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Abstract

Peptide docking can be perceived as a subproblem of protein-protein docking. However, due to
the short length and flexible nature of peptides, many do not adopt one defined conformation
prior to binding. Therefore, to tackle a peptide docking problem, not only the relative orientation
between the two partners, but also the bound conformation of the peptide needs to be modeled.
Traditional peptide-centered approaches use information about the peptide sequence to generate
a representative conformer ensemble, which can then be rigid body docked to the receptor.
Alternatively, one may look at this problem from the viewpoint of the receptor, namely that the
protein surface defines the peptide bound conformation.We present PatchMAN (Patch-Motif
AligNments), a novel peptide docking approach which uses structural motifs to map the receptor
surface with backbone scaffolds extracted from protein structures. On a non-redundant set of
protein-peptide complexes, starting from free receptor structures, PatchMAN successfully
models and identifies near-native peptide-protein complexes in 62% / 81% within 2.5A / 5A
RMSD, with corresponding sampling in 81% / 100% of the cases, outperforming other
approaches. PatchMAN leverages the observation that structural units of peptides with their
binding pocket can be found not only within interfaces, but also within monomers. We show that
the conformation of the bound peptide is sampled based on the structural context of the receptor
only, without taking into account any sequence information. Beyond peptide docking, this
approach opens exciting new avenues to study principles of peptide-protein association, and to

the design of new peptide binders.
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Introduction

Peptide-protein interactions - namely interactions mediated by short segments or motifs often
located in disordered regions - are very common in the cell, constituting about 40% of the overall
protein interactions (1). Such interactions participate in many important cellular processes like
regulation and cell-signaling (2). Therefore structural characterization of such interactions is
crucial for the understanding of many biological pathways and their potential in the development
of therapeutic targets and other biotechnological applications (3). However, such interactions are
often weaker and more transient than globular protein interactions and therefore more
challenging to characterize experimentally, highlighting the need for developing computational

tools for modeling their structures.

The intuitive way to look at protein-peptide docking is as a sub-problem of protein-protein
docking. However, this approach presents several hurdles, since in addition to the problem of
finding the relative orientation between the two partners, the peptide conformation is often not
known or does not even assume a defined structure before binding the receptor (4). When the
binding site is known and a coarse model of a peptide-protein complex is available, it can be
further refined to high accuracy by local refinement protocols, such as Rosetta FlexPepDock
developed by us (5, 6). In the absence of such information however, global docking has to be
performed. To reduce the conformational space needed to sampling both the peptide
conformation and its location on the receptor, many currently existing peptide-docking
approaches tackle this problem by decoupling the folding and docking steps, generating a peptide
conformational ensemble for subsequent docking (7-10). For example in the
PIPER-FlexPepDock (PFPD) protocol previously developed by us (11), a conformer ensemble is
generated using the Rosetta Fragment Picker (12) (similar to the first step in traditional ab initio
folding (13)). This ensemble is then rigid body docked using PIPER (14) and further refined by
FlexPepDock. This approach is also implemented in the InterPep docking protocol (15).
MDockPeP uses sequence-similar fragments extracted from monomers (16), while in
HADDOCK and pepATTRACT, peptide conformations are represented by idealized secondary
structure fragments (8, 10), and the CABS-dock protocol uses random peptide conformations for
subsequent docking and refinement (17). All these approaches are united by the idea that the

peptide, as a separate protein, carries enough information for its separate folding, or at least the
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determination of a conformer ensemble that represents its conformational preferences. But what
if the conformational ensemble of the peptide does not include the conformation that it adopts
upon binding? In such a case, the rigid-body step of the docking protocol will not be able to fit
the peptide into the binding pocket. An alternative solution for finding the bound conformation
of the peptide is template-based modeling. Many protein-protein interactions can be modeled
based on a solved structure of a homolog complex (18), and the same can be applied to
protein-peptide interactions (19). However, such an approach is restricted to a limited amount of

solved protein-peptide complexes.

