maintained at 22°C under a 16-hr light/8-hr dark 371 

photoperiod with Growlite® FPV24 LED (Barron Lighting Group) at ~150 µmol/m2/s.  372 

 373 

RNA-seq analysis 374 

For developmental profiling, LPI-1, LPI-5 and LPI-15 were collected from three greenhouse-grown WT 375 

plants (~5 ft in height) for RNA extraction using Direct-zol RNA MiniPrep kit (Zymo Research) with Plant 376 

RNA Purification Reagent (Invitrogen). RNA-seq library preparation and Illumina NextSeq 500 sequencing 377 

was performed at the Georgia Genomics and Bioinformatics Core. We obtained 10.8-13.3 PE75 reads 378 

per sample. After pre-processing to remove adapter and rRNA sequences, reads were mapped to the 379 

717 SNP-substituted genome sPta717 v2 (Xue et al., 2015) using STAR v2.5.3a (Dobin and Gingeras, 380 

2015). Transcript abundance in FPKM (fragments per kilobase of transcript per million mapped reads) 381 

was estimated by featureCounts v1.5.2 (Liao et al., 2014).  382 

 383 

Amplicon sequencing determination of mutation spectrums  384 
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Newly emerged leaves were excised from individual events in tissue culture for genomic DNA extraction 385 

(Dellaporta et al., 1983). The DNA pellet was resuspended in water with RNase A (10 µg/mL) for 386 

amplicon library preparation using GoTaq G2 Green Master Mix (Promega) and primers (Supplemental 387 

Table S1) spanning the gRNA target site (between 264 bp to 280 bp). Samples were then barcoded with 388 

Illumina amplicon indexing primers and pooled for Illumina MiSeq nano PE150 sequencing performed at 389 

the University of Georgia’s Georgia Genomics and Bioinformatics Core. Demultiplexed sequence reads 390 

were analyzed by the AGEseq (Analysis of Genome Editing by Sequencing) program (Xue and Tsai, 2015), 391 

with mismatch allowance set at 1%, followed by manual curation.  392 

 393 

Because initial amplicon data analysis revealed lower editing efficiencies (<90%) than we typically 394 

observed in 717 (Zhou et al., 2015; Bewg et al., 2018) at several target sites, we performed de novo 395 

assembly of WT amplicon reads using Geneious, and recovered seven distinct alleles. We then searched 396 

the JGI draft 717 genome assembly v1.0 with the P. trichocarpa Nisqually-1 v3.1 (Phytozome v12) 397 

MYB186, MYB138 and MYB38 gene models and extracted the surrounding 50-150 Kb regions from Chr8 398 

and Chr10 for manual annotation against the P. trichocarpa Nisqually-1 reference (Figure 3A). The 399 

matching MYB gene sequences were extracted for error correction using 717 resequencing data (Xue et 400 

al., 2015). Curated sequences were used for new (amplicon and allele-/gene-specific) primer design and 401 

as references in amplicon data analysis. In the case of WT and transgenic controls with no editing, 402 

erroneous read assignments—and hence indel calls—still remained because the amplicon region 403 

between some alleles differs only in the number of intronic dinucleotide (GT) repeats (Supplemental 404 

Dataset S1). Misassigned reads led to erroneous indel calls of -2, +2 or their multiples outside of the 405 

gRNA target site. For this reason, WT and control samples were processed by ustacks from Stacks 2.3 406 

(Catchen et al., 2011). Parameters were adjusted to avoid collapsing reads with SNPs and/or Indels from 407 

paralogous alleles into the same tag group and gapped alignments were disabled. Tags from the output 408 

were then used for allele assignment. 409 

 410 

Determination of leaf and cuticle wax compositions 411 

Leaf punches (25 mm diameter) were taken from mature leaves of similar size (between LPI-10 and LPI-412 

15) of soil-grown plants in a growth chamber and washed in 4 mL of methylene chloride for 30 sec. The 413 

washes were dried under a continuous N2 stream before resuspension in 400 µL chloroform. A 200 µL 414 

aliquot was subsequently dried under vacuum and the residues shipped to the Oak Ridge National 415 

Laboratory for analysis. Sorbitol (1 mg/mL) was added to the residues as an internal standard and re-416 
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dried under N2. For whole leaf analysis, liquid nitrogen-ground and freeze-dried powders from LPI-5 (25 417 

mg) of control and KO plants were extracted by 80% ethanol to which sorbitol (1 mg/mL) was added and 418 

dried under N2. The samples were derivatized prior to analysis on an Agilent Technologies 7890A GC 419 

coupled to a 5975C inert XL MS fitted with an Rtx-5MS capillary column with a 5m Integra-Guard column 420 

