

1    **CRISPR-Cas12a induced DNA double-strand breaks are repaired by locus-  
2    dependent and error-prone pathways in a fungal pathogen**

3

4

5    Jun Huang, David Rowe, Wei Zhang, Tyler Suelter, Barbara Valent, David E. Cook\*

6    Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502,

7    USA

8    \*Address correspondence to David E. Cook, [decook@ksu.edu](mailto:decook@ksu.edu)

9    Running Head: Locus-dependent and error-prone DNA repair in a fungal pathogen

10

11

12

13

14

15

16

17 **Abstract**

18 CRISPR-Cas mediated genome engineering has revolutionized functional genomics.  
19 However, basic questions remain regarding the mechanisms of DNA repair following Cas-  
20 mediated DNA cleavage. We developed CRISPR-Cas12a ribonucleoprotein genome  
21 editing in the fungal plant pathogen, *Magnaporthe oryzae*, and found frequent donor  
22 DNA integration despite the absence of long sequence homology. Interestingly,  
23 genotyping from hundreds of transformants showed that frequent non-canonical DNA  
24 repair outcomes predominated the recovered genome edited strains. Detailed analysis  
25 using sanger and nanopore long-read sequencing revealed five classes of DNA repair  
26 mutations, including single donor DNA insertions, concatemer donor DNA insertions,  
27 large DNA deletions, deletions plus donor DNA insertions, and infrequently we observed  
28 INDELs. Our results show that different error-prone DNA repair pathways resolved the  
29 Cas12a-mediated double-strand breaks (DSBs) based on the DNA sequence of edited  
30 strains. Furthermore, we found that the frequency of the different DNA repair outcomes  
31 varied across the genome, with some tested loci resulting in more frequent large-scale  
32 mutations. These results suggest that DNA repair pathways provide preferential repair  
33 across the genome that could create biased genome variation, which has significant  
34 implications for genome engineering and the genome evolution in natural populations.

35

36

37 **Introduction**

38 The CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats and  
39 CRISPR associated protein 9) genome editing platform has been widely used in multiple  
40 organisms including animals, plants, and fungi for functional genomics studies (1-5). The  
41 basic requirement for CRISPR-Cas genome engineering is a Cas endonuclease protein  
42 complexed with a single-guide RNA targeting a genomic region following a protospacer  
43 adjacent motif (PAM), such as NGG in the case of the commonly used SpCas9 protein from  
44 *Streptococcus pyogenes* (1,2). Another Cas effector, termed Cas12a (formerly named as  
45 Cpf1), is an alternative genome editing tool that has several unique features compared to  
46 Cas9 based effectors (6-12). For instance, Cas12a recognizes a T-rich PAM, which can be  
47 better suited for editing some genomic regions (7). Also, the RNase activity of Cas12a can  
48 process an array (single RNA molecule with multiple guide sequences) into multiple RNA  
49 molecules of single sequences, which allows more convenient multiplex genome  
50 engineering (6).

51 A critical component determining the outcome of genome engineering is DNA  
52 double-strand break (DSB) repair, mediated by endogenous DNA repair machinery (13).  
53 Proper repair of DNA DSBs, whether induced by Cas effectors or under natural conditions,  
54 is critical to maintain genomic stability, where repair failure can result in altered genome  
55 function and be potentially lethal (14-16). DNA DSB repair is mediated by two major  
56 pathways, canonical non-homologous end joining (C-NHEJ) and homology direct repair  
57 (HDR) (17-19). One of the major differences between C-NHEJ and HDR is the initial  
58 processing of DNA ends at a break site, where HDR requires extensive DNA end resection  
59 (i.e., enzymatic nucleotide removal from DSB site), which is inhibited by NHEJ (19,20). In  
60 the initial steps of C-NHEJ, the Ku70/Ku80 heterodimer interacts with broken DNA ends  
61 to inhibit resection (21), and recruits additional proteins to the site eventually repairing  
62 the DSB via DNA ligase IV (17,22,23). The C-NHEJ pathway does not rely on a homologous  
63 DNA template for repair, and commonly results in small insertions and deletions (INDELs)  
64 (17,24), but there are also examples of accurate NHEJ repair with and without DNA  
65 templates (25,26). For DNA DSB repair via the HDR pathway, template DNA with extended  
66 homologous sequences (typically >100 bp) are used for what is generally considered  
67 accurate repair (18). Two additional DNA DSB repair pathways, which also require end  
68 resection at DSB sites, are termed alternative end-jointing (a-EJ), and single strand  
69 annealing (SSA) (17,18,27). The a-EJ pathway is also referred to as microhomology-  
70 mediated end-joining (MMEJ), theta-mediated end-Joining (TMEJ), and has been called  
71 alternative NHEJ (A-NHEJ) depending on the system and report (28,29). While the three  
72 pathways involving end resection rely on homologous sequence for DSB repair, the length  
73 of homologous sequence used by a-EJ, SSA and HDR is different. The a-EJ repair involves  
74 annealing microhomologous sequences (typically 2-20 bp) and gap filling by DNA

75 polymerase theta (Polθ) near the DSB (30), resulting in small insertions, deletions and  
76 templated insertions in mammalian and plant systems (17,31,32). The SSA pathway  
77 involves annealing with longer homologous sequences (>25 bp), often described to reside  
78 at longer distances from the DSB site and result in larger deletions as the result of  
79 removing 3' non-homologous ssDNA via Rad1-Rad10 endonuclease (17,18,27,30).

80 Many questions remain for how the individual DNA repair pathways interact, such  
81 as their individual contributions to genome stability, their hierarchy for DSB repair, and  
82 variation in DSB repair pathways in microbial eukaryotes. There have been conflicting  
83 reports on the importance and role of a-EJ for repairing DSBs (17,33), however, clear  
84 evidence shows that a-EJ substantially contributes to DNA repair in zebrafish embryos  
85 (34), mouse cell lines (35), *Caenorhabditis elegans* (36), human cell lines (37) and the  
86 model plant *Arabidopsis thaliana* (38). Interestingly, while the identification of C-NHEJ  
87 independent DSB repair was first described in *Saccharomyces cerevisiae* (39), there are  
88 no reports of TMEJ in yeast or filamentous fungi. There are also clear differences for DSB  
89 repair across fungi, such as HDR being highly active in yeast *S. cerevisiae*, while C-NHEJ  
90 predominates DNA DSB repair in most filamentous fungi (40-42).

91 In this research, we developed efficient genome editing using Cas12a-based  
92 ribonucleoprotein (RNP) in *Magnaporthe oryzae* (synonym of *Pyricularia oryzae*), a  
93 filamentous fungal pathogen of monocots threatening world food security (43-45). The use  
94 of CRISPR editing in fungi can increase the speed and efficiency of traditional gene  
95 replacement strategies, and the use of RNPs can alleviate problems related to cytotoxicity  
96 and off-target mutations (46-48). Surprisingly, we found that Cas12a editing in *M. oryzae*  
97 resulted in numerous mutants that contained severe DNA alterations at the targeted  
98 locus. Using long-read DNA sequencing and *de-novo* assembly, we confirmed at  
99 nucleotide resolution, multiple classes of DNA mutations, suggesting the involvement of  
100 different DNA repair mechanisms. The frequency of DNA repair outcomes after Cas12a  
101 editing were found to be locus-dependent across five tested loci. These results provide a  
102 first detailed report of variable DNA repair outcomes after Cas12a-RNP editing which have  
103 significant implications for natural and induced DNA repair in fungal genomes.

104

## 105 **Materials and Methods**

### 106 **Fungal strains and incubation condition**

107 *M. oryzae* field isolates O-137 (China) and Guy11 (French Guyana) were used as wild-types  
108 in this study (43,49). *buf1* mutants CP641 (gained from O-137 through spontaneous  
109 mutation) and CP281 (derived from weeping lovegrass pathogen 4091-5-8 through UV-  
110 mutagenesis) were used as a control in identifying the buff phenotype (Valent,  
111 unpublished data). JH7#1 and #2 are FK506 resistant mutants caused by a mutation in the  
112 *FKBP12* gene. The fungal cultures were maintained under light at 25 °C on OTA to observe

113 mycelial color change. For high-molecular-weight DNA extraction and protoplast  
114 preparation, related mycelial plugs for different strains from OTA were cultured in liquid  
115 CM at 28°C, 120rpm for 3-4 days as described before (50).

116 ***In vitro* crRNA synthesis and LbCas12a RNP assembly**

117 Oligos including T7 promoter (taatacgactcaatatagg), LbCas12a direct repeat  
118 (taatttctactaaggtagat), and 23-nt target sequences (Supplementary Table 2) were  
119 annealed and amplified to make the DNA template for *in vitro* RNA synthesis. HiScribe™  
120 T7 High Yield RNA Synthesis Kit (New England BioLabs, catalog# E2040S) was used to make  
121 the crRNA/gRNA with the above prepared DNA template according to manufacturer's  
122 protocol. Monarch® RNA Cleanup Kit (New England BioLabs, catalog# T2050L) was used  
123 to purify synthesized gRNA after DNase I (RNase-free) treatment (New England BioLabs,  
124 catalog# M0303S). 5 µg purified LbCas12a (New England BioLabs, catalog# M0653T) was  
125 incubated with equal molar purified gRNA (near 0.5 µg) at 25°C for 15 mins for RNP  
126 assembly.

127 **DNA donor preparation**

128 pFGL821 (hygromycin selection, a gift from Dr. Naweed Naqvi; Addgene plasmid # 58223),  
129 and pFGL921 (G418 selection) (50) were used as DNA templates for amplifying DNA donor  
130 with related primer pairs (Supplementary Table 2). Long homologous sequences of SS  
131 flanked *HYG* DNA donor were amplified from O-137 genomic DNA and inserted into  
132 KpnI/XbaI and SalI/PstI sites in pFGL821 (Supplementary Table 2). Phusion® High-Fidelity  
133 DNA Polymerase (New England BioLabs, catalog# M0530L) was used for DNA donor  
134 amplification.

135 **Protoplast preparation and polyethylene glycol (PEG) mediated transformation**

136 *M. oryzae* protoplast preparation was performed as described previously with minor  
137 modifications (51). The fungal mycelium was filtered and dried through 2-layer 6<sub>1/2</sub> in  
138 Disks Non Gauze Milk Filter papers, followed by addition of lysing solution (10 mg/mL  
139 Lysing Enzymes from *Trichoderma harzianum*, Sigma, catalog# L1412-10G, dissolved in  
140 0.7M NaCl solution) and digestion at 30 °C with 70-80 rpm for 2-3 hours in the dark. After  
141 washing with 1xSTC (20% w/v Sucrose, 50mM Tris-HCl pH=8.0, 50mM CaCl<sub>2</sub> dissolved in  
142 water), the concentration of released protoplasts was adjusted to 8x10<sup>6</sup>-  
143 5x10<sup>7</sup> protoplasts/mL for transformation.

144 For protoplast transformation, RNP complexes (5 µg LbCas12a protein complexed with  
145 equal molar amount of crRNA/gRNA) and 3 µg DNA donor were mixed with 200 µl  
146 concentrated protoplast at room temperature for 20-25 mins. 1 mL 60% PEG solution  
147 (60% PEG4000, 20% w/v sucrose, 50 mM Tris-HCl pH=8.0, 50 mM CaCl<sub>2</sub>) was added to  
148 above mixture and incubated at room temperature for 20-25 mins. This was followed by  
149 incubation with 5 mL TB3 liquid medium at 28°C, 90rpm, for 10-18 hours. After overnight  
150 incubation, the fungal cultures were mixed with 50mL molten (near 50-60°C) TB3 solid

151 medium containing 100 µg/mL hygromycin (Corning, catalog# 45000-806) or 300 µg/mL  
152 G418 (VWR, catalog# 97064-358). The fungal medium suspension was poured into a plate  
153 (150 x 15 mm), dried and then overlaid and cultured with another 50mL molten TB3 solid  
154 medium plus 200 µg/mL hygromycin, or 600 µg/mL G418 in dark condition at 28°C for 5-  
155 7 days. Potential fungal transformants were picked and sub-cultured on CM, OTA or RPA  
156 for further phenotyping and genotyping. CM was supplemented with 1µg/mL FK506 (LC  
157 laboratories, catalog# NC0876958), for testing the sensitivity to FK506.

