
Hierarchical decoupling of electromagnetic and haemodynamic cortical networks

Golia Shafiei1, Sylvain Baillet1, Bratislav Misic1∗
1McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada

Abstract | Whole-brain neural communication is typically estimated from statistical associations
among electromagnetic or haemodynamic time-series. The relationship between functional network
architectures recovered from these two types of neural activity remains unknown. Here we map elec-
tromagnetic networks (measured using magnetoencephalography; MEG) to haemodynamic networks
(measured using functional magnetic resonance imaging; fMRI). We find that the relationship between
the two modalities is regionally heterogeneous and systematically follows the cortical hierarchy, with
close correspondence in unimodal cortex and poor correspondence in transmodal cortex. Comparison
with the BigBrain histological atlas reveals that electromagnetic-haemodynamic coupling is driven by
laminar differentiation and neuron density, suggesting that the mapping between the two modalities
can be explained by cytoarchitectural variation. Importantly, haemodynamic connectivity cannot be
explained by electromagnetic activity in a single frequency band, but rather arises from the mixing
of multiple neurophysiological rhythms. Correspondence between the two is largely driven by slower
rhythms, particularly the beta (15-29 Hz) frequency band. Collectively, these findings demonstrate
highly organized but only partly overlapping patterns of connectivity in MEG and fMRI functional
networks, opening fundamentally new avenues for studying the relationship between cortical micro-
architecture and multi-modal connectivity patterns.

INTRODUCTION

The structural wiring of the brain imparts a distinct sig-
nature on neuronal co-activation patterns. Inter-regional
projections promote signaling and synchrony among dis-
tant neuronal populations, giving rise to coherent neu-
ral dynamics, measured as regional time series of elec-
tromagnetic or hemodynamic neural activity [40]. Sys-
tematic co-activation among pairs of regions can be used
to map functional connectivity networks. Over the past
decade, these dynamics are increasingly recorded with-
out task instruction or stimulation; the resulting “intrin-
sic” functional connectivity is thought to reflect sponta-
neous neural activity.

The macro-scale functional architecture of the brain
is commonly inferred from electromagnetic or haemody-
namic activity. The former can be measured using elec-
troencephalography (EEG) or magnetoencephalography
(MEG), while the latter is measured using functional
magnetic resonance imaging (fMRI). Numerous studies
– using both MEG and fMRI – have reported evidence
of intrinsic functional patterns that are highly organized
[5, 10, 14, 17, 30, 90, 119], reproducible [15, 26, 47, 85]
and comparable to task-driven co-activation patterns
[15, 27, 101].

How do electromagnetic and haemodynamic networks
relate to one another? Although both modalities attempt
to capture the same underlying biological process (neu-
ral activity), they are sensitive to different physiologi-
cal mechanisms and ultimately reflect neural activity at
fundamentally different time scales [4, 52, 56, 92, 93].
Emerging theories emphasize a hierarchy of time scales
of intrinsic fluctuations across the cortex [43, 83, 91, 98],
where unimodal cortex is more sensitive to immediate
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changes in the sensory environment, while transmodal
cortex is more sensitive to prior context [6, 23, 24, 57,
64, 67]. This raises the possibility that the alignment be-
tween the relatively slower functional architecture cap-
tured by fMRI and faster functional architecture captured
by MEG may systematically vary across the cortex.

Previous reports have found some, but not complete,
global overlap between the two modalities. Multiple
MEG and fMRI independent components – represent-
ing spatiotemporal signatures of resting-state intrinsic
networks – show similar spatial topography, particularly
the visual, somatomotor and default mode components
[5, 14, 17, 62]. Moreover, fMRI and MEG/EEG yield
comparable fingerprinting accuracy, suggesting that they
encode common information [29, 33, 39, 95]. Finally,
global edge-wise comparisons between fMRI networks
and electrocorticography (ECoG) [12], EEG [32, 117,
118] and MEG [44, 63, 106] also yield moderate corre-
lations. These studies make two tacit assumptions. First,
by focusing on global comparisons, they assumed that
electromagnetic and haemodynamic connectivity are re-
lated in exactly the same way across the brain, pre-
cluding the possibility that the coupling between fMRI
and MEG connectivity varies from region to region, i.e.
is regionally heterogeneous. Second, previous studies
typically compared haemodynamic and electromagnetic
networks for each band separately, assuming that indi-
vidual rhythms contribute independently to haemody-
namic connectivity. This effectively precludes the possi-
bility that superposition and mixing of elementary elec-
tromagnetic rhythms manifests as patterns of haemody-
namic connectivity [74, 106]. Whether and how the two
modalities can be mapped to one another at the network
level remains unknown.

