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Abstract 

  

Zoonotic spillover of animal viruses into human populations is a continuous and increasing 

public health risk. SARS-CoV-2 highlights the global impact emergence events can have. 

Considering the history and diversity of coronaviruses (CoVs), especially in bats, SARS-CoV-2 

will likely not be the last to spillover from animals into human populations. 

We sampled and tested wildlife in the central African country Cameroon to determine which 

CoVs are circulating and how they relate to previously detected human and animal CoVs. We 

collected animal and ecological data at sampling locations and used family-level consensus 

PCR combined with amplicon sequencing for virus detection. 

Between 2003 and 2018, samples were collected from 6,580 animals of several different orders. 

CoV RNA was detected in 175 bats, a civet, and a shrew. The CoV RNAs detected in the bats 

represented 17 different genetic clusters, coinciding with alpha (n=8) and beta (n=9) CoVs. 

Sequences resembling human CoV-229E (HCoV-229E) were found in 40 Hipposideridae bats. 

Phylogenetic analyses place the human derived HCoV-229E isolates closest to those from 

camels in terms of the S and N genes, but closest to isolates from bats for the E, M, and RdRp 

genes. The CoV RNA positivity rate in bats varied significantly (p<0.001) between the wet 

(8.2%) and dry season (4.5%). Most sampled species accordingly had a wet season high and 

dry season low, while for some the opposite was found. 

Eight of the suspected CoV species of which we detected RNA appear to be entirely novel CoV 

species, which suggests that CoV diversity in African wildlife is still rather poorly understood. 

The detection of multiple different variants of HCoV-229E-like viruses supports the bat reservoir 

hypothesis for this virus, with the phylogenetic results casting some doubt on camels as an 

intermediate host. The findings also support the previously proposed influence of ecological 

factors on CoV circulation, indicating a high level of underlying complexity to the viral ecology. 

These results indicate the importance of investing in surveillance activities among wild animals 

to detect all potential threats as well as sentinel surveillance among exposed humans to 

determine emerging threats. 
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Introduction 

  

The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has 

highlighted the inherent risks and potential consequences of pathogen spillovers from animal 

reservoirs into the human populations. Animals are known to be the reservoir for many human 

diseases historically and contemporarily, as exemplified by zoonotic diseases such as rabies, 

brucellosis, bubonic plague, and trichinellosis [Shope 1982; Weiss 2003; Wolfe 2007; Gottstein 

2009; Drancourt 2016; Cross 2019]. Humans are often considered an accidental host for 

zoonotic diseases in this context, even if human-to-human transmission is possible. This 

understanding has shifted with the advent, and increased availability, of genetic characterization 

of pathogens, and humans are now often considered opportunistic rather than accidental hosts. 

This is an especially apt description for viruses, since we now know that a significant number of 

pathogens commonly referred to as “human viruses” did not originally evolve with humans, but 

spilled over from animals more recently and subsequently adapted to humans [Weiss 2003; 

Wolfe 2007]. The best example for this may be HIV, which originated from multiple non-human 

primate spillover events  in Africa during the early 20th century, and it also applies to measles 

virus, influenza A viruses, and others [Weiss 2003; Sharp 2011]. While these and SARS-CoV-2 

are some of the most publicized examples, there is a general trend of increasing infectious 

diseases outbreaks in humans, in particular of viral and zoonotic agents, over the past decades, 

potentially due to factors such as land use and climate change, population growth, and 

increased international trade and mobility [Jones 2008; Smith 2014; Allen 2017]. 

  

With the global SARS-CoV-2 pandemic, we appear to be witnessing such a post-spillover 

adaptation in real time, and there is strong evidence that this is not the first time an animal 

coronavirus (CoV) has gone through this process. While primary attention has previously 

focused on SARS-CoV, Middle Eastern Respiratory Syndrome (MERS)-CoV, and closely 

related CoVs, it has become clear that the four CoVs that are associated with the common cold 

(HCoV-NL63, HCoV-229E, HCoV-OC43, HCoV-HKU1), all likely derived from animal CoVs in 

the previous decades to centuries [Drosten 2003; Kan 2005; Yip 2009; Drexler 2019; Zaki 2012; 

Huynh 2012; Corman 2014; Corman 2015; Forni 2017; Corman 2018; Cui 2019]. Unlike SARS-

CoV-1 and MERS-CoV, these four established themselves in the human population in a process 

that may have been similar to the current SARS-CoV-2 pandemic, albeit likely much slower. 

Genetic analysis suggests that the two alpha coronaviruses HCoV-NL63 and HCoV-229E 

originated in bats, like SARS-CoVs and MERS-CoV, while the beta CoVs HCoV-OC43 and 
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HCoV-HKU1 likely originated in rodents; in either case with or without a potential intermediate 

host [Pfefferle 2009; Tao 2017; Zhou 2020]. The fact that we know of three CoVs that spilled 

over into humans in just the past two decades, and that spillovers of the other four can be 

traced back to recent centuries suggests that these events are common, especially since it is 

estimated that only a minority of spillover events lead to continued transmission and detection in 

humans [Glennon 2019; Letko 2020]. CoV spillovers will thus likely continue to occur in the 

future. This indicates that a better understanding of animal CoVs will be useful to determine 

spillover risks and the biological mechanisms and drivers for diversification and spillover, and to 

develop appropriate prevention, mitigation, and treatment strategies for future CoV spillovers. 

  

It is generally accepted that there is a direct link between a close genetic relationship of host 

species and the likelihood of interspecies transmission, however considering the biology of 

influenza A viruses, for example, where we see spillover from pigs and birds into humans, or 

CoVs where bats, rodents, camels, cows, and civets may play a role, it is by no means a hard 

rule [Parrish 2008; Kan 2005; Dennehy 2017]. With less closely related host species, the risks 

are more difficult to determine, but much emphasis has recently been placed on host diversity 

as an indicator for viral diversity, and the role of contact rates [Wolfe 2005; Pike 2010; Maganga 

2014; Anthony 2017; Dennehy 2017; Leopardi 2018; Ntumvi 2021]. Host diversity likely results 

in more viruses circulating in a biome, and also provides more opportunities for interspecies 

transmission, host plasticity, and viral recombination [Dennehy 2017]. Host plasticity in animals 

may in turn be a predictor for a virus’ ability to be transmitted from human to human, and hence 

a major risk factor [Kreuder Johnson 2015]. Consequently, regions with a high biodiversity, such 

as large parts of Central Africa, South America, and Southeast Asia may be considered hot 

spots for spillover [Jones 2008; Allen 2017]. Reports from several African countries suggest 

there are many CoVs circulating, primarily in bats, including species related to pathogens such 

as SARS-CoV-1, MERS-CoV, HCoV-229E, and HCoV-NL63 [Tong 2009; Tao 2012; Annan 

2013; Geldenhuys 2013; Razanajatovo 2015; Anthony 2017; Tao 2017; Geldenhuys 2018; 

Markotter 2019; Nziza 2019; Maganga 2020; Kumakamba 2021]. 

  

While the viral genome provides a lot of information about viruses, their origins, and their hosts, 

other factors also need to be considered when evaluating risks. Direct or indirect human-animal 

interaction is a prerequisite for zoonotic transmission, but human and animal behaviors and 

ecologies can play key roles in this process that may involve multiple steps of interspecies 

transmission and adaptation [Wolfe 2005; Wolfe 2007; Pike 2010; Maganga 2014; Euren 2020; 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.03.458874doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458874
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

Kumakamba 2021; Ntumvi 2021]. Previous studies have for example identified a high host 

plasticity for certain bat CoVs, indicating that these may potentially pose a higher zoonotic risk 

than those primarily adapted to a single host [Anthony 2017]. Other factors influencing 

transmission may include the type of human-animal interface and seasonal fluctuations of CoV 

circulation, as observed in bat populations [Montecino-Latorre 2020; Kumakamba 2021; Grange 

2021]. Though important, data on many of these factors is still limited and needs further 

exploration. Studying CoV diversity in Africa promises rich data that could improve our 

understanding of their biology, evolutionary history and risks for humans. 

  

The Central African country Cameroon, which includes some of the northern part of the Congo 

Basin, where HIV is believed to have spilled over into humans, is rich in biodiversity, with wildlife 

interaction being common for a large part of the rural population. Increased bushmeat trade and 

diverse wildlife living in close proximity with human populations makes some of these areas 

hotspots for high-risk interfaces between animals and humans [Wolfe 2005; Mickleburgh 2009; 

Saylors 2021]. 

Our goal was to determine what CoVs are circulating in wild animals, including rodents, bats, 

and non-human primates (NHPs), and assess if key ecological factors may influence the rate of 

CoV detection, and thus the exposure risk. 

 

Materials and Methods 

  

Sample and field data collection 

Sample acquisition methods differed depending on the species and interface. Animals in 

peridomestic settings were captured and released after sampling (bats, rodents and shrews 

only), while samples from the (bushmeat) value chain were collected from freshly killed animals 

voluntarily provided by local hunters upon their return to the village following hunting, or by 

vendors at markets. Non-invasive fecal samples were collected from free-ranging NHPs, while 

some NHP samples, such as blood or serum, were collected during routine veterinary exams in 

zoos and wildlife sanctuaries. To avoid incentivizing hunting, hunters and vendors were not 

compensated. Identification was done in the field by trained field ecologists, as well as 

retrospectively based on field guides and other resources including those by Kingdon and 

Monadjem [Kingdon 2005; Monadjem 2010; Monadjem 2015]. Oral and rectal swab samples 

were collected into individual 2.0 ml screw-top cryotubes containing 1.5 ml of either Universal 

Viral Transport Medium (BD), RNA later, lysis buffer, or Trizol® (Invitrogen), while pea-sized 
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tissue samples were placed in 1.5ml screw-top cryotubes containing 500ul of either RNA later or 

lysis buffer (Qiagen), or without medium. Specimen collection was approved by an Institutional 

Animal Care and Use Committee (IACUC) of UC Davis (#16067, # 17803, and # 19300), JHU 

(ACR #2007-110-03, #2007-110-02 and #2007-110-11) and UCLA (Protocols # FS03M221 and 

FS06H205) and the Government of Cameroon. All samples were stored in liquid nitrogen as 

soon as practical, before being stored long-term in freezers at -80oC. Sample collection staff 

were trained in safe collection techniques in collaboration with representatives from Ministry of 

Fisheries Livestock Animal Industries (MINEPIA), the Ministry of Forestry and Wildlife 

(MINFOF), and the Ministry of Environment Nature Protection and Sustainable Development 

MINEPDED) and wore dedicated clothing, N95 masks, nitrile gloves, and protective eyewear 

during animal capture, handling, and sampling. 