We present here a novel approach for blind peptide docking, which we name PatchMAN
(Patch-Motif AligNments), that combines a global search with template-based modeling,
benefitting from both strategies. We look at peptide docking from the viewpoint of the receptor,
building on the assumption that the protein surface carries enough information to determine the
peptide bound conformation. This is based on the previously proposed theory that
peptide-protein interactions often mimic structural characteristics that are typical to monomeric
folds (20), hinting at a large reservoir of information that can further be used for peptide-protein
docking. PatchMAN uses surface patches, defined as bundles of disjoint backbone segments, to
search for similar “pockets™ that contain a peptide stretch interacting with it in a dataset of
protein structures that includes monomers as well as protein-protein and protein-peptide
complexes. The backbone conformation of such peptide stretches is then superimposed back to

the receptor protein, and is used as a starting point for local peptide docking refinement.

PatchMAN shows performance superior to current peptide-docking methods, including our
recent implementation of AlphaFold2 (21) for peptide docking (22). As such, PatchMAN opens
new opportunities to model more complicated protein-peptide-like interactions, in addition to

facilitating design of new peptide binders.
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Results

General overview of the PatchMAN approach: docking by globally mapping the receptor

surface with local motif templates

In general, protein-peptide as well as protein-protein interaction modeling can be split into two
categories: template-based modeling, in which new interactions are modeled based on solved
structures of similar interactions, and free modeling, in which a large number of new rigid body
orientations and internal degrees of freedom are sampled. In PatchMAN we suggest combining
the two, by generating peptide templates on the whole protein surface, thus sampling the binding
sites and “folding” the peptide at the same time. The protocol consists of 4 consecutive steps
(Figure 1): (1) Definition of surface patches on the receptor; (2) Identification of structural motif
matches in protein structures, and an interacting fragment that can be used as template for the
bound peptide; (3) Generation of the peptide-protein complex template structure, by
superimposing the interacting peptide back onto the receptor, and (4) Replacing side chains

according to the peptide sequence (threading), refinement and scoring of the model.

In the following we describe the protocol in more details (see also Methods section). For the
sampling step, we first identify the surface residues based on surface accessible area (SASA).
Next, the surface is split into patches consisting of one or more peptide segments. Those patches
are then used to search for similar motifs in a diverse non-redundant database of protein
structures (maximum 30% pairwise sequence identity), using MASTER (23). Peptide stretches
around every found motif are extracted (see Figure 1B). If an interacting fragment is shorter
than the required peptide length, it is elongated in both directions, so that even patches only
partially covering the binding site can lead to generation of a near-native template. The extracted
peptide fragments are then superimposed back to the receptor protein using the rotational
matrices from the patch-motif alignment. At this point the receptor protein surface is fully
mapped with templates for local peptide docking. Once the sampling is complete, the peptide
sequence is threaded onto the generated peptide templates. These starting structures are then
refined using Rosetta FlexPepDock (5). Finally, all models are scored and the best models are
selected. Additional and more extensive details on each step, including specific parameters, are

described in the Methods section.
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Figure 1. The PatchMan protocol. (A) Flowchart. The input is a receptor PDB file and a peptide
sequence. (1) Definition of surface motifs on the receptor: The protein surface is defined based on solvent
accessibility, and then split into small structural surface patches. (2) Identification of structural matches in
protein structures: Matches are detected using MASTER search against a non-redundant dataset of
protein structures; (3) Generation of the peptide-protein complex structure: the peptide fragment is
determined (see (B)) and superimposed onto the receptor. Then the peptide sequence is threaded onto the
identified complementing fragment; (4) Refinement and scoring: the initial structures are refined using the
Rosetta FlexPepDock refinement protocol, and top-scoring models are selected as final predictions. (B)
Extracting peptide fragments. Neighboring residues (magenta) around the matching motif (green) are


https://doi.org/10.1101/2021.09.02.458699
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458699; this version posted September 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

defined with CB distance within 8A of the motif. Consecutive backbone stretches are then elongated in
both directions to the desired peptide length. Arrows indicate stretches that can be elongated. Single
residue (indicated with dashed circle) will not be elongated. See Methods for more details.

