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Abstract 

Chromatin profiling studies have shown the importance of gene regulation in driving heritability and 

environmental risk of brain disorders. Acetylation of histone H3 lysine 27 (H3K27ac) has emerged as an 

informative disease-associated epigenetic mark. However, cell type-specific contributions to epigenetic 

dysregulation in disease are unclear as studies have often used bulk brain tissue. Therefore, methods for 

the deconvolution of bulk H3K27ac profiles are critical. Here we developed the Cell type-specific Histone 

Acetylation Score (CHAS), a computational tool for inferring cell type-specific signatures in bulk brain 

H3K27ac profiles. CHAS annotates peaks identified in bulk brain studies of H3K27ac to cell type-specific 

signals in four major brain cell types, and derives cell type-specific histone acetylation scores as a proxy 

for cell type proportion. Our method was validated in pseudo-bulk samples and applied to three brain 

disorder epigenome-wide association studies conducted on bulk brain tissue. CHAS exposed shifts in 

cellular proportions in Alzheimer’s disease (AD), in line with neuropathology, and identified disrupted gene 

regulatory elements in oligodendrocytes in AD and microglia in autism spectrum disorder (ASD). This 

contrasts with heritability-based enrichment analyses which indicate genetic risk is associated with 

microglia in AD and neurons in ASD. Our approach identified cell type specific signalling pathways and 

putative upstream transcription factors associated with these elements. CHAS enables deconvolution of 

H3K27ac in bulk brain tissue, yielding cell type-specific biological insights into brain disease-associated 

regulatory variation. 
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Introduction 

 
H3K27ac is a highly cell type-specific epigenetic modification that marks active enhancers and promoters 

and is thought to be directly involved in regulating gene expression1. Brain disorder risk variants 

predominantly fall into non-coding and regulatory regions2, such as those marked by H3K27ac3. Given the 

high cell type specificity and direct link to transcriptional regulation, integrating genome-wide profiles of 

H3K27ac from disease-relevant cell types can be useful for functional interpretation of these risk variants. 

This was demonstrated by recent efforts in mapping regulatory elements to major cell types in the human 

cortex and investigating neurological and psychiatric disease-risk associations4. Additionally, H3K27ac 

responds to external stimuli1, including those associated with disease. Identifying cell type-specific 

H3K27ac signals in diseased brains can therefore be used to infer dysregulated signalling pathways and 

transcription factors at cell type resolution.  

 

Studies on post-mortem human brains have identified genome-wide dysregulation of histone acetylation 

associated with brain disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and autism 

spectrum disorder (ASD)5–8. Individuals with syndromic and idiopathic ASD were reported to share a 

significant proportion of their respective histone acetylomes, and epigenetic dysregulation in the ASD brain 

was associated with genes involved in synaptic transmission, chemokinesis, and immunity5. Both Marzi et 

al 2018 and Nativio et al 2020 reported enrichment of AD-associated H3K27ac for AD risk variants, as well 

as for functional pathways related to AD neuropathology such as A³ metabolic process and Wnt receptor 

signalling pathway. Additionally, Marzi and colleagues observed genes known to be associated with early 

onset AD in the vicinity of differentially acetylated peaks. Similarly, dysregulated H3K27ac in the PD brain 

was located near genes previously implicated in the susceptibility and progression of the disease8. 

However, interpretation of these studies is limited by the use of bulk tissue, which does not account for 

the high cellular heterogeneity in the brain. This can lead to biological findings being driven by differences 

in cellular abundance rather than disease-associated changes, and limits follow-up studies in the 

appropriate cell types. Thus far, to control for cellular composition, studies have used approaches such 

as CETS9, a metholymic neuronal marker, and by measuring the neuronal fraction using flow cytometry. 

However, these methods require DNA methylation or flow cytometry profiles for the same samples and 

have generally only estimated the proportion of neuronal cell types vs non-neuronal cell types.  

 

Although purified cell or nuclei population and single-cell epigenomic profiling is gaining traction, these 

methods have generated sparse datasets and have not been applied to the human brain. Thus, there is 

an urgency for the development of cell type deconvolution methods to better interpret bulk brain 

epigenome profiles. Deconvolution approaches have been developed for bulk DNA methylation profiles9–
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11, bulk ATAC-seq profiles12, and bulk tissue transcriptomes13-14, however, a tool for bulk H3K27ac profiles 

is lacking.  

 

We have developed CHAS (Cell type-specific Histone Acetylation Score), a novel computational tool for 

the identification of cell type-specific peaks within bulk brain H3K27ac profiles and generation of cell type-

specific histone acetylation scores. These scores can be used to infer cell type proportions of bulk brain 

H3K27ac samples, and to perform downstream analyses at cell type resolution. We applied CHAS to three 

brain disorder H3K27ac datasets: Alzheimer’s disease (AD)6, Parkinson’s disease (PD)8, and autism 

spectrum disorder (ASD)5, to detect shifts in cellular composition and re-investigate cell type-specific 

differential histone acetylation between cases and controls. In contrast to cell-typing based SNP 

heritability, epigenetic regions dysregulated in disease were enriched in oligodendrocytes for AD and 

microglia for ASD and cell type specific dysregulated pathways were inferred for both diseases. To the 

best of our knowledge, CHAS is the first publicly available tool for the deconvolution of bulk brain histone 

acetylation profiles.  

 

 

 

Results 

 
The CHAS model  

Enhancers and H3K27ac domains are known to be highly cell type specific. CHAS exploits this cell type 

specificity to annotate peaks identified in bulk brain studies of H3K27ac to their cell type-specific signals 

in neurons, microglia, oligodendrocytes and astrocytes, as previously identified4. CHAS achieves this by 

overlapping bulk brain H3K27ac peaks with each cell type specific peak set and identifying which of the 

bulk peaks are specific to a given cell type. For a bulk peak to be defined as cell type-specific two criteria 

must be met: (i) the bulk peak is annotated only to a single cell type; (ii) the bulk peak overlaps a predefined 

percentage of that cell type’s peak. This step in CHAS outputs the bulk peaks annotated to a single cell 

type, ‘multiple’ cell types (the peak is annotated to more than one cell type), and ‘other’ (the bulk peak is 

not annotated to any of the cell types).   

 

Analysis of bulk tissue can be difficult due to differences in cell type proportion in response to disease, or 

resulting from discrepancies in brain region sampling. To overcome this, using each set of cell type-

specific H3K27ac peaks, CHAS generates Cell type-specific Histone Acetylation Scores. By averaging the 

normalized signal intensity of a sample across all peaks specific to a given cell type, CHAS derives a proxy 

of the proportion of that cell type in the given bulk sample. For sample y and cell type x, CHAS sums up 

the peak-normalised counts (�!,#; for peak-normalisation see Methods) across all peaks that are specific 
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to cell type x, divided by the total number of cell type-specific peaks for cell type x. As a constraint from 

peak-normalisation, the maximum signal intensity for any given peak and sample is 1 and the resulting 

CHAS will lie in the interval between 0 and 1 for a given sample and cell type. 