#### 158 **PCR genotyping**

159 To test genotypes for the gene of interest, Q5® High-Fidelity DNA Polymerases (New  
160 England BioLabs, catalog# M0491) was used with 2 min extension time (technically up to  
161 6 kb amplification) for the first-round genotyping with gene specific primer pairs  
162 (gene\_F/R) (Supplementary Table 2). Upstream and downstream regions and *ACTIN* were  
163 amplified with *Taq* DNA Polymerase (New England BioLabs, catalog# M0273)  
164 (Supplementary Table 2).

#### 165 **High-molecular-weight DNA extraction and library preparation for Nanopore 166 sequencing**

167 The DNA extractions for long-read nanopore sequencing were performed following the  
168 online protocol (<https://www.protocols.io/view/high-quality-dna-from-fungi-for-long-read-sequencing-k6qczdw>) (52). g-Tube (Covaris, catalog# 520079) was used for shearing  
169 high-molecular-weight DNA into 20kb fragments followed by purification with AMPure XP  
170 beads (Beckman, catalog# NC9959336). Nanopore sequencing library preparation  
171 followed the Native barcoding genomic DNA (with EXP-NBD104, EXPNBD114, and SQK-  
172 LSK109) protocol ([https://community.nanoporetech.com/protocols/native-barcoding-genomic-dna/checklist\\_example.pdf](https://community.nanoporetech.com/protocols/native-barcoding-genomic-dna/checklist_example.pdf)). Eight barcoded DNAs from independent Cas12a  
173 edited strains were sequenced in two nanopore MinION platforms for 72 hours.  
174

#### 175 **Genome assembly and long-read mapping**

176 Raw MinION fast5 files were transferred to fastq files by Guppy (version 3.4.4,  
177 <https://nanoporetech.com/nanopore-sequencing-data-analysis>) with the following  
178 parameters: --disable\_pings --compress\_fastq --flowcell FLO-MIN106 --kit SQK-LSK109.  
179 Adaptors were removed from basecalled reads by Porechop (version 0.2.4,  
180 <https://github.com/rrwick/Porechop>). Canu (version 1.9 and 2.2.1,  
181 <https://github.com/marbl/canu>) (53) was used for *de novo* genome assemblies with the  
182 following parameters: genomeSize=45m, minReadLength=1500. Based on the flanking  
183 sequences, the contigs with *BUF1* flanking sequences (including #7, #8 assemblies from  
184 Fig. 3d) were merged manually to scaffold based on the alignment result, when the  
185 contigs containing *BUF1* are not intact. The raw long-read mapping was performed with  
186 minimap2 (version 2.17-r941) (54). The mapping results were adjusted with samtools (55)  
187

188 with following parameter: samtools view -q 60 to reduce the duplicated mapping and  
189 visualized with the Integrative Genomics Viewer (IGV) (version 2.5.0) (56)

#### 190 **Synteny analysis**

191 The synteny plots between sequenced *Δbuf1* and wild-type (O-137) were generated with  
192 Easyfig (version 2.2.5) (57) by with the following parameter: Blast option\_Min. length 30,  
193 Max. e Value 0.001. Each individual synteny plot was modified with Adobe illustrator.

#### 194 **Statistical analysis**

195 Fisher's exact test was performed in RStudio (Version 1.2.5001) with function (fisher.test).

#### 196 **Phylogenetic and domain analysis**

197 The protein sequences of human Polq homologous were extracted from NCBI Genbank  
198 (<https://www.ncbi.nlm.nih.gov/genbank/>) and FungiDB  
199 (<https://fungidb.org/fungidb/app/>). MGG\_15295 (*M. oryzae*), NCU07411 (*Neurospora*  
200 *crassa*), FGRAMPH1\_01G23295 (*Fusarium graminearum*), NP\_955452.3 (*Homo sapiens*),  
201 NP\_084253.1 (*Mus musculus*), NP\_524333.1 (*Drosophila melanogaster*), NP\_498250.3  
202 (*Caenorhabditis elegans*), AT4G32700.2 (*Arabidopsis thaliana*), XP\_015619406 (*Oryza*  
203 *sativa*) and Pp3c5\_12930V3.1 (*Physcomitrella patens*). The Neighbor-joining tree was  
204 made with MEGA X (58) with 1000 bootstrap value. TBtools (59) was used visualized the  
205 domain structure gained from pfam (<http://pfam.xfam.org/>).

206

### 207 **Results**

#### 208 **Cas12a ribonucleoprotein complex mediates efficient DNA editing**

209 To test Cas12a RNP gene editing in *M. oryzae*, we designed two gRNA targeting  
210 the *BUF1* locus that codes for a trihydroxynaphthalene reductase required for fungal  
211 melanin biosynthesis (60). A DNA nuclease competent RNP comprised of purified  
212 LbCas12a protein (*Lachnospiraceae bacterium ND2006*) and *BUF1*-gRNA1 or -gRNA2 were  
213 transferred with donor DNA coding for the hygromycin resistance gene (*HYG*) into *M.*  
214 *oryzae* field isolate O-137 using protoplast transformation (Fig. 1a) (49). The donor DNA  
215 contained short (30 and 35 bp) flanking sequences at the ends, homologous to the *BUF1*  
216 locus, to direct microhomology-mediated end joining (MMEJ donor DNA integration  
217 following Cas12a DNA DSB) (Fig. 1b). Transformed protoplasts were recovered on  
218 hygromycin selection, where >50% displayed the mutant buff phenotype (i.e., orange/tan  
219 color) for both tested gRNAs. Control transformations with donor DNA alone exhibited  
220 wild-type hyphal pigmentation (Fig. 1c and Supplementary Fig. 1). To genotype and  
221 confirm Cas12a-mediated editing of *BUF1*, PCR was used to discriminate wild-type (~1.5  
222 kb product) versus single-copy *HYG* donor insertion (~3.1 kb product) or larger visible PCR  
223 product corresponding to the integration of *HYG* DNA donor, which we refer to as a  
224 'simple insertion' (Fig. 1b, d). The Cas12a-mediated DSB could also be repaired to create  
225 an INDEL resulting in a PCR product indistinguishable from wild-type, while hygromycin

226 resistant transformants with wild-type pigmentation were presumed to have integrated  
227 the selectable marker at a secondary locus (Fig. 1d). Across experiments, the *BUF1* locus  
228 was edited at a rate of ~60% (14/23), but interestingly, all transformants that displayed  
229 the mutant buff phenotype generated with *BUF1*-gRNA1 (7/7), and almost half generated  
230 with the *BUF1*-gRNA2 (3/7), failed to produce a *BUF1* PCR product (Fig. 1e). The other 4/7  
231 mutants generated with *BUF1*-gRNA2 produced a PCR band consistent with integration  
232 of a single copy of the *HYG* coding sequence (Fig. 1e). All recovered transformants  
233 displaying a wild-type hyphal color produced the anticipated wild-type sized PCR product  
234 (Fig. 1e). The *BUF1*-gRNA1 targeted an intron and could therefore have generated DNA  
235 mutants that failed to produce a visible phenotype. To assess this, transformants  
236 generated with *BUF1*-gRNA1 that had a wild-type hyphal color and wild-type PCR  
237 amplicon were sanger sequenced, which showed that all strains with normal  
238 pigmentation had wild-type *BUF1* sequence (Fig. 1e, f). We further confirmed these  
239 results by repeating the experiments in a different rice blast field isolate, termed Guy11  
240 (43). These results using Guy11 were consistent with those observed in O-137, in which  
241 the majority of transformants (12/17) that had the mutant buff phenotype failed to  
242 produce a PCR product from the *BUF1* locus (Fig. 1g and Supplementary Fig. 2). We had  
243 anticipated that the majority of mutants would have a single donor integration mediated  
244 by the homologous sequence on the donor DNA, but this only occurred in ~29% (9/31) of  
245 the O-137 and Guy11 buff mutants. Furthermore, the majority (~71%, 22/31) of repair  
246 events resulted in the inability to generate a PCR amplicon, suggesting a severe DNA  
247 alteration following DNA repair. From these first experiments, out of a total of 41  
248 hygromycin positive transformants generated using Cas12a RNP across the two *M. oryzae*  
249 strains, we did not recover any *BUF1* INDEL mutations as is commonly reported for  
250 CRISPR-Cas DNA editing (Fig. 1f, g).

251  
252 **Extended homologous sequence is not required for donor DNA insertion at the Cas12a**  
253 **double-strand break site**

254 Given that a majority of our mutants did not have a single donor DNA insertion,  
255 we speculated that the homologous sequence (30 and 35 bp) on the donor DNA was not  
256 required for Cas12a-mediated DSB repair. To test this, we performed the experiment  
257 again using Cas12a-RNP and the two gRNAs targeting *BUF1*, but used *HYG* donor DNA that  
258 lacked *M. oryzae* homologous sequence (no-homology *HYG*) (Fig. 2a). Transforming strain  
259 O-137, we obtained 61 hygromycin positive transformants, of which we could confirm 43  
260 had a DNA mutation at *BUF1* (~70% editing efficiency). We found that ~60% (26/43) of  
261 the edited strains were buff colored and produced no PCR product, ~30% (13/43) were  
262 buff color and had a simple DNA insertion (roughly the size of a single copy of the donor  
263 DNA or other larger visible products) and ~9% (4/43) were wild-type color but had an

264 intron INDEL from gRNA1 (Fig. 2b, c, f and Supplementary Fig. 3, 4). We additionally  
265 transformed strain O-137 with the two RNPs simultaneously (*BUF1*-gRNA1 and *BUF1*-  
266 gRNA2) and the no-homology *HYG* DNA donor (Fig. 2d), which resulted in a 75% editing  
267 frequency (12/16), where 42% (5/12) produced no PCR product, and 58% (7/12) had a  
268 simple insertion (Fig. 2d, e, f). Both gRNAs were used to repeat the experiments in the  
269 Guy11 strain producing a ~69% editing efficiency (20/29), where 45% (9/20) produced no  
270 PCR product, 55% (11/20) had a simple insertion, and none of the 29 hygromycin positive  
271 transformants had an INDEL at *BUF1* (Fig. 2g and Supplementary Fig. 5). For the dual RNP  
272 transformation ~42% (5/12) had a DNA mutation, where 20% (1/5) showed the PCR  
273 negative genotype and 80% (4/5) had a simple insertion (Fig. 2g and Supplementary Fig.  
274 5). Through sanger sequencing randomly selected ‘simple insertion’ transformants, we  
275 found frequent ~2bp microhomology between no-homology *HYG* DNA donor and *BUF1*  
276 locus at the integration junction. (Fig. 2h). Additionally, to rule out that our observations  
277 are dependent on the *HYG* donor DNA and hygromycin selection, we performed the same  
278 experiments with a different donor DNA sequence coding for resistance to the drug G418  
279 (Geneticin) (50). We again recovered transformants with the buff mutant phenotype and  
280 found that 70% (14/20) were PCR negative and 25% (5/20) had PCR amplification that  
281 suggested a simple insertion. We also recovered a single transformant (1/20) that carried  
282 a *BUF1* INDEL from guide2 through templated insertion (Supplementary Fig. 6).

283 From these experiments using a donor DNA with no-homologous sequence, we  
284 conclude that i) donor DNA does not require extended homologous sequence to resolve  
285 Cas12a-mediated DSB; ii) non-homologous donor DNA can integrate at DSB sites at a  
286 reasonably high frequency (40% across all experiments, 40/100) ; iii) more severe DNA  
287 alterations resulting in no PCR products are common (55% across experiments, 55/100);  
288 iv) INDELS were not common from these experimental conditions (5% across  
289 experiments, 5/100); v) targeted DNA mutation at *BUF1* is dependent on the Cas12a RNP  
290 complex, as 46 transformants obtained using no-homology *HYG* or G418 donor DNA alone  
291 (i.e., in the absence of Cas12a RNP) did not cause the buff phenotype and among 26/46  
292 that were PCR tested, none showed distinguishable *BUF1* DNA mutations (Fig. 2f, g and  
293 Supplementary Fig. 3d, 5d and 6c).