  

Sample processing 

All laboratory work was carried out at Cameroon’s Military Health Research Center (CRESAR). 

RNA was extracted either manually using Trizol®, with an Qiagen AllPrep kit (tissue), Qiagen 

Viral RNA Mini Kit (swabs collected prior to 2014), or with a Zymo Direct-zol RNA kit (swabs 

collected after 2014) and stored at -80ºC. Afterwards RNA was converted into cDNA using a 

GoScript™ Reverse Transcription kit (Promega), and stored at -20°C until analysis. Two 

conventional nested broad range PCR assays, both targeting conserved regions within the 

RNA-Dependent RNA Polymerase gene (RdRp) were used to screen samples for coronavirus 

RNA. The first PCR amplifies a product of approximately 286 nucleotides between the primer 

binding sites, and was specifically designed for the detection of a broad range of coronaviruses 

[Quan 2010]. The second PCR was used in two modified versions, with one of them specifically 

targeting a broad range of coronaviruses in bats and the second one broadly targeting 

coronaviruses of other hosts [Watanabe 2010]. Both versions amplify 387 nucleotides between 

the primer binding sites. Followup PCRs were designed to amplify the 3’-prime end of the Spike 

(S), as well as the Envelope (E), Membrane (M) and Nucleoprotein (N) genes of CoVs related to 

HCoV-229E (Table 1). 

PCR products were subjected to gel electrophoresis on a 1.5% agarose gel to identify 

amplicons of the expected size. PCR was repeated for all samples where this was the case, and 

PCR products were excised. Amplified DNA was extracted using either the QIAquick Gel 

Extraction Kit (Qiagen) or the Wizard SV Gel and PCR Cleanup System (Promega) and sent for 

commercial Sanger sequencing at either GATC, First Base or Macrogen. Extracts with low DNA 

concentrations were cloned prior to sequencing. All results from sequencing were analyzed in 
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the Geneious 7.1 software, and primer trimmed consensus sequences compared to the 

GenBank database (BLAST N, NCBI). Samples where the PCR results could not be repeated, 

or where the sequencing did not yield interpretable sequences consistent with a CoV were 

counted as CoV RNA negative. All viral sequences obtained were deposited in the GenBank 

(Table 2, Supplement 1). 

  

Phylogenetic analysis 

To facilitate phylogenetic analysis, select sequences of published complete CoV genomes 

isolated from humans, bats and other hosts, as well as partial sequences from CoVs closely 

related to those detected in this study were included. Sequences from novel Cameroonian 

isolates were included if they differed from others by at least 5%. Multiple sequence alignments 

were made in Geneious (version 11.1.3, ClustalW Alignment). Bayesian phylogeny of the 

polymerase gene fragment was inferred using MrBayes (version 3.2) with the following 

parameters: Datatype=DNA, Nucmodel=4by4, Nst=1, Coavion=No, # States=4, Rates=Equal, 2 

runs, 4 chains of 10,000,000 generations. The sequence of an avian Gamma Coronavirus 

(NC_001451) served as outgroup to root the trees based on the RdRp PCR amplicons, while 

HCoV-NL63 (AY467487) served as outgroup for sequences related to HCoV-229E. Trees were 

sampled after every 1,000 steps during the process to monitor phylogenetic convergence, and 

the final average standard deviation of split frequencies was below the MrBayes recommended 

final average <0.01 for all analyses [Ronquist 2012]. The first 10% of the trees were discarded 

and the remaining ones combined using TreeAnnotator (version 2.5.1; http://beast.bio.ed.ac.uk) 

and displayed with FIGTREE (1.4.4; http://tree.bio.ed.ac.uk/) [Bouckaert 2019]. 

  

Statistical analysis 

Ecological data collected along with the samples obtained from bats was statistically analyzed in 

relation to the outcome of PCR tests. The variables included species, family, and suborder, age 

and sex, and factors such as the interface of exposure with humans, and season (wet/dry) of 

sampling. The taxonomy information for the analysis was based in the Integrated Taxonomic 

Information System (ITIS) website (https://www.itis.gov/), age coded as either adult or non-adult, 

interface categorized as ‘value chain’ for animal samples obtained at markets or directly from 

hunters, ‘tourism’ for samples obtained at zoos and sanctuaries, and ‘other peridomestic’. The 

seasons were defined as switching from wet to dry after November 15th and from dry to wet 

after March 15th of each year. All statistical data analyses were conducted using the statistical 

software SPSS (Statistical Package for the Social Sciences) version 26. At the univariate level, 
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frequencies and percentages of the selected variables of interest (i.e. PCR test results, species, 

family, suborder, age, sex, interface, season, etc.) were generated. At the bivariate level, simple 

cross-tabulation, chi-square tests have been used to determine the statistical association (which 

are considered statistically significant at 5% level) between outcome and predictor variables. 

Here, the PCR test result has been considered as the dependent variable, and species, family, 

suborder, age, sex, interface, and season have been considered as the predictor/independent 

variables. 

  

  

Results 

  

Sample set 

A total of 11,474 samples from 6,580 animals of several different orders were collected between 

2003 and 2018, covering all 10 regions of Cameroon (Figure 1). Animals sampled included 

2,740 rodents (28 species), 2,581 bats (50 species), 1,006 primates (24 species), 159 

Eulipotyphla (3 species), 38 pangolins (1 species), 37 carnivores (3 species), 17 even-toed 

ungulates (4 species), and 2 hyraxes (1 species) (Supplement 2). Samples were predominantly 

oral (5,214) and rectal (4,818) swabs, but also included tissue such as spleen (893), liver (93), 

lung (5), colon (4), small intestine (4), muscle (1), skin (1) and thyroid (1). Other sample types 

included plasma (377), serum (20), and whole blood (1), as well as feces (36), genital swabs 

(5), and nasal swabs (1). 

  

Coronavirus RNA was detected in at least one sample with at least one PCR assay in 175 

individual bats, one civet, and one shrew (Table 2). Rectal swabs were CoV RNA positive in 129 

instances, oral swabs in 71 instances, liver and spleen in 3 instances each and plasma in 2 

instances. The Watanabe PCR protocol produced 173 positive results, while the Quan PCR 

protocols produced 64 positive results. 

  

Bat sampling was conducted in many areas of the country, but  46.7% of the bats were sampled 

in the South Region (Supplement 3). Male bats were slightly overrepresented (53.5%) 

compared to females, however female bats were significantly (p<0.01) more likely to have a 

positive CoV test (8.2%) than male bats (5.6%). Differences in CoV RNA positive rate were also 

observed between adult (7.4%, n=1495) and younger bats (10.3%, n=87), but these were not 

statistically significant. Samples collected at animal-human interfaces categorized as ‘Tourism’ 
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(1.5%, n=136) and ‘Value chain’ (3.1%, n=488) were significantly less likely (p<0.001) to be 

CoV RNA positive than those collected at ‘other peridomestic’ interfaces (8.1%, n=1957). 

  

Civet CoV 

The CoV RNA detected in an African palm civet (Nandinia binotata) resembles that of an 

alphacoronavirus and, on the nucleotide level (BLASTN), is most closely related to canine CoV, 

feline CoV, and porcine CoV (TGEV) with 87%, 86%, and 85% identities respectively (Table 2). 

Phylogenetic analysis places the RNA in a cluster with dog, cat, mink, and pig CoVs (Figure 2). 

  

Shrew CoV 

The CoV RNA detected in a Goliath shrew (Crocidura goliath) resembles that of an 

alphacoronavirus and is on the nucleotide level (BLASTN) closest related to isolates of 

Wencheng Sm shrew CoV (from a Suncus murinus), and isolates of Coronavirus PREDICT 

CoV-46 (from a Crocidura sp.), with up to 84% and 83% identities, respectively (Table 2). 

Phylogenetic analysis places the RNA in a cluster with other shrew CoVs as part of a basal 

branch of alphacoronaviruses (Figure 3). 

  

Bat CoVs 

The CoV RNA detected in the 175 bats form 17 different genetic clusters, of which 8 coincide 

with alpha and 9 with beta CoVs. The majority of sequences share identities above 90% with 

known bat CoVs, while the sequences in up to 6 of the 17 clusters do not (bat CoV clusters 2, 

11, 14, 15, 17, 18) (Table 2, Figures 2 and 3). RNA corresponding to a single CoV was detected 

in 170 bats. In 89 bats the CoV RNA resembled that of an alpha CoVs, and in 81 cases that of a 

beta CoV. In 5 bats RNA corresponding to two different CoVs was found. In two of these cases, 

RNA of both an alpha and a beta CoV was present, in two bats the RNA of two different beta 

CoVs was detected, and in one bat we found the RNA of two different alpha CoVs (Table 2). In 

all other cases (n=30) where we detected RNA in more than one sample of the same bat, the 

RNA amplified by the same PCR differed by less than 10%. In 24 instances they were 100% 

identical, in five instances they differed by less than 1% and in one instance the difference was 

5.2%.  

  

HCoV-229E-like sequences in bats 

Sequences resembling HCoV-229E were found in 40 bats from the Hipposideridae family, 

primarily in the species Hipposideros ruber, and showed differences of up to 6% among each 
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other in the Watanabe amplicons and up to 11% in the Quan amplicons. Additional sequence 

information of the full or partial S, E, M, and N genes was obtained, and differences in the 

sequences ranged up to 8% for the E, 12% for the M, 32% for the N and 26% for the S genes. 

Phylogenetic clustering of sequences differed depending on the gene, with isolates 

BtCoV/KW2E-F56/Hip_cf._rub/GHA/2011 (KT253271) and BtCoV/AT1A-F1/Hip_aba/GHA/2010 

(KT253272) being consistently the most basal isolates in the CoV-229E branch (Figure 4, 

Supplement 1). The phylogenetic analyses, that involve sequence isolates from bat, camel, and 

human hosts, place the HCoV-229E isolates that were obtained from humans closest to isolates 

from camels in case of the S and N genes, but closest to isolates from bats for the E, M and 

RdRp genes (Figure 4, Supplement 4). 