(Restek) as described in Holwerda et al. (2014). Compound identification was based on mass spectral 421 

fragmentation patterns against the NIST08 database and an in-house library built with authentic 422 

standards.  423 

 424 

Tissue Imaging and SEM analysis 425 

Images of poplar were taken with either a Google Pixel 3a running Android v11, or a Leica M165 FC 426 

dissection microscope attached to a Leica DFC500 camera running Leica Application Suite software 427 

v3.8.0. Scanning electron microscopic (SEM) observations were obtained using Hitachi 3400 NII (Hitachi 428 

High Technologies America) microscope following optimized protocols at the Center for Ultrastructural 429 

Research at the Fort Valley State University. LPI-1 from growth chamber plants or young leaves of tissue 430 

culture plants were processed for primary fixation at 25°C in 2 % glutaraldehyde (Electron Microscopy 431 

Sciences, EMS) prepared with Sorensen’s Phosphate buffer, pH 7.2 (EMS) for one hour and then washed 432 

three times for 15 min each with the same buffer before secondary fixation in 1% osmium tetroxide 433 

(EMS) prepared in Sorensen’s Phosphate buffer, pH 7.2 for 1 hour at 25°C. After three washes with dH2O 434 

for 15 min each, fixed tissues were dehydrated with ethanol series passing through 25%, 50%, 75%, and 435 

95% for 15 min each, followed by three changes of 100% ethanol for 15 min each. Critical point drying of 436 

fixed samples was conducted using a critical point dryer (Leica) and then samples were placed on Hitachi 437 

M4 aluminum specimen mounts (Ted Pella) using double sided carbon adhesive tabs (EMS) for coating. 438 

Gold coating of 50 Å thickness was done for 60 sec using sputter coater (Denton Desk V) under a vacuum 439 

pressure of 0.05 torr. Image acquisition in various magnification was done at accelerating voltage of 5 440 

KV. 441 

 442 

ACCESSION NUMBERS 443 

The RNA-seq data has been deposited to the National Center for Biotechnology Information’s Sequence 444 

Read Archive under accession No. PRJNA753499. 445 

 446 
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 454 

SUPPORTING INFORMATION 455 

Table S1. Primers used in this study. 456 

Figure S1. PCR confirmation of NA alleles using allele-specific primers.  457 

Figure S2. Sequence alignment of wild type and fusion MYB alleles from KO-5 and KO-69. 458 

Dataset S1. CRISPR/Cas9 mutation patterns of the eight target MYB alleles in ∆G and KO lines. 459 

Dataset S2. Assessment of off-target activity in trichomeless mutants.  460 

 461 

FIGURE LEGENDS 462 

Figure 1. Expression of clade 15 MYB transcription factors during Populus leaf maturation. 463 

A simplified phylogenetic tree is shown with duplication history noted on the left. Data are mean±SD of 464 

n=3. LPI, leaf plastochron index; FPKM, fragments per kilobase of transcript per million mapped reads; 465 

MYB186, Potri.008G089200; MYB138, Potri.008G089700; MYB38, Potri.010G165700; and MYB83, 466 

Potri.017G086300. 467 

 468 

Figure 2. CRISPR/Cas9 KO of trichome-regulating MYBs.  469 

A, Schematic illustrations of the MYB gene structure, gRNA target site, and base pairing between the 470 

genomic target (black) and the gRNA spacer (red)-scaffold (blue) molecule. Black line denotes the 471 

protospacer adjacent motif (PAM). B, Zoomed-in view of the ΔG vector configuration at the gRNA 472 

spacer-scaffold junction with a guanine omission. C-R, Representative shoot tip (C, G, K, O) and LPI-1 473 

abaxial (D, H, L, P) phenotypes and SEM images (E, F, I, J, M, N, Q, R) of soil-grown WT (D, E), Cas9 vector 474 

control (C), ΔG control (G-I), KO-27 (K-M), and null mutant (O-Q) plants, and leaf abaxial (F, N) or adaxial 475 

(J, R) images of tissue cultured ΔG (F, J) and null mutant (N, R) plants. Scale bar = 3 mm (D, H, L, P), 500 476 