294  
295 **Long-read sequencing and *de novo* assembly resolve genotypes following Cas12a-  
296 mediated DSB repair**

297 We sought to further understand what DNA mutation occurred in the roughly 50%  
298 of buff mutants that failed to produce a PCR product at the *BUF1* locus. Eight O-137  
299 derived buff mutants from the Cas12a RNP and no-homology *HYG* DNA donor  
300 transformation were selected for high-molecular-weight DNA extraction, nanopore  
301 sequencing and *de novo* assembly ( $\Delta$ buf1#2, -#4, -#5, -#6 from rep 1 in Fig. 2c,  $\Delta$ buf1#10

302 from Fig. 2e,  $\Delta$ buf1#1, -#5, -#13 from rep 4 in Supplementary Fig. 7a). All eight sequenced  
303 strains displayed the mutant buff color, where seven produced no PCR product, and one  
304 transformant ( $\Delta$ buf1#2 Fig. 2c) produced the ~3.1 kb PCR product we inferred to be a  
305 simple insertions of single-copy donor DNA. The eight strains were sequenced to an  
306 average depth of 52x and yielded highly contagious assemblies (average N50 of 3.29 Mb)  
307 (Supplementary Table1). These assemblies allowed for base pair resolution interrogation  
308 of *BUF1* DNA alterations. Consistent with PCR genotyping, the transformant thought to  
309 have a simple donor DNA insertion ( $\Delta$ buf1#2 Fig. 2c) indeed had an almost full copy of the  
310 hygromycin coding sequence (1,328 bp) plus an additional hygromycin fragment (140 bp)  
311 at the Cas12a cut site (16 bp after the PAM sequence) based on the long-read assembly  
312 (Fig. 3a, mutant 1). The insertion was nearly scar free, with the junction sequence showing  
313 2 and 3 bp of microhomology at the 5' and 3' ends respectively, and only two bases pairs  
314 were deleted at the Cas12a endonuclease site (Supplementary Fig. 8). The results from  
315 the other seven assemblies were grouped into one of three categories, namely, large  
316 insertion, large deletion, and deletion plus insertion (Fig. 3b, c, d). Two mutants ( $\Delta$ buf1#5,  
317 -#6 from rep 1) each contained large insertions of concatemer *HYG* donor sequence,  
318 including promoter, coding, and terminator sequences, totaling 10 and 17 kb insertions  
319 respectively (Fig. 3b, mutant 2, 3). Not all the *HYG* DNA fragments were intact, and the  
320 coding sequences were in both the forward and reverse orientation (Fig. 3b). The  
321 insertion junction for both large insertion mutations had 2 bp of microhomology at the 5'  
322 end, and no homology at the 3' end, where in one mutant there was an error-free  
323 insertion at the locus, while the other mutant had a 17 bp deletion at the 3' end  
324 (Supplementary Fig. 8).

325 Assemblies from two *BUF1* mutants (Rep1- $\Delta$ buf1#4 and Rep4- $\Delta$ buf1#5) identified  
326 that same ~21 kb deletion around the *BUF1* locus, where *BUF1* and eight additional genes  
327 were all deleted (Fig. 3c, mutant 4, 5). Interestingly, the assemblies indicated the  
328 deletions took place between similar flanking non-LTR retrotransposons, which appear to  
329 be nested insertions of a LINE element, termed MGL, inserted into a hybrid LINE element  
330 termed MINE (61,62) (Supplementary Fig. 9). The deletions suggest that homology  
331 between the two elements was used to resolve the break, potentially through the SSA  
332 pathway, resulting in a single retrotransposon copy and the 21 kb deletion (Fig. 3c, mutant  
333 4, 5, Supplementary Fig. 9). The *HYG* coding sequence for these two mutants was  
334 identified at independent loci on other chromosomes (Supplementary Fig. 10 a, b). In  
335 mutant 4, the *HYG* insertion was a large concatemer of ~20 kb, while the other deletion  
336 mutant had two *HYG* copies inserted (Supplementary Fig. 10 a, b). To confirm the  
337 assembly-based deletion, a ~6.7 kb PCR product that spanned the break resolution  
338 junction (MGL/MINE) was amplified in mutant 4, which failed to amplify a product in the  
339 wild-type as expected (Supplementary Fig. 11).

340 The remaining three mutants (Rep4-*Δbuf1#1*, Rep1-*Δbuf1#10* and Rep4-*Δbuf1#*  
341 13) had both *BUF1* locus deletions, ranging in size from 3 to 11 kb on either the 5' or 3'  
342 side of the Cas12a endonuclease site, along with large insertions of concatemer donor  
343 DNA (Fig. 3d, mutant 6,7,8). The assemblies for mutants 7 and 8 did not completely  
344 resolved the *BUF1* locus in a single assembled contig. Here, we identified two contigs in  
345 both mutant assemblies with sequence homology to the *BUF1* locus, which were joined  
346 and analyzed. Interestingly, these results indicated the insertion of additional genomic  
347 DNA from other regions of the genome, including the insertion of coding sequences (Fig.  
348 3d). As noted for the other mutation types, we also observed microhomology (2-3 bp) at  
349 three of the four integration junction sites (Supplementary Fig. 12). To support the  
350 assembly results, nanopore long-reads were mapped to the O-137 reference. Here we  
351 find a correspondence between the assembly-based deletions and a loss of read-coverage  
352 to the O-137 genome (Fig. 3e). These results support that large depletion and deletion  
353 plus insertion mutants lost DNA corresponding to the *BUF1* locus consistent with the *de*  
354 *novo* assemblies. Given that roughly half of the identified buff mutants across our  
355 experiments failed to produce PCR products, we were interested to use the assembly  
356 identified genotypes (large insertion, large deletion, deletion plus insertion) to screen the  
357 previously PCR negative transformants. For this, we designed primer pairs to amplify  
358 small fragments at the 5' upstream and 3' downstream of the *BUF1* locus (Supplementary  
359 Fig. 13a). Our results showed that 74% (23/31) of O-137 derived PCR negative  
360 transformants with no-homology HYG DNA donor and *BUF1* RNP had a large insertion  
361 (i.e., both 5' and 3' amplified PCR products), 9.6% (3/31) had a large deletion (i.e., both 5'  
362 and 3' PCR failed) and 16% (5/31) had a deletion plus insertion (i.e., PCR amplified product  
363 at either 5' or 3' end) (Supplementary Fig. 3a, b, 11b, d). We confirmed these results by  
364 also genotyping the transformants generated using the Guy11 derived strain, where we  
365 found that 80% (8/10) had a large insertion, 10% (1/10) had a large deletion and 10%  
366 (1/10) had a deletion plus insertion (Supplementary Fig. 13c, d).

367

### 368 **DNA repair outcomes following Cas12 editing differ between multiple loci**

369 The *BUF1* locus has been characterized as unstable (60,63), and we were  
370 interested to understand if the unexpected DSB repair outcomes found at *BUF1* were  
371 representative of other loci in the genome. Wild-type *M. oryzae* is sensitive to the drug  
372 FK506, while disruption of the corresponding receptor, *FKBP12*, causes insensitivity to  
373 FK506 (Supplementary Fig. 14) (9,64-66). Therefore, we targeted *FKBP12* using Cas12a  
374 RNP and two separate gRNAs (*FKBP12-guide1* and *guide2*) and utilized sensitivity to  
375 FK506 to identify mutants (Fig. 4a). In order to compare the results to those from *BUF1*,  
376 *FKBP12* editing included the no-homology HYG DNA donor and hygromycin selection (Fig.  
377 4b). We obtained 62 hygromycin resistant colonies, of which 13 (~21% editing efficiency)

378 were insensitive to FK506 and presumably carried a mutation at the *FKBP12* locus, while  
379 none of the 20 no-homology *HYG* DNA alone transformants showed FK506 resistance (Fig.  
380 4b and Supplementary Fig. 15). The same PCR amplification strategy was used to  
381 genotype the FK506 insensitive mutants, and we found that ~38% (5/13) had a simple  
382 insertion, ~54% (7/13) had a large insertion, and ~8% (1/13) had a deletion plus insertion  
383 (Fig. 4a, c and Supplementary Fig. 15a, b). None of the FK506 insensitive strains had an  
384 obvious wild-type sized PCR product (i.e., no INDELs) and the PCR genotyping indicated  
385 that no large deletions took place (Fig. 4a, c and Supplementary Fig. 15a, b).

386 We additionally tested three other loci, one coding for an annotated plasma  
387 membrane iron permease (*FTR1*), which is 50 kb away from the *BUF1* locus, an apoplastic  
388 secreted protein *BAS4*, and an avirulence protein *AVRPi9*, both of which are presumed to  
389 help *M. oryzae* facilitate host infection (67-69). Two independent gRNAs were designed  
390 for each of the three loci, which were transformed as Cas12a-RNPs with the no-homology  
391 *HYG* DNA donor (Fig. 4b). From editing *FTR1*, 60 hygromycin resistant transformants were  
392 selected and genotyped. This gene had a high editing efficiency at 60% (36/60), and of the  
393 strains carrying a mutation, we found that ~8% (3/36) had an INDEL, 50% (18/36) had a  
394 simple insertion, ~31% (11/36) had a large insertion, ~11% (4/36) had a deletion plus  
395 insertion and no large deletions were recovered (Fig. 4b, c and Supplementary Fig. 16).  
396 The editing efficiency at *BAS4* was 25% (15/60), where ~6% (1/15) of the mutants had an  
397 INDEL, ~46% (7/15) had a large insertion, ~6% (1/15) resulted from a large deletion, 40%  
398 (6/15) from a deletion plus insertion (Fig. 4b, c and Supplementary Fig. 17). Interestingly,  
399 no simple insertions were recovered from the *BAS4* transformants using either of the two  
400 guides, despite simple insertion mutants being commonly found for the *BUF1* (30%),  
401 *FKBP12* (38%), and *FTR1* (50%) loci. Also of note, *BAS4* editing resulted in near half of the  
402 identified mutants having a deletion plus insertion or large deletion, which was not  
403 observed for other tested loci. The editing efficiency at the *AVRPi9* locus was only ~9%  
404 (4/45), and of these four mutants, two resulted from a large insertion and the other two  
405 lines carried INDELs (Fig. 4b, c and Supplementary Fig. 18). While we did not exhaustively  
406 test gRNA at all loci, the results using two independent gRNA at each locus suggests that  
407 editing efficiency is not the same across the genome, which has been reported in other  
408 organisms (70). An unexpected and novel finding, however, was that the spectrum of DNA  
409 mutations resulting from DSB repair did not occur at equal proportions for the tested loci.  
410 Indeed, formal testing of the different edited loci into the five classes of DNA mutations  
411 indicated that the highly significant association between the loci and DNA mutation  
412 outcomes, indicating a non-random association between repair mutation outcome and  
413 specific loci (Fisher's exact test, p-value=0.006121).