  

Seasonality and other predictors in bats 

Bat sample collection was focused on seasons, and thus varied over the months, with a high of 

432 samples collected in March and a low of 48 in August (Supplement 5). Bats sampled in the 

wet season accounted for 61.9% of total bats compared to 38.1% in the dry season. The 

proportion of CoV RNA positive bats varied significantly (p=<0.001) between the wet (8.2%) and 

dry season (4.5%), while the proportion of events (samples collected at the same location on 

the same day) with at least one positive animal was very similar with 29.4% during the wet 

season and at 28.3% during the dry season. The proportion of CoV RNA positive individuals for 

the sampling events with >25 bats (n=24) fluctuated between 0% and 48%, and was at 21.2% 

for the largest event. Nine events took place during the wet season, and 15 during the dry 

season. Among the bats sampled during this largest event were 17 different species with 

varying rates of CoV RNA detection, including Chaerephon pumilus (0%, n=29), Epomophorus 

gambianus (54.5%, n=22), Mops condylurus (26.7%, n=30), Nycteris hispida (0%, n=18), 

Scotophilus dinganii (16.7%, n=12), and Scotophilus leucogaster (38.7%, n=31). 

  

Seasonal differences in the CoV RNA detection rate were associated with and differed 

depending on certain taxonomic species, families, and suborders (Table 3). Both 

Yinpterochiroptera and Yangochiroptera bats were overall more likely to be CoV RNA positive 

during the wet season, with the observed difference being more pronounced in the latter. 

Significant seasonal differences were observed in five species; high rates of CoV RNA 

detections were associated with the wet season and low rates with the dry season for Eidolon 

helvum, Hipposideros ruber, and Mops condylurus, while it was the opposite for Macronycteris 

gigas (Table 3). 
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Discussion 

  

Unexplored diversity 

While we sampled and tested roughly equal proportions of bats and rodents and a significant 

number of NHPs in this study, all but 2 of the 177 animals that turned out to be positive for CoV 

RNA were bats. This is not a surprise, but it rather reinforces the notion that bats are the major 

reservoir for alpha- and beta-CoVs, and generally for viruses with zoonotic potential [Li 2005; 

Woo 2009; Annan 2013; O’Shea 2014; Anthony 2017]. While it has been suggested that under-

sampling of rodents, rather than a particularly high prevalence in bats, may be a reason for this 

pattern, we did not find any evidence to support such a hypothesis in our study population, 

despite a high number of sampled rodents. However, considering the high diversity of rodent 

species, our sample is certainly not representative and biased towards those that thrive in a 

peridomestic environment or that are being hunted for consumption. The detection of novel CoV 

RNA in a civet is certainly an interesting finding, as civets played a key role as intermediate 

hosts in the emergence of SARS-CoV-1 [Kan 2005]. While civets are not farmed in Cameroon, 

they are hunted for consumption, which implies human contact, thus posing a potential risk. The 

detected RNA suggests a close relationship with other carnivore CoVs, and thus potentially a 

low risk for humans (Spillover Risk score of 54 out of 155), however in the absence of a full 

genomic sequence and further characterization experiments, this remains to be determined 

[Grange 2021]. 

The CoV RNA we detected belongs to 19 different genetic clusters, of which 8 might represent 

novel CoV species - six of these were found in bats, one in a civet, and one in a shrew. While 

we were unable to obtain large or complete genomic sequences from the isolates, these 

findings indicate that the CoV diversity in African wildlife species, and particularly in bats, is still 

poorly understood. This is concerning since spillover events are likely to occur, given the close 

interactions that arise from human housing conditions, hunting practices, ecotourism, and other 

human behaviors in Cameroon and other parts of Africa. While the emergence of SARS-CoV-1 

and SARS-CoV-2 have put the spotlight on Southeast Asia and China in particular, it is 

important to keep in mind that the risks are present worldwide and local efforts should be 

enhanced across the globe to determine how to mitigate these risks [Jones 2008; Wolfe 2007]. 

CoV diversity poses a significant challenge for surveillance efforts and requires further 
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exploration, but it also provides great opportunities to learn more about the biology and history 

of CoVs, including that of non-SARS CoVs, such as HCoV-229E. 

  

Viruses closely related to HCoV-229E are highly prevalent in Hipposideros bats 

We detected RNA of bat CoVs closely related to HCoV-229E in 40 bats, which all belonged to 

the Hipposideridae family (3.9%, n=1,035). This finding, along with the fact that previous 

detections of HCoV-229E-like bat viruses were also almost exclusively associated with 

Hipposideros bats, supports the hypothesis that this family of bats constitutes the original host 

family and reservoir of HCoV-229E (like) viruses [Corman 2015]. Further evidence for this is the 

high diversity that HCoV-229E-like viruses detected in bats exhibit compared to those found in 

humans or camels, which suggests a long shared evolutionary history with bats. 

  

The observed rather low host plasticity of HCoV-229E-like viruses among bats is noteworthy, 

since host plasticity has been proposed as a predictor for the likelihood of (successful) spillover 

into humans [Kreuder Johnson 2015]. However, in the absence of our knowledge of HCoV-

229E-like viruses actually infecting camels and humans, one would potentially predict that these 

alpha CoVs might exhibit a lower risk for zoonotic spillover than more promiscuous bat CoVs 

such as Kenya bat coronavirus BtKY56 and Eidolon bat coronavirus/Kenya/KY24 [Kumakamba 

2021]. In that respect there seem to be  parallels between HCoV-229E and SARS-CoV-1 and 

SARS-CoV-2, which we believe to be primarily hosted by Rhinolophus bats [Li 2005; Lau 2005; 

Yip 2009; Yuan 2010; Hu 2017; Paraskevis 2020]. This counterintuitive observation might be 

the result of a sampling bias, but considering the comparably high number of sampled animals 

(2,581 bats in this study alone) it is one that can hardly be ignored. Surveillance and predictions 

of spillover risks particularly of bat CoVs will likely play an increasing role in the aftermath of the 

SARS-CoV-2 pandemic, but will face the challenge of limited data, despite the advances that 

have been made since the emergence of SARS-CoV-1. 

  

While the zoonotic origin of globally circulating HCoV-229E is undisputed, the route by which it 

made its way from bats into humans is not clear. Some evidence, such as deletion patterns in 

the S gene and the open reading frames 4 and 8, suggests that camels may have served as an 

intermediate host. The hypothesis that an intermediate host was involved would be concurrent 

with what we know about the origins of other CoVs including as MERS-CoV (camel) or SARS-

CoV-1 (civet) [Kan 2005; Corman 2014; Sabir 2016; Corman 2016; Forni 2017]. Phylogenetic 

evidence however, especially from the comparison of the more conserved genes, does not 
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necessarily support that hypothesis. While the phylogenetic analyses of the most variable S- 

and the N-genes does place human and camel isolates into the same branch, this is not the 

case for the most conserved RdRp gene, and the E-, and M-genes (Figures 2-4, Supplement 4). 

This pattern would indicate that the transmission of HCoV-229E-like bat viruses into camels 

(which resulted in the isolates we know to date) may have been unrelated to the spillover that 

eventually led to the emergence of HCoV-229E. Such a multiple spillover scenario would not be 

without parallel, since CoVs closely related to SARS-CoV-2 were detected in pangolins, but 

overall clearly represent a different, earlier, and unrelated transmission [Zhang 2020; Lam 

2020]. 

  

Determining the evolutionary history of HCoV-229E thus remains a challenge, not least due to 

limited and highly biased data available to date. Only 42 HCoV-229E isolates have been 

sequenced completely or near completely, with 28 derived from North America, 8 from Europe, 

and 7 from Southeast Asia - but not a single complete sequence from Africa. Similarly, almost 

all isolates from camels are derived from the Arabian peninsula and only one from Africa 

[Corman 2016; Li 2017]. 

  

Infection rates are subject to seasonality 

The detection of CoVs RNA in bats has been associated with seasonal differences in the past, 

and we found statistically significant evidence for such a correlation in our dataset as well 

[Anthony 2017; Montecino-Latorre 2020; Kumakamba 2021]. Much like in a recent study from 

the Democratic Republic of the Congo, we found that animals were more likely to be found 

shedding CoV RNA in the wet compared to the dry season, but that this is species dependent 

and may be true for some but be reversed for others (Table 3) [Kumakamba 2021]. Aside from 

this overall trend, the findings regarding seasonality from the two studies do not necessarily 

match up; however, this may be due to different bat species sampled on the one hand, and due 

to different ecological and climate conditions on the other hand. A potential reason for the 

seasonal differences may be related to the species' birthing seasons, since it has been 

suggested that coronavirus transmission spikes in bat populations as juvenile bats become 

susceptible to infection once maternal antibody levels wane [Maganga 2020; Montecino-Latorre 

2020]. The observation that young bats in our data set were more likely to be positive for CoV 

RNA than adults would support this hypothesis, though our finding was not statistically 

significant. 
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Interestingly, we found female bats to be significantly more likely to be CoV RNA positive than 

male bats, which is the opposite of what was found in DRC and what was suspected based on 

behavioral differences between males and females during breeding, birthing, and breastfeeding 

seasons (Kumakamba 2021; Fayenuwo 1974). However, while apparently a contradiction, this 

might be a reflection of differences in the species composition of the dataset, and indicate that 

caution should be used when making generalizations for members of the Chiroptera order, even 

if climate and habitat are similar. 