Here we directly study the link between MEG- and
fMRI-based functional networks. We use a linear multi-
factor model that allows to represent the haemodynamic
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Figure 1. Relating haemodynamic and electromagnetic connectivity | (a) A multi-linear regression model was applied to predict
resting state fMRI connectivity patterns from band-limited MEG functional connectivity. The model is specified for each brain region
separately, attempting to predict a region’s haemodynamic connectivity profile from its electromagnetic connectivity profile. The
dependent variable is a row of the fMRI FC matrix and the independent variables are the corresponding rows of MEG amplitude
envelope correlation (AEC [18]) matrices for six canonical electrophysiological bands. For a model fitted for a given node i, the
observations in the model are the connections to the other j 6= i regions. The regression coefficients b are optimized to yield
maximum correlation between empirical and predicted fMRI connectivity profile of each brain region. (b) The overall relationship
between fMRI and MEG functional connectivity is estimated by correlating the upper triangle of fMRI FC with the upper triangles
of band-limited MEG FC, suggesting moderate relationship between the two across frequency bands. (c) Regional multi-linear
model shown in panel (a) is used to predict fMRI FC from band-limited MEG FC for each brain region (i.e. row) separately. The
empirical and predicted fMRI FC are depicted side-by-side for the regional model. The whole-brain edge-wise relationship between
the empirical and predicted values is shown in the scatter plot. Each grey dot represents an edge (pairwise functional connection)
from the upper triangles of empirical and predicted fMRI FC matrices. (d) A global multi-linear model is used to predict the entire
upper triangle of fMRI FC from the upper triangles of the MEG FC matrices. The empirical and predicted fMRI FC are depicted
side-by-side for the global model. The whole-brain edge-wise relationship between the empirical and predicted values is shown in
the scatter plot. Each grey dot represents en edge from the upper triangles of empirical and predicted fMRI FC matrices. (e) The
distribution of regional model fit quantified by R2 is shown for regional model (grey histogram plot). The global model fit is also
depicted for comparison (pink line).

functional connectivity profile of a given brain region as
a linear combination of its electromagnetic functional
connectivity in multiple frequency bands. We then ex-
plore how the two modalities align across the neocortex.

RESULTS

Data were derived using task-free MEG and fMRI
recordings in the same unrelated participants from the
Human Connectome Project (HCP [108]; n = 33). We
first develop a simple regression-based model to map re-
gional MEG connectivity to regional fMRI connectivity
using group-average data. We then investigate how re-

gionally heterogeneous the correspondence between the
two is, and how different rhythms contribute to this re-
gional heterogeneity. Finally, we conduct extensive sen-
sitivity testing to demonstrate that the results are robust
to multiple methodological choices.

Relating haemodynamic and electromagnetic connectivity

To relate fMRI and MEG functional connectivity pat-
terns, we apply a multi-linear regression model [110]
(Fig. 1). The model is specified for each brain region sep-
arately, attempting to predict a region’s haemodynamic
connectivity profile from its electromagnetic connectivity
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Figure 2. Regional model fit | (a) Spatial organization of fMRI-MEG correspondence is depicted for the regional model fit (95%
interval). The cross-modal correspondence of connectivity profiles of brain regions is distributed heterogeneously across the cortex,
representing regions with low or high correspondence. Strong cross-modal correspondence is observed in sensory areas whereas
poor correspondence is observed for higher order regions. (b) Spatial organization of the cross-modal correspondence is compared
with the functional hierarchical organization of cerebral cortex [75]. The two are significantly anti-correlated, confirming poor
fMRI-MEG correspondence in connectivity profile of higher-order, transmodal areas compared to strong correspondence for sen-
sory, unimodal regions. (c) Regions are stratified by their affiliation with macro-scale intrinsic networks [119]. The distribution of
R2 is depicted for each network, displaying a systematic gradient of cross-modal correspondence with the highest correspondence
in the visual network and lowest correspondence in the default mode network. (d) The model fit is related to the cytoarchitectural
variation of the cortex, estimated from the cell staining intensity profiles at various cortical depths obtained from the BigBrain
histological atlas [2, 88]. Bigger circles denote statistically significant associations after correction for multiple comparisons by
controlling the false discovery rate (FDR) at 5% alpha [11]. The peak association between cross-modal correspondence and cy-
toarchitecture is observed approximately at cortical layer IV that has high density of granule cells. Staining intensity profiles are
depicted across the cortex for the most pial, the middle and the white matter surfaces. rs denotes Spearman rank correlation. In-
trinsic networks: vis = visual; sm = somatomotor; da = dorsal attention; va = ventral attention; lim = limbic; fp = frontoparietal;
dmn = default mode.

profile. The dependent variable is a row of the fMRI func-
tional connectivity (FC) matrix and the independent vari-
ables are the corresponding rows of MEG FC matrices for
six canonical electrophysiological bands, estimated using
amplitude envelope correlation (AEC [18]) with spatial
leakage correction (see Methods for more details). For a
model fitted for a given node i, the observations in the
model are the connections of node i to the other j 6= i
regions (Fig. 1a). The model predicts the fMRI FC pro-
file of node i (i.e. i-th row) from a linear combination of
MEG FC profiles of node i in the six frequency bands (i.e.
i-th rows of MEG FC matrices). Collectively, the model
embodies the idea that multiple rhythms could be super-
imposed to give rise to regionally heterogeneous haemo-
dynamic connectivity.