 

����$,# =	
3 �!,#!	&'	(!

|�$|
 

 

CHASx,y: Cell type-specific Histone Acetylation Score for cell type x, sample y 

Px: Set of cell type specific peaks for cell type x 

sp,y: Peak-normalised signal intensity for peak p, sample y 

Y: Set of all samples 

o x, o p * Px: maxy*Y(sp,y) = 1 

 

Of note, given the application of CHAS to deconvolute and control for cellular heterogeneity in epigenetic 

association studies of brain diseases, we must work under the assumption that disease-related differences 

in histone acetylation are limited to only a subset of cell type-specific peaks, and that cell-type specific 

epigenetic variation far outweighs variation associated with disease status15,16. We can thus use cell type-

specific chromatin immunoprecipitation (ChIP)-seq H3K27ac signal intensities to act as a proxy for cell 

type proportion in bulk tissue data. The cell type annotation and generation of cell type-specific histone 

acetylation scores is implemented and freely available in our R package CHAS 

(https://github.com/neurogenomics/CHAS). 

 

Briefly, our cell type deconvolution tool CHAS requires three inputs:  

(i) bulk tissue H3K27ac peaks;  

(ii) cell sorted H3K27ac reference peaks;  

(iii) counts matrix for the bulk H3K27ac peaks. 

  

CHAS then performs two main analytical tasks:  

(i) Identification of cell type-specific peaks in bulk tissue H3K27ac profiles using cell sorted H3K27ac data 

(Fig. 1);  

(ii) Generation of cell type-specific histone acetylation scores on the basis of genome-wide average ChIP-

seq signal intensities (Fig. 1). 
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Figure 1. CHAS workflow.  

The first step in CHAS is the identification of cell type-specific peaks in bulk tissue H3K27ac profiles, which is achieved 

using publicly available brain cell sorted H3K27ac data4. For a bulk tissue peak to be defined as cell type-specific, it 

can only be annotated to a single cell type and it must overlap n% of that cell type’s peak(s). The specific required 

percentage overlap (n) can be specified as input to CHAS. Using the cell type-specific peaks identified in step 1 and 

a counts per million matrix derived using the bulk tissue H3K27ac data, CHAS generates cell type-specific histone 

acetylation scores for each sample.  

CHAS�, �: cell type-specific histone acetylation score for cell type x, sample y; P�: set of cell type-specific peaks for 

cell type x; S�, �: standardised peak signal intensity for peak p, sample y. A constraint is applied to S�, � whereby for 

each peak p, the maximum peak signal intensity for any sample equals 1.  

 

 

CHAS accurately and robustly correlates with known cell type proportions in 

pseudo-bulk samples 

To validate the accuracy of CHAS for predicting cell type proportion in bulk tissue data, we simulated 

pseudo-bulk H3K27ac profiles of known cell type composition using the cell sorted H3K27ac data 

previously described4. Each pseudo-bulk sample was made up of 30 million randomly sampled reads from 

astrocytes, microglia, neurons, and oligodendrocytes. The cellular composition was based on 

experimentally quantified proportions of these cell types from the cortex of 17 individuals with AD and 33 

age-matched non-AD subjects17. We performed peak calling and read count generation for these pseudo-

bulk samples and the resultant peaks and counts were used to run CHAS. For each cell type, we observed 
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a near-perfect correlation (Pearson’s product moment correlation, R ³ 0.99, P < 2.2 x 10-16 for each cell 

type, Fig. 2) between the CHAS derived score and the true cell type proportion17. To evaluate the 

robustness of our approach, this process was repeated with varying read depths (20 and 10 million reads) 

and sample sizes (25 and 10 samples). We again observed a strong correlation between CHAS derived 

cell type scores and true cell type proportions (Pearson’s product moment correlation, R ³ 0.99 for each 

analysis; Supplementary Figs. 1 and 2), highlighting that CHAS is robust to read depth and sample size 

variation.  

 

 

 

 

Figure 2. CHAS cell type scores correlate with true cell type proportions.  

Scatterplots for the CHAS-derived histone acetylation score vs. the true proportion of the cell type in the pseudo-bulk 

sample for A astrocytes, B microglia, C neurons, and D oligodendrocytes. 
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Deconvolution of bulk brain H3K27ac in Alzheimer’s disease highlights 

oligodendrocyte-specific epigenetic dysregulation 

AD is a complex, highly heritable neurodegenerative disorder. Genetic variants contributing to AD 

susceptibility predominantly fall into non-coding and regulatory regions2, such as those marked by 

H3K27ac. Aberrations in H3K27ac associated with AD have been reported in the human brain6,7. However, 

the brain is a highly heterogeneous tissue and the individual cell types involved in epigenetic dysregulation 

associated with AD are still unclear. To address this, we used CHAS to deconvolute H3K7ac profiles from 

the entorhinal cortex of 24 AD cases and 23 controls6. Briefly, Marzi and colleagues (2018) found 

widespread dysregulation of H3K27ac associated with AD, with differentially acetylated regions identified 

in the vicinity of known early-onset AD risk genes, as well as genomic regions containing variants 

associated with late-onset AD. Out of 183,353 peaks, 80% (n = 146,144) were annotatable to one or more 

cell types, with 47% (n = 85,824) specific to a single cell type (Supplementary Fig. 3A). In this study, 

neuronal proportion (NeuNz fraction) estimates for the same samples had been derived based on matched 

bulk brain DNA methylation data using the CETS method6,9, a tool for estimating neuronal proportion. 

CHAS-derived neuronal scores and CETS-derived neuronal proportion estimates correlated across the 47 

samples (Spearman’s rank correlation coefficient, w = 0.45, P = 0.0016, Supplementary Fig. 4). We next 

used CHAS to evaluate shifts in cellular composition in the bulk brain data, testing whether these replicate 

known disease-associated changes. To this end we compared CHAS-derived scores between AD cases 

and controls for each cell type. As expected, given that AD is primarily associated with neuronal loss, we 

observed a lower neuronal score in AD brains compared to controls (Welch two-sample t-test, two-sided, 

P = 0.028, average difference in neuronal score = 0.083, 95% CI: 0.0092-0.16, t = 2.27; Fig. 3A and 

Supplementary Fig. 3B). The astrocyte score was higher in AD brains when compared to control brains 

(Welch two-sample t-test, two-sided, P = 0.049, average difference in astrocyte score = 0.057, 95% CI: 

0.00019-0.11, t = 2.04; Fig. 3A and Supplementary Fig. 3B), suggesting astrogliosis, a mechanism which 

has been reported to increase with AD progression18. We also report a higher oligodendrocyte score in AD 

cases (Welch two-sample t-test, two-sided, P = 0.013, average difference in oligodendrocyte score = 

0.069, 95% CI: 0.015-0.12, t = 2.59; Fig. 3A and Supplementary Fig. 3B) but no significant difference in 

microglia score (Welch two-sample t-test, two-sided, P = 0.072, average difference in microglia score = 

0.053, 95% CI: -0.0049-0.11, t = 1.85; Fig. 3A and Supplementary Fig. 3B). Overall, these shifts reflect 

what is known based on disease biology.  