  

Closing remarks 

Overall the results of this study on CoVs in African wildlife unveil or highlight several important 

aspects regarding the risks of future spillover and pandemics: 1) Our knowledge about the 

diversity of CoVs circulating in wildlife remains limited, as exemplified by the fact, that almost 

half of the CoV species we detected had not been described before. Despite having sampled 

114 animal species, sample populations for most of them are too small to draw any conclusions 

about prevalence or risks. The role bats may play as a reservoir is certainly reinforced by the 

findings, but other species might simply be under sampled. The CoV RNA detection in a civet 

could be hinting towards a largely undetected CoV circulation in what could be an intermediate 

host for future spillovers. 2) The evidence for ecological factors such as seasonality driving 

transmission among bats is increasing. While the evidence remains circumstantial and the 

mechanisms elusive, it seems to become clear that further studies into this matter could enable 

smarter surveillance initiatives and mitigation measures such as limiting access to caves or 

discouraging hunting during periods of increased virus shedding. 3) The high prevalence and 

diversity of HCoV-229E-like viruses in African Hipposideridae bats reinforces the notion that 

HCoV-229E originated in Africa. However, while more and more data supports this origin 

hypothesis, the question whether or not camels acted as an intermediate host during the 

spillover into humans remains unclear. Regardless of the, or if there was an intermediate host, 

HCoV-229E highlights how important it is to not focus on Southeast Asia for CoV surveillance, 

but that CoV pandemics can start in many areas of the world. 
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Figure legends: 

 

Figure 1, Sampling map: Map of Cameroon highlighting where samples were collected. 

  

Figure 2, Phylogenetic tree: Maximum likelihood phylogenetic tree of coronavirus sequences 

presented as a proportional cladogram, based on the RdRp region targeted by the PCR by 

Watanabe et. al. [Watanabe 2010]. The sequences detected during the project are highlighted 

by red boxes and numbers in brackets indicate the number of sequences sharing more than 

95% nucleotide identities. GenBank accession numbers are listed for previously published 

sequences, while sequences obtained during the project are identified by cluster names 

(compare Table 2). Numbers at nodes indicate bootstrap support. 

  

Figure 3, Phylogenetic tree: Maximum likelihood phylogenetic tree of coronavirus sequences 

presented as a proportional cladogram, based on the RdRp region targeted by the PCR by 

Quan et. al. [Quan 2010]. The sequences detected during the project are highlighted by red 

boxes and numbers in brackets indicate the number of sequences sharing more than 95% 

nucleotide identities. GenBank accession numbers are listed for previously published 

sequences, while sequences obtained during the project are identified by cluster names 

(compare Table 2). Red boxes indicate isolates from this study. Numbers at nodes indicate 

bootstrap support. 

  

Figure 4, Phylogenetic trees of HCoV-229E-like isolates: Maximum likelihood phylogenetic 

tree of coronavirus sequences related to HCoC-229E, based on the Spike (A), Envelope (B), 

Membrane (C) and Nucleoprotein (D). Red boxes indicate isolates from this study. Numbers at 

nodes indicate bootstrap support. Compare also Supplement 4. 
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Table 1: PCR primers and protocols 
  

PCR type and Target Primers Conditions 

Nested family level 
CoV PCR targeting a 
~300nt region of the 
RdRp gene [Quan 
2010] 

First round: 
CoV-FWD1: CGT TGG IAC 
WAA YBT VCC WYT ICA RBT 
RGG 
CoV-RVS1: GGT CAT KAT 
AGC RTC AVM ASW WGC 
NAC ATG 
Second round: 
CoV-FWD2: GGC WCC WCC 
HGG NGA RCA ATT 
CoV-RVS2: GGW AWC CCC 
AYT GYT GWA YRT C 

First round: Initial denaturation at 
95ºC for 5 min, then 15 cycles of: 
95ºC for 30 seconds, 65ºC for 30 
seconds and 72ºC for 45 seconds. 
This is followed by 40 cycles of: 95ºC 
for 30 seconds, 50ºC for 30 seconds 
and 72ºC for 45 seconds. Final 
elongation at 72ºC for 7 minutes. 
Second round: 
Initial denaturation at 95ºC for 5 min, 
then 15 cycles of: 95ºC for 30 
seconds, 65ºC for 30 seconds and 
72ºC for 45 seconds. This is followed 
by 35 cycles of: 95ºC for 30 seconds, 
50ºC for 30 seconds and 72ºC for 45 
seconds. Final elongation at 72ºC for 
7 minutes. 

Hemi-nested family 
level CoV PCR 
targeting a ~400nt 
region of the RdRp 
gene [Watanabe 2010] 

First round: 
CoV-FWD3: GGT TGG GAY 
TAY CCH AAR TGT GA 
CoV-RVS3: CCA TCA TCA 
SWY RAA TCA TCA TA 
Second round: 
FWD4/Other: GAY TAY CCH 
AAR TGT GAU MGW GC 
CoV-RVS3: CCA TCA TCA 
SWY RAA TCA TCA TA 

First round: 
Initial denaturation at 94ºC for 2 min, 
then 35 cycles of: 94ºC for 20 
seconds, 50ºC for 30 seconds and 
72ºC for 30 seconds. Final elongation 
at 72ºC for 7 minutes. 
Second round: 
Initial denaturation at 94ºC for 2 min, 
then 35 cycles of: 94ºC for 20 
seconds, 50ºC for 30 seconds and 
72ºC for 30 seconds. Final elongation 
at 72ºC for 7 minutes. 
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Hemi-nested family 
level bat-CoV PCR 
targeting a ~400nt 
region of the RdRp 
gene [Watanabe 2010] 

First round: 
CoV-FWD3: GGT TGG GAY 
TAY CCH AAR TGT GA 
CoV-RVS3: CCA TCA TCA 
SWY RAA TCA TCA TA 
Second round: 
CoV-FWD4/Bat: GAY TAY 
CCH AAR TGT GAY AGA GC 
CoV-RVS3: CCA TCA TCA 
SWY RAA TCA TCA TA 

First round: 
Initial denaturation at 94ºC for 2 min, 
then 35 cycles of: 94ºC for 20 
seconds, 50ºC for 30 seconds and 
72ºC for 30 seconds. Final elongation 
at 72ºC for 7 minutes. 
Second round: 
Initial denaturation at 94ºC for 2 min, 
then 35 cycles of: 94ºC for 20 
seconds, 50ºC for 30 seconds and 
72ºC for 30 seconds. Final elongation 
at 72ºC for 7 minutes. 

Species level HCoV-
229E PCR targeting a 
~900nt region at the 3’-
prime end of the S gene 

29E-CoV-S-3prime fwd: GGT 
AGA TAG RCT KAT TAM 
TGG 
229E-CoV-S-3prime rev: TCA 
ACG TCG TAA TAA GGA AG 

Initial denaturation at 95ºC for 3 min, 
then 40 cycles of: 95ºC for 45 
seconds, 55ºC for 45 seconds and 
72ºC for 1.5 min. Final elongation at 
72ºC for 5 minutes. 

Species level HCoV-
229E PCR targeting a 
~700nt region central in 
the S gene 

229E-CoV-S-mid fwd: GTD 
GGT GCT ATG WTG TCT G 
229E-CoV-S-mid rev: TCA GCA 
TCA GCR ACR CCH G  

Initial denaturation at 95ºC for 3 min, 
then 40 cycles of: 95ºC for 45 
seconds, 55ºC for 45 seconds and 
72ºC for 1.5 min. Final elongation at 
72ºC for 5 minutes. 

Species level HCoV-
229E PCR targeting a 
~700nt region central in 
the S gene 

229E-CoV-S-cent fwd: TCA 
CTC CTT GYA ACC CAC CAG 
229E-CoV-S-mid rev: TCA GCA 
TCA GCR ACR CCH G  

Initial denaturation at 95ºC for 3 min, 
then 40 cycles of: 95ºC for 45 
seconds, 55ºC for 45 seconds and 
72ºC for 1.5 min. Final elongation at 
72ºC for 5 minutes. 

Species level HCoV-
229E PCR targeting a 
~700nt region between 
the center and the 3’-
prime end of the S gene 

229E-CoV-S-link fwd: CTG 
GWC TTG GCA CTG TKG A 
229E-CoV-S-link rev: CCR TCA 
GGA GCA GCA TTV AC  

Initial denaturation at 95ºC for 3 min, 
then 40 cycles of: 95ºC for 45 
seconds, 55ºC for 45 seconds and 
72ºC for 1.5 min. Final elongation at 
72ºC for 5 minutes. 
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Species level HCoV-
229E PCR targeting a 
~350nt region of the M 
gene 

229E-CoV-M fwd: GGC CAC 
TTG TAC TTG CWY 
229E-CoV-M rev: TAG TAG 
TGC TCG GCA CGG CAA C  

Initial denaturation at 95ºC for 3 min, 
then 40 cycles of: 95ºC for 45 
seconds, 55ºC for 45 seconds and 
72ºC for 45 seconds. Final elongation 
at 72ºC for 5 minutes. 

Species level HCoV-
229E PCR targeting a 
~850nt region of the N 
gene 

229E-CoV-Nuc fwd: CCT TGG 
AAG GTG ATA CCT C 
229E-CoV-Nuc rev: CAA ACA 
GCA TAG CAG CTG T  

Initial denaturation at 95ºC for 3 min, 
then 40 cycles of: 95ºC for 45 
seconds, 55ºC for 45 seconds and 
72ºC for 1.5 min. Final elongation at 
72ºC for 5 minutes. 

Species level HCoV-
229E PCR targeting a 
~500nt region of the M 
and N genes 

229E-CoV-M/N-link fwd: TCC 
AAC AGG CAT CAC GGT 
GAC 
229E-CoV-M/N-link rev: TCC 
TTA AAA GGG CCT GTT CC 

Initial denaturation at 95ºC for 3 min, 
then 40 cycles of: 95ºC for 45 
seconds, 55ºC for 45 seconds and 
72ºC for 1 min. Final elongation at 
72ºC for 5 minutes. 

Species level HCoV-
229E PCR targeting a 
~1200nt region around 
the E gene 

229E-CoV-E+ fwd: GTC TTG 
CAT CTT CTA CTA GAG G 
229E-CoV-E+ rev: GTA CCC 
CAA TTA GCC CAG G 

Initial denaturation at 95ºC for 3 min, 
then 40 cycles of: 95ºC for 45 
seconds, 55ºC for 45 seconds and 
72ºC for 2 min. Final elongation at 
72ºC for 5 minutes. 