Indeed, we find that the relationship between haemo-
dynamic and electromagnetic connectivity is highly het-
erogeneous. Band-limited MEG connectivity matrices are
moderately correlated with fMRI connectivity, ranging
from r = −0.06 to r = 0.36 (Fig. 1b; r denotes Pear-

son correlation coefficient). The regional multi-linear
model fits range from adjusted-R2 = −0.002 to adjusted-
R2 = 0.72 (R2 denotes coefficient of determination;
hereafter we refer to adjusted-R2 as R2), suggesting a
close correspondence in some regions and poor corre-
spondence in others (Fig. 1c,e; see Fig. S1 for band-
specific regional model fits). For comparison, a single
global model is fitted to the data, predicting the entire
upper triangle of the fMRI FC matrix from a linear combi-
nation of the upper triangles of six MEG FC matrices. The
global model, which simultaneously relates whole-brain
fMRI FC to the whole-brain MEG FC, yields an R2 = 0.15
(Fig. 1d,e). Importantly, the global model clearly ob-
scures the wide range of correspondences, which can be
considerably greater or smaller for individual regions.

Hierarchical organization of cross-modal connectivity

We next consider the spatial organization of fMRI-MEG
correspondence. Fig. 2a shows the spatial distribution of
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Figure 3. Dominance analysis | Dominance analysis is performed for each regional multi-linear model to quantify how MEG con-
nectivity at different rhythms contribute to regional patterns of cross-modal correspondence [3, 19]. (a) The overall contribution
of each frequency band is depicted for the regional model (box plots). Slower bands contribute the most to model fit whereas
faster bands (low and high gamma) contribute the least. (b) The mean contribution of different rhythms is estimated for the
intrinsic networks. Consistent with the overall contributions depicted in panel (a), the greatest contribution is associated with
slower frequency bands, specifically the beta band. (c) The most dominant predictor (frequency band) is depicted for each brain
region, confirming overall higher contributions from slower rhythms across the cortex. (d) Frequency band contribution to the
regional cross-modal correspondence is shown separately for different rhythms across the cortex (95% intervals).

regional R2 values, representing regions with low or high
correspondence. Regions with strong cross-modal corre-
spondence include the visual, somato-motor and audi-
tory cortex. Regions with low cross-modal correspon-
dence include the posterior cingulate, lateral temporal
and medial prefrontal cortex.

Collectively, the spatial layout of cross-modal cor-
respondence bears a resemblance to the unimodal-
transmodal cortical hierarchy observed in large-scale
functional and microstructural organization of the cere-
bral cortex [67]. To assess this hypothesis, we first
used the neuromaps toolbox [76] to compare the cross-
modal R2 map with the principal functional gradient
[70, 75] (Fig. 2b). The two are significantly anti-
correlated (Spearman rank correlation coefficient rs =
−0.69, pspin = 0.0001), suggesting strong cross-modal
correspondence in unimodal sensory cortex and poor
correspondence in transmodal cortex. We then stratify
regions by their affiliation with macro-scale intrinsic net-
works and computed the mean R2 in each network [119]
(Fig. 2c). Here we also observe a systematic gradient
of cross-modal correspondence, with the strongest corre-
spondence in the visual network and poorest correspon-
dence in the default mode network.

Finally, we relate the cross-modal R2 map to the cy-
toarchitectural variation of the cortex (Fig. 2d). We use
the BigBrain histological atlas to estimate granular cell
density at multiple cortical depths [2, 88]. Cell-staining

intensity profiles were sampled across 50 equivolumetric
surfaces from the pial surface to the white matter surface
to estimate laminar variation in neuronal density and
soma size. Fig. 2d shows the correlation between MEG-
fMRI correspondence and cell density (y-axis) at differ-
ent cortical depths (x-axis). Interestingly, the model fit is
associated with cytoarchitectural variation of the cortex,
with the peak association observed approximately at cor-
tical layer IV that has high density of granular cells and
separates supra- and infra-granular layers [86, 87, 113].

Heterogeneous contributions of multiple rhythms

How do different rhythms contribute to regional pat-
terns of cross-modal correspondence? To address this
question, we perform a dominance analysis for every re-
gional multi-linear model [3, 19]. The technique esti-
mates the relative importance of predictors by construct-
ing all possible combinations of predictors and quanti-
fying the relative contribution of each predictor as ad-
ditional variance explained (i.e. gain in adjusted-R2)
by adding that predictor to the models. Fig. 3a shows
the global dominance of each frequency band. Overall,
we observe the greatest contributions from slower bands
(delta to beta) and smallest contributions from faster
bands (low and high gamma).