 

We then used the derived cell type scores to re-investigate differential histone acetylation in AD at cell 

type resolution. Employing the quasi-likelihood F test in edgeR19 we quantified differential acetylation 

between AD cases and controls, while controlling for cell type proportion (CHAS in neurons, astrocytes, 

microglia and oligodendrocytes) and age at death. 5,757 peaks were characterised by AD-associated 
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hyperacetylation and 5,897 were characterised by AD-associated hypoacetylation (false discovery rate 

(FDR) < 0.05) (Supplementary Table 1). To evaluate the likelihood of false-positive associations we 

repeated the differential histone acetylation analysis using permuted AD case and control labels. Across 

100 permuted datasets there was never more than one significant peak at FDR < 0.05, thus making it 

unlikely that the results of our differential acetylation analysis based on the true AD case and control labels 

were detected due to chance. Notably, AD-associated hyperacetylated regions were significantly enriched 

for oligodendrocytes when compared to regions that were not differentially acetylated (two-proportion Z-

test, Ç2 = 300.57, P < 2.2 x 10-16, difference in proportion = 0.073; Fig. 4A). A similar enrichment of 

oligodendrocyte-specific peaks was observed for AD-associated hypoacetylated regions (two-proportion 

Z-test, Ç2 = 11.13, P = 8.5 x 10-4, difference in proportion = 0.014; Fig. 4A). In addition, the top AD-

associated hyperacetylated peak was also specific to oligodendrocytes and located in the vicinity of both 

MVB12B, a gene implicated in vesicular trafficking, and the transcription factor PBX3 (Supplementary 

Table 1). MVB12B has previously been identified as an AD risk gene20 and forms part of an 

oligodendrocyte-enriched gene network in the AD brain21. These results are consistent with a previous 

study in which oligodendrocytes were reported to show the most widespread acetylation differences in 

the AD brain22. The top-ranked AD-hypoacetylated peak was annotated to multiple cell types, and located 

near NKAIN3 (Supplementary Table 1), an AD GWAS candidate gene that has been shown to be 

differentially expressed in astrocyte subclusters23. Notably, functional enrichment analysis revealed 

significant association between AD-associated H3K27ac specific to astrocytes and NKAIN3. We also 

observed a significant increase in the microglia proportion amongst AD-associated hypoacetylated 

regions (two-proportion Z-test, Ç2 = 16.61, P = 4.60 x 10-5, difference in proportion = 0.014; Fig. 4A). 

 

Using the Genomic Regions Enrichment of Annotations Tool (GREAT)24, we were able to match the 

functional categories associated with AD differentially acetylated bulk peaks to their cell types (Fig. 4B). 

Additionally, we were able to identify cell type-specific dysregulated pathways that were not identified in 

functional enrichment analyses based on bulk peaks (Fig. 4B and Supplementary Fig. 5). For instance, 

oligodendrocyte-specific hyperacetylated peaks were enriched for kinase activity (Fig. 4B and 

Supplementary Fig. 5A). Of note, cyclin-dependant kinase 5 was previously implicated in aberrant tau 

phosphorylation25,26. On the other hand, microglia-specific hypoacetylated were enriched for lysine 

methylation (Supplementary Fig. 5B), which has also been associated with tau pathology in the AD brain 

27,28. As reported previously6, differential H3K27ac was observed in regulatory regions annotated to genes 

MAPT, APP, PSEN1, and PSEN2, known to be associated with early onset AD or directly involved in AD-

neuropathology (Table 1); with the majority of peaks annotated to PSEN2 exhibiting oligodendrocyte-

specific H3K27ac signatures.  
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To link CHAS-derived cell type specific differential acetylation with genetic risk for AD, we performed 

partitioned heritability analysis29. We quantified enrichment of AD GWAS risk variants within cell type-

specific disease-associated H3K27ac, as well as within the background sets of cell type-specific peaks 

detectable in our bulk brain data. As reported previously, significant enrichment of AD risk loci was found 

within microglia-specific H3K27ac regions4 (Fig. 5A and Supplementary Fig. 6). However, we observed 

no significant enrichment in any of the other cell type-specific peak sets nor were cell type-specific 

disease-associated H3K27ac regions enriched for AD heritability, suggesting separate mechanisms 

between genetic risk and epigenetic dysregulation observed in late-stage disease (Fig. 5A and 

Supplementary Fig. 6).  

 

Lastly, using HOMER30 to assess transcription factor motif enrichment in cell type-specific disease-

associated H3K27ac, we report enrichment of binding motifs for both shared and distinct transcription 

factors across the cell type-specific datasets. For example, only astrocyte-specific AD hyperacetylated 

regions were enriched for apoptosis associated protein 1 (THAP1) binding motifs (P < 1 x 10-12). Notably, 

THAP1 has been observed to have a binding site in the specificity protein 1 (Sp1) promoter in humans31, 

and Sp1 was reported to be enriched for binding motifs in AD hyperacetylated peaks in Marzi et al (2018). 

Amongst microglia-specific and oligodendrocyte-specific AD hyperacetylated peaks we observed 

significant enrichment of binding motifs for Krüppel-like transcription factor 5 (KLF5) (microglia: P < 1 x 

10-16, oligodendrocytes: P < 1 x 10-91), a transcription factor implicated in inflammatory responses 32.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459142doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459142
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 3. Differences in cell type score between cases and controls recapitulate known cellular alterations in 

AD.  

LogFC in astrocyte, microglia, neuronal, and oligodendrocyte scores in cases compared to controls is shown for 

multiple histone acetylation studies in brain diseases. Significant differences (P < 0.05) are highlighted by an asterix. 

A AD cases show decreased neuronal cell scores in the entorhinal cortex compared to controls (P = 0.028), while the 

astrocyte (P = 0.049) and oligodendrocyte scores (P = 0.013) are increased in disease6. No significant differences in 

cell type scores between PD cases and controls in the prefrontal cortex were observed in the B Park West (PW) or C 

Netherlands Brain Bank (NBB) cohorts8. D ASD cases vs controls showed no cell type score differences in the 

prefrontal cortex. E However, lower cell type scores in ASD cases were found for all four cell types appeared in the 

cerebellum5. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459142doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459142
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Top-ranked AD-associated differentially acetylated peaks were identified in close proximity to 

neuropathology linked and early-onset AD risk genes.  

CHR BP (start-end) logFC P value Cell type 

GREAT annotated gene 

(distance to TSS) 

chr1 226824365-226825105 0.49 4.17 x 10-6 Oligodendrocyte PSEN2 (-45828) 

chr1 226825314-226826316 0.42 5.07 x 10-6 Oligodendrocyte PSEN2 (-44748) 

chr1 226782946-226783977 0.42 1.82 x 10-5 Oligodendrocyte PSEN2 (-87101) 

chr1 226798511-226800406 0.48 2.29 x 10-5 Microglia PSEN2 (-71104) 

chr1 226753702-226754210 0.88 2.73 x 10-5 Other PSEN2 (-116607) 

chr1 226781490-226781832 0.57 3.32 x 10-5 Oligodendrocyte PSEN2 (-88902) 

chr1 226784182-226785025 0.34 3.67 x 10-4 Oligodendrocyte PSEN2 (-85959) 

chr1 226808312-226810171 0.32 3.85 x 10-4 Astrocyte PSEN2 (-61321) 

chr1 226771922-226773890 0.4 5.12 x 10-4 Other PSEN2 (-97657) 

chr1 226751565-226752400 0.6 5.33 x 10-4 Neuron PSEN2 (-118580) 

chr1 226821015-226822383 0.32 5.63 x 10-4 Oligodendrocyte PSEN2 (-48864) 

chr1 226786424-226788137 0.29 0.001 Oligodendrocyte PSEN2 (-83282) 

chr1 226826797-226828312 0.24 0.001 

Astrocyte, microglia, neuron, 

oligodendrocyte PSEN2 (-43008) 

chr1 226763768-226764311 0.57 0.003 Neuron PSEN2 (-106523) 

chr14 73189675-73190186 0.7 7.65 x 10-5 Other PSEN1 (+53484) 

chr17 45848349-45850135 0.62 1.61 x 10-9 Astrocyte, oligodendrocyte MAPT (-45140) 

chr17 45870042-45870861 0.42 3.63 x 10-5 Oligodendrocyte MAPT (-23930) 