  
 
 
Table 2: List of samples containing CoV RNA 
 

Cluster / 
Genus 

Animal ID / 
GenBank ID 

Host species / 
Sample type 

Sample date / 
Region 

BLAST 
April 6th 2020 

Bat CoV 
cluster 1 A 
(W) / Alpha 
CoV 
  

CMAB71480 / 
MT081987 

Hipposideros 
ruber / rectal 
swab 

2016-05-26 / 
South 

99% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB71481 / 
MT082023 

Hipposideros 
ruber / rectal 
swab 

2016-05-26 / 
South 

99% Bat coronavirus isolate CS105 
(MG963190) 
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CMAB71535 / 
MT221710 

Hipposideros sp. 
/ rectal swab 

2016-05-26 / 
South 

99% Bat coronavirus isolate CS105 
(MG963190) 

CMAB71678 / 
MT082019 

Hipposideros 
ruber / rectal 
swab 

2016-07-04 / 
South 

98% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB71786 / 
MT082020 

Hipposideros 
ruber / rectal 
swab 

2016-07-30 / 
South 

99% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB71818 / 
MT081983 

Hipposideros 
ruber / rectal 
swab 

2016-07-30 / 
South 

99% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB72009 / 
MT081994 

Hipposideros 
ruber / rectal 
swab 

2016-09-13 / 
South 

99% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB72047 / 
MT081996 

Hipposideros 
ruber / rectal 
swab 

2016-09-13 / 
South 

99% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB72057 / 
MT082030 

Hipposideros 
ruber / oral swab 

2016-09-13 / 
South 

99% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB72143 / 
MT082016 

Hipposideros 
ruber / rectal 
swab 

2016-10-29 / 
South 

98% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB72642 / 
MT082018 

Hipposideros 
ruber / rectal 
swab 

2017-02-18 / 
South 

98% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB72694 / 
MT082026 

Hipposideros 
ruber / rectal 
swab 

2017-02-21 / 
South 

98% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB73354 / 
MT082057 

Hipposideros 
ruber / oral swab 

2017-04-11 / 
South 

98% Bat coronavirus isolate CS105 
(MG963190) 
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CMAB73357 / 
MT082056 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

98% Bat coronavirus isolate CS105 
(MG963190) 

CMAB73364 / 
MT082006 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

98% Bat coronavirus isolate CS105 
(MG963190) 

CMAB73367 / 
MT082029 

Hipposideros 
ruber / oral swab 

2017-04-11 / 
South 

98% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB73368 / 
MT082008 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

98% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB73376 / 
MT082009 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

98% Bat coronavirus isolate CS105 
(MG963190) 

CMAB74746 / 
MT082084 

Hipposideros 
ruber / rectal 
swab 

2018-01-19 / 
South 

99% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB74760 / 
MT082078 

Hipposideros 
ruber / rectal 
swab 

2018-01-19 / 
South 

99% Bat coronavirus isolate 09GB0379 
(MG963197) 

CMAB75005 / 
MT082090 

Hipposideros 
curtus / rectal 
swab 

2018-05-30 / 
South 

96% Bat coronavirus isolate CS105 
(MG963190) 

CMAB75013 / 
MT082091 

Hipposideros 
ruber / oral swab 

2018-05-30 / 
South 

98% Bat coronavirus isolate 10GB0309 
(MG963199) 

CMAB75013 / 
MT082092 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

98% Bat coronavirus isolate 10GB0309 
(MG963199) 

GVF-CM-
ECO06296 / 
KX284955 

Hipposideros 
caffer / rectal 
swab 

2012-09-09 / 
Centre 

98% Bat coronavirus isolate 09GB0379 
(MG963197) 
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Bat CoV 
cluster 1 B 
(W) / Alpha 
CoV 
  

CMAB71642 
/MT081988 

Hipposideros 
ruber / rectal 
swab 

2016-07-04 / 
South 

96% Bat coronavirus isolate 10GB0309 
(MG963199) 

CMAB71651 / 
MT081991 

Hipposideros 
ruber / rectal 
swab 

2016-07-04 / 
South 

96% Bat coronavirus isolate 10GB0309 
(MG963199) 

CMAB71675 
/MT082058 

Hipposideros 
ruber / rectal 
swab 

2016-07-04 / 
South 

96% Bat coronavirus isolate 10GB0309 
(MG963199) 

CMAB71800 
/MT082021 

Hipposideros 
ruber / rectal 
swab 

2016-07-30 / 
South 

97% 229E-related bat coronavirus strain 
BtKY229E-8 (KY073748) 

CMAB72010 
/MT082012 

Hipposideros 
ruber / rectal 
swab 

2016-09-13 / 
South 

98% Human coronavirus 229E 
PREDICT-ZB12046 (KX284928) 

CMAB72015 
/MT081993 

Hipposideros 
ruber / rectal 
swab 

2016-09-13 / 
South 

99% Human coronavirus 229E 
PREDICT-ZB12046 (KX284928) 

CMAB72622 
/MT082053 

Hipposideros 
ruber / rectal 
swab 

2017-02-18 / 
South 

98% Human coronavirus 229E 
PREDICT-ZB12046 (KX284928) 

CMAB73355 
/MT082055 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

99% Human coronavirus 229E 
PREDICT-ZB12046 (KX284928) 

CMAB73356 
/MT082031 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

99% Human coronavirus 229E 
PREDICT-ZB12046 (KX284928) 

CMAB73372 
/MT082010 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

99% Human coronavirus 229E 
PREDICT-ZB12046 (KX284928) 

CMAB75014 
/MT082093 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

99% Human coronavirus 229E 
PREDICT-ZB12046 (KX284928) 
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CMAB75019 
/MT082081 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

98% Human coronavirus 229E 
PREDICT-ZB12046 (KX284928) 

Bat CoV 
cluster 1 C 
(Q) / Alpha 
CoV 

CMAB73355 / 
MT063996 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

95% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 

CMAB73357 
/MT063997 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

95% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 

CMAB73364 
/MT063985 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

95% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 

CMAB73372 
/MT063984 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

95% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 

CMAB73376 
/MT064047 

Hipposideros 
ruber / oral swab 

2017-04-11 / 
South 

95% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 

CMAB73401 
/MT063999 

Hipposideros 
ruber / rectal 
swab 

2017-04-14 / 
South 

95% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 

CMAB75014 
/MT064026 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

95% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 

CMAB75051 
/MT064035 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

94% Human coronavirus 229E 
PREDICT_OTBA41-20130602 
(KX285803) 

Bat CoV 
cluster 1 D 
(Q) / Alpha 
CoV 

CMAB72622 
/MT063978 

Hipposideros 
ruber / rectal 
swab 

2017-02-18 / 
South 

97% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 

CMAB75013 
/MT064024 

Hipposideros 
ruber / oral swab 

2018-05-30 / 
South 

98% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 
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CMAB75013 
/MT064025 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

98% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 

CMAB75019 
/MT064028 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

96% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

CMAB75026 
/MT064029 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

98% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 

CMAB75030 
/MT064031 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

97% Rousettus aegyptiacus bat 
coronavirus 229E-related isolate 5425 
(MN611517) 

Bat CoV 
cluster 1 E 
(Q) / Alpha 
CoV 

CMAB73368 / 
MT064018 

Hipposideros 
ruber / oral swab 

2017-04-11 / 
South 

94% Camel alphacoronavirus 
Camel229E isolate Camel229E-
CoV/KCSP1/KEN/2015 (KU291449) 

CMAB73368 / 
MT063980 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

94% Camel alphacoronavirus 
Camel229E isolate Camel229E-
CoV/KCSP1/KEN/2015 (KU291449) 

CMAB74746 / 
MT064013 

Hipposideros 
ruber / rectal 
swab 

2018-01-19 / 
South 

94% 229E-related bat coronavirus isolate 
BtCoV/FO1A-F2/Hip_aba/GHA/2010 
(KT253270) 

CMAB74747 / 
MT064014 

Hipposideros 
ruber / rectal 
swab 

2018-01-19 / 
South 

94% 229E-related bat coronavirus isolate 
BtCoV/FO1A-F2/Hip_aba/GHA/2010 
(KT253270) 

Bat CoV 
cluster 1 F 
(Q) / Alpha 
CoV 

CMAB75005 / 
MT064022 

Hipposideros 
curtus / rectal 
swab 

2018-05-30 / 
South 

94% 229E-related bat coronavirus strain 
BtKY229E-1 (KY073747) 

Bat CoV 
cluster 2 A 
(W) / Beta 

CMAB72008 / 
MT081995 

Hipposideros 
ruber / rectal 
swab 

2016-09-13 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB72017 / 
MT082013 

Hipposideros 
ruber / rectal 
swab 

2016-09-13 / 
South 

89% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 
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CMAB72021 / 
MT081992 

Hipposideros 
ruber / rectal 
swab 

2016-09-13 / 
South 

89% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB72044 / 
MT082014 

Hipposideros 
ruber / rectal 
swab 

2016-09-13 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB72132 / 
MT082028 

Hipposideros 
ruber / oral swab 

2016-10-29 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB72132 / 
MT082052 

Hipposideros 
ruber / rectal 
swab 

2016-10-29 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB72135 / 
MT082015 

Hipposideros 
ruber / rectal 
swab 

2016-10-29 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB72190 / 
MT082025 

Hipposideros 
ruber / rectal 
swab 

2016-11-01 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB72211 / 
MT082011 

Hipposideros 
ruber / rectal 
swab 

2016-11-01 / 
South 

92% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB72217 / 
MT082022 

Hipposideros 
ruber / rectal 
swab 

2016-11-01 / 
South 

92% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB72621 / 
MT082017 

Hipposideros 
ruber / rectal 
swab 

2017-02-18 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB73361 / 
MT082005 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB73371 / 
MT082027 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 
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CMAB74557 / 
MT082075 

Hipposideros 
fuliginosus / oral 
swab 

2017-12-19 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB74578 / 
MT082074 

Hipposideros 
ruber / rectal 
swab 

2017-12-19 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB74787 / 
MT082076 

Hipposideros 
ruber / rectal 
swab 

2018-01-19 / 
South 

89% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

Bat CoV 
cluster 2 B 
(W) / Beta 

CMAB75012 / 
MT082083 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB75017 / 
MT082095 

Hipposideros 
ruber / oral swab 

2018-05-30 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB75017 / 
MT082096 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

CMAB75043 / 
MT082122 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

90% Bat SARS-like coronavirus isolate 
BtCov-Zim035Mag (MG000872) 

GVF-CM-
ECO70005 / 
KX284977 

Mops condylurus 
/ rectal swab 

2013-03-01 / 
East 

98% Bat coronavirus isolate 19207 
(MN183181) 