PatchMAN performance

For the initial estimation of the method performance we ran PatchMAN on a non-redundant
dataset containing 26 solved protein-peptide complexes previously used to assess performance of
PIPER-FlexPepDock (PFPD) (11). It includes two subsets of complexes: one with known
binding motifs (here the motifs are ELMs - Eukaryotic Linear Motifs (24)) and the second for
which no motifs have (yet) been reported. For all the complexes, free (unbound) receptor
structures are available, and those were used in the current study to reflect a blind, real-world

scenario. The structures of the solved complex were filtered out from the template set.

PatchMAN generates and identifies for 81% / 62% of the complexes within the top 10 cluster
representatives a near-native model within 5 A /2.5 A RMSD, respectively (see Table I, Figure
2A-C, and Supplementary Figure S1). It outperforms other methods, including PFPD, our
application of AlphaFold2 to peptide docking (22), InterPep(15) MDockPeP(16), HADDOCK
(8, 10), pepATTRACT (8, 10), and CABS-dock (17), which are based on a variety of approaches
(as detailed in the Introduction) (Figure 2A).

A more detailed comparison to the PFPD blind peptide docking protocol, that also uses
FlexPepDock in the refinement step, reveals that while PFPD performs relatively poorly for
full-length peptides, and much better for the motif only docking simulations, PatchMAN
performs similarly well both when modeling full-length peptides containing flanking regions and
when only the peptide motifs are used (Figure 2B). In most cases PatchMAN outperforms PFPD
(Figure 2C), except for 2 cases - 1CZY and 1ER8. We checked what caused PatchMAN to fail
on these two examples. We noticed that for 1CZY PatchMAN sampled near-native complexes,
but failed to identify them in the scoring step (Figure 2D left panel). We show that adding
receptor backbone minimization to the refinement step solves this issue immediately (Figure 2D
right panel), as it does for the PFPD runs (of note, all PFPD results shown here included receptor

backbone minimization in the refinement step). For IER8 however, we observed no sampling at
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the binding site (see Supplementary Figure S1). We found that this is due to the absence of
matching motifs for the patches covering the binding site. This can be solved by either further
fine-tuning of the patch definition, increasing the template dataset, or loosening the RMSD
threshold for the match search.
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Figure 2: Highly accurate modeling of peptide-protein complexes with PatchMan. A. Comparison of
PatchMAN to other approaches. For each method the y-axis shows the cumulative success, namely the
fraction of complexes modeled within the RMSD threshold indicated in the x-axis. The top-performing
model is considered for each complex (i.e., the best RMSD among top 10 cluster representatives).
PatchMAN performance is superior to all other methods on this dataset (see text for more details). B.
Modeling only the motif sequence (dashed lines; extracted from the full peptide sequence) significantly
improves performance of PIPER FlexPepDock (PFPD) but only slightly affects PatchMAN performance.
C. Detailed comparison of PatchMAN and PFPD performance. PatchMAN RMSD values are plotted in
red, PFPD in blue. Shaded region of the plot indicates complexes for which PatchMAN failed to produce
models within 5A RMSD, as for example the ICZY complex (25), highlighted in green and described in
(D) . D. Including receptor flexibility in the refinement step can resolve failed docking, as shown for
1CZY: Near-native conformations (left to the highlighted red line) are only identified in a simulation with
receptor minimization (green, right), but not in the corresponding refinement that keeps the receptor
backbone fixed (grey, left). In all plots the RMSD measure reported is backbone interface RMSD.

Table I: summary of performance for a representative, non-redundant benchmark (from (11)).
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Complex Unbound Best sampled

PDB ID receptor Best model* |RMSD Peptide length
1AWR 2ALF 1.1 0.7 6
1ER8 4APE 11.9 3.1 8
1NVR 2QHN 0.4 0.4 5
1NX1 1ALV 2.3 1.0 11
10U8 10U9 4.6 27 8
1U00 V7Y 1.9 1.9 9
2B9H 2B9F 3.5 22 12
2C3I 2J2| 3.6 1.7 8
2DS8 2DS7 2.6 1.2 6
2FMF 1JBE 1.0 1.0 13
2H9M 2H14 1.6 1.3 5
2HPL 2HPJ 24 2.1 5
2002 2BQO 3.0 3.0 14
3D1E 3D1G 0.9 0.9 6
1CZY 1CA4 17.5 1.3 7
1EG4 1EG3 10.9 3.8 13
1ELW 1A17 1.4 1.1 8
1JD5 1JD4 3.4 23 8
1JWG 1JWF 1.4 1.2 5
1MFG 2H3L 11.1 1.9 9
INTV 1P3R 0.9 0.9 10
1RXZ 1RWZ 1.5 1.1 11
1SSH 100T 1.4 0.9 11
1X2R 1X2J 1.0 0.6 9
2A3I 2AA2 1.0 1.0 12
2CCH 1H1R 7.0 34 12