chr17 45905682-45907558 0.33 9.09 x 10-5 Neuron, oligodendrocyte MAPT (+12238) 

chr17 45907772-45908616 0.42 1.91 x 10-4 Neuron MAPT (+13812) 

chr17 45965650-45966543 0.39 5.04 x 10-4 Neuron MAPT (+71715) 

chr17 45913501-45914698 0.39 5.23 x 10-4 Neuron, oligodendrocyte MAPT (+19718) 

chr17 45942609-45945161 0.19 6.59 x 10-4 Astrocyte, oligodendrocyte MAPT (+49503) 

chr17 45857949-45858752 0.43 8.44 x 10-4 Oligodendrocyte MAPT (-36031) 

chr17 45851477-45851991 0.5 1.47E-03 Oligodendrocyte MAPT (-42648) 

chr17 45882681-45884212 0.45 0.002 Other MAPT (-10935) 

chr17 45852585-45852866 0.5 0.002 Oligodendrocyte MAPT (-41656) 

chr21 26096779-26097326 0.4 0.001 Oligodendrocyte APP (+73601) 

chr21 26448550-26449750 0.57 0.002 Neuron, oligodendrocyte APP (-278496) 

chr21 25983024-25984204 -0.38 6.45 x 10-5 Neuron, oligodendrocyte APP (+187040) 

chr21 25907479-25908636 -0.37 8.82 x 10-5 Oligodendrocyte APP (+262596) 

chr21 25943915-25945278 -0.33 6.07 x 10-4 Neuron, oligodendrocyte APP (+226057) 

chr21 26115249-26117224 -0.21 0.001 

Astrocyte, neuron, 

oligodendrocyte APP (+54417) 

chr21 26006153-26006941 -0.32 0.003 Neuron, oligodendrocyte APP (+164107) 
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Figure 4. Dysregulated H3K27ac is associated with oligodendrocytes in AD and with microglia in ASD.  

A Enrichment of cell types amongst AD- and ASD-differentially acetylated regions vs non-disease associated 

H3K27ac, calculated using the two proportion Z-test. AD hyper- and hypoacetylated regions were enriched for 

oligodendrocytes (two-proportion Z-test, Ç2 = 300.57, P < 2.2 x 10-16, difference in proportion = 0.073; two-proportion 

Z-test, Ç2 = 11.13, P = 8.5 x 10-4, difference in proportion = 0.014). AD hypoacetylated regions were also enriched for 

microglia (two-proportion Z-test, Ç2 = 16.61, P = 4.6x 10-5, difference in proportion = 0.014). ASD hyperacetylated 

regions were enriched for microglia (two-proportion Z-test, Ç2 = 1746.5, P < 2.2 x 10-16, difference in proportion = 

0.147). B GREAT24 pathway enrichment analysis using AD entorhinal cortex (bulk) hyperacetylated peaks and cell 

type-specific hyperacetylated peaks identified using CHAS, highlight cell type specific pathways underlying the bulk 

signal. C Pathway enrichment analysis in ASD prefrontal cortex (bulk) hyperacetylated peaks and cell type-specific 

hyperacetylated peaks points to activation of microglial immune processes. 
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Figure 5. AD risk variants are enriched within microglia-specific H3K27ac peaks, while ASD risk variants are 

enriched within neuronal-specific H3K27ac domains. Results from partitioned heritability analysis29 using GWAS 

for A AD33 and B ASD34 with both disease-associated and background cell type-specific H3K27ac. The y-axis 

represents the coefficient p value transformed from the coefficient z-score output by LDSC. The grey dashed line at -

log10(P) = 2.4 is the cutoff for Bonferroni significance. A AD SNP heritability was found to be exclusively enriched in 

microglial H3K27ac domains. None of the disease-associated cell-type specific peak sets showed any genetic 

enrichment. B ASD genetic risk was found to be enriched in neuron specific H3K27ac peaks. As with AD, disease-

associated cell-type specific H3K27ac domains were not enriched for ASD genetic risk. 
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No significant associations between cortical H3K27ac patterns and Parkinson’s 

disease are found when controlling for cell type scores  

Little is known about the etiology of PD, including the role of epigenetics. Although cell type vulnerability 

in PD is commonly attributed to dopaminergic neurons, genetic risk has also been associated with 

cholinergic and enteric neurons, as well as oligodendrocytes35. However, as our deconvolution of 

epigenetic signatures of AD highlights, genetic risk and epigenetic dysregulation are not necessarily in 

agreement in relation to cell types. Therefore, we applied CHAS to a bulk brain H3K27ac study in PD cases 

and controls. Toker and colleagues (2021) observed genome-wide dysregulation of histone acetylation in 

prefrontal cortex (PFC) of individuals with PD from two independent cohorts (Park West (PW) and 

Netherlands Brain Bank (NBB)). The authors reported that PD-associated hyperacetylated regions were 

annotated to genes implicated in PD pathology, and also report decoupling between promoter H3K27ac 

and gene expression in the PD brain8. Their study included 13 individuals with PD and 10 controls from 

the PW cohort, in addition to 9 individuals with PD and 9 controls from the NBB cohort. To account for 

cellular heterogeneity they integrated H3K27ac regions differing between NeuNz and NeuN{ cell types with 

brain cell type-specific marker genes, and employed a principal component analysis approach to serve as 

a proxy for cell type composition across their samples8. Using their approach, they found no significant 

differences in cell type proportion between PD cases and controls in the PW cohort, and they did not test 

this approach in the NBB cohort.  

 

Using the peaks and read counts generated by Toker and colleagues8, we filtered out peaks with low read 

counts before running CHAS to identify cell type-specific peaks in PFC and to generate cell type-specific 

histone acetylation scores. 66% of bulk peaks were annotatable to at least one cell type in the PW cohort 

(Supplementary Fig. 7A), and 74% of bulk peaks were annotatable to at least one cell type in the NBB 

cohort (Supplementary Fig. 7C). In line with the original study, we found no significant difference in cell 

type-specific histone acetylation scores between PD cases and controls, in either of the two cohorts (Figs. 

3B and 3C; Supplementary Figs. 7B and 7D). While this indicates that bulk PFC tissue may be less prone 

to confounding disease-associated shifts in cellular proportions in PD, it simultaneously does not 

represent the primarily disease-affected brain region. Differential histone acetylation analysis controlling 

for cell type proportions revealed no significant differences in acetylation between PD cases and controls 

in either the PW or NBB cohorts (Supplementary Tables 2 and 3). 
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Cell type deconvolution of autism associated H3K27ac suggest upregulation of 

microglia in disease  

ASD encompasses a group of genetically complex and heterogeneous neurodevelopmental disorders. At 

the bulk tissue level, dysregulation of H3K27ac in AD brains is associated with genes involved in synaptic 

transmission and immunity, as well as genes which harbour rare ASD mutations5. Taking into consideration 

the high cell type-specificity of H3K27ac, CHAS provides an opportunity to re-investigate these 

epigenomic perturbations at cell type resolution. Sun and colleagues5 performed a histone acetylome-

wide association study across 3 different brain regions from ASD cases and age-matched controls. They 

reported widespread dysregulation of H3K27ac in prefrontal cortex and temporal cortex of ASD cases, 

with similar changes observed in both brain regions. In contrast, only a small proportion of peaks were 

differentially acetylated in cerebellum.  