Bat CoV 
cluster 2 C 
(W) / Beta 

CMAB75012 / 
MT064023 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

84% Coronavirus PREDICT CoV-20 
PREDICT_CoV-20/ZB12062 
(KX286249) 

CMAB75042 / 
MT064032 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

86% Coronavirus PREDICT CoV-62 
PREDICT_CoV-62/AATKH 
(KX285866) 

CMAB75043 / 
MT064033 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

83% Coronavirus PREDICT CoV-20 
PREDICT_CoV-20/ZB12062 
(KX286249) 
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Bat CoV 
cluster 2 D 
(W) / Beta 

CMAB72190 / 
MT063979 

Hipposideros 
ruber / rectal 
swab 

2016-11-01 / 
South 

83% Coronavirus PREDICT CoV-62 
PREDICT_CoV-62/AATKH 
(KX285866) 

CMAB73371 / 
MT063994 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

82% Coronavirus PREDICT CoV-20 
PREDICT_CoV-20/ZB12062 
(KX286249) 

Bat CoV 
cluster 3 (W) 
/ Beta 

CMAB74992 / 
MT082087 

Rousettus 
aegyptiacus / 
rectal swab 

2018-05-13 / 
South 

100% Bat coronavirus isolate CMR66 
(MG693170) 

CMAB74998 / 
MT082088 

Rousettus 
aegyptiacus / 
rectal swab 

2018-05-28 / 
South 

99% Bat coronavirus isolate CMR66 
(MG693170) 

CMAB74999 / 
MT082089 

Rousettus 
aegyptiacus / 
rectal swab 

2018-05-28 / 
South 

99% Bat coronavirus isolate CMR66 
(MG693170) 

GVF-CM-
ECO06464 / 
KX284959 

Rousettus 
aegyptiacus / 
rectal swab 

2013-01-29 / 
Centre 

99% Bat coronavirus isolate 
BatCoV03/KEN/Kwale (MH170074) 

GVF-CM-
ECO06646 / 
KX284961 

Eidolon helvum / 
rectal swab 

2012-09-09 / 
Centre 

99% Bat coronavirus isolate 
BatCoV03/KEN/Kwale (MH170074) 

Bat CoV 
cluster 3 (Q) 
/ Beta 

CMAB74998 / 
MT064020 

Rousettus 
aegyptiacus / 
rectal swab 

2018-05-28 / 
South 

98% Bat coronavirus isolate CMR66 
(MG693170) 

CMAB75003 / 
MT064021 

Rousettus 
aegyptiacus / 
rectal swab 

2018-05-28 / 
South 

99% Bat coronavirus isolate CMR66 
(MG693170) 

Bat CoV 
cluster 4 A 
(Q) 

CMAB72188 / 
MT063975 

Hipposideros 
ruber / rectal 
swab 

2016-11-01 / 
South 

92% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

CMAB73356 / 
MT063972 

Hipposideros 
ruber / rectal 
swab 

2017-04-11 / 
South 

92% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.03.458874doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.03.458874
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34

CMAB74581 / 
MT064009 

Hipposideros 
ruber / rectal 
swab 

2017-12-19 / 
South 

93% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

CMAB74730 / 
MT064010 

Hipposideros 
ruber / rectal 
swab 

2018-01-19 / 
South 

93% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

CMAB74742 / 
MT064012 

Hipposideros 
ruber / rectal 
swab 

2018-01-19 / 
South 

93% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

CMAB74751 / 
MT064011 

Hipposideros 
ruber / rectal 
swab 

2018-01-19 / 
South 

93% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

CMAB74759 / 
MT064019 

Hipposideros 
ruber / rectal 
swab 

2018-01-19 / 
South 

93% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

Bat CoV 
cluster 4 B 
(Q) / Beta 

CMAB72610 / 
MT063977 

Hipposideros 
ruber / rectal 
swab 

2017-02-18 / 
South 

92% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

CMAB75015 / 
MT064027 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

93% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

CMAB75028 / 
MT064030 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

93% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

CMAB75048 / 
MT064034 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

92% Coronavirus PREDICT CoV-44 
PREDICT_CoV-44/AABRY 
(KX286327) 

Bat CoV 
cluster 4 C 
(W) / Beta 

CMAB74742 / 
MT081974 

Hipposideros 
ruber / rectal 
swab 

2018-01-19 / 
South 

98% Bat coronavirus Gabon/292/2009 
(JX174638) 

CMAB75015 / 
MT081975 

Hipposideros 
ruber / rectal 
swab 

2018-05-30 / 
South 

98% Bat coronavirus Gabon/292/2009 
(JX174638) 
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Bat CoV 
cluster 5 A 
(Q) / Beta 

CMAB73538 / 
MT063973 

Macronycteris 
gigas / rectal 
swab 

2017-06-09 / 
South 

96% Zaria bat coronavirus strain ZBCoV 
(HQ166910) 

CMAB73542 / 
MT063971 

Macronycteris 
gigas / rectal 
swab 

2017-06-09 / 
South 

97% Zaria bat coronavirus strain ZBCoV 
(HQ166910) 

CMAB73545 / 
MT063970 

Macronycteris 
gigas / rectal 
swab 

2017-06-09 / 
South 

97% Zaria bat coronavirus strain ZBCoV 
(HQ166910) 

CMAB73578 / 
MT064003 

Macronycteris 
gigas / oral swab 

2017-06-09 / 
South 

96% Zaria bat coronavirus strain ZBCoV 
(HQ166910) 

Bat CoV 
cluster 5 B 
(Q) / Beta 

CMAB72452 / 
MT063976 

Macronycteris 
gigas / rectal 
swab 

2017-01-15 / 
South 

94% Zaria bat coronavirus strain ZBCoV 
(HQ166910) 

CMAB73546 / 
MT063998 

Macronycteris 
gigas / rectal 
swab 

2017-06-09 / 
South 

94% Zaria bat coronavirus strain ZBCoV 
(HQ166910) 

CMAB73578 / 
MT063969 

Macronycteris 
gigas / rectal 
swab 

2017-06-09 / 
South 

95% Zaria bat coronavirus strain ZBCoV 
(HQ166910) 

Bat CoV 
cluster 5 C 
(W) / Beta 

CMAB73578 / 
MT082024 

Macronycteris 
gigas / rectal 
swab 

2017-06-09 / 
South 

95% Zaria bat coronavirus strain ZBCoV 
(HQ166910) 

Bat CoV 
cluster 5 D 
(W) / Beta 

CMAB73546 / 
MT082054 

Macronycteris 
gigas / rectal 
swab 

2017-06-09 / 
South 

98% Bat coronavirus isolate 13GB0273 
(MG963188) 

Bat CoV 
cluster 5 E 
(Q) / Beta 

CMAB72450 / 
MT063995 

Macronycteris 
gigas / oral swab 

2017-01-15 / 
South 

94% Zaria bat coronavirus strain ZBCoV 
(HQ166910) 

Bat CoV 
cluster 6 (W) 
/ Alpha 

CMAB74957 / 
MT082121 

Rhinolophus cf. 
alcyone / rectal 
swab 

2018-05-08 / 
South 

92% Kenya bat coronavirus BtKY83 
(GU065427) 
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Bat CoV 
cluster 6 (Q) 
/ Alpha 

CMAB74957 / 
MT064051 

Rhinolophus cf. 
alcyone / rectal 
swab 

2018-05-08 / 
South 

91% Coronavirus PREDICT CoV-70 
PREDICT_CoV-70/OTBA29-20130601 
(KX285812) 

Bat CoV 
cluster 7 (W) 
/ Beta 

GVF-CM-
ECO05710 / 
KX284951 

Micropteropus 
pusillus / oral 
swab 

2010-06-06 / 
Southwest 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO06214 / 
KX284954 

Micropteropus 
pusillus / oral 
swab 

2011-06-10 / 
Centre 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO06409 / 
KX284957 

Epomops 
franqueti / rectal 
swab 

2013-01-14 / 
North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO06417 / 
KX284958 

Epomops 
franqueti / rectal 
swab 

2013-01-14 / 
North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70284 / 
KX284985 

Micropteropus 
pusillus / oral 
swab 

2013-04-24 / 
Centre 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70332 / 
KX284987 

Micropteropus 
pusillus / oral 
swab 

2013-05-30 / 
Southwest 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70332 / 
KX284986 

Micropteropus 
pusillus / rectal 
swab 

2013-05-30 / 
Southwest 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70379 / 
KX284990 

Micropteropus 
pusillus / oral 
swab 

2013-05-30 / 
Southwest 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70379 / 
KX284989 

Micropteropus 
pusillus / rectal 
swab 

2013-05-30 / 
Southwest 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70509 / 
KX284994 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 
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GVF-CM-
ECO70509 / 
KX284993 

Epomophorus 
gambianus / 
rectal swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70514 / 
KX284998 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70514 / 
KX284999 

Epomophorus 
gambianus / 
rectal swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70516 / 
KX285000 

Scotophilus 
leucogaster / oral 
swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70516 / 
KX285001 

Scotophilus 
leucogaster / 
rectal swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70521 / 
KX285007 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

98% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70521 / 
KX285006 

Epomophorus 
gambianus / 
rectal swab 

2013-07-04 / 
Far North 

98% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70527 / 
KX285009 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70527 / 
KX285008 

Epomophorus 
gambianus / 
rectal swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70536 / 
KX285013 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70536 / 
KX285012 

Epomophorus 
gambianus / 
rectal swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 
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GVF-CM-
ECO70591 / 
KX285023 

Epomophorus 
gambianus / 
rectal swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70592 / 
KX285024 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70592 / 
KX285025 

Epomophorus 
gambianus / 
rectal swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70594 / 
MT221714 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70597 / 
KX285027 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70597 / 
KX285028 

Epomophorus 
gambianus / 
rectal swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

GVF-CM-
ECO70598 / 
KX285029 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

99% Kenya bat 
coronavirus/BtKY56/BtKY55 
PREDICT-GVF-RC-1006 (KX285501) 