Zooming in on individual regions and intrinsic net-
works, we find that the dominance pattern is also re-
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Figure 4. Sensitivity analysis | (a) A regional cross-validation was performed by pseudorandomly splitting the connectivity profile
of a given region into train and test sets based on spatial separation, such that 75% of the closest regions to a random region are
selected as the train set and the remaining 25% of the regions are selected as test set (399 repetitions) [54]. The multi-linear
model is then fitted on the train set and is used to predict the connection strength of the test set for each region and each split.
The mean regional model performance across splits is depicted for train and test sets, displaying consistent results between the
two (scatter plot). The out-of-sample model performance is stronger in the sensory, unimodal areas compared to transmodal
areas, consistent with original findings (Fig. 2). (b) A subject-level cross-validation was performed using a leave-one-out approach.
The regional multi-linear model is trained using data from n − 1 subjects and is tested on the held-out subject for each region
separately. The mean regional model performance is shown for train and test sets, displaying consistent results between the two
(scatter plot). The out-of-sample model performance is stronger in the sensory, unimodal areas compared to transmodal areas,
consistent with original findings (Fig. 2). The analysis is also repeated for various processing choices: (c) after regressing out inter-
regional Euclidean distance from connectivity matrices, (d) using MEG connectivity data without spatial leakage correction, (e)
using another MEG source reconstruction method (standardized low resolution brain electromagnetic tomography; sLoreta [89]),
(f) using a phase-based MEG connectivity measure (phase-locking value; PLV [69, 82]), and (g) at a low resolution parcellation
(Schaefer-200 atlas [96]). The results are consistent across all control analyses, identifying similar cross-modal correspondence
maps as the original analysis (Fig. 2a). All brain maps are shown at 95% intervals. rs denotes Spearman rank correlation.
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gionally heterogeneous. Namely, the make-up and con-
tribution of specific MEG frequencies to a region’s fMRI
connectivity profile varies from region to region. Fig. 3b
shows the dominance of specific rhythms in each intrin-
sic network. Fig. 3c shows the most dominant predictor
for every brain region. Fig. 3d shows the dominance of
specific rhythms separately for each region across cor-
tex. Overall, we observe that slow rhythm connectivity
patterns, specifically from beta band, contribute the most
to model prediction across the cortex.

Sensitivity analysis

Finally, we note that the present report goes through
several decision points that have equally-justified alter-
natives. Here we explore the other possible choices.
First, rather than framing the report from an explana-
tory perspective (focusing on model fit), we instead de-
rive an equivalent set of results using a predictive per-
spective (focusing on out-of-sample prediction). We per-
form cross-validation at both the region- and subject-
level (Fig. 4a,b). For region-level cross-validation, we
pseudorandomly split the connectivity profile of a given
region into train and test sets based on spatial separation
(inter-regional Euclidean distance), such that 75% of the
closest regions to a random region are selected as the
train set and the remaining 25% of the regions are se-
lected as test set (399 repetitions; see Methods for more
details) [54]. We then train the multi-linear model us-
ing the train set and predict the connection strength of
the test set for each region and each split. The mean re-
gional model performance across splits is consistent for
train and test sets (Fig. 4a; r = 0.78, pspin = 0.0001). For
subject-level cross-validation, we use leave-one-out-cross
validation, wherein we train the regional multi-linear
models using data from n− 1 subjects and test each one
on the held-out subject. The mean regional model per-
formance is consistent for train and test sets (Fig. 4b;
r = 0.90, pspin = 0.0001). Altogether, both analyses
give similar, highly concordant results with the simpler
model fit-based analysis, identifying strong cross-modal
correspondence in unimodal sensory regions and poor
correspondence in transmodal areas.

To consider the effect of spatial proximity on the find-
ings, we remove the exponential inter-regional Euclidean
distance trend from all connectivity matrices before fit-
ting any model. The results are consistent with and with-
out distance correction (Fig. 4c; correlation with func-
tional hierarchy: rs = −0.53, pspin = 0.0001; correlation
with original R2: rs = 0.67, pspin = 0.0001). We also
obtain consistent findings when we repeat the analysis
without accounting for spatial leakage effect in estimat-
ing MEG connectivity with AEC (Fig. 4d; correlation with
functional hierarchy: rs = −0.60, pspin = 0.0001; corre-
lation with original R2: rs = 0.84, pspin = 0.0001). Next,
we use another source reconstruction method (standard-
ized low resolution brain electromagnetic tomography;
sLoreta [89]) instead of LCMV beamformers, as previous

reports suggest that sLoreta improves source localization
accuracy [59, 60]. We then estimate MEG connectiv-
ity with AEC and repeat the multi-linear model analysis,
identifying similar results as before (Fig. 4e; correlation
with functional hierarchy: rs = −0.80, pspin = 0.0001;
correlation with original R2: rs = 0.85, pspin = 0.0002).
Next, we compute MEG connectivity using an alterna-
tive, phase-based connectivity measure (phase locking
value; PLV [69, 82]), rather than the AEC. The two
FC measures yield similar cross-modal correspondence
maps (Fig. 4f; correlation with functional hierarchy:
rs = −0.53, pspin = 0.0022; correlation with original
R2: rs = 0.66, pspin = 0.0001). We also repeat the
analysis using a low resolution parcellation (Schaefer-
200 atlas [96]) to ensure that the findings are inde-
pendent from the choice of parcellation. As before,
the results demonstrate similar cross-modal correspon-
dence map (Fig. 4g; correlation with functional hierar-
chy: rs = −0.70, pspin = 0.0001). Finally, to assess the
extent to which the results are influenced by MEG source
localization error, we compare the cross-modal corre-
spondence pattern to peak localization error estimated
using cross-talk function (CTF) [58–60, 71, 81]. No sig-
nificant association is observed between R2 pattern and
CTF for LCMV (Fig. S2a; rs = −0.14, pspin = 0.6) and
sLoreta (Fig. S2b; rs = −0.04, pspin = 0.9) source recon-
struction solutions.

DISCUSSION

In the present report we map electromagnetic func-
tional networks to haemodynamic functional networks
in the human brain. We find two principal results. First,
the relationship between the two modalities is regionally
heterogeneous but systematic, reflecting the unimodal-
transmodal cortical hierarchy and cytoarchitectural vari-
ation. Second, haemodynamic connectivity cannot be ex-
plained by electromagnetic connectivity in a single band,
but rather reflects mixing and superposition of multiple
rhythms.