 

Using 80 ChIP-seq samples from prefrontal cortex (40 cases, 40 controls), and 62 samples from 

cerebellum (31 cases, 31 controls), we called peaks in each brain region using MACS236. After filtering out 

peaks with low read counts, we defined an optimal peak set for each brain region: 250,614 peaks in 

prefrontal cortex, and 241,759 peaks in cerebellum. We then used these optimal peak sets to run CHAS 

to evaluate cell type proportions in each brain region, and to generate cell type-specific scores for each 

sample in each brain region. In the PFC, 72% of bulk peaks were annotatable to at least one cell type 

(Supplementary Fig. 8A), whereas in the cerebellum less than 50% of peaks could be annotated to a cell 

type (Supplementary Fig. 8C). This is most likely explained by epigenetic differences across brain regions 

in the reference and test datasets37,38: brain region specific differences could exist in the epigenetic state 

of the same cell type, for instance microglia across multiple brain regions. Similarly, there can be 

differences in the actual cell types located in different brain regions. For example, the cortex contains 

highly specialized pyramidal neurons, while only the cerebellum hosts granule cells. Generation of cell 

type-specific histone acetylation scores using CHAS revealed significantly lower cell type scores for all 

four cell types in cerebellum of ASD cases when compared to controls (Fig. 3E and Supplementary Fig. 

8D), but no differences in cell type scores in the PFC (Fig. 3D and Supplementary Fig. 8C). This likely 

relates to large scale cellular composition differences between cortex and cerebellum, highlighting the 

need for a brain region appropriate reference. Hence, the observed disease-associated differences in cell 

type scores in the cerebellum should be interpreted with caution.  

 

Differential histone acetylation analysis controlling for age at death and cell type score using CHAS 

revealed ASD-associated differentially acetylated peaks nearly exclusively in prefrontal cortex (8,761 

differentially acetylated peaks; Supplementary Table 4) compared to cerebellum (two differentially 

acetylated peaks; Supplementary Table 5), in line with observations from the original study5. ASD-
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associated hyperacetylated regions in PFC were significantly enriched for microglia when compared to 

the background peak set (two-proportion Z-test, Ç2 = 1746.5, P < 2. x 10-16, difference in proportion = 

0.147; Fig. 4A). Interestingly, altered microglial states in ASD had previously been reported39,40. In addition, 

the top ranking ASD-associated hyperacetylated peak was specific to microglia and located ~14kb 

upstream of TRERF1 (Supplementary Table 4).  Exome sequencing in individuals with intellectual 

disability previously revealed a missense variant in this gene, suggesting its involvement in intellectual 

disability pathogenesis41. The top ranking ASD-associated hypoacetylated peak peak was not annotatable 

to any cell type and was located ~21kb downstream of SVIL (Supplementary Table 4), which has been 

shown to harbour a single de novo mutation in children with ASD42.  

 

Performing functional enrichment analysis at cell type resolution allowed us to overlap the categories 

associated with the differentially acetylated bulk peaks, with the cell types they were specific to, as well 

as identify distinct functional enrichments across the four cell types that were not identified in the bulk 

analysis. For example, pathway enrichment analysis using ASD hyperacetylated bulk peaks revealed 

enrichment for immune related processes, which were predominantly specific to microglia (Fig. 4C and 

Supplementary Fig. 9). However, different immune related processes were also found to be enriched 

when only using astrocyte-specific ASD-hyperacetylated regions in the analysis (Fig. 4C and 

Supplementary Fig. 9). This is in line with the growing body of evidence highlighting the role of glial cells 

and the immune system in ASD39,43–46. We quantified enrichment of ASD GWAS risk variants within cell 

type-specific disease-associated H3K27ac, as well as within the background sets of cell type-specific 

peaks detectable in our bulk brain data. As reported previously, significant enrichment of ASD risk loci 

was found within neuron-specific H3K27ac regions4 (Fig. 5B and Supplementary Fig. 10). 

 

 

Discussion 

 
Given that histone acetylation is highly cell type-specific, inferring and deconvolving cell type-specific 

signatures in bulk tissue H3K27ac profiles is critical to our interpretation of these profiles in 

neurodegenerative disorders. Here, we demonstrate that we can exploit this specificity to annotate peaks 

identified in bulk brain studies of H3K27ac to their cell type-specific constituent parts. We furthermore 

show that cell type-specific ChIP-seq signal intensities can be leveraged to generate cell type-specific 

scores to act as a proxy for cell type proportion. As a result, we developed CHAS, a novel tool for cell type 

deconvolution of bulk brain H3K27ac profiles. To the best of our knowledge, CHAS is the only publicly 

available tool for deconvolution of histone acetylation.  
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CHAS showed highly convincing performance on pseudo-bulk H3K27ac profiles of known cell type 

composition yielding near perfect correlations with the true underlying cellular proportions. These 

correlations remain stable at decreased sample sizes and at lower read depths, highlighting the robustness 

of our approach. Additionally, comparison of CHAS-generated cell type scores between AD cases and 

controls6 reflected known shifts in cellular proportion associated with the disease, as well as significant 

correlation between neuronal CHAS and DNA methylation derived estimates of neuronal proportion9. 

 

To illustrate the utility of CHAS for interpretation of bulk tissue H3K27ac profiles, we applied it to three 

epigenome-wide association studies of brain disorders5,6,8. Deconvolution of H3K27ac profiles from the 

AD brain using CHAS has highlighted that hypoacetylation in late-stage AD is enriched for both 

oligodendrocyte-specific H3K27ac and microglia-specific H3K27ac, whereas AD-associated 

hyperacetylation is only enriched for oligodendrocyte-specific H3K27ac. An independent study also found 

the largest H3K27ac changes in oligodendrocytes in the hippocampus and dorsolateral prefrontal cortex 

of individuals with AD22. Taken together, these data suggest that these oligodendrocyte-specific H3K27ac 

changes are not limited to a single brain region and warrant further investigation of the role of 

oligodendrocyte H3K27ac dysregulation in AD. The marked hypoacetylation in microglia could reflect an 

increase in the activity of histone deacetylases (HDACs). In line with this, a recent study found that genetic 

ablation of microglial HDAC1 and HDAC2 in an AD mouse model reduced amyloid plaque burden and 

rescued memory deficits47; thus suggesting modulation of HDAC activity in microglia as a potential 

therapeutic intervention for AD. Whereas epigenetic variation in late-stage AD predominantly points to 

oligodendrocytes, genetic risk points to microglia, suggesting independent biological mechanisms. 

Furthermore, our study corroborates the finding that genetic risk for AD is enriched at microglia-specific 

regulatory elements4,22,48 and genes35. Additionally, we used CHAS to identify disease-associated 

pathways and transcription factors at cell type resolution. This highlighted a role of kinases in 

oligodendrocytes, which may be of relevance to neurodegenerative disorders due to their role in CNS 

myelination49,50. In support of this, a recent study reported that pro-myelinating strategies were able to 

rescue cognitive and physiological deficits in a mouse model of AD51. CHAS has broad utility across 

histone acetylation studies of diverse brain diseases, as illustrated by its application to a study of H3K27ac 

in ASD and control brains. Our analyses provided evidence for the upregulation of regulatory elements in 

microglia in ASD brains, and prioritises candidate genes and pathways to study in this cell type. For 

example, TRERF1 has been reported to harbour a de novo mutation in children with ASD52, and we found 

that the top significant ASD hyperacetylated peak was annotated to this gene and specific to microglia. 