414  
415 **Locus-dependent DNA mutation frequency still occurs under a different editing scheme**

416 Our initial editing experiments strongly favored donor DNA integration at the Cas12a-  
417 edited locus because of the induced DSB and selection on hygromycin. Given that our  
418 method was used across all edited loci, any bias should be similar among the loci.  
419 However, to further assess our results, we devised a second editing scheme. Here, we  
420 developed an assay where the donor DNA for selection was targeted to a separate non-  
421 coding locus, termed second-site (SS), by transforming with two distinct RNPs at once (Fig.  
422 5a). This approach should capture DSB repair outcomes for the locus of interest (i.e.,  
423 primary-site), without the need for donor DNA integration at the target locus, thereby  
424 decoupling donor DNA integration and selection from DSB repair outcomes. For these  
425 experiments, the *HYG* donor DNA contained long (730 bp and 518 bp) homologous  
426 sequence to the second-site targeted by Cas12a, and a separate RNP targeting the  
427 primary-site (Fig. 5a). Using this approach, we found high editing efficiency for the *BUF1*  
428 locus (89%, 25/28) (Fig. 5b), which was similar to the earlier results obtained (~77% with  
429 *BUF1*-guide1). The proportion of the five types of DNA mutations at *BUF1* were 28%  
430 (7/25) INDELs, 16% (4/25) simple insertion, 24% (6/25) large insertion, 32% (8/25) large  
431 deletions, while no deletion plus insertions were detected (Fig. 5c and Supplementary Fig.  
432 19). These editing experiments returned substantially more INDEL mutations at *BUF1*  
433 than initially observed, consistent with the donor DNA integrating at the SS locus and not  
434 requiring it for DSB repair. Interestingly, the majority of recovered mutants still indicated  
435 either donor DNA insertion or large DNA deletion at the *BUF1* locus. The editing efficiency  
436 for the *FKBP12* locus was low, with only one mutant recovered from 41 transformants  
437 (Fig. 5b). The editing efficiency for this locus was also low for the single RNP assay, but it  
438 was not clear why it was even lower for this SS editing scheme. The one *FKBP12* mutant  
439 contained a large insertion at the locus (Fig. 5c and Supplementary Fig. 20). For the *BAS4*  
440 locus, we obtained ~33% editing efficiency (8/24), of which, 25% (2/8) were INDELs, 12.5%  
441 (1/8) were large insertion, 37.5% (3/8) were large deletions, and 25% (2/8) were deletion  
442 plus insertions, (Fig. 5b, c and Supplementary Fig. 21). Similar to initial single RNP assay,  
443 more than half of the *bas4* mutants were large deletion or deletion plus insertion  
444 mutations. The *FTR1* locus had a lower editing efficiency for the second-site assay  
445 compared to the initial single RNP editing with gRNA1 (38% versus 83%, respectively).  
446 Despite the reduction in editing efficiency and increased INDELs, the proportion of DNA  
447 mutation outcomes was quite similar between the two editing schemes, where the  
448 second-site assay showed 33% (4/9) INDELs, 33% (2/9) simple insertions, 22% (2/9) large  
449 insertions, and ~11% (1/9) deletion plus insertion mutations (Fig. 5b, c and Supplementary  
450 Fig. 22). In neither experiment did we recover large deletion mutants at *FTR1*. We  
451 additionally genotyped the second-site for each mutant strain and found PCR negative  
452 results for the second-site in most of cases (Supplementary Fig. 19, 20, 21 and 22). This  
453 suggested that the addition of long homologous sequences did direct the donor DNA to

454 the second-site, but it did not provide precise homology directed repair in the form of a  
455 single donor DNA insertion. As controls, the second-site was also edited with Cas12a SS-  
456 RNP and second-site flanked *HYG* DNA donor in the absence of the primary site RNP and  
457 similar PCR negative results were found (Supplementary Fig. 23a). Also, flanked *HYG*  
458 donor DNA was transferred alone, without RNPs, and hygromycin resistant transformants  
459 did not show the buff mutant color or have FK506 resistance, nor did the transformants  
460 produce aberrant PCR products when amplifying the second-site locus, showing the  
461 mutations at these two primary sites, and the second-site were dependent on Cas12a-  
462 mediated DSB induction (Supplementary Fig. 23b). These results show that under a  
463 different editing scheme, which did not require donor DNA integration at the editing site  
464 of interest, we still observed a biased DNA mutation frequency following DSB repair at  
465 the tested loci.

466

## 467 **Discussion**

468 CRISPR-based genome engineering has accelerated functional genomic studies by  
469 providing a flexible platform to rapidly modify DNA and probe basic cell and molecular  
470 biology (1,7). Here we describe the development of an efficient and robust approach to  
471 modify specific loci in fungi using the Cas12a nuclease, delivered as an RNP. The use of  
472 RNPs for genome editing has the advantage of not requiring the integration and continual  
473 expression of the CRISPR-Cas system (48,71,72). This can overcome cytotoxicity, a  
474 reported attribute of continual expression of Cas nucleases in some systems including  
475 fungi, and is especially helpful for asexually reproducing fungi, where the CRISPR-Cas DNA  
476 cannot easily be removed through crossing (46,73,74). The strains generated in this study  
477 were made with a high success-rate, contain heritable mutations, and lack coding  
478 sequence of the CRISPR-Cas platform. We anticipate the described approach to deliver  
479 Cas12a RNPs to fungal protoplasts will be fungal species-agnostic and provides a rapid  
480 approach to generate gene disruption mutations, especially for recalcitrant loci (e.g.,  
481 pathogen effectors) (75,76).

482 Our results highlight an unresolved question at the interface of genome evolution  
483 and genome biology, which is how does hierarchy and cross-talk between endogenous  
484 DNA DSB repair pathways influence genome variation? Using a combination of PCR,  
485 sanger sequencing and long-read sequencing-based assemblies, we show at base pair  
486 resolution how Cas12a-induced DNA DSBs can be variably repaired to generate a  
487 spectrum of DNA mutations. We observed INDELs, simple donor DNA insertions, large  
488 concatemer DNA insertions, large genomic deletions, and deletion plus insertion events,  
489 some of which resulted in drastic mutations at the targeted loci. It is difficult to determine  
490 the exact DNA repair pathway that resulted in each specific DNA mutation in the present  
491 work, however, there are mutation signatures of specific pathways that collectively

492 suggest our mutation results were caused by at least three separate DNA repair pathways.  
493 This is based on the following i) we observed small insertion/deletion (INDEL) mutations  
494 with random sequence (i.e., not *cis*-template), which is a well characterized signature of  
495 C-NHEJ DSB repair dependent on Ku70/80 and Lig4 (18) ; ii) we observed a few INDELs  
496 that contain *cis*-templated insertions, which have been described as a hallmark for MMEJ  
497 (31,37); iii) we frequently observed microhomology between the genome and inserted  
498 donor DNA, highlighting the importance of sequence homology in DSB repair in our  
499 experiments. Microhomology was also found in the breakpoints of fused chromosomes  
500 in the human fungal pathogen *Cryptococcus deuterogattii* (77). The majority of junction  
501 sequences from our editing experiments did not contain non-templated insertions as has  
502 been reported for NHEJ knock-in insertions (25), and the insertions did not share the same  
503 genomic ends, a sign of DNA end resection. These DNA mutation patterns are signatures  
504 of MMEJ, and similar to those reported using staggered Cas9 editing in mouse (78), but  
505 the possibility that NHEJ is also involved cannot be ruled out. It should be noted, the  
506 mechanism of so-called microhomology mediated end-joining (MMEJ) is not well  
507 characterized in filamentous fungi. The a-EJ pathway described to be dependent on DNA  
508 polymerase theta (Pol θ) (i.e., TMEJ) has not been described in fungi, and *M. oryzae* lacks  
509 a clear homolog containing the DNA polymerase domain (Supplementary Fig. 24); iv) we  
510 identified large genomic deletions that resolved between two repetitive elements that  
511 reside 16 kb and 2 kb away from the induced DSB site, requiring extensive DNA end  
512 resection and the use of long homologous sequence for resolution, hallmarks of SSA  
513 (15,27). Similar large deletions between repetitive sequences have been reported in the  
514 protozoan parasite *Leishmania* (79). The large deletion mutants we observed suggest the  
515 potential importance of repetitive elements and SSA in fungal genome repair and  
516 evolution, however, the SSA pathway in filamentous pathogens is also not well  
517 documented. Based on these DNA mutation signatures, we can conclude that multiple  
518 DNA repair pathways were used to resolve the Cas12a-induced DSBs.

519 Along with demonstrating that multiple DNA DSB repair pathways were used to  
520 resolve the Cas12a-induced DSBs, we observed that these pathways were used at unequal  
521 frequencies across the tested loci (i.e., locus-dependent frequencies). This suggests a  
522 locus-specific hierarchy for DNA repair pathways, which to our knowledge has not been  
523 previously reported in fungi. It is unclear what factors may contribute to locus-dependent  
524 DNA repair preferences. Physical and genomic features such as chromatin structure,  
525 chromosome location, repetitive elements and the cell cycle have been reported to affect  
526 the outcome of DNA repair in other model systems (13,17,80-82). Demonstrating locus-  
527 dependent DNA repair is important because such a hierarchy would influence the  
528 evolutionary trajectory of different genomic regions. In natural systems, preferential  
529 repair of DSBs by different DNA repair pathways could create biased DNA variation and

530 create genomic regions with accelerated evolution. There are numerous reports of  
531 compartmentalized genome evolution in filamentous pathogens, often referred to as  
532 two-speed genome evolution (83), and variation for DNA DSB repair could be a major  
533 driver of this phenomena. Indeed, detailed analysis of DNA translocations and inversions  
534 between strains of *Verticillium dahliae*, a soil-borne wilt causing pathogen, found that  
535 chromosome re-arrangements co-localize with homologous sequence, often  
536 transposable element DNA (84). Repetitive DNA can serve as templates for homology-  
537 based repair, such as MMEJ or SSA. The occurrence of variable DNA repair reported here  
538 may influence adaptive genomic regions in *V. dahliae* that are associated with a unique  
539 chromatin profile (81,85). In *M. oryzae*, we saw low editing efficiency at the *AvrPi9* locus,  
540 which has proven to be a stable R-Avr interaction for breeding blast resistant rice (67,86).  
541 It will be interesting to understand if DNA repair bias at the *AvrPi9* locus contributes to  
542 the durability of this interaction. Also in *M. oryzae*, the presence of mini-chromosomes  
543 that are sequence variable between strains, and contain duplicated sequences with core  
544 chromosomes, may be impacted by DNA repair variation (44).

545 It is unlikely the observations reported here are specific to *M. oryzae* or our  
546 experimental setup. Genome editing in other filamentous fungi, such as *Sclerotinia*  
547 *sclerotiorum* and *Aspergillus fumigatus*, reported unexpected genotyping results in which  
548 the target loci were PCR negative (87-89). Further TAIL-PCR and Illumina sequencing  
549 suggested that vector sequences and many uncharacterized sequences were inserted in  
550 the target loci in the case of *S. sclerotiorum* (87). Those experiments used the Cas9  
551 effector and different fungi, suggesting our results are not specific to Cas12a or *M. oryzae*  
552 (87-89). It should also be noted, large-scale on-target mutations created by CRISPR are  
553 easily missed without comprehensive genotyping or *de novo* assembly such as employed  
554 here, and are likely heavily under reported. Also, our repair outcomes are different than  
555 off-target editing often discussed for CRISPR research. Off-target editing refers to Cas  
556 nucleases binding and cutting DNA at unintended loci in the genome due to sequence  
557 homology (i.e., low-fidelity editing). Our results suggest that on-target DNA mutations  
558 following CRISPR DSB induction are varied and complex, consistent with recent reports in  
559 mammalian systems reporting extensive on-target mutations, including large deletion,  
560 complex rearrangements, and plasmid insertions (90-92). These results underscore the  
561 need to further understand how CRISPR-based genome engineering interacts with  
562 endogenous DNA repair mechanisms, and more importantly, how specific DNA repair  
563 mechanisms impact genome evolution in filamentous pathogens.

564

## 565 **Data availability**

566 The *de novo* assemblies of Cas12a-edited strains from nanopore sequencing have been  
567 deposited in the WGS Genome of the National Center for Biotechnology Information

568 (NCBI) under the BioProject accession No. PRJNA753862. The base called nanopore reads  
569 after adapter removal have also been deposited under the same BioProject accession No.  
570 PRJNA753862 with the Short Read Archive (SRA) accession No. SRR15459267 to  
571 SRR15459274.

572

### 573 **Funding**

574 The research was funded by the United State Department of Agriculture-National  
575 Institute of Food and Agriculture (USDA-NIFA) awards no. 2018-67013-28492 to D.E.C.  
576 and no. 2017-67013-26525 to B.V., and the National Science Foundation Division of  
577 Molecular and Cellular Biosciences –Systems and Synthetic Biology award no. 1936800 to  
578 D.E.C. The funders had no role in study design, data collection and analysis, decision to  
579 publish, or preparation of the manuscript. Contribution number 22-059-J from the Kansas  
580 Agricultural Experiment Station.