The fact that the association between the two modali-
ties follows a gradient from unimodal to transmodal cor-
tex resonates with emerging work on cortical hierarchies
[67, 75, 79]. Indeed, similar spatial variations are ob-
served for multiple micro-architectural features, such as
gene expression [21, 42, 54], T1w/T2w ratio [66], lam-
inar differentiation [113] and neurotransmitter receptor
profiles [41, 48, 55]. Collectively, these studies point to
a natural axis of cortical organization that encompasses
variations in both structure and function across micro-,
meso- and macro-scopic spatial scales.

This spatial variation in structure is thought to mani-
fest as spatial variation in intrinsic dynamics [43, 83, 98,
111, 116]. In particular, multiple studies have reported
faster timescales of intrinsic neural activity in unimodal
sensory cortex, and slower timescales in transmodal cor-
tex [43, 83, 91]. This hierarchy of timescales is thought
to support a hierarchy of temporal receptive windows:
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time windows in which a newly arriving stimulus will
modify processing of previously presented, contextual in-
formation [6, 23, 24, 57, 64, 67]. As a result, unimodal
cortex needs to adapt to rapid, uncertain changes in sen-
sory input, while transmodal cortex registers slower pre-
diction error signals, resulting in greater sensitivity to
contextual information [34].

Interestingly, we find the closest correspondence be-
tween fMRI and MEG functional connectivity in uni-
modal cortex (including the visual and somatomotor net-
works) and the poorest correspondence in transmodal
cortex (default mode, limbic, fronto-parietal and ventral
attention networks). In other words, the functional ar-
chitectures of the two modalities are consistent early in
the cortical hierarchy, presumably reflecting activity re-
lated to instantaneous changes in the external environ-
ment. Conversely, as we move up the hierarchy, there is
a gradual separation between the two architectures, sug-
gesting that they are differently modulated by endoge-
nous inputs and contextual information. How the two
types of functional connectivity are related to ongoing
task demand is an exciting question for future research.

Why is there systematic divergence between the two
modalities? One possibility is that neurovascular cou-
pling is heterogeneous across the cortex [7, 13, 46, 104].
Patterns of laminar differentiation – which define the
unimodal-transmodal hierarchy [49, 61, 113] – result in
regionally heterogeneous haemodynamic response func-
tions, such that the same stimulus may elicit blood-
oxygen-level-dependent (BOLD) responses with different
amplitudes and latencies across the cortex [36, 37, 53,
65, 80, 105]. As a result, patterns of haemodynamic
connectivity may systematically decouple from the un-
derlying electromagnetic connectivity patterns.

A related possibility is that greater coupling in uni-
modal cortex is driven by the underlying cytoarchitec-
ture, reflecting greater neuron density, stronger recur-
rent subcortical inputs and specialized local process-
ing in sensory regions compared to transmodal cortex
[28, 115]. Indeed, we find that the correspondence be-
tween haemodynamic and electromagnetic connectivity
is associated with cytoarchitectural variation across the
cortex, such that regions with higher density of granu-
lar cells have higher cross-modal correspondence, and
vice versa. This is consistent with the notion that neu-
ral oscillations and the BOLD response mirror cytoar-
chitectural organization, as a result of distinct feedfor-
ward and feedback projections between different corti-
cal layers and subcortical regions [20, 35, 51, 97]. For
example, previous studies of animal electrophysiological
recordings demonstrated that visual and frontal cortex
gamma activity can be localized to superficial cortical
layers (supragranular layers I-III and granular layer IV),
whereas alpha and beta activity are localized to deep, in-
fragranular layers (layers V-IV) [8, 9, 20, 72, 73, 100].
Similar findings have been reported in humans using
EEG and laminar-resolved BOLD recordings, demonstrat-
ing that gamma and beta band EEG power are associated

with superficial and deep layer BOLD response, respec-
tively, whereas alpha band EEG power is associated with
BOLD response in both superficial and deep layers [97].
Another study using human MEG recordings found that
source activity differs when deep and superficial surface
models are used for source reconstruction analysis [107].

Throughout the present report, we find that fMRI net-
works are best explained as arising from the superposi-
tion of multiple band-limited MEG networks. Although
previous work has focused on directly correlating fMRI
with MEG/EEG networks in specific bands, we show that
synchronized oscillations in multiple bands could poten-
tially combine to give rise to the well studied fMRI func-
tional networks. Indeed, and as expected, the correlation
between any individual band-specific MEG network and
fMRI is substantially smaller than the multi-linear model
that takes into account all bands simultaneously. Pre-
vious work on cross-frequency interactions [38] and on
multi-layer MEG network organization [16] has sought
to characterize the participation of individual brain re-
gions within and between multiple frequency networks.
Our findings build on this literature, showing that the su-
perimposed representation may additionally help to un-
lock the link between MEG and fMRI networks.