* top-RMSD model among 10 top-scoring clusters
The receptor surface can be mapped by local structural motif matches

Our results demonstrate that even with a relatively small non-redundant set of proteins, we can
model the conformation of the peptide bound to its receptor (Figure 2). We show that in all

cases PatchMAN samples peptide conformations within SA RMSD from the native complex
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structure. This is one of the many possible conformations generated that cover the whole
receptor surface (See Supplementary Figure S2, and the energy landscapes presented
throughout this paper and in Supplementary Figure S1) . This implies that even within a limited
dataset of proteins there are many motifs which are similar to receptor surface patches, and
which include complementing peptide stretches fitting into these surface pockets. Increasing the
size of the database for the template search can help to introduce more diversification of the
sampling. More diverse motifs will help finding less trivial matches, thus introducing more

intrinsic flexibility to the receptor and aiding in solving more complicated cases.

We analyzed the sequence similarity between the peptide templates and the docked peptide that
led to generation of the near-native models (top 1% lowest scoring models within 5A RMSD;
Figure 3A). We found that sequence identity of the peptide templates is predominantly below
30%, with many templates showing no sequence identity to the native peptide. For most cases
(15/21), the best model is derived from a template with less than 30% sequence identity. These
results indicate that peptide bound conformation can be sampled based on the receptor surface

conformation only, without regard to the peptide sequence.
Many templates for near-native models can be extracted from monomer structures

Analysis of the templates revealed that although most of the templates originate from monomers
(an average of 77%) there is a great diversity in the source of the templates that leads to the final
near-native complex, depending on the type of interaction (See Figure 3B and Supplementary
Figure S1). For half of the cases (10/21) the best model is derived from a monomer template
structure. In many cases successful templates were extracted from both interfaces and monomers,
where the interfaces include both peptide-protein complexes as well as protein-protein
complexes. However, for several cases (INTV, 1U00, 2FMF) the only near-native complexes
originated from monomers. We will look more into detail of the PatchMAN prediction of the
INTV complex (Disabled-1 (Dabl) PTB domain-ApoER2 peptide complex) (Figure 3C,D and
Figure 4). The top-scoring structure (RMSD = 0.85A; Figure 3C) was generated using a
template extracted from the structure of the monomer of Heat labile enterotoxin type I (Figure
3D). This is an example of non-trivial template extraction that requires finding a “non-perfect

match”: in this case the patch consists of 4 disjoint segments (patch-motif RMSD = 1.1A). This
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is in contrast to cases where homologous complexes of a peptide-protein interaction are available
as a template (as, e.g., for 1X2R). These results demonstrate that protein monomers can indeed

serve as models for peptide conformations and should be utilized in peptide-protein docking.
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Figure 3. Peptide templates leading to high-resolution models are very varied: They show no
sequence similarity and can be extracted from monomers. A.-B. Detailed results for different
complexes. Shown are the top-scoring models (1%) within SA RMSD, with stars representing the best
RMSD model (identified in the top 10 cluster representatives). Complexes are sorted in increasing order
of the best RMSD. The structures from the “motif” set are marked with an asterix. A. Most of the
top-scoring near-native models are modeled using templates with very low sequence identity. B. The
source of low-RMSD templates comes from monomers (orange) as well as interfaces (blue). C.-D. Details
of the prediction for INTV (Disabled-1 (Dabl) PTB domain-ApoER2 peptide complex) (26): (C) Energy
landscape. Models generated based on templates originating from monomers and interfaces are indicated
in orange triangles and blue circles, respectively. See Supplementary Figure S1 for more energy
landscapes. (D) Structure of the interaction, together with the template that was used for modeling (PDB
ID 1LTI, Heat labile enterotoxin type I (27)). The free receptor structure (1P3B (28)) is shown in grey, the
native peptide in green, the monomer from which the template was extracted in gold. The matching motif
and peptide template are colored in orange.
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Inspection of the extracted templates at the INTV binding site reveals that they show
considerable variability (Supplementary Figure 2C). Zooming into the templates selected for
the specific peptide sequence (i.e., looking at the best stretch out of several sliding windows
extracted from a protein including the matching motif) shows convergence towards the
near-native peptide conformation, and does not include conformations of different secondary
structure or opposite orientation (Figure 4A). At the same time we see a local diversity of the
templates in the binding site with per-residue RMSD that ranges up to SA for the motif part
(Figure 4B).