Taken together, our findings highlight the potential of CHAS in revealing biological insights and aiding 

prioritisation of relevant cell types and pathways for genetic and epigenetic studies of brain disorders. 
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There are important caveats to consider in relation to CHAS. The power of CHAS to detect cell type-

specific peaks from bulk histone acetylation profiles is inherently linked to the proportion of those cells in 

the bulk tissue sample. Brain cell types found at low proportions, including for example microglia, will have 

lower power to be detected compared to high-frequency cell types, such as oligodendrocytes. This may 

in turn affect the robustness and power of the downstream generation of the cell type specific histone 

acetylation score and ability to detect differential acetylation in low-frequency cell types. Additionally, the 

sample sizes of the currently available bulk brain histone modification studies are not ideal for genome-

wide epigenomic studies. Here, the inclusion of four additional covariates via the cell type-specific histone 

acetylation scores potentially contributes to a decrease in power to detect disease-associated differences. 

In this regard it is interesting to note that, as in the case of AD and ASD, the inclusion of covariates 

controlling for cell type proportion in moderate and large sized studies appears to improve power to detect 

acetylation differences, presumably via removing noise from variation caused by cellular heterogeneity. 

The cell sorted data on which CHAS is based has three limitations: 1) it is only available for four major 

brain cell types, excluding rarer cell types such as pericytes or endothelial cells. Therefore, whilst we can 

implicate the role of microglia, neurons, oligodendrocytes, and/or astrocytes in brain disorders, it would 

be amiss to disregard other cell types for which we do not have adequate data. 2) It is limited with regard 

to cell subtype diversity. It is well known, for example, that there are numerous types of functionally and 

regionally distinct neurons, which are all lumped together in the NeuNz population in the current reference. 

3) Our reference data does not account for different cell states. For instance, multiple microglial 

phenotypes have been transcriptionally and functionally characterised53–55, one example being disease 

associated microglia56. Our current reference is based on a neuropathology-free, pediatric dataset in which 

such states – if present – are lumped into one category. Future reference atlases focusing on specific sub-

cell types and states should enable more detailed deconvolution in this regard. Importantly, the 

performance of CHAS in bulk cerebellum samples also highlights a need to use brain-region specific 

reference datasets, to account for regional differences in cell types and states. At present, CHAS is limited 

to bulk cortex studies of H3K27ac because of reference atlas availability. However, CHAS could easily be 

extended to other brain cell types, regions or completely distinct tissues, with appropriate reference 

datasets; and we would expect it to perform in the same manner for these extensions. Most promisingly, 

we hope that future availability of single cell H3K27ac profiles across brain regions will enable us to adapt 

CHAS to deconvolute more refined cell subtypes and states.  

 

Going forward epigenetic studies at single cell resolution promise to create a more comprehensive picture 

of the epigenetic landscape associated with neurological and psychiatric diseases. However, as single cell 

epigenomic profiling is still in its early stages of application, generates sparse data, and has not yet been 

achieved in the human brain, CHAS provides a unique opportunity to infer cell type-specific signatures in 

bulk brain histone acetylation profiles. Importantly, this can yield novel insights into epigenetic changes 
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contributing to brain disorder risk and progression that are associated with specific cell types. Finally, 

CHAS is freely and publicly available at https://github.com/neurogenomics/CHAS, adding to the existing 

repertoire of methods for cell type deconvolution.  

 

 

Methods 

 
CHAS 

Cell type-specific H3K27ac annotation in CHAS is based on H3K27ac profiles from purified populations 

of astrocytes, microglia, neurons, and oligodendrocytes4. For a given human bulk brain H3K27ac dataset, 

CHAS overlaps peaks detected in bulk with each cell type peak set to identify cell type-specific peaks 

within the bulk H3K27ac profiles. Overlaps are identified using the GenomicRanges package in R57. Of 

note, no specific threshold of overlap is required for this first cell type annotation step: even if a bulk peak 

overlaps a purified cell type reference peak by only one base pair, it is annotated to the cell type in this 

first stage. To derive the cell type-specific histone acetylation score (CHAS), we wanted to ensure that 

only high-confidence and highly cell type-specific peaks are included and therefore the following two 

criteria must be met: (i) the bulk peak is annotated only to a single cell type; (ii) the bulk peak overlaps a 

predefined percentage of the given cell type peak. This predefined percentage can be specified in the 

CelltypeSpecificPeaks() function and is set to 50% by default and for all analyses presented in this 

manuscript.  

 

For each sample, CHAS generates a cell type-specific histone acetylation score by averaging the 

normalised signal intensity across all peaks specific to a given cell type. First, read counts across peaks 

are converted to counts per million (cpm) to account for variation in library size. To further normalise the 

signal intensity at a given peak, for each peak p, the counts are divided by the highest observed read 

count for that peak, thereby placing the peak-normalised counts on a scale between 0 and 1. For a sample 

y and cell type x, the peak-normalised counts per million sp,y are summed up across all peaks p that are 

specific to cell type x, divided by the total number of cell type specific peaks for cell type x, Px. As a 

constraint from peak-normalisation, the maximum signal intensity for any given peak and sample is 1 and 

the resulting CHAS will lie between 0 and 1 for a given sample and cell type. The cell type annotation and 

generation of cell type specific histone acetylation scores is implemented and automated in our R package 

CHAS (https://github.com/neurogenomics/CHAS).  
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CHASx,y: Cell type-specific Histone Acetylation Score for cell type x, sample y 

Px: Set of cell type specific peaks for cell type x 

sp,y: Peak-normalised signal intensity for peak p, sample y 

Y: Set of all samples 

o x, o p * Px: maxy*Y(sp,y) = 1 

 

Validation of CHAS 

We validated CHAS by simulating pseudo-bulk H3K27ac profiles of known cell type composition based 

on the raw sequencing data from astrocytes, microglia, neurons and oligodendrocytes by Nott and 

colleagues4. The cell type composition of each pseudo-bulk sample was based on proportions of 

astrocytes, microglia, neurons, oligodendrocytes and endothelial cells in brain tissue from older 

individuals, which had been quantified in an independent study using immunohistochemistry17. Based on 

the reported cell type proportions of 49 post-mortem brain samples we generated 49 pseudo-bulk 

samples, pooling a total of 30 million randomly sampled reads per sample from the raw H3K27ac data of 

the four cell types. As our reference did not include H3K27ac profiles for endothelial cells, we excluded 

the proportion of this cell type and instead used the relative proportions of the four other cell types. We 

ran CHAS to generate a cell type-specific histone acetylation score for each pseudo-bulk sample and 

compared these to the true cell type proportions using Pearson correlation coefficients. To additionally 

evaluate the robustness of CHAS with respect to sample size and sequencing depth, this process was 

repeated across the 49 samples with 20 million and 10 million randomly sub-sampled reads, as well as 

using 30 million reads in random subsets of 25 and 10 samples.  