It is noteworthy that the greatest contributions to the
link between the two modalities came from slower os-
cillations, such as beta band. Multiple authors have re-
ported that – since it captures slow haemodynamic co-
activation – fMRI network connectivity would be mainly
driven by slower rhythms [17, 32, 38, 74, 92]. Here
we empirically confirm that although all frequency bands
contribute to the emergence of fMRI networks, the great-
est contributions come from relatively slower frequencies
and the lowest contributions come from relatively faster
frequencies.

The present results raise two important questions for
future work. First, how does structural connectivity
shape fMRI and MEG functional networks [22, 102,
118]? Given that they capture distinct neurophysiolog-
ical mechanisms, it is possible that haemodynamic and
electromagnetic architectures have a different relation-
ship with structural connectivity and this could poten-
tially explain why they systematically diverge through
the cortical hierarchy [110]. Second, the present re-
sults show how the two modalities are related in a task-
free resting state, but what is the relationship between
fMRI and MEG connectivity during cognitive tasks [68]?
Given that the two modalities become less correlated in
transmodal cortex in the resting state, the relationship
between them during task may depend on demand and
cognitive functions required to complete the task.

Finally, the present results should be interpreted in
light of several methodological considerations. First, al-
though we conduct extensive sensitivity testing, includ-
ing multiple ways of defining functional connectivity,
there exist many more ways in the literature to estimate
both fMRI and MEG connectivity [84, 112]. Second, to
ensure that the analyses were performed in the same par-
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ticipants using both resting state fMRI and MEG, and that
the participants have no familial relationships, we uti-
lized a reduced version of the HCP sample. Third, in
order to directly compare the contributions of multiple
frequency bands, all were entered into the same model.
As a result however, the observations in the linear models
(network edges) are not independent, violating a basic
assumption of these statistical models. For this reason,
we only use model fits and dominance values to com-
pare the correspondence of fMRI and MEG across a set
of nodes, each of which is estimated under the same con-
ditions.

Despite complementary strengths to image spatiotem-
poral brain dynamics, the links between MEG and fMRI
are not fully understood and the two fields have di-
verged. The present report bridges the two disciplines by
comprehensively mapping haemodynamic and electro-
magnetic network architectures. By considering the con-
tributions of the canonical frequency bands simultane-
ously, we show that the superposition and mixing of MEG
neurophysiological rhythms manifests as highly struc-
tured patterns of fMRI functional connectivity. System-
atic convergence and divergence among the two modal-
ities in different brain regions opens fundamentally new
questions about the relationship between cortical hierar-
chies and multi-modal functional networks.

METHODS

Dataset: Human Connectome Project (HCP)

Resting state magnetoencephalography (MEG) data of
a set of healthy young adults (n = 33; age range 22-35
years) with no familial relationships were obtained from
Human Connectome Project (HCP; S900 release [108]).
The data includes resting state scans of about 6 minutes
long (sampling rate = 2034.5 Hz; anti-aliasing filter low-
pass filter at 400 Hz) and noise recordings for all par-
ticipants. MEG anatomical data and 3T structural mag-
netic resonance imaging (MRI) data of all participants
were also obtained for MEG pre-processing. Finally, we
obtained functional MRI data of the same n = 33 in-
dividuals from HCP dataset. All four resting state fMRI
scans (two scans with R/L and L/R phase encoding direc-
tions on day 1 and day 2, each about 15 minutes long;
TR = 720 ms) were available for all participants.

HCP Data Processing

Resting state magnetoencephalography (MEG)

Resting state MEG data was analyzed using Brainstorm
software, which is documented and freely available for
download online under the GNU general public license
([103]; http://neuroimage.usc.edu/brainstorm). The
MEG recordings were registered to the structural MRI
scan of each individual using the anatomical transforma-
tion matrix provided by HCP for co-registration, follow-

ing the procedure described in Brainstorm’s online tuto-
rials for the HCP dataset (https://neuroimage.usc.edu/
brainstorm/Tutorials/HCP-MEG). The pre-processing
was performed by applying notch filters at 60, 120,
180, 240, and 300 Hz, and was followed by a high-
pass filter at 0.3 Hz to remove slow-wave and DC-
offset artifacts. Bad channels were marked based on
the information obtained through the data management
platform of HCP for MEG data (ConnectomeDB; https:
//db.humanconnectome.org/). The artifacts (including
heartbeats, eye blinks, saccades, muscle movements, and
noisy segments) were then removed from the record-
ings using automatic procedures as proposed by Brain-
storm. More specifically, electrocardiogram (ECG) and
electrooculogram (EOG) recordings were used to detect
heartbeats and blinks, respectively. We then used Signal-
Space Projections (SSP) to automatically remove the de-
tected artifacts. We also used SSP to remove saccades
and muscle activity as low-frequency (1-7 Hz) and high-
frequency (40-240 Hz) components, respectively. The
pre-processed sensor-level data was then used to obtain
a source estimation on HCP’s fsLR4k cortex surface for
each participant. Head models were computed using
overlapping spheres and the data and noise covariance
matrices were estimated from the resting state MEG and
noise recordings. Linearly constrained minimum vari-
ance (LCMV) beamformers method from Brainstorm was
then used to obtain the source activity for each partici-
pant. We performed data covariance regularization to
reduce the effect of variable source depth, where the es-
timated source variance was normalized by the data co-
variance matrix. Source orientations were constrained to
be normal to the cortical surface at each of the 8,000 ver-
tex locations on the fsLR4k surface. Source-level time-
series were then parcellated into 400 regions using the
Schaefer-400 atlas [96], such that a given parcel’s time
series was estimated as the first principal component of
its constituting sources’ time series. Parcellated time-
series were then used to estimate functional connectiv-
ity with an amplitude-based connectivity measure from
Brainstorm (amplitude envelope correlation; AEC [18]).
An orthogonalization process was applied to correct for
the spatial leakage effect by removing all shared zero-lag
signals [25]. AEC functional connectivity were derived
for each participant at six canonical electrophysiological
bands (i.e., delta (δ: 2-4 Hz), theta (θ: 5-7 Hz), alpha (α:
8-12 Hz), beta (β: 15-29 Hz), low gamma (lo-γ: 30-59
Hz), and high gamma (hi-γ: 60-90Hz)). Group-average
MEG functional connectivity matrices were constructed
as the mean functional connectivity across all individuals
for each frequency band. For comparison, band-limited
group-average AEC matrices were also estimated without
correcting for spatial leakage effect.