NFDNPVYRKT

Figure 4. Sampling at the binding site of INTV shows local diversity. A.Templates extracted for a
patch defining the binding site. In ribbon - templates, green sticks representation - native peptide, N and C
termini in blue and red spheres accordingly. For each template the best stretch (out of a few sliding
windows) is shown. Template coloring is the same as in Figure 3A depending on whether it comes from
monomer/interface. B. Backbone per-residue RMSD for the templates shown in (A). The upper bar
indicates the motif and the flanking region with blue and grey color, respectively.

PatchMAN overcomes conformational changes induced by ligand binding: The FERM

domain example

One of the big challenges in protein docking and in peptide docking specifically is that the
binding pocket can undergo conformational changes upon binding of the ligand. Given that at the
sampling stage we use only the receptor surface information, it is crucial that the representation

of the surface will be robust to such changes. This challenge is addressed in PatchMAN in two


https://doi.org/10.1101/2021.09.02.458699
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458699; this version posted September 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ways: (1) Backbone-based search: the surface patches that we use for screening of matching
motifs are represented as bundles of backbone segments, thus allowing for flexibility at the
side-chain level with surface rotamers. (2) Diversification of matches: For each surface patch we
use matching motifs with very low RMSD for finding easy templates (e.g. homologous
structures), but also more distant motifs with RMSD ~1.5A to capture cases of possible

backbone conformational changes.

One example of a protein that undergoes such conformational change is the Moesin FERM
domain (Figure SA). Prior to binding, the F3b binding pocket is closed and inaccessible to the
peptide (29, 30). However, in case a binding site is known, the pocket could be opened by
positioning peptide into the binding site, with subsequent refinement of the structure, as
implemented previously e.g. in CAPRI target T121 (31). To test the ability of PatchMAN to deal
with such conformational changes we attempted to dock a CD44-derived peptide, known to bind
the F3b pocket of the FERM domain, starting from the structure with the closed pocket. We
compared a simulation without receptor backbone flexibility to a simulation in which receptor
backbone minimization was added in the FlexPepDock refinement step of the protocol, to allow
for opening of the inaccessible binding site (Figure 5). We found that PatchMAN samples
near-native fragments on the free FERM domain (with the closed F3b pocket), but cannot
identify it as top-scoring on the rigid receptor structure (Figure SB). However, it easily identified
the near-native complex structure when backbone minimization was allowed (Figure 5C,D).
PFPD failed to place the peptide at the closed binding site at the rigid body docking step,
requesting an initial opening of the pocket for successful docking (data not shown). This case
demonstrates that PatchMAN is able to identify cryptic binding pockets with its sampling
approach that takes into account motifs with structural variability. Moreover, PatchMan can open
such pockets by positioning the peptide and moving the receptor backbone around it during the

subsequent refinement step.
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Figure 5. Successful modeling of a peptide into a closed binding pocket using PatchMAN, shown on the
example of a CD44-derived peptide binding to the Moesin FERM domain F3b binding site. A. The
moesin FERM domain structure, showing the unbound closed (grey, PDB ID lefl (29)) and the bound
open F3b binding pocket (orange, PDB ID 6txs (30)) structures. A shift in the beta-sheet at the F3b
binding site is induced by peptide binding. B. PatchMAN simulation without receptor backbone
minimization samples the correct binding pocket but misses it at the scoring stage. C. PatchMAN
simulation including receptor backbone minimization identifies a clear funnel around the native structure.
The red line indicates the SA RMSD cutoff. D. Comparison of model (blue) to crystal structure (grey).
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Discussion