µm (E, I, M), 1 mm (Q), or 25 µm (F, J, N, R). 477 

 478 

Figure 3. Mutation analysis of trichomeless mutants.  479 
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A, Schematic illustration of MYB186 and MYB138 on Chr8 subgenomes (main and alternative, or Chr8m 480 

and Chr8a, respectively) and MYB38 on Chr10m and Chr10a of the 717 genome. Neighboring genes are 481 

color coded for synteny and the putative duplication block containing MYB186 and MYB138 on Chr8 is 482 

marked by red brackets. Black triangles denote the eight gRNA target sites. B, Mutation spectrum 483 

determined by amplicon sequencing. The eight alleles are arranged by genomic position for each plant 484 

line and color-coded for the editing outcomes: green, unedited; orange, indel; and grey, no amplification 485 

(NA). C, Representative amplicon sequencing output of three mutant events. All eight alleles, their 486 

detection frequencies and indel patterns (mapped read count and percentage with the indicated 487 

pattern) are shown and colored as in B. The gRNA target sequence is shown on top and protospacer 488 

adjacent motif underlined. Allele-discriminating SNPs are shown in pink (see Supplemental Dataset S1 489 

for the full data). D, Pie chart summary of the overall (left) and indel (right) editing patterns.  490 

 491 

Figure 4. PCR analysis of selected mutant lines. 492 

A, PCR amplification of the six MYB alleles on Chr8 from two WT, one ΔG and four KO lines. The four KO 493 

lines were selected to represent one (KO-5 and KO-69) or two (KO-63 and KO-70) remaining Chr08 494 

alleles. UBC (ubiquitin-conjugating enzyme) was included as loading control. M, molecular weight 495 

marker; ntc, no-template control. B, Mutation patterns of Chr08 alleles in the selected mutant lines as 496 

shown in Figure 3B. Orange triangles connected by dashes represent fusion junctions shown in C. C, 497 

Sanger sequencing of PCR products from A. Sequence alignment of the six alleles flanking the gRNA 498 

target site (red) is shown on top and chromatograms of the same region are shown below. Grey shaded 499 

alignments are introns, with allele-discriminating SNPs shown in pink and homologous intron 2 500 

sequences in blue (shifted upstream by 21 bp in 138m1 and 186m2 due to gaps). PAM is underlined and 501 

boxed in blue for correspondence with the sequence traces below. Black triangles denote the Cas9 502 

cleavage site and black dashed box corresponds to the 2-bp deletion (-2) detected in KO-5 and KO-69. 503 

The two fusion alleles as determined by SNPs are marked below the KO-5 and KO-69 traces (see 504 

Supplemental Figure S2 for the full sequence alignment).  505 

 506 

Figure 5. Cuticular wax composition of trichomeless and control leaves.  507 

A, Total wax load. B, Major classes of cuticular wax. C, Fatty alcohols (C26, 1-hexacosanol; C28, 1-508 

octacosanol) in wax (left) or whole leaves (right). D, β-sitosterol detected in wax (left) or whole leaves 509 

(right). E, Triterpenes detected in wax (top) or whole leaves (bottom). Ergosterone, 14,24-dimethyl-510 

ergosta-8,25-dien-3-one; cycloartanone, 24-methylene cycloartan-3-one; lanosterone, lanosta-8,24-511 
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dien-3-one. Data are mean±SD of n=5. All concentration estimates were based on sorbitol equivalent. 512 

Statistical significance was determined by 2-tailed t-test (* P<0.05, ** P<0.01, *** P<0.001). nd, not 513 

detected. 514 

 515 
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Figure 1. Expression of clade 15 MYB transcription factors during 

Populus leaf maturation. A simplified phylogenetic tree is shown 

with duplication history noted on the left.  Data are mean ± SD of 

n=3. LPI, leaf plastochron index; FPKM, fragments per kilobase of 

transcript per million mapped reads; MYB186, Potri.008G089200; 

MYB138, Potri.008G089700; MYB38, Potri.010G165700; and 

MYB83, Potri.017G086300.
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WT ΔG-24 KO-27 KO-5

Figure 2. CRISPR/Cas9 KO of trichome-regulating MYBs. A, Schematic illustrations of the MYB gene 

structure, gRNA target site, and base pairing between the genomic target (black) and the 

gRNAspacer (red)-scaffold (blue) molecule. Black line denotes the protospacer adjacent motif 

(PAM). B, Zoomed-in view of the ΔG vector configuration at the gRNA spacer-scaffold junction 

with a guanine omission. C-R, Representative shoot tip (C, G, K, O) and LPI-1 abaxial (D, H, L, P) 

phenotypes and SEM images (E, F, I, J, M, N, Q, R) of soil-grown WT (D, E), Cas9 vector control (C), 