Bat CoV 
cluster 8 (W) 
/ Alpha 

GVF-CM-
ECO00122 / 
KX284945 

Eidolon helvum / 
plasma 

2004-05-08 / 
Centre 

98% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO00159 / 
KX284946 

Eidolon helvum / 
plasma 

2004-05-08 / 
Centre 

98% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO05521 / 
MT221711 

Megaloglossus 
woermanni / 
spleen 

2010-01-05 / 
East 

100% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO05521 / 
KX284948 

Megaloglossus 
woermanni / 
liver 

2010-01-05 / 
East 

99% Bat coronavirus isolate 19207 
(MN183181) 
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GVF-CM-
ECO05817 / 
KX284952 

Micropteropus 
pusillus / liver 

2010-10-10 / 
Centre 

99% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70001 / 
KX284974 

Mops condylurus 
/ rectal swab 

2013-03-01 / 
East 

98% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70002 / 
KX284975 

Mops condylurus 
/ oral swab 

2013-03-01 / 
East 

98% Chaerephon bat 
coronavirus/Kenya/KY22/2006 
PREDICT-AATCA (KX285352) 

GVF-CM-
ECO70002 / 
KX284976 

Mops condylurus 
/ rectal swab 

2013-03-01 / 
East 

98% Chaerephon bat 
coronavirus/Kenya/KY22/2006 
PREDICT-AAOSV (KX285262) 

GVF-CM-
ECO70010 / 
KX284978 

Mops condylurus 
/ oral swab 

2013-03-01 / 
East 

98% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70011 / 
KX284979 

Mops condylurus 
/ oral swab 

2013-03-01 / 
East 

99% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70023 / 
KX284980 

Mops condylurus 
/ rectal swab 

2013-03-01 / 
East 

99% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70102 / 
KX284983 

Mops condylurus 
/ oral swab 

2013-03-01 / 
Littoral 

99% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70102 / 
KX284982 

Mops condylurus 
/ rectal swab 

2013-03-01 / 
Littoral 

99% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70511 / 
KX284995 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

99% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70511 / 
KX284996 

Epomophorus 
gambianus / 
rectal swab 

2013-07-04 / 
Far North 

99% Bat coronavirus isolate 19207 
(MN183181) 
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GVF-CM-
ECO70520 / 
KX285005 

Pipistrellus 
inexspectatus / 
oral swab 

2013-07-04 / 
Far North 

98% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70520 / 
KX285004 

Pipistrellus 
inexspectatus / 
rectal swab 

2013-07-04 / 
Far North 

98% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70528 / 
KX285011 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

99% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70528 / 
KX285010 

Epomophorus 
gambianus / 
rectal swab 

2013-07-04 / 
Far North 

99% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70538 / 
KX285014 

Mops condylurus 
/ oral swab 

2013-07-04 / 
Far North 

99% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70543 / 
MT221718 

Mops condylurus 
/ oral swab 

2013-07-04 / 
Far North 

97% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70546 / 
KX285015 

Mops condylurus 
/ rectal swab 

2013-07-04 / 
Far North 

99% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70559 / 
KX285017 

Mops condylurus 
/ rectal swab 

2013-07-04 / 
Far North 

98% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70565 / 
KX285018 

Mops condylurus 
/ oral swab 

2013-07-04 / 
Far North 
  

98% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70565 / 
KX285019 

Mops condylurus 
/ rectal swab 

2013-07-04 / 
Far North 

98% Bat coronavirus isolate 19207 
(MN183181) 

GVF-CM-
ECO70594 / 
KX285026 

Epomophorus 
gambianus / oral 
swab 

2013-07-04 / 
Far North 

99% Bat coronavirus isolate 19207 
(MN183181) 
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GVF-CM-
ECO70614 / 
KX285033 

Scotophilus 
leucogaster / oral 
swab 

2013-07-04 / 
North 

99% Bat coronavirus isolate 19207 
(MN183181) 

Bat CoV 
cluster 9 (W) 
/ Beta 

CMAB73427 / 
MT082007 

Eidolon helvum / 
rectal swab 

2017-05-29 / 
Far North 

100% Bat coronavirus isolate CMR705-
P13 (MG693172) 

GVF-CM-
ECO06464 / 
KX284960 

Rousettus 
aegyptiacus / 
rectal swab 

2013-01-29 / 
Centre 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AAUEY (KX285360) 

GVF-CM-
ECO06646 / 
KX284962 

Eidolon helvum / 
rectal swab 

2012-09-09 / 
Centre 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AAUEY (KX285360) 

GVF-CM-
ECO06648 / 
KX284963 

Eidolon helvum / 
rectal swab 

2012-09-09 / 
Centre 

99% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AATLD (KX285370) 

GVF-CM-
ECO06648 / 
MT221713 

Eidolon helvum / 
rectal swab 

2012-09-09 / 
Centre 

100% Bat coronavirus isolate KSA282 
(MH396479) 

GVF-CM-
ECO06653 / 
KX284964 

Eidolon helvum / 
rectal swab 

2012-09-09 / 
Centre 

100% Bat coronavirus isolate CMR705-
P13 (MG693172) 

GVF-CM-
ECO06655 / 
KX284965 

Eidolon helvum / 
rectal swab 

2012-09-09 / 
Centre 

99% Kenya bat coronavirus BtKY88 
(GU065432) 

GVF-CM-
ECO06656 / 
KX284966 

Eidolon helvum / 
oral swab 

2012-09-09 / 
Centre 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AATJM (KX285342) 

GVF-CM-
ECO06659 / 
KX284967 

Eidolon helvum / 
oral swab 

2012-09-09 / 
Centre 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AATEU (KX285263) 

GVF-CM-
ECO06659 / 
KX284968 

Eidolon helvum / 
rectal swab 

2012-09-09 / 
Centre 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AATEU (KX285263) 
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GVF-CM-
ECO06661 / 
KX284969 

Eidolon helvum / 
oral swab 

2012-09-09 / 
Centre 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AATJS (KX285347) 

GVF-CM-
ECO06661 / 
KX284970 

Eidolon helvum / 
rectal swab 

2012-09-09 / 
Centre 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AATJS (KX285347) 

GVF-CM-
ECO06662 / 
KX284971 

Eidolon helvum / 
rectal swab 

2012-09-09 / 
Centre 

99% Bat coronavirus isolate KSA299 
(MH396477) 

GVF-CM-
ECO06663 / 
KX284973 

Eidolon helvum / 
oral swab 

2012-09-09 / 
Centre 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AATIH (KX285314) 

GVF-CM-
ECO06663 / 
KX284972 

Eidolon helvum / 
rectal swab 

2012-09-09 / 
Centre 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AATIH (KX285314) 

GVF-CM-
ECO70519 / 
KX285002 

Scotophilus 
dinganii / oral 
swab 

2013-07-04 / 
Far North 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AATJM (KX285342) 

GVF-CM-
ECO70519 / 
KX285003 

Scotophilus 
dinganii / rectal 
swab 

2013-07-04 / 
Far North 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AATJM (KX285342) 

GVF-CM-
ECO70566 / 
KX285020 

Mops condylurus 
/ rectal swab 

2013-07-04 / 
Far North 

100% Eidolon bat 
coronavirus/Kenya/KY24/2006 
PREDICT-AATJM (KX285342) 

Bat CoV 
cluster 10 
(W) / Alpha 

CMAB71074 / 
MT221707 

Epomops 
franqueti / oral 
swab 

2015-08-12 / 
South 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

CMAB71074 / 
MT221708 

Epomops 
franqueti / rectal 
swab 

2015-08-12 / 
South 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

CMAB74987 / 
MT082082 

Scotophilus nux / 
rectal swab 

2018-05-13 / 
South 

99% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 
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GVF-CM-
ECO70504 / 
KX284992 

Scotophilus 
leucogaster / oral 
swab 

2013-07-04 / 
Far North 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70504 / 
KX284991 

Scotophilus 
leucogaster / 
rectal swab 

2013-07-04 / 
Far North 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70512 / 
KX284997 

Scotophilus 
leucogaster / oral 
swab 

2013-07-04 / 
Far North 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70512 / 
MT221716 

Scotophilus 
leucogaster / oral 
swab 

2013-07-04 / 
Far North 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70569 / 
KX285021 

Mops condylurus 
/ oral swab 

2013-07-04 / 
Far North 

99% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70578 / 
KX285022 

Scotophilus 
leucogaster / oral 
swab 

2013-07-04 / 
Far North 

99% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70601 / 
KX285030 

Scotophilus 
dinganii / rectal 
swab 

2013-07-04 / 
Far North 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70608 / 
KX285031 

Scotophilus 
leucogaster / 
rectal swab 

2013-07-04 / 
North 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70611 / 
KX285032 

Scotophilus 
leucogaster / oral 
swab 

2013-07-04 / 
North 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70615 / 
KX285034 

Scotophilus 
leucogaster / oral 
swab 

2013-07-04 / 
North 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70616 / 
KX285035 

Scotophilus 
leucogaster / 
rectal swab 

2013-07-04 / 
North 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 
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GVF-CM-
ECO70618 / 
MT221719 

Scotophilus 
leucogaster / oral 
swab 

2013-07-04 / 
North 

99% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70622 / 
MT221715 

Scotophilus 
leucogaster / oral 
swab 

2013-07-04 / 
North 

100% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

GVF-CM-
ECO70623 / 
MT221717 

Scotophilus 
leucogaster / oral 
swab 

2013-07-04 / 
North 

99% Bat alphacoronavirus strain 
BtCoV/20160411_DC68/Scotophilus/RS
A (MG193606) 

Bat CoV 
cluster 11 A 
(Q) / Alpha 

CMAB72456 / 
MT063986 

Macronycteris 
gigas / oral swab 

2017-01-15 / 
South 

88% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

CMAB72457 / 
MT064005 

Macronycteris 
gigas / oral swab 

2017-01-15 / 
South 

89% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

CMAB72459 / 
MT064001 

Macronycteris 
gigas / oral swab 

2017-01-15 / 
South 

88% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

CMAB72461 / 
MT063982 

Macronycteris 
gigas / oral swab 

2017-01-15 / 
South 

87% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

CMAB72463 / 
MT063981 

Macronycteris 
gigas / oral swab 

2017-01-15 / 
South 

88% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

CMAB72464 / 
MT064002 

Macronycteris 
gigas / oral swab 

2017-01-15 / 
South 

88% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

CMAB72465 / 
MT063983 

Macronycteris 
gigas / oral swab 

2017-01-15 / 
South 

89% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

CMAB72467 / 
MT064006 

Macronycteris 
gigas / oral swab 

2017-01-15 / 
South 

88% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 
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CMAB73459 / 
MT064007 