 

Application of CHAS to bulk brain H3K27ac datasets 

  
H3K27ac in entorhinal cortex from AD cases and controls: Marzi et al. 2018  

To demonstrate reproducibility and undertake preprocessing using updated versions of software and the 

most recent reference genome, raw ChIP-seq data from our previous study was downloaded from SRA 

under accession number PRJNCA2979826. We performed basic quality control using fastQC58. Using 

bowtie259 the fastq files were aligned to the most recent human reference genome (GRCh38)60. The 

resulting SAM files were converted to binary (BAM) format using SAMtools30. Duplicates, unmapped reads, 

and reads with a sequence quality score q < 30 were removed from all BAM files and the filtered BAM files 

were subsequently merged into one grouped file. Next, using MACS236 we performed peak calling on the 

merged file of all samples. The following peak sets were subsequently  filtered out: 1) peaks which 
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overlapped the ENCODE blacklist peaks (https://github.com/Boyle-Lab/Blacklist), 2) peaks which were 

located in unmapped contigs or mitochondrial DNA, and 3) peaks which did not meet a significance 

threshold of P < 10-7 for peak calling. Read count generation for each sample was performed using 

featureCounts61 and read counts were converted to and stored in a cpm matrix, keeping peaks with a 

minimum of three samples showing g 1 read per million. This resulted in a total of 183,353 peaks to be 

used in downstream analyses. This optimal peak set and cpm matrix were used as input to run CHAS to 

identify cell type-specific peaks in the bulk H3K27ac profiles and to generate cell type-specific H3K27ac 

scores as a proxy for the proportion of each cell type in the bulk peak set. Of note, to annotate cell types 

to each bulk peak and to calculate the cell type proportions across the bulk peaks, we only required an 

overlap of at least one base pair between the bulk peak and the cell type peak. However, for peaks 

included in the cell type specific histone acetylation score we required a more stringent overlap of at least 

50% of the cell type peak interval. The CHAS-generated cell type-specific histone acetylation scores were 

used to detect shifts in cellular composition between AD cases and controls, by comparing the means 

using a Welch two-sample t-test. Differences in histone acetylation between AD cases and controls were 

analysed as previously described6, but including the CHAS derived cell type scores, instead of the 

neuronal proportion estimator based on CETS9. Briefly, the quasi-likelihood F test in the Bioconductor 

package edgeR19 was used to test for differences in histone acetylation between AD cases and controls, 

while controlling for age at death and cell type proportions using the cell type-specific histone acetylation 

scores for the four brain cell types. All covariates were treated as continuous numeric variables. Peaks 

were considered differentially acetylated at FDR)<)0.05 (controlled by Benjamini–Hochberg for n)=)183,353 

tests). To additionally confirm that we had adequately controlled for false-positive associations, we 

permuted the AD case and control labels 100 times and repeated the differential histone acetylation 

analysis as described above.  

 

H3K27ac in prefrontal cortex from PD cases and controls: Toker et al. 2021  

Peak lists (hg19 reference build) and read count tables for two independent cohorts (Park West (PW) and 

Netherlands Brain Bank (NBB))8 were downloaded from https://github.com/ltoker/ChIPseqPD and 

subsequently used as input to CHAS. Both peak lists were in narrowPeak format and were filtered to 

include peaks mapping to canonical chromosomes, and to exclude peaks which overlapped those in 

blacklisted regions https://github.com/Boyle-Lab/Blacklist, as well as those not meeting a significance 

threshold of P < 10-7 for peak calling. For the PW cohort, a total of 171,285 peaks were used for 

downstream analyses and for the NBB cohort, a total of 132,390 peaks were used for downstream 

analyses. From the counts tables we excluded the sample outliers identified in Toker et al (2021) and 

ensured that the peaks in the tables matched those in the filtered peak set and then performed final 

filtering, keeping peaks with a minimum of three samples showing g 1 read per million for the differential 

histone acetylation analysis. This left us with 152,823 peaks in the PW cohort, and 111,396 peaks in the 
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NBB cohort to be used for differential histone acetylation analysis. The counts tables were converted to 

cpm matrices and along with the filtered peak sets were used as input to CHAS, as previously for the AD 

dataset, using hg19-based cell type peak sets. The CHAS-generated cell type-specific histone acetylation 

scores were used to detect shifts in cellular composition between PD cases and controls, by comparing 

the means using a Welch two-sample t-test. Differences in histone acetylation between PD cases and 

controls were analysed as described above, controlling for age at death and cell type proportions using 

the cell type-specific histone acetylation scores.  

 

H3K27ac in prefrontal cortex, temporal cortex, and cerebellum from ASD cases and 

controls: Sun et al. 2016 

ChIP-seq reads mapped to the human reference genome (hg19) using BWA62 by Sun and colleagues 

(2016) were downloaded from Synapse under accession number syn4587616. We downloaded 80 libraries 

from the prefrontal cortex and 62 libraries from the cerebellum. These were the same libraries that were 

used in the original study for peak calling5, with exception of one prefrontal cortex sample which was not 

available on Synapse. Downloaded files were in BAM format and all pre-processing steps were performed 

as described previously (see H3K27ac in entorhinal cortex from AD cases and controls: Marzi et al. 2018 

under Methods), using hg19-based cell type peak sets. The optimal peak sets for downstream analyses 

totaled 250,614 peaks for prefrontal cortex, and 241,759 peaks for cerebellum. These, alongside the 

derived cpm matrices, were used as input to CHAS. Differences in histone acetylation between ASD cases 

and controls for each brain region were analysed as described above, controlling for age at death and cell 

type proportions using the CHAS-generated cell type score, while disease-associated differences in cell 

type proportions were quantified using a Welch two-sample t-test on the CHAS-derived cell type-specific 

histone acetylation scores. 

 

Calculating proportions of cell type-specific H3K27ac peaks within disease-associated 

differentially acetylated regions 

To test whether the proportion of cell type-specific peaks in the disease-associated differentially 

acetylated regions differed significantly from the background set of non-differentially acetylated peaks, we 

compared the proportions of cell type-specific peaks in the significantly hyper- and hypoacetylated peak 

sets with the background distribution (based on peaks which were not differentially acetylated) using a 

two-proportion Z-test.  
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Genomic annotation and enrichment analysis 

Gene annotation and gene ontology analyses were performed as previously described in Marzi et al (2018) 

for disease-associated cell type-specific hyperacetylated and hypoacetylated peaks, using the full cell 

type-specific peak sets as the background.  

 

Partitioned heritability analysis  

To estimate the proportion of disease SNP-heritability attributable to cell type-specific H3K27ac peaks 

identified in bulk brain data, we performed partitioned heritability analysis as implemented in LDSC29. For 

each cell type-specific peak set, annotation files were generated and used to compute LD scores. Publicly 

available GWAS summary statistics for a recent AD GWAS33 and ASD GWAS34 were downloaded and 

converted to the required format for LDSC. Steps for the analysis were followed as instructed here 

https://github.com/bulik/ldsc/wiki and required files were downloaded from 

https://alkesgroup.broadinstitute.org/LDSCORE/GRCh38. For each annotation, LDSC was run using the 

full baseline model29, thereby computing the proportion of SNP-heritability associated with the annotation 

of interest, while taking into account all the annotations in the baseline model. LDSC was performed for 

cell type specific peaks in bulk as well as cell type specific hyper- and hypoacetylated peak sets. 
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Supplementary information 

 

Supplementary Figure 1. CHAS robustly estimates cell type proportions in lower coverage datasets.  

Validation of CHAS using 49 pseudo-bulk samples made up of 20 million (A-D) and 10 million (E-H) randomly sampled 

reads from astrocytes, microglia, neurons, and oligodendrocytes. Shown are scatterplots of the CHAS-derived histone 

acetylation score for astrocytes (x-axis) vs. the true proportion of the cell type within the pseudo-bulk sample (y-axis) 

for astrocytes (A and E), microglia (B and F), neurons (C and G) and oligodendrocytes (D and H). 
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Supplementary Figure 2. CHAS consistently correlates with known cell type proportion even at smaller sample 

sizes.  