We also processed the MEG data using additional
methodological choices. First, the LCMV source recon-
structed and parcellated time-series were used to esti-
mate functional connectivity with an alternative, phase-
based connectivity measure (phase locking value; PLV
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[69, 82]) for each frequency band. Second, another
source reconstruction method (standardized low reso-
lution brain electromagnetic tomography; sLoreta [89])
was used instead of LCMV beamformers to obtain source-
level time-series, given that previous reports suggest that
sLoreta improves source localization accuracy [59, 60].
Source-level time-series, obtained by sLoreta, were then
parcellated into 400 regions and were used to estimate
AEC matrices with spatial leakage correction for the six
frequency bands. Third, to ensure that the findings are
independent from choice of parcellation, a low resolu-
tion atlas (Schaefer-200 [96]) was used to parcellate
the original LCMV source-level time-series to 200 cor-
tical regions and obtain spatial leakage corrected AEC
connectivity matrices. Finally, we estimated MEG source
localization errors for LCMV and sLoreta source recon-
struction solutions using cross-talk functions (CTF) [58–
60, 71, 81]. CTF of a given source i is a measure of how
activity from all other sources contributes to the activ-
ity estimated for the i-th source. Following guidelines
from Brainstrom [103] and MNE-Python software pack-
ages [50], we used CTF to calculate peak localization
error of a given source i as the Euclidean distance be-
tween the peak location estimated for source i and the
true source location i on the surface model [59, 81].

Resting state functional MRI

The functional MRI data were pre-processed using
HCP minimal pre-processing pipelines [45, 108]. De-
tailed information regarding data acquisition and pre-
processing is available elsewhere [45, 108]. Briefly, all
3T functional MRI time-series were corrected for gradi-
ent nonlinearity, head motion using a rigid body trans-
formation, and geometric distortions using scan pairs
with opposite phase encoding directions (R/L, L/R) [31].
Further pre-processing steps include co-registration of
the corrected images to the T1w structural MR images,
brain extraction, normalization of whole brain inten-
sity, high-pass filtering (> 2000s FWHM; to correct for
scanner drifts), and removing additional noise using
the ICA-FIX process [31, 94]. The pre-processed time-
series were then parcellated into 400 cortical areas using
Schaefer-400 parcellation [96]. The parcellated time-
series were used to construct functional connectivity ma-
trices as Pearson correlation coefficients between pairs of
regional time-series for each of the four scans and each
participant. A group-average functional connectivity ma-
trix was constructed as the mean functional connectivity
across all individuals and scans.

BigBrain histological data

To characterize the cytoarchitectural variation across
the cortex, cell-staining intensity profile data were ob-
tained from the BigBrain atlas [2, 88]. The BigBrain
is a high-resolution (20 µm) histological atlas of a post

mortem human brain and includes cell-staining inten-
sities that are sampled at each vertex across 50 equiv-
olumetric surfaces from the pial to the white matter
surface using the Merker staining technique [2, 78].
The staining intensity profile data represent neuronal
density and soma size at varying cortical depths, cap-
turing the regional differentiation of cytoarchitecture
[2, 87, 88, 113, 114]. Intensity profiles at various cortical
depths can be used to approximately identify boundaries
of cortical layers that separate supragranular (cortical
layers I-III), granular (cortical layer IV), and infragranu-
lar (cortical layers V-VI) layers [88, 113, 114]. The data
were obtained on fsaverage surface (164k vertices) from
the BigBrainWarp toolbox [88] and were parcellated into
400 cortical regions using the Schaefer-400 atlas [96].