581 *Conflict of interest statement.* The authors declare no competing interests

582

### 583 **Acknowledgments**

584 The authors would like to thank Dr. Qiang Wang (Auburn University), Dr. Sanzhen Liu and  
585 Dr. Huakun Zheng (Kansas State University) for helpful discussion during the preparation  
586 of the manuscript. J.H. would like to thank Haolang Jiang (Fujian Agriculture and Forestry  
587 University) for helpful suggestions for fungal transformation and Melinda Dalby, Nathan  
588 Ryan and Dr. Velazhahan Rethinasamy (Kansas State University) for technical support. The  
589 authors thank computational support from the Beocat High-Performance Computing  
590 cluster at Kansas State University.

591

592

593

594

595

596

597

598

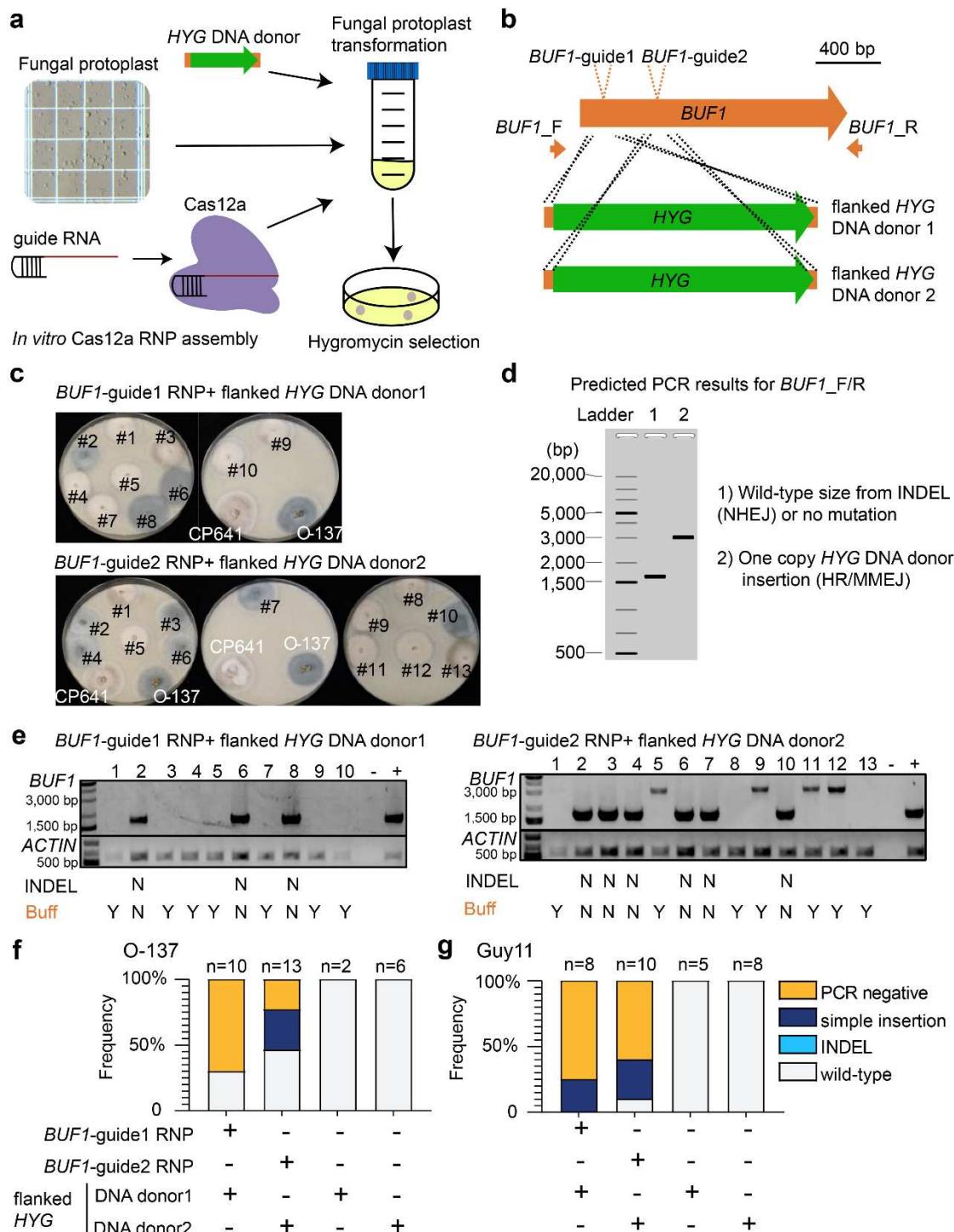
599

600

601

602

603


604

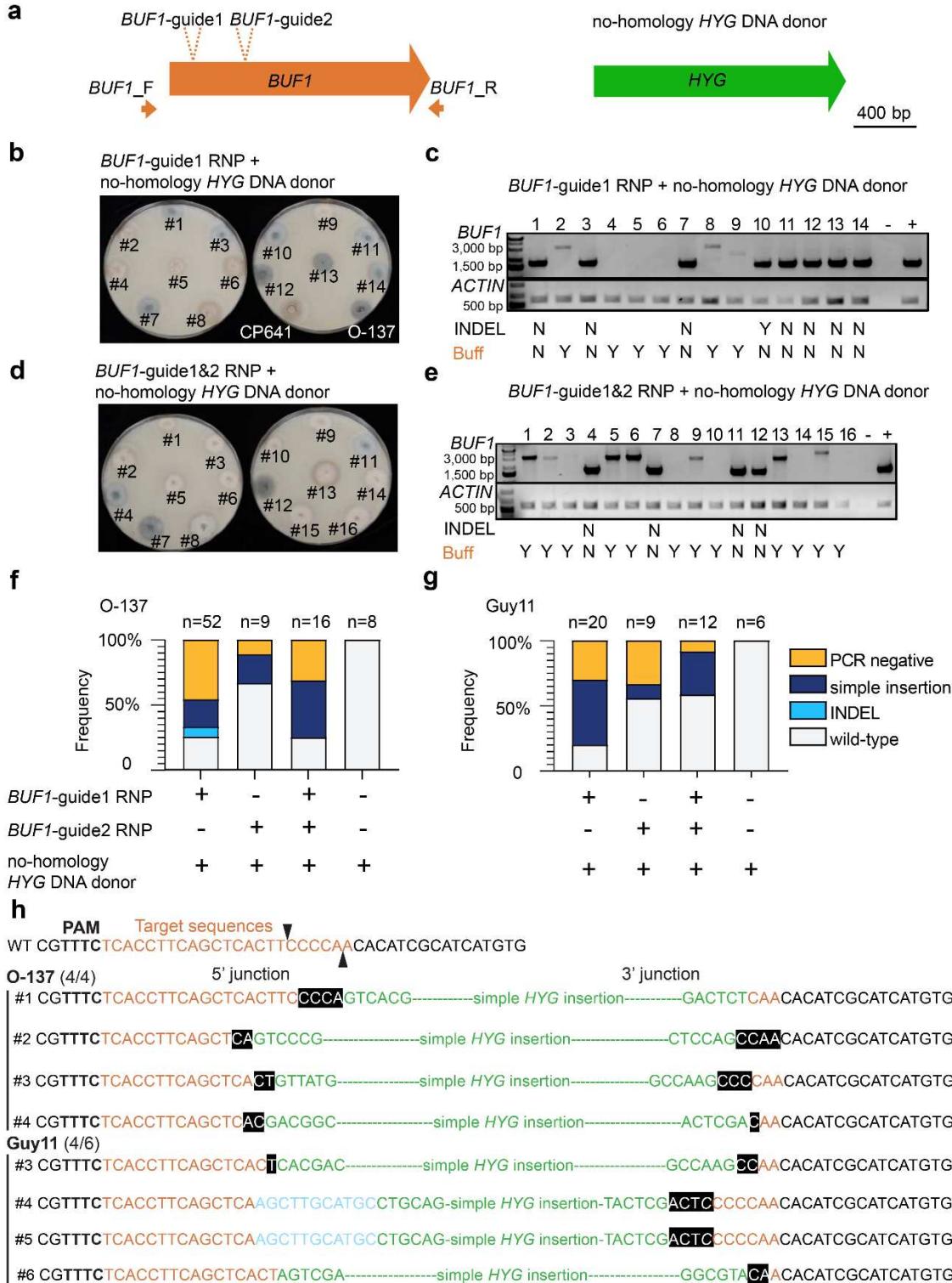
605

606

607

608 **Figures**




609

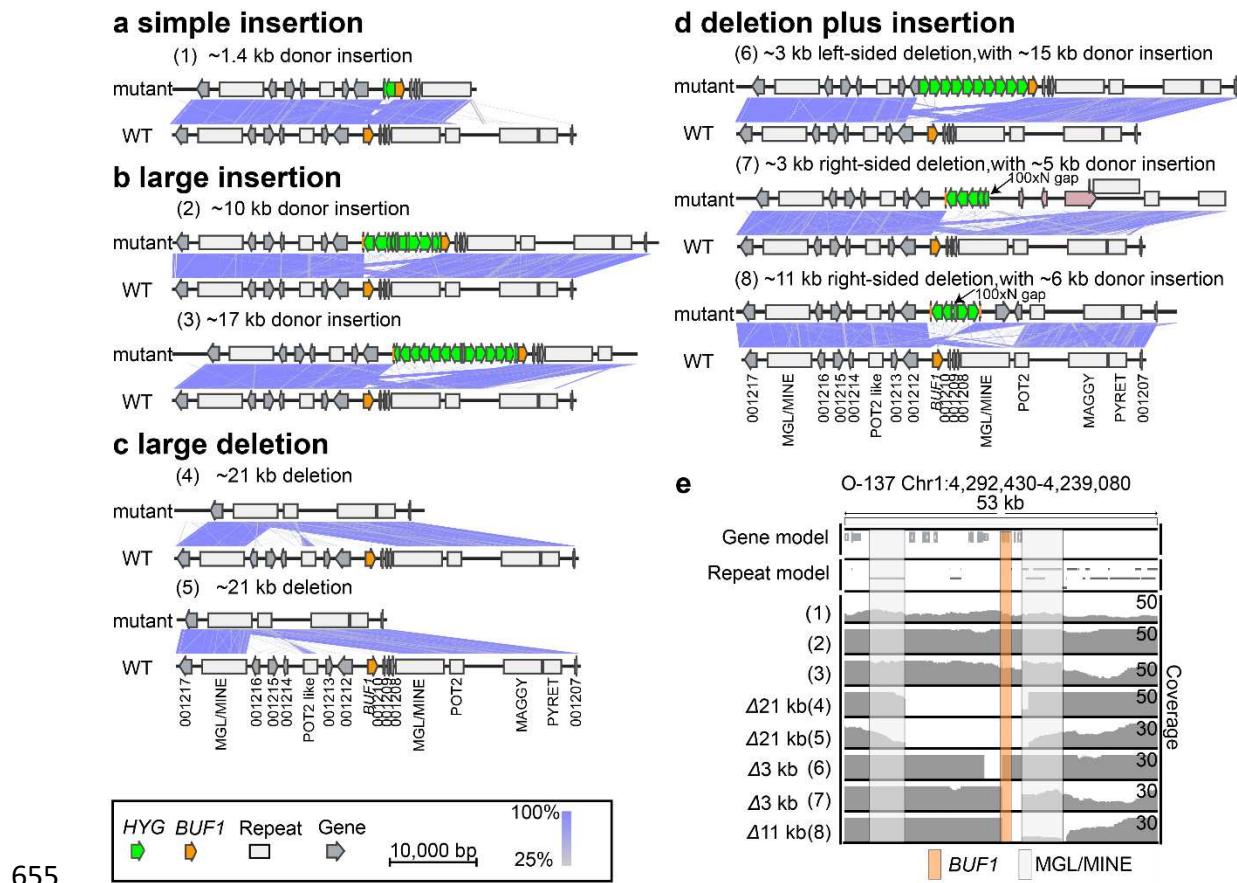
610 **Figure 1. Cas12a RNP combined with short homology donor DNA mediates efficient**  
611 **gene editing in *BUF1* locus.**

612 (a) Schematic diagram of CRISPR-Cas12a RNP mediated genome editing through protoplast  
613 transformation in *M. oryzae*. (b) Illustration of two *BUF1* (MGG\_02252, 70-15 MG8 annotation)  
614 gRNA design. Green rectangles indicate two different HYG DNA donor with flanked sequence

615 homologous to the *BUF1* locus shown in orange. The location of PCR primer pair used for  
616 genotyping is shown (*BUF1*-F/R). (c) Representative phenotypes of hygromycin resistant  
617 transformants plated on OTA. The wild-type O-137 is shown (dark grey hyphae) and a previously  
618 characterized *Δbuf1* in O-137 (CP641) showing the buff phenotype. Individual transformed  
619 colonies showing wild-type and buff color hyphae are shown labeled with numbers (d) Diagram  
620 of expected results following PCR amplification from transformed lines. Ladder indicates the  
621 molecular weight ladder to determine product size, lane 1 (1) shows the expected size product  
622 for wild-type or small INDEL *BUF1* amplification, and lane 2 (2) shows the expected size product  
623 for *BUF1* amplification where a single copy of the *HYG* donor was inserted. (e) Representative  
624 genotyping results for the strains presented in the (c), the wild-type like PCR products from *BUF1*  
625 locus were purified and sanger sequenced to detect potential INDELs. INDEL N indicates there  
626 were no INDELs observed after sequencing. Buff Y indicates the strain displayed the buff mutant  
627 color, while Buff N indicates wild-type phenotype. Lane (-) indicates negative control (water) and  
628 (+) a positive control O-137 genomic DNA used for PCR amplification. A separate PCR to amplify a  
629 portion of *ACTIN* was used as a DNA extraction control. (f and g) The frequency summary of DNA  
630 DSB repair outcomes in O-137 and Guy11. The number of independent transformants (x) is listed  
631 (n=x).