Peptide-protein docking poses particular challenges due to the flexible nature of the peptide
partner. The sampling space is vast and complex, as it involves both peptide-internal degrees of
freedom as well as rigid body orientation, and often also receptor flexibility (4). Many different
approaches were developed to tackle this sampling challenge, usually by breaking it into several
smaller, independent sampling steps. However, the biological process of peptide binding is likely
to be less modular. It can be seen as a sub-problem of monomer folding, in which the peptide
complements the receptor structure, in a way structurally similar to what is observed within other
monomers. Here we present a novel, template-based approach that builds upon these biological

observations and aims to bridge the gaps between the sampling steps.

PatchMAN leverages information on local structural motifs to search for complementary
fragments of the protein surface. These local motifs can be derived from interfaces, but also from
completely non-related, monomer structures, as demonstrated in this work. The definition of the
structural patches is crucial for success in finding complementing peptides and requires thorough
optimization. As was shown previously in Verschueren et al. (32), matching single fragments
(e.g. using pairs of fragments, one from the receptor and the other from the peptide) instead of
patches composed of multiple segments (as in PatchMAN) can be useful in some cases, but is
not enough to generate a robust sampling strategy. We show that the PatchMAN patch definition
is coarse enough to be flexible for conformational changes and thus able to identify near-native
templates even from divergent structures, but still specific enough to keep the hit number
tractable. We show that the sampling at the binding site is specific to the native-peptide-like
conformation, while at the same time diverse, resulting in multiple starting points to local peptide
docking, increasing the chances to model a native-like conformation at the refinement step

(Figure 4).

It is important to note that fast screening of such arbitrary structural motifs is challenging. Here
we use MASTER (23): a fast and exhaustive RMSD based search tool that uses the Kabsch
algorithm (33) for fast alignment of backbone fragments, managing the growing complexity of

multiple segment motif alignments by on-the-fly filtering of non-promising matches. This
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approach does not include any heuristics, finding all existing alignments within the cutoff RMSD

in a matter of seconds, and allowing for fast and efficient sampling.

PatchMAN also demonstrates lower sensitivity to parameters that limit the performance of other
methods, such as the peptide length and modeling flanking regions of the peptide. As shown in
Figure 2, PatchMAN performs equally well on full peptides and on peptide motifs, compared to
PFPD performance which decreases when adding the flanking regions. Those findings suggest
that using PatchMAN docking can be further improved by connecting templates on the protein
surface, to model more complex interactions involving long intrinsically disordered proteins

wrapping around a structured partner, a problem only addressed by few studies yet (34).

In PatchMAN, instead of using the sequence of the peptide as the key to modeling its backbone
conformation, the focus shifts towards the receptor context. The receptor dictates the ensemble
of possible peptide structures, making the sampling strategy invariant to peptide sequence. As
shown here, most of the selected fragments share very low sequence identity to the docked
peptide. PatchMAN opens an avenue for improved peptide design based on these principles. For
a targeted receptor pocket, peptide conformations could be extracted and modeled with new
sequences. Additionally, peptide backbones could be pieced together to design peptides that

interact with multiple adjacent pockets of the receptor.

Moving the focus to the receptor surface also allows for improved modeling by including
intrinsic local flexibility (Figure 5). For each receptor surface patch, PatchMAN assembles an
ensemble of similar motifs from different structures. Hence, even if the surface patch on the
receptor is in a “closed” conformation, it can be identified by finding a similar pocket in an
“open” conformation. Such pockets can then be opened by superimposing an extracted template
followed by short structural refinement. We believe that enriching the hit pool with matches from
receptor homologous structures will further improve PatchMAN performance, and specifically

may be helpful for cases of conformational changes.