Validation of CHAS using 25 pseudo-bulk samples (A-D) and 10 pseudo-bulk samples (E-H) made up of 30 million 

randomly sampled reads from astrocytes, microglia, neurons, and oligodendrocytes. Shown are scatterplots of the 

CHAS-derived histone acetylation score for astrocytes (x-axis) vs. the true proportion of the cell type within the 

pseudo-bulk sample (y-axis) for astrocytes (A and E), microglia (B and F), neurons (C and G) and oligodendrocytes (D 

and H). 
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Supplementary Figure 3. Analysis of entorhinal cortex H3K27ac in AD cases and controls using CHAS.  

Cell type specific peaks within bulk H3K27ac and disease-associated shifts in cell type proportion are shown for6. A) 

Bar plot showing the proportion (%) of peaks specific to each cell type, annotated to more than one cell type 

(‘multiple’), or annotated to none of the cell types (‘other’). Out of 183,353 peaks, 80% (n = 146,144) were annotatable 

to one or more cell types, with 47% (n = 85,824) being cell type-specific. 6% (n = 10,303) peaks were specific to 

astrocytes, 7% (n = 12,993) were specific to microglia, 23% (n = 42,058) were specific to neurons, and 11% (n = 

20,470) were specific to oligodendrocytes. B) Violin plot comparing the cell type score means between AD cases and 

controls. P values were calculated using Welch’s two-sample t-test.  
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Supplementary Figure 4. CHAS-derived neuronal scores correlate with CETS-derived neuronal proportions. 

Validation of CHAS using neuronal proportion (NeuNz fraction) estimates derived using CETS9 for the AD H3K27ac 

samples6 analysed in this study. CHAS-derived neuronal scores and CETS-derived neuronal proportion estimates 

correlated across the 47 samples. 
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Supplementary Figure 5. Functional enrichment analysis using AD-associated H3K27ac regions. 

GREAT24 pathway enrichment analysis using AD-associated bulk and cell type-specific A hyperacetylated peaks and 

B hypoacetylated peaks6. Shown are GO Biological Processes and GO Molecular Functions which were enriched 

within bulk and cell type-specific H3K27ac regions, shown are the overlapping pathways between bulk and cell type-

specific peak sets, as well as the GO categories enriched only in the cell type-specific H3K27ac regions. 
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Supplementary Figure 6. AD genetic risk is enriched at microglial peaks detected within bulk brain H3K27ac.  

Results from partitioned heritability analysis using a GWAS for AD33 with both disease associated and non-disease 

associated cell type-specific H3K27ac6. a) Enrichment P value from LDSC with Bonferroni significance threshold 

shown at -log10(P) = 2.4 (grey dashed line). b) Enrichment scores from by LDSC for each cell type-specific H3K27ac 

peak set in combination with the full baseline mode. The grey dotted line at 1 is the cutoff for enrichment and the error 

bars represent standard errors around the estimates of enrichment. c) Coefficient P values transformed from the 

coefficient z-score output by LDSC. The grey dashed line at -log10(P) = 2.4 is the cutoff for Bonferroni significance.  
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Supplementary Figure 7. Analysis of prefrontal cortex H3K27ac in PD cases and controls using CHAS.   

Analysis of prefrontal cortex H3K27ac in two independent cohorts of PD cases and controls using CHAS63 A PW 

cohort: A bar plot showing the proportion (%) of peaks specific to each cell type, annotated to more than one cell type 

(‘multiple’), and annotated to none of the cell types (‘other’). In the PW cohort, the percentage of bulk peaks that were 

specific to a cell type was as follows: 5% were microglia-specific, 5% were astrocyte-specific, 7% were 

oligodendrocyte-specific, 22% were neuron-specific. The remaining bulk peaks were either annotated to more than 

one cell type (‘multiple’, 27%) or didn’t overlap any of the cell type peaks and were annotated to ‘other’ (33%) B PW 

cohort: A violin plot comparing the cell type score means between PD cases and controls, calculated using Welch’s 

two-sample t-test. C NBB cohort: A bar plot showing the proportion (%) of peaks specific to each cell type, annotated 

to more than one cell type (‘multiple’), and annotated to none of the cell types (‘other’). 4% were astrocyte-specific (n 

= 4,673), 6% were microglia-specific (n = 6,692), 9% were oligodendrocyte-specific (n = 9,772), 22% were neuron-

specific (n = 24,507), 33% were annotated to ‘multiple’ cell types (n = 41,906), and 26% weren’t annotatable (‘other’, 

n = 23,846). D NBB cohort: A violin plot comparing the cell type score means between PD cases and controls, 

calculated using Welch’s two-sample t-test. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.09.06.459142doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.06.459142
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Figure 8. Analysis of prefrontal cortex and cerebellar H3K27ac in ASD cases and controls.   

Analysis of prefrontal cortex, temporal cortex, and cerebellar H3K27ac in ASD cases and controls using CHAS5. A A 

bar plot showing the proportion (%) of peaks specific to each cell type, annotated to more than one cell type 

(‘multiple’), and annotated to none of the cell types (‘other’) in prefrontal cortex. 5% (n = 12,921) of peaks were 

astrocyte-specific, 6.4% (n = 15,945) were microglia-specific, 26% (n = 65,017) were neuron-specific, and 9% (n = 

21,514) were oligodendrocyte-specific. 26% (n = 65,224) of peaks were annotated to multiple cell types, and 28% (n 

= 69,993) weren’t annotatable to any of the cell types. B A violin plot comparing the prefrontal cortex cell type score 

means between ASD cases and controls, calculated using Welch’s two-sample t-test. C A bar plot showing the 

proportion (%) of peaks specific to each cell type, annotated to more than one cell type (‘multiple’), and annotated to 

none of the cell types (‘other’) in cerebellum. 4% (n = 9,740) of peaks were astrocyte-specific, 3% (n = 7,484) were 

microglia-specific, 12% (n = 29,312) were neuron-specific, and 6% (n = 13,793) were oligodendrocyte-specific. 23% 

(n = 56,483) of peaks were annotated to multiple cell types, and 52% (n = 124,947) weren’t annotatable to any of the 

cell types. D A violin plot comparing the cerebellar cell type score means between ASD cases and controls, calculated 

using Welch’s two-sample t-test.  
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Supplementary Figure 9. Functional enrichment analysis using ASD-associated H3K27ac regions. 

GREAT 24 pathway enrichment analysis using ASD-associated bulk and cell type-specific A hyperacetylated peaks 

and B hypoacetylated peaks. Shown are GO Biological Processes and GO Molecular Functions which were enriched 

within bulk and cell type-specific H3K27ac regions, shown are the overlapping pathways between bulk and cell type-

specific peak sets, as well as the GO categories enriched only in the cell type-specific H3K27ac regions. 
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Supplementary Figure 10. Enrichment of cell type-specific H3K27ac peaks for ASD risk variants.  

Results from partitioned heritability analysis using a GWAS for ASD34 with both disease associated and non-disease 

associated cell type-specific H3K27ac. a) The y-axis represents the enrichment p value output by LDSC. The grey 

dashed line at -log10(P) = 2.4 is the cutoff for Bonferroni significance. b) The y-axis represents the enrichment score 

output by LDSC for each cell type-specific H3K27ac peak set in combination with the full baseline mode. The grey 

dotted line at 1 is the cutoff for enrichment and the error bars represent standard errors around the estimates of 

enrichment. c) The y-axis represents the coefficient p value transformed from the coefficient z-score output by LDSC. 

The grey dashed line at -log10(P) = 2.4 is the cutoff for Bonferroni significance.  
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