632

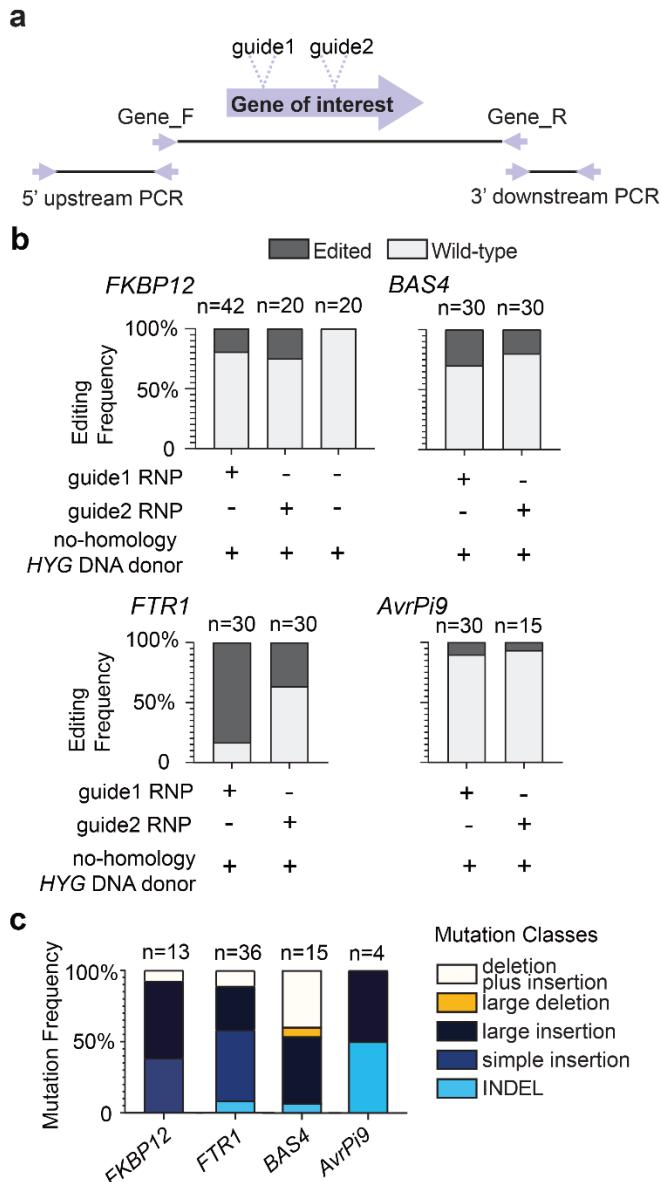



633

634 **Figure 2. Donor DNA without homology sequences integrates at Cas12a target site.**  
 635 (a) No-homology HYG DNA donor with *BUF1*-guide1 or/and guide2 RNP were used for protoplast  
 636 transformation. (b and d) Representative phenotyping result of the hygromycin resistant  
 637 transformants from single or dual *BUF1* RNP targeting assays. The strains were plated on OTA for

638 phenotyping. CP641 is a positive control (*Δbuf1*) for buff color hyphae, O-137 is the wild-type  
639 isolate used in the experiment. Individual transformed colonies showing wild-type and buff color  
640 hyphae are shown labeled with numbers. (c and e) Representative genotyping results for the  
641 strains presented in (b and d), the wild-type like PCR products from *BUF1* locus were purified and  
642 sanger sequenced to detect potential INDELs. Image labels are the same as described for figure 1.  
643 (f) The frequency of DSB repair outcomes in O-137. The number of independent transformants (x)  
644 is listed (n=x). The assays for *BUF1*-guide1 were counted from three independent rounds of  
645 transformation (rep1 to rep3). (g) The frequency of DSB repair outcomes in Guy11. (h) DNA  
646 sequence at the Integration junction of simple insertion mutants. The ratio to the right of the  
647 strain name is the number of mutants with at least 1 bp microhomology at the integration junction  
648 from the randomly selected simple insertion mutants sanger sequenced. Bold letters indicate  
649 PAM sequences; orange letters indicate target sequences; black triangles highlight the potential  
650 Cas12a cut site. Green sequences are from *HYG* DNA donor; White letters in black boxes highlight  
651 microhomology (i.e., shared sequence) between the *BUF1* locus and donor DNA; blue letters are  
652 sequence insertions of unknown source. Italicized letters indicate SNP.

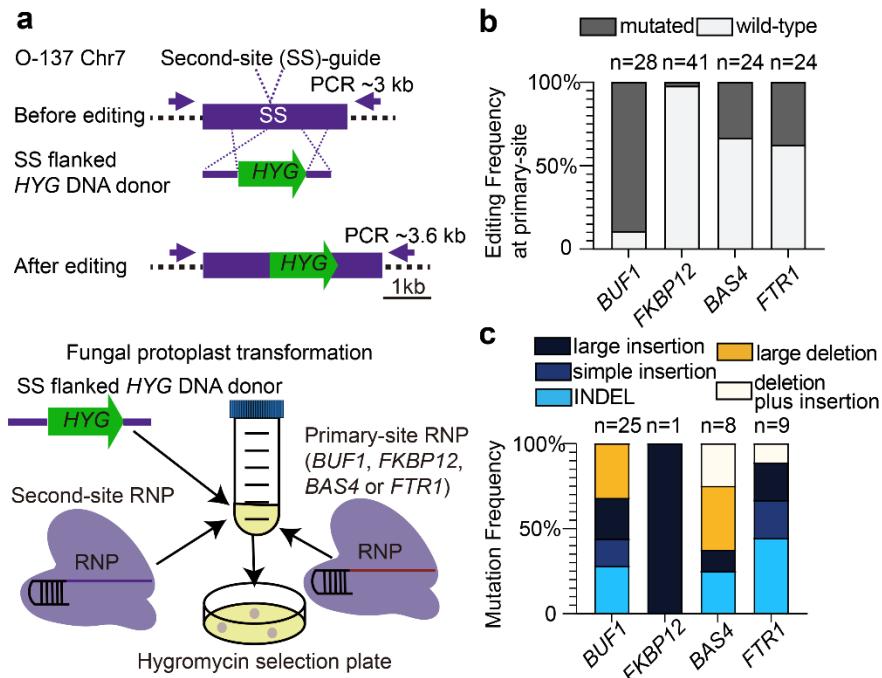
653


654



656 **Figure 3. Long read assemblies reveal three non-canonical error-prone DNA repair**  
 657 **outcomes.**

658 Microsynteny between assembled edited strains (top) and the wild-type (bottom) indicated by  
 659 purple connecting bands ranging from 25 to 100% similarity as indicated by the color scale.  
 660 Individual assemblies were classified into one of four mutation classes (a-d). (a) simple donor  
 661 insertion, (b) large donor DNA insertion, (c) large DNA deletion, (d) DNA deletion plus donor  
 662 insertion, where two assemblies were incomplete and required the identification of another  
 663 contig to complete the locus. The merged region is indicated with an arrow and label 100xN gap.  
 664 The pink labelled genes in (7) indicated three genes inserted from a *trans* locus. (e) Coverage of  
 665 nanopore long-read mapping to the *BUF1* locus. Reads were mapped to the O-137 wild-type  
 666 genome, where reads were filtered to remove low quality mapping (MAPQ < 60). The *BUF1* gene  
 667 is highlighted with a vertical orange box while the flanking repetitive DNA (MGL/MINE) are  
 668 highlighted with a light grey box. Symbols are shown in the key to indicate the *BUF1* coding  
 669 sequence (orange arrow), HYG coding sequence (green arrow), other coding sequences (grey  
 670 arrow), and annotated repetitive DNA (grey box). Mutants labeled (1), (2), (3), (4), (5), (6), (7) and  
 671 (8) indicate Rep1- $\Delta$ buf1#2, Rep1- $\Delta$ buf1#5, Rep1- $\Delta$ buf1#6, Rep1- $\Delta$ buf1#4, Rep4- $\Delta$ buf1#5,  
 672 Rep4- $\Delta$ buf1#1, Rep1- $\Delta$ buf1#10 and Rep4- $\Delta$ buf1#13 mutants respectively (Supplementary Table  
 673 1).


674



675

676 **Figure 4. DNA repair outcomes following Cas12a editing differ among multiple loci**

677 (a) Schematic illustration for CRISPR-Cas12a editing experiments. Two different guides were  
678 tested for each locus. Gene\_F/R primer pairs were used for a first round of genotyping to  
679 determine the type of mutation present in a transformant. PCR negative strains were  
680 subsequently genotyped using the 5' upstream and 3' downstream primer pairs per gene to  
681 further genotype the occurrence of large-scale DNA alternations. (b) The editing frequencies at  
682 *FKBP12* (MGG\_06035), *FTR1* (MGG\_02158), *BAS4* (MGG\_10914), and *AVRPi9* (MGG\_12655). The  
683 MGG numbers based on the 70-15 assembly are provided for clarity (c) The mutation frequencies  
684 at *FKBP12*, *FTR1*, *BAS4* and *AVRPi9* are shown and indicated by the color key to the right. For (b)  
685 the number of independent transformants genotyped (x) is listed (n=x), while (c) lists the number  
686 of independent mutants from (b). Transformations using guide1 RNP, and guide2 for *FTR1* and  
687 *BAS4*, were performed twice independently, while guide2 for *FKBP12* and *AvrPi9* were tested  
688 once.  
689



690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702

**Figure 5. Distinct DSB repair patterns following donor insertion at a second integration site.**

(a) Schematic illustration of Second-site (SS) insertion assay. The *HYG* coding sequence was directed to a second site through long homologous sequence located in a non-coding region on chromosome 7 (Chr7:1,520,862-1,523,872). Fungal protoplasts were simultaneously transformed with two RNPs, one targeting the second-site and the other targeting the locus of interest. (b) The editing frequencies for the four tested loci following *HYG* selection. The proportion of mutated to wild-type transformants is indicated by dark and light grey shading respectively. (c) The frequency of distinct DNA repair outcomes for the four tested loci, colored according to the respective DNA mutation class. The number of independent transformants (b) and independent mutants (c) is listed (n=x). All the transformations were performed twice independently.