A new era of structural biology has been opened up by Deep Learning, as strongly highlighted
by Deepmind’s AlphaFold2 (21). Within this context, we demonstrate in another current study
that the peptide docking field can benefit from AlphaFold2 (22), with performance matching our
previously developed state-of-the-art PIPER-FlexPepDock protocol (11). The PatchMAN
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approach presented here performs significantly better, indicating that the local structure
information is used more efficiently and accurately than in the current AlphaFold2 version. It
remains to be tested how well PatchMAN will perform on structural models of the receptor, and

how this work may be optimally incorporated into Deep Learning frameworks.

To summarize, we presented here a robust, quick and high performing global peptide-docking
protocol, and demonstrate that the PatchMAN approach is accurate and versatile. As such, it
holds high hopes for the peptide modeling as well as peptide design. The incorporation of
biological insights and concepts in the development of PatchMAN extends the implications of

this work and presents a more general approach to treat peptide-protein docking and binding.

Methods

Splitting the surface into structural patches

The protein surface is defined based on solvent accessibility criteria using SASA calculated
using the 'rolling ball' algorithm implemented in PyRosetta with ball radius = 1.35A (35). The
surface is then split into small structural motifs by selecting the neighbors (Ca-Ca distance
within 10A) around every second surface residue (to reduce the number of overlapping patches).
Every motif is defined as one or more disjoint peptide segments, not shorter than 2 amino acids.
The maximum length for a single segment is 7 residues for strands and coiled regions, and 11
residues for helices. A stretch is defined to be helical, if it has at least 3 consecutive helical

residues based on DSSP (36).
Searching for local structural motif matches using MASTER

Every patch is searched using the MASTER algorithm (23), against a database of non-redundant
protein structures described in the original implementation of MASTER. This database includes
12,661 protein structures (split into X monomers), generated by using BLASTClust (37) at 30%
sequence identity on a PDB version of 2014 (23). Briefly, MASTER aligns structural motifs
containing multiple disjoint backbone segments to identify all matches within a user-specified

RMSD cutoff in a dataset of protein structures. It utilizes the Kabsch algorithm for identifying
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the match with the lowest RMSD (33), and manages possible combinatorial explosion due to
multiple segments in each motif by on-the-fly filtering of partial matches that will not answer the
RMSD criteria. For the search, we used the RMSD cutoff of 1.5A, and took the 50 lowest, as
well as the 50 highest RMSD matches to ensure diversity.

Generating initial complexes for further refinement

For each of the matches we identify the residues that constitute the motif in the corresponding
PDB structure. Using PyRosetta (35) we then identify the neighboring peptide stretches (Ca-Ca
distance within 8A), and finally, we elongate peptides longer than 2 amino acids to the desired
length in both directions, if possible (Figure 1B). Using the rotation-translation (RT) matrices
from the MASTER search, the peptide templates are superimposed back onto the receptor
protein. We retain those peptides whose backbone does not clash with the receptor (backbone
atom distance > 2A) and who interact with the receptor (at least 45% interacting residues with a
heavy atom interaction distance within 5A). The peptide sequence is then threaded onto the

remaining templates (using Rosetta fixed backbone design (38)).
Refinement of the structures

Rosetta FlexPepDock was used to refine the structures to high resolution and to discriminate
near-native models from the rest (as described previously (39)). Here we use the refinement
method without receptor backbone minimization for the main benchmark, and refinement with

receptor backbone minimization for more challenging targets.
Criteria for measuring performance

The accuracy of performance was measured as in previous studies (11). In short, the final top 1
percent of the decoys (based on the Rosetta reweighted score (6), using the Rosetta ref2015
scoring function (40)) are clustered and top 10 clusters representatives are analyzed. For the plots
in Figure 2 we calculated the number of structures for which the best RMSD model among these
10 representatives lies within the indicated RMSD cutoffs. All results were assessed using
RMSD calculated over all interface peptide residue backbone atoms, after superposition of the

receptor (i.e., rmsBB if, as in previous studies, e.g. (11)). Note that the PDB 1LVM was
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removed from the dataset (since the unbound structure is incorrect), but InterPep2 results are

taken from (41) and include this structure.

All scripts and runline commands are provided in the Supplementary Methods section, and on

github (https://github.cs.huji.ac.il/alisa/patchman/).
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