Multi-linear model

A multiple linear regression model was used to
assess regional associations between haemodynamic
(fMRI) and electromagnetic (MEG) functional connec-
tivity (Fig. 1 [110]). A separate multi-linear model is
applied for each brain region from the parcellated data,
predicting the region’s fMRI functional connectivity pro-
file from its band-limited MEG functional connectivity.
The dependent variable is a row of the fMRI connectiv-
ity matrix and the independent variables (predictors) are
the corresponding rows of MEG connectivity for the six
canonical electrophysiological bands. The linear regres-
sion model for each brain region i is constructed as fol-
lowing:

FCi =b1 × FC(δ)i + b2 × FC(θ)i+

b3 × FC(α)i + b4 × FC(β)i+

b5 × FC(lo,γ)i + b6 × FC(hi,γ)i + b0

(1)

where the dependant variable FCi is the set of fMRI con-
nections of node i to the other j 6= i regions and the
predictors are sets of MEG connections of node i to the
other j 6= i regions for the six frequency bands (FC(δ)i,
FC(θ)i, FC(α)i, FC(β)i, FC(lo,γ)i, FC(hi,γ)i). The
regression coefficients b1, ..., b6 and the intercept b0 are
then optimized to yield maximum correlation between
empirical and predicted fMRI connectivity for each brain
region. Goodness of fit for each regional model is quan-
tified using adjusted-R2 (coefficient of determination).

Region-level cross-validation

Region-level cross-validation was performed to assess
out-of-sample model performance. Given the spatial au-
tocorrelation inherent to the data, random splits of brain
regions into train and test sets may result in out-of-
sample correlations that are inflated due to spatial prox-
imity [77]. To take this into account, we used a distance-
dependant cross-validation approach where we pseudo-
randomly split the connectivity profile of a given region
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(e.g. node i) into train and test sets based on spatial
separation [54]. We used inter-regional Euclidean dis-
tance to select 75% of the closest regions to a randomly
selected source region as the train set and the remaining
25% of the regions as test set. The random source re-
gion can be any of the 399 regions connected to node i;
hence, the connectivity profile of node i is split into 399
unique train and test sets. We then train the multi-linear
model using the train set and predict functional connec-
tivity of the test set for each region and each split. Fi-
nally, the model performance is quantified using Pearson
correlation coefficient between empirical and predicted
values. The cross-validated regional model performance
is then estimated as the mean correlation coefficient be-
tween empirical and predicted values across splits for
each brain region.

Subject-level cross-validation

Leave-one-out cross-validation was performed to as-
sess model performance on held-out subjects. Briefly, the
regional multi-linear model is trained using the group-
average data from n − 1 subjects. The trained model is
then used to predict fMRI connectivity profile of each re-
gion on the held-out subject (test set). The model perfor-
mance is quantified as the Pearson correlation coefficient
between empirical and predicted connectivity of each re-
gion. The analysis is repeated for all subjects and the
regional model performance is averaged across individu-
als.

Dominance analysis

Dominance Analysis was used to quantify the dis-
tinct contributions of resting state MEG connectiv-
ity at different frequency bands to the prediction
of resting state fMRI connectivity in the multi-linear
model [3, 19] (https://github.com/dominance-analysis/
dominance-analysis). Dominance analysis estimates the
relative importance of predictors by constructing all pos-
sible combinations of predictors and re-fitting the multi-
linear model for each combination (a model with p pre-
dictors will have 2p − 1 models for all possible combi-
nations of predictors). The relative contribution of each
predictor is then quantified as increase in variance ex-
plained by adding that predictor to the models (i.e. gain
in adjusted-R2). Here we first constructed a multiple lin-
ear regression model for each region with MEG connec-
tivity profile of that region at six frequency bands as inde-
pendent variables (predictors) and fMRI connectivity of
the region as the dependent variable to quantify the dis-
tinct contribution of each factor using dominance analy-
sis. The relative importance of each factor is estimated as

“percent relative importance”, which is a summary mea-
sure that quantifies the percent value of the additional
contribution of that predictor to all subset models.

Null model

To make inferences about the topographic correlations
between any two brain maps, we implement a null model
that systematically disrupts the relationship between two
topographic maps but preserves their spatial autocorrela-
tion [1, 77]. We used the Schaefer-400 atlas in the HCP’s
fsLR32k grayordinate space [96, 108]. The spherical pro-
jection of the fsLR32k surface was used to define spatial
coordinates for each parcel by selecting the vertex closest
to the center-of-mass of each parcel [99, 109, 110]. The
resulting spatial coordinates were used to generate null
models by applying randomly-sampled rotations and re-
assigning node values based on the closest resulting par-
cel (10,000 repetitions). The rotation was applied to one
hemisphere and then mirrored to the other hemisphere.

Code and data availability

Code used to conduct the reported analyses is
available on GitHub (https://github.com/netneurolab/
shafiei_megfmrimapping). Data used in this study were
obtained from the Human Connectome Project (HCP)
database (available at https://db.humanconnectome.
org/).
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Figure S1. Band-specific regional model fit | Separate regional regression models were applied to map MEG functional connec-
tivity (AEC) to fMRI functional connectivity at each frequency band. Distributions of adjusted-R2 are depicted for band-specific
regional model fits and for the multiband model fit obtained by the original analysis. The multi-linear regional model that combines
MEG connectivity at multiple rhythms to predict regional fMRI connectivity profiles performs better than the band-specific models.

Figure S2. Source localization error | MEG source localization error is estimated for (a) LCMV and (b) sLoreta source reconstruc-
tion solutions using cross-talk functions (CTF) [58–60, 71, 81]. CTF is used to calculate peak localization error of a given source
i as the Euclidean distance between the peak location estimated for source i and the true source location i on the surface model
[59, 81]. No significant association is observed between the cross-modal correspondence R

2 map and peak localization error for
LCMV and sLoreta.
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