703 **References**

- 704 1. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A. *et al.* (2013) Multiplex genome engineering using CRISPR/Cas systems. *Science*, **339**, 819-823.
- 705 2. Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E. and Church, G.M. (2013) RNA-guided human genome engineering via Cas9. *Science*, **339**, 823-826.
- 706 3. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L. *et al.* (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. *Nature biotechnology*, **31**, 686-688.
- 707 4. Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R. and Joung, J.K. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. *Nature biotechnology*, **31**, 227-229.
- 708 5. Liu, R., Chen, L., Jiang, Y., Zhou, Z. and Zou, G. (2015) Efficient genome editing in filamentous fungus *Trichoderma reesei* using the CRISPR/Cas9 system. *Cell discovery*, **1**, 15007.
- 709 6. Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., DeGennaro, E.M., Winblad, N., Choudhury, S.R., Abudayyeh, O.O., Gootenberg, J.S. *et al.* (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. *Nature biotechnology*, **35**, 31-34.
- 710 7. Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A. *et al.* (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. *Cell*, **163**, 759-771.
- 711 8. Tang, X., Lowder, L.G., Zhang, T., Malzahn, A.A., Zheng, X., Voytas, D.F., Zhong, Z., Chen, Y., Ren, Q., Li, Q. *et al.* (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. *Nature plants*, **3**, 17018.
- 712 9. Ferenczi, A., Pyott, D.E., Xipnitou, A. and Molnar, A. (2017) Efficient targeted DNA editing and replacement in *Chlamydomonas reinhardtii* using Cpf1 ribonucleoproteins and single-stranded DNA. *Proceedings of the National Academy of Sciences of the United States of America*, **114**, 13567-13572.
- 713 10. Fagerlund, R.D., Staals, R.H. and Fineran, P.C. (2015) The Cpf1 CRISPR-Cas protein expands genome-editing tools. *Genome biology*, **16**, 251.
- 714 11. Port, F., Starostecka, M. and Boutros, M. (2020) Multiplexed conditional genome editing with Cas12a in *Drosophila*. *Proceedings of the National Academy of Sciences of the United States of America*, **117**, 22890-22899.
- 715 12. Roux, I., Woodcraft, C., Hu, J., Wolters, R., Gilchrist, C.L.M. and Chooi, Y.H. (2020) CRISPR-Mediated Activation of Biosynthetic Gene Clusters for Bioactive Molecule Discovery in Filamentous Fungi. *ACS synthetic biology*, **9**, 1843-1854.
- 716 13. Xue, C. and Greene, E.C. (2021) DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. *Trends in genetics : TIG*, **37**, 639-656.
- 717 14. Covo, S. (2020) Genomic Instability in Fungal Plant Pathogens. *Genes*, **11**.
- 718 15. Her, J. and Bunting, S.F. (2018) How cells ensure correct repair of DNA double-strand breaks. *The Journal of biological chemistry*, **293**, 10502-10511.

747 16. Jackson, S.P. (2002) Sensing and repairing DNA double-strand breaks.  
748 *Carcinogenesis*, **23**, 687-696.

749 17. Ceccaldi, R., Rondinelli, B. and D'Andrea, A.D. (2016) Repair Pathway Choices and  
750 Consequences at the Double-Strand Break. *Trends in cell biology*, **26**, 52-64.

751 18. Chang, H.H.Y., Pannunzio, N.R., Adachi, N. and Lieber, M.R. (2017) Non-  
752 homologous DNA end joining and alternative pathways to double-strand break  
753 repair. *Nature reviews. Molecular cell biology*, **18**, 495-506.

754 19. Pannunzio, N.R., Watanabe, G. and Lieber, M.R. (2018) Nonhomologous DNA  
755 end-joining for repair of DNA double-strand breaks. *The Journal of biological  
756 chemistry*, **293**, 10512-10523.

757 20. Truong, L.N., Li, Y., Shi, L.Z., Hwang, P.Y., He, J., Wang, H., Razavian, N., Berns,  
758 M.W. and Wu, X. (2013) Microhomology-mediated End Joining and Homologous  
759 Recombination share the initial end resection step to repair DNA double-strand  
760 breaks in mammalian cells. *Proceedings of the National Academy of Sciences of  
761 the United States of America*, **110**, 7720-7725.

762 21. Walker, J.R., Corpina, R.A. and Goldberg, J. (2001) Structure of the Ku  
763 heterodimer bound to DNA and its implications for double-strand break repair.  
764 *Nature*, **412**, 607-614.

765 22. Nick McElhinny, S.A., Snowden, C.M., McCarville, J. and Ramsden, D.A. (2000) Ku  
766 recruits the XRCC4-ligase IV complex to DNA ends. *Molecular and cellular  
767 biology*, **20**, 2996-3003.

768 23. Waters, C.A., Strande, N.T., Wyatt, D.W., Pryor, J.M. and Ramsden, D.A. (2014)  
769 Nonhomologous end joining: a good solution for bad ends. *DNA repair*, **17**, 39-  
770 51.

771 24. Pickar-Oliver, A. and Gersbach, C.A. (2019) The next generation of CRISPR-Cas  
772 technologies and applications. *Nature reviews. Molecular cell biology*, **20**, 490-  
773 507.

774 25. He, X., Tan, C., Wang, F., Wang, Y., Zhou, R., Cui, D., You, W., Zhao, H., Ren, J. and  
775 Feng, B. (2016) Knock-in of large reporter genes in human cells via CRISPR/Cas9-  
776 induced homology-dependent and independent DNA repair. *Nucleic acids  
777 research*, **44**, e85.

778 26. Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., Wu, J., Zhu, J., Kim, E.J.,  
779 Hatanaka, F., Yamamoto, M., Araoka, T., Li, Z. *et al.* (2016) In vivo genome  
780 editing via CRISPR/Cas9 mediated homology-independent targeted integration.  
781 *Nature*, **540**, 144-149.

782 27. Bhargava, R., Onyango, D.O. and Stark, J.M. (2016) Regulation of Single-Strand  
783 Annealing and its Role in Genome Maintenance. *Trends in genetics : TIG*, **32**, 566-  
784 575.

785 28. Schrempf, A., Slyskova, J. and Loizou, J.I. (2021) Targeting the DNA Repair  
786 Enzyme Polymerase theta in Cancer Therapy. *Trends in cancer*, **7**, 98-111.

787 29. Rodgers, K. and McVey, M. (2016) Error-Prone Repair of DNA Double-Strand  
788 Breaks. *Journal of cellular physiology*, **231**, 15-24.

789 30. Sallmyr, A. and Tomkinson, A.E. (2018) Repair of DNA double-strand breaks by  
790 mammalian alternative end-joining pathways. *The Journal of biological*  
791 *chemistry*, **293**, 10536-10546.

792 31. Schimmel, J., van Schendel, R., den Dunnen, J.T. and Tijsterman, M. (2019)  
793 Templated Insertions: A Smoking Gun for Polymerase Theta-Mediated End  
794 Joining. *Trends in genetics : TIG*, **35**, 632-644.

795 32. Mara, K., Charlot, F., Guyon-Debast, A., Schaefer, D.G., Collonnier, C., Grelon, M.  
796 and Nogue, F. (2019) POLQ plays a key role in the repair of CRISPR/Cas9-induced  
797 double-stranded breaks in the moss *Physcomitrella patens*. *The New phytologist*,  
798 **222**, 1380-1391.

799 33. Sfeir, A. and Symington, L.S. (2015) Microhomology-Mediated End Joining: A  
800 Back-up Survival Mechanism or Dedicated Pathway? *Trends in biochemical*  
801 *sciences*, **40**, 701-714.

802 34. Thyme, S.B. and Schier, A.F. (2016) Polq-Mediated End Joining Is Essential for  
803 Surviving DNA Double-Strand Breaks during Early Zebrafish Development. *Cell*  
804 *reports*, **15**, 707-714.

805 35. Zelensky, A.N., Schimmel, J., Kool, H., Kanaar, R. and Tijsterman, M. (2017)  
806 Inactivation of Pol theta and C-NHEJ eliminates off-target integration of  
807 exogenous DNA. *Nature communications*, **8**, 66.

808 36. van Schendel, R., Roerink, S.F., Portegijs, V., van den Heuvel, S. and Tijsterman,  
809 M. (2015) Polymerase Theta is a key driver of genome evolution and of  
810 CRISPR/Cas9-mediated mutagenesis. *Nature communications*, **6**, 7394.

811 37. Schimmel, J., Kool, H., van Schendel, R. and Tijsterman, M. (2017) Mutational  
812 signatures of non-homologous and polymerase theta-mediated end-joining in  
813 embryonic stem cells. *The EMBO journal*, **36**, 3634-3649.

814 38. van Kregten, M., de Pater, S., Romeijn, R., van Schendel, R., Hooykaas, P.J. and  
815 Tijsterman, M. (2016) T-DNA integration in plants results from polymerase-theta-  
816 mediated DNA repair. *Nature plants*, **2**, 16164.

817 39. Boulton, S.J. and Jackson, S.P. (1996) *Saccharomyces cerevisiae* Ku70 potentiates  
818 illegitimate DNA double-strand break repair and serves as a barrier to error-  
819 prone DNA repair pathways. *The EMBO journal*, **15**, 5093-5103.

820 40. Haber, J.E. (1999) DNA repair. Gatekeepers of recombination. *Nature*, **398**, 665,  
821 667.

822 41. Ninomiya, Y., Suzuki, K., Ishii, C. and Inoue, H. (2004) Highly efficient gene  
823 replacements in *Neurospora* strains deficient for nonhomologous end-joining.  
824 *Proceedings of the National Academy of Sciences of the United States of America*,  
825 **101**, 12248-12253.

826 42. Villalba, F., Collemare, J., Landraud, P., Lambou, K., Brozek, V., Cirer, B., Morin,  
827 D., Bruel, C., Beffa, R. and Lebrun, M.H. (2008) Improved gene targeting in  
828 *Magnaporthe grisea* by inactivation of MgKU80 required for non-homologous  
829 end joining. *Fungal genetics and biology : FG & B*, **45**, 68-75.

830 43. Bao, J., Chen, M., Zhong, Z., Tang, W., Lin, L., Zhang, X., Jiang, H., Zhang, D., Miao,  
831 C., Tang, H. *et al.* (2017) PacBio Sequencing Reveals Transposable Elements as a

832 Key Contributor to Genomic Plasticity and Virulence Variation in Magnaporthe  
 833 oryzae. *Molecular plant*, **10**, 1465-1468.

834 44. Peng, Z., Oliveira-Garcia, E., Lin, G., Hu, Y., Dalby, M., Migeon, P., Tang, H.,  
 835 Farman, M., Cook, D., White, F.F. *et al.* (2019) Effector gene reshuffling involves  
 836 dispensable mini-chromosomes in the wheat blast fungus. *PLoS genetics*, **15**,  
 837 e1008272.

838 45. Zhong, Z., Norvienyeku, J., Chen, M., Bao, J., Lin, L., Chen, L., Lin, Y., Wu, X., Cai,  
 839 Z., Zhang, Q. *et al.* (2016) Directional Selection from Host Plants Is a Major Force  
 840 Driving Host Specificity in Magnaporthe Species. *Scientific reports*, **6**, 25591.

841 46. Foster, A.J., Martin-Urdiroz, M., Yan, X., Wright, H.S., Soanes, D.M. and Talbot,  
 842 N.J. (2018) CRISPR-Cas9 ribonucleoprotein-mediated co-editing and  
 843 counterselection in the rice blast fungus. *Scientific reports*, **8**, 14355.

844 47. Kim, S., Kim, D., Cho, S.W., Kim, J. and Kim, J.S. (2014) Highly efficient RNA-  
 845 guided genome editing in human cells via delivery of purified Cas9  
 846 ribonucleoproteins. *Genome research*, **24**, 1012-1019.

847 48. Wang, Q., Cobine, P.A. and Coleman, J.J. (2018) Efficient genome editing in  
 848 *Fusarium oxysporum* based on CRISPR/Cas9 ribonucleoprotein complexes.  
 849 *Fungal genetics and biology : FG & B*, **117**, 21-29.

850 49. Giraldo, M.C., Dagdas, Y.F., Gupta, Y.K., Mentlak, T.A., Yi, M., Martinez-Rocha,  
 851 A.L., Saitoh, H., Terauchi, R., Talbot, N.J. and Valent, B. (2013) Two distinct  
 852 secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe  
 853 oryzae. *Nature communications*, **4**, 1996.