ΔG control (G-I), KO-27 (K-M), and mutant (O-Q) plants, and leaf abaxial (F, N) or adaxial (J, R) 

images of tissue cultured ΔG (F, J) and mutant (N, R) plants. Scale bar = 3 mm (D, H, L, P), 500 µm 

(E, I, M), 1 mm (Q), or 25 µm (F, J, N, R). 
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Figure 3. Mutation analysis of trichomeless mutants. A, Schematic illustration of MYB186 and MYB138 on Chr8 subgenomes (main 

and alternative, or Chr8m and Chr8a, respectively) and MYB38 on Chr10m and Chr10a of the 717 genome. Neighboring genes are 

color coded for synteny and the putative duplication block containing MYB186 and MYB138 on Chr8 is marked by red brackets. 

Black triangles denote the eight gRNA target sites. B, Mutation spectrum determined by amplicon sequencing. The eight alleles are 

arranged by genomic position for each plant line and color-coded for the editing outcomes: green, unedited; orange, indel; and 

grey, no amplification (NA). C, Representative amplicon sequencing output of three mutant events. All eight alleles, their detection 

frequencies and the indel patterns (mapped read count and percentage with the indicated pattern) are shown and colored as in B. 

The gRNA target sequence is shown on top and protospacer adjacent motif underlined. Allele-discriminating SNPs are shown in 

pink (see Supplemental Dataset S1 for the full data). D, Pie chart summary of the overall (left) and indel (right) editing patterns.
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138m1 GCGTGCGTGTATAGGACTTCAAAGATGCGGGAAGAGCTGTAGACTCAGGTGGACCAACTACCTTCG...GCTCTTCTTGGAAACAGGTGATATATAGGATCTTGAAATTGACGGTCACAC

186m2 GTGCGTGTGTGTAGGACTTCAAAGATGCGGGAAGAGCTGTAGACTCAGGTGGACCAACTACCTTCG...GCTCTTCTTGGAAACAGGTGATATATAGGATCTTGAAATTGACGGTCACAC

138m2 GTGTGTGTGTATAGGACTTCAAAGATGCGGGAAGAGCTGTAGACTCAGGTGGACCAACTACCTTCG...GCTCTTCTTGGAAACAGGTGAGATGGTAGTTCCTCGCGGTGATATATATGA
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Figure 4. PCR analysis of selected mutant lines. A, PCR amplification of the six MYB alleles on Chr8 from two WT, one ΔG and 

four KO lines. The four KO lines were selected to represent one (KO-5 and KO-69) or two (KO-63 and KO-70) remaining Chr08 

alleles. UBC (ubiquitin-conjugating enzyme) was included as loading control. M, molecular weight marker; ntc, no-template 

control. B, Mutation patterns of Chr08 alleles in the selected mutant lines as shown in Figure 3B. Orange triangles connected 

by dashes represent fusion junctions shown in C. C, Sanger sequencing of PCR products from A. Sequence alignment of the  

six alleles flanking the gRNA target site (red) is shown on top and chromatograms of the same region are shown below. Grey 

shaded alignments are introns, with allele-discriminating SNPs shown in pink and homologous intron 2 sequences in blue 

(shifted upstream by 21 bp in 138m1 and 186m2 due to gaps). PAM is underlined and boxed in blue for correspondence with 

the sequence traces below. Black triangles denote the Cas9 cleavage site and black dashed box corresponds to the 2-bp 

deletion (-2) detected in KO-5 and KO-69. The two fusion alleles as determined by SNPs are marked below the KO-5 and KO-

69 traces (see Supplemental Figure S2 for the full sequence alignment). 
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Figure 5. Cuticular wax composition of trichomeless and control 

leaves. A, Total wax load. B, Major classes of cuticle wax. C, Fatty 

alcohols (C26, 1-hexacosanol; C28, 1-octacosanol) detected in wax 

(left) or whole leaves (right). D, β-sitosterol detected in wax (left) 

or whole leaves (right). E, Triterpenes detected in wax (top) or 

whole leaves (bottom). Ergosterone, 14,24-dimethyl-ergosta-8,25-

dien-3-one; cycloartanone, 24-methylene cycloartan-3-one; 

lanosterone, lanosta-8,24-dien-3-one. Data are mean±SD of n=5. 

All concentration estimates were based on sorbitol equivalent. 

Statistical significance was determined by 2-tailed t-test (* P<0.05, 

** P<0.01, *** P<0.001). nd, not detected. 
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