Macronycteris 
gigas / oral swab 

2017-06-09 / 
South 

88% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

CMAB73539 / 
MT064048 

Macronycteris 
gigas / oral swab 

2017-06-09 / 
South 

87% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

CMAB73549 / 
MT064008 

Macronycteris 
gigas / oral swab 

2017-06-09 / 
South 

87% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

CMAB73551 / 
MT064049 

Macronycteris 
gigas / oral swab 

2017-06-09 / 
South 

87% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

CMAB73554 / 
MT064004 

Macronycteris 
gigas / oral swab 

2017-06-09 / 
South 

87% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

Bat CoV 
cluster 11 B 
(Q) / Alpha 

CMAB72455 / 
MT064000 

Macronycteris 
gigas / oral swab 

2017-01-15 / 
South 

88% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

Bat CoV 
cluster 11 C 
(Q) / Alpha 

CMAB72449 / 
MT063974 

Macronycteris 
gigas / rectal 
swab 

2017-01-15 / 
South 

87% Coronavirus PREDICT CoV-54 
PREDICT_CoV-54/GVF-RC-1049 
(KX286263) 

Bat CoV 
cluster 12 
(W) / Beta 

CMAB71162 / 
MT081985 

Megaloglossus 
woermanni / 
rectal swab 

2015-09-29 / 
South 

97% Coronavirus PREDICT CoV-30 
PREDICT_CoV-30/CD115847 
(KX285072) 

CMAB74975 / 
MT082086 

Megaloglossus 
woermanni / oral 
swab 

2018-05-13 / 
South 

97% Coronavirus PREDICT CoV-30 
PREDICT_CoV-30/CD115847 
(KX285072) 

GVF-CM-
ECO05689 / 
KX284949 

Rousettus 
aegyptiacus / 
spleen 

2010-06-05 / 
Southwest 

99% Coronavirus PREDICT CoV-30 
PREDICT_CoV-30/CD115847 
(KX285072) 

GVF-CM-
ECO05689 / 
KX284950 

Rousettus 
aegyptiacus / 
liver 

2010-06-05 / 
Southwest 

97% Coronavirus PREDICT CoV-30 
PREDICT_CoV-30/CD115847 
(KX285072) 
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GVF-CM-
ECO05852 / 
KX284953 

Epomops 
franqueti / spleen 

2010-10-23 / 
South 

99% Coronavirus PREDICT CoV-30 
PREDICT_CoV-30/CD115847 
(KX285072) 

GVF-CM-
ECO06324 / 
KX284956 

Megaloglossus 
woermanni / oral 
swab 

2012-12-14 / 
Littoral 

99% Coronavirus PREDICT CoV-30 
PREDICT_CoV-30/CD115847 
(KX285072) 

GVF-CM-
ECO70191 / 
KX284984 

Megaloglossus 
woermanni / 
rectal swab 

2013-04-10 / 
South 

99% Coronavirus PREDICT CoV-30 
PREDICT_CoV-30/CD115847 
(KX285072) 

GVF-CM-
ECO70354 / 
KX284988 

Megaloglossus 
woermanni / 
rectal swab 

2013-05-30 / 
South west 

97% Coronavirus PREDICT CoV-30 
PREDICT_CoV-30/CD115847 
(KX285072) 

GVF-CM-
ECO70554 / 
KX285016 

Mops condylurus 
/ rectal swab 

2013-07-04 / 
Far North 

99% Coronavirus PREDICT CoV-30 
PREDICT_CoV-30/CD115847 
(KX285072) 

GVF-CM-
ECO70775 / 
KX285036 

Megaloglossus 
woermanni / 
rectal swab 

2014-02-18 / 
South 

99% Coronavirus PREDICT CoV-30 
PREDICT_CoV-30/CD115847 
(KX285072) 

GVF-CM-
ECO70788 / 
KX285037 

Megaloglossus 
woermanni / oral 
swab 

2014-02-18 / 
South 

99% Coronavirus PREDICT CoV-30 
PREDICT_CoV-30/CD115847 
(KX285072) 

Bat CoV 
cluster 13 
(W) / Beta 

CMAB71193 / 
MT081984 

Myonycteris 
torquata / oral 
swab 

2015-09-29 / 
South 

99% Coronavirus PREDICT CoV-66 
PREDICT_CoV-66/130512Bt05 
(KX285426) 

CMAB71193 / 
MT081986 

Myonycteris 
torquata / rectal 
swab 

2015-09-29 / 
South 

99% Coronavirus PREDICT CoV-66 
PREDICT_CoV-66/130512Bt05 
(KX285426) 

Bat CoV 
cluster 14 
(W) / Beta 

GVF-CM-
ECO70036 / 
KX284981 

Hipposideros 
caffer / rectal 
swab 

2013-03-01 / 
Centre 

90% Bat coronavirus Gabon/292/2009 
(JX174638) 

Bat CoV 
cluster 15 
(W) / Alpha 

GVF-CM-
ECO05172 / 
KX284947 

Scotophilus nux / 
rectal swab 

2009-01-11 / 
South 

82% Alphacoronavirus sp. isolate 
SPA_EPI5_Myomyo_Minsch61_8E_p25 
(KY423464) 
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Civet CoV 
cluster 16 
(W) / Alpha 

CMAV71560 / 
MT221709 

Nandinia 
binotata / rectal 
swab 

2016-05-31 / 
South 

87% Canine coronavirus strain 1-71 
(JQ404409) 

Bat CoV 
cluster 17 
(Q) / Alpha 

CMAB74957 / 
MT064052 

Rhinolophus cf. 
alcyone / rectal 
swab 

2018-05-08 / 
South 

88% Coronavirus PREDICT CoV-65 
PREDICT_CoV-65/OTBA07-20130531 
(KX285807) 

Bat CoV 
cluster 18 
(Q) / Alpha 

CMAB75000 / 
MT064017 

Rousettus 
aegyptiacus / 
oral swab 

2018-05-28 / 
South 

83% Bat coronavirus BtCoV/Rh/YN2012 
isolate BtCoV/Rh/YN2012_Ra13591 
(MG916904) 

Shrew CoV 
cluster 19 
(Q) / Alpha 

CMAR74882 / 
MT064045 

Crocidura 
goliath / rectal 
swab 

2018-05-10 / 
South 

84% Wencheng Sm shrew coronavirus 
isolate Ruian-90 (KY967725) 

  
 
Table 3: PCR results of suborder, family, and species by season (bats)  
 

Suborder, family (≥10 sampled 

individuals) and species (≥10 

sampled individuals) 

Wet Season 
PCR positives 

Dry Season 
PCR positives 

Total 
PCR positives 

Yinpterchiroptera total*** 7.6% (107/1412) 4.5% (36/796) 6.5% (143/2208) 

  Pteropodidae total*** 
6.1% (43/710) 1.6% (7/434) 4.4% (50/1144) 

       Eidolon helvum** 
10.6% (12/113) 0.0% (0/154) 4.5% (12/267) 

       Epomophorus 
gambianus 37.5% (12/32) - (0/0) 37.5% (12/32) 

       Epomops franqueti 
1.5% (2/134) 2.8% (2/72) 1.9% (4/206) 

       Lissonycteris 
angolensis 0.0% (0/13) 0.0% (0/49) 0.0% (0/62) 

       Megaloglossus 
woermanni 3.6% (4/111) 5.5% (4/73) 4.3% (8/184) 
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       Micropteropus pusillus 
5.1% (6/117) 0.0% (0/20) 4.4% (6/137) 

       Myonycteris torquata 
3.1% (1/32) 0.0% (0/5) 2.7% (1/37) 

       Rousettus aegyptiacus 
4.1% (6/147) 1.9% (1/53) 3.5% (7/200) 

     Hipposideridae total 
9.3% (63/681) 8.2% (29/354) 8.9% (92/1035) 

       Doryrhina cyclops 
0.0% (0/34) 0.0% (0/3) 0.0% (0/37) 

       Macronycteris gigas*** 
8.3% (10/120) 27.9% (12/43) 13.5% (22/163) 

       Hipposideros ruber** 
11.9 (50/421) 6.5% (15/232) 10.0% (65/653) 

       Hipposideros caffer 
1.1% (1/93) 1.4% (1/72) 1.2% (2/165) 

     Rhinolophidae total 
5.9% (1/17) 0.0% (0/8) 4.0% (1/25) 

       Rhinolophus landeri 
0.0% (0/12) 0.0% (0/7) 0.0% (0/19) 

Yangochiroptera total*** 13.0% (24/184) 4.3% (8/188) 8.6% (32/372) 

     Molossidae total* 
11.4% (8/70) 4.8% (7/145) 7.0% (15/215) 

       Chaerephon pumilus 
0.0% (0/31) - (0/0) 0.0% (0/31) 

       Mops condylurus*** 
22.2% (8/36) 5.0% (7/139) 8.6% (15/175) 

     Nycteridae total 
0.0% (0/30) 0.0% (0/17) 0.0% (0/47) 

       Nycteris grandis 
0.0% (0/8) 0.0% (0/15) 0.0% (0/23) 

       Nycteris hispida 
0.0% (0/21) 0.0% (0/2) 0.0% (0/23) 

     Vespertilionidae total* 
20.5% (16/78) 4.3% (1/23) 16.8% (17/101) 
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       Neoromicia tenuipinnis 
0.0% (0/6) 0.0% (0/7) 0.0% (0/13) 

       Scotophilus dinganii 
16.7% (2/12) - (0/0) 16.7% (2/12) 

       Scotophilus leucogaster 
38.7% (12/31) 0.0% (0/2) 36.4% (12/33) 

Total*** 8.2% (131/1597) 4.5% (44/984) 6.8% (175/2581) 

  
* Significant difference between calendric seasons P<0.10 (Chi-square with Yates correction) 
** Significant difference between calendric seasons P<0.05 (Chi-square with Yates correction) 
*** Highly significant difference between calendric seasons P<0.01 (Chi-square with Yates 
correction) 
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