854 50. Zhang, W., Huang, J. and Cook, D.E. (2021) Histone modification dynamics at  
 855 H3K27 are associated with altered transcription of in planta induced genes in  
 856 Magnaporthe oryzae. *PLoS genetics*, **17**, e1009376.

857 51. Abdul, W., Aliyu, S.R., Lin, L., Sekete, M., Chen, X., Otieno, F.J., Yang, T., Lin, Y.,  
 858 Norvienyeku, J. and Wang, Z. (2018) Family-Four Aldehyde Dehydrogenases Play  
 859 an Indispensable Role in the Pathogenesis of Magnaporthe oryzae. *Frontiers in  
 860 plant science*, **9**, 980.

861 52. Wang, C., Milgate, A.W., Solomon, P.S. and McDonald, M.C. (2021) The  
 862 identification of a transposon affecting the asexual reproduction of the wheat  
 863 pathogen *Zymoseptoria tritici*. *Molecular plant pathology*, **22**, 800-816.

864 53. Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H. and Phillippy, A.M.  
 865 (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer  
 866 weighting and repeat separation. *Genome research*, **27**, 722-736.

867 54. Li, H. (2018) Minimap2: pairwise alignment for nucleotide sequences.  
 868 *Bioinformatics*, **34**, 3094-3100.

869 55. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,  
 870 Abecasis, G., Durbin, R. and Genome Project Data Processing, S. (2009) The  
 871 Sequence Alignment/Map format and SAMtools. *Bioinformatics*, **25**, 2078-2079.

872 56. Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz,  
 873 G. and Mesirov, J.P. (2011) Integrative genomics viewer. *Nature biotechnology*,  
 874 **29**, 24-26.

875 57. Sullivan, M.J., Petty, N.K. and Beatson, S.A. (2011) Easyfig: a genome comparison  
876 visualizer. *Bioinformatics*, **27**, 1009-1010.

877 58. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018) MEGA X: Molecular  
878 Evolutionary Genetics Analysis across Computing Platforms. *Molecular biology*  
879 and evolution, **35**, 1547-1549.

880 59. Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y. and Xia, R. (2020)  
881 TBtools - an integrative toolkit developed for interactive analyses of big  
882 biological data. *Molecular plant*.

883 60. Chumley, F.G. and Valent, B. (1990) Genetic analysis of melanin-deficient,  
884 nonpathogenic mutants of *Magnaporthe grisea*. *Mol. Plant-Microbe Interact*, **3**,  
885 135-143.

886 61. Fudal, I., Bohnert, H.U., Tharreau, D. and Lebrun, M.H. (2005) Transposition of  
887 MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast  
888 fungus *Magnaporthe grisea*. *Fungal genetics and biology : FG & B*, **42**, 761-772.

889 62. Hamer, J.E., Farrall, L., Orbach, M.J., Valent, B. and Chumley, F.G. (1989) Host  
890 species-specific conservation of a family of repeated DNA sequences in the  
891 genome of a fungal plant pathogen. *Proceedings of the National Academy of*  
892 *Sciences of the United States of America*, **86**, 9981-9985.

893 63. Farman, M.L. (2002) Meiotic deletion at the BUF1 locus of the fungus  
894 *Magnaporthe grisea* is controlled by interaction with the homologous  
895 chromosome. *Genetics*, **160**, 137-148.

896 64. Calo, S., Shertz-Wall, C., Lee, S.C., Bastidas, R.J., Nicolas, F.E., Granek, J.A.,  
897 Mieczkowski, P., Torres-Martinez, S., Ruiz-Vazquez, R.M., Cardenas, M.E. *et al.*  
898 (2014) Antifungal drug resistance evoked via RNAi-dependent epimutations.  
899 *Nature*, **513**, 555-558.

900 65. Yu, F., Gu, Q., Yun, Y., Yin, Y., Xu, J.R., Shim, W.B. and Ma, Z. (2014) The TOR  
901 signaling pathway regulates vegetative development and virulence in *Fusarium*  
902 *graminearum*. *The New phytologist*, **203**, 219-232.

903 66. Marroquin-Guzman, M. and Wilson, R.A. (2015) GATA-Dependent Glutaminolysis  
904 Drives Appressorium Formation in *Magnaporthe oryzae* by Suppressing TOR  
905 Inhibition of cAMP/PKA Signaling. *PLoS pathogens*, **11**, e1004851.

906 67. Wu, J., Kou, Y., Bao, J., Li, Y., Tang, M., Zhu, X., Ponaya, A., Xiao, G., Li, J., Li, C. *et*  
907 *al.* (2015) Comparative genomics identifies the *Magnaporthe oryzae* avirulence  
908 effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. *The New*  
909 *phytologist*, **206**, 1463-1475.

910 68. Mosquera, G., Giraldo, M.C., Khang, C.H., Coughlan, S. and Valent, B. (2009)  
911 Interaction transcriptome analysis identifies *Magnaporthe oryzae* BAS1-4 as  
912 Biotrophy-associated secreted proteins in rice blast disease. *The Plant cell*, **21**,  
913 1273-1290.

914 69. Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J.,  
915 Thon, M., Kulkarni, R., Xu, J.R., Pan, H. *et al.* (2005) The genome sequence of the  
916 rice blast fungus *Magnaporthe grisea*. *Nature*, **434**, 980-986.

917 70. Creutzburg, S.C.A., Wu, W.Y., Mohanraju, P., Swartjes, T., Alkan, F., Gorodkin, J.,  
918 Staals, R.H.J. and van der Oost, J. (2020) Good guide, bad guide: spacer

919 sequence-dependent cleavage efficiency of Cas12a. *Nucleic acids research*, **48**,  
920 3228-3243.

921 71. Wang, Q. and Coleman, J.J. (2019) Progress and Challenges: Development and  
922 Implementation of CRISPR/Cas9 Technology in Filamentous Fungi.  
*Computational and structural biotechnology journal*, **17**, 761-769.

923 72. Leisen, T., Bietz, F., Werner, J., Wegner, A., Schaffrath, U., Scheuring, D.,  
924 Willmund, F., Mosbach, A., Scalliet, G. and Hahn, M. (2020) CRISPR/Cas with  
925 ribonucleoprotein complexes and transiently selected telomere vectors allows  
926 highly efficient marker-free and multiple genome editing in *Botrytis cinerea*.  
927 *PLoS pathogens*, **16**, e1008326.

928 73. Markus, B.M., Bell, G.W., Lorenzi, H.A. and Lourido, S. (2019) Optimizing Systems  
929 for Cas9 Expression in *Toxoplasma gondii*. *mSphere*, **4**.

930 74. Jacobs, J.Z., Ciccaglione, K.M., Tournier, V. and Zaratiegui, M. (2014)  
931 Implementation of the CRISPR-Cas9 system in fission yeast. *Nature  
932 communications*, **5**, 5344.

933 75. Collemare, J., Pianfetti, M., Houlle, A.E., Morin, D., Camborde, L., Gagey, M.J.,  
934 Barbisan, C., Fudal, I., Lebrun, M.H. and Bohnert, H.U. (2008) *Magnaporthe  
935 grisea* avirulence gene ACE1 belongs to an infection-specific gene cluster  
936 involved in secondary metabolism. *The New phytologist*, **179**, 196-208.

937 76. Selin, C., de Kievit, T.R., Belmonte, M.F. and Fernando, W.G. (2016) Elucidating  
938 the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges.  
939 *Frontiers in microbiology*, **7**, 600.

940 77. Schotanus, K. and Heitman, J. (2020) Centromere deletion in *Cryptococcus  
941 deuterogattii* leads to neocentromere formation and chromosome fusions. *eLife*,  
942 **9**.

943 78. Owens, D.D.G., Caulder, A., Frontera, V., Harman, J.R., Allan, A.J., Bucakci, A.,  
944 Greder, L., Codner, G.F., Hublitz, P., McHugh, P.J. *et al.* (2019) Microhomologies  
945 are prevalent at Cas9-induced larger deletions. *Nucleic acids research*, **47**, 7402-  
946 7417.

947 79. Zhang, W.W. and Matlashedewski, G. (2019) Single-Strand Annealing Plays a Major  
948 Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in  
949 *Leishmania*. *mSphere*, **4**.

950 80. Jain, S., Shukla, S., Yang, C., Zhang, M., Fatma, Z., Lingamaneni, M., Abesteh, S.,  
951 Lane, S.T., Xiong, X., Wang, Y. *et al.* (2021) TALEN outperforms Cas9 in editing  
952 heterochromatin target sites. *Nature communications*, **12**, 606.

953 81. Schep, R., Brinkman, E.K., Leemans, C., Vergara, X., van der Weide, R.H., Morris,  
954 B., van Schaik, T., Manzo, S.G., Peric-Hupkes, D., van den Berg, J. *et al.* (2021)  
955 Impact of chromatin context on Cas9-induced DNA double-strand break repair  
956 pathway balance. *Molecular cell*, **81**, 2216-2230 e2210.

957 82. Gisler, S., Goncalves, J.P., Akhtar, W., de Jong, J., Pindyurin, A.V., Wessels, L.F.A.  
958 and van Lohuizen, M. (2019) Multiplexed Cas9 targeting reveals genomic  
959 location effects and gRNA-based staggered breaks influencing mutation  
960 efficiency. *Nature communications*, **10**, 1598.

961

962 83. Dong, S., Raffaele, S. and Kamoun, S. (2015) The two-speed genomes of  
963 filamentous pathogens: waltz with plants. *Current opinion in genetics &*  
964 *development*, **35**, 57-65.

965 84. Faino, L., Seidl, M.F., Shi-Kunne, X., Pauper, M., van den Berg, G.C., Wittenberg,  
966 A.H. and Thomma, B.P. (2016) Transposons passively and actively contribute to  
967 evolution of the two-speed genome of a fungal pathogen. *Genome research*, **26**,  
968 1091-1100.

969 85. Cook, D.E., Kramer, H.M., Torres, D.E., Seidl, M.F. and Thomma, B. (2020) A  
970 unique chromatin profile defines adaptive genomic regions in a fungal plant  
971 pathogen. *eLife*, **9**.

972 86. Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L., Han, B. and Wang, G.L.  
973 (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-  
974 binding site-leucine-rich repeat protein and is a member of a multigene family in  
975 rice. *Genetics*, **172**, 1901-1914.

976 87. Li, J., Zhang, Y., Zhang, Y., Yu, P.L., Pan, H. and Rollins, J.A. (2018) Introduction of  
977 Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the  
978 Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum. *mBio*, **9**.

979 88. Fuller, K.K., Chen, S., Loros, J.J. and Dunlap, J.C. (2015) Development of the  
980 CRISPR/Cas9 System for Targeted Gene Disruption in *Aspergillus fumigatus*.  
981 *Eukaryotic cell*, **14**, 1073-1080.

982 89. Wang, C. and Rollins, J.A. (2021) Efficient genome editing using endogenous U6  
983 snRNA promoter-driven CRISPR/Cas9 sgRNA in *Sclerotinia sclerotiorum*. *Fungal*  
984 *genetics and biology : FG & B*, **154**, 103598.

985 90. Adikusuma, F., Piltz, S., Corbett, M.A., Turvey, M., McColl, S.R., Helbig, K.J.,  
986 Beard, M.R., Hughes, J., Pomerantz, R.T. and Thomas, P.Q. (2018) Large deletions  
987 induced by Cas9 cleavage. *Nature*, **560**, E8-E9.

988 91. Kosicki, M., Tomberg, K. and Bradley, A. (2018) Repair of double-strand breaks  
989 induced by CRISPR-Cas9 leads to large deletions and complex rearrangements.  
990 *Nature biotechnology*, **36**, 765-771.

991 92. Alanis-Lobato, G., Zohren, J., McCarthy, A., Fogarty, N.M.E., Kubikova, N.,  
992 Hardman, E., Greco, M., Wells, D., Turner, J.M.A. and Niakan, K.K. (2021)  
993 Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos.  
994 *Proceedings of the National Academy of Sciences of the United States of America*,  
995 **118**.