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Abstract

Learning robust representations can help uncover

underlying biological variation in scRNA-seq

data. Disentangled representation learning is one

approach to obtain such informative as well as

interpretable representations. Here, we learn dis-

entangled representations of scRNA-seq data us-

ing β variational autoencoder (β-VAE) and apply

the model for out-of-distribution (OOD) predic-

tion. We demonstrate accurate gene expression

predictions for cell-types absent from training in

a perturbation and a developmental dataset. We

further show that β-VAE outperforms a state-of-

the-art disentanglement method for scRNA-seq in

OOD prediction while achieving better disentan-

glement performance.

1. Introduction

In disentanglement learning, a single latent dimension is

linked to a single generative feature, while being relatively

invariant to changes in other features (Ridgeway, 2016;

Bengio et al., 2013; Chen et al., 2016). Inversely, by ma-

nipulating values of a single dimension in the latent space,

only a single generative feature is perturbed. Such repre-

sentations allow for more interpretable latent spaces. This

is particularly relevant for scRNA-seq data, where finding

a biologically interpretable representation is desired. The

characteristics of a disentangled representation also allow

for Out of Distribution (OOD) prediction. In OOD predic-

tion, the gene expression of a cell-type absent from training
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in the desired condition is extrapolated. This could apply to

an unmeasured cell-type after a perturbation or as part of

a developmental trajectory. Recent models have addressed

OOD predictions for scRNA-seq in context of perturbation

and disease. (Lotfollahi et al., 2019b;a). Although these

models aim to provide a meaningful representations of the

data, they do not learn a disentangled representation. The

work proposed in (Lopez et al., 2018) is a step towards inter-

preting scRNA-seq with disentangled representations. The

authors propose a VAE regularized with d-variable Hilbert-

Schmidt Independence Criterion (dHSIC), which improves

hypothesis testing by removing information corresponding

to nuisance variables related to quality control measures.

However, in addition to VAE parameters, the dHSIC frame-

work requires additional hyper-parameters to optimize the

HSIC loss, making the optimization problem even harder.

The authors also did not provide insight into the identity of

individual learned dimensions for single-cell, thus adding

no additional interpretability to current methods. To address

these problems we propose to use a β-VAE model (Hig-

gins et al., 2017; Burgess et al., 2018), a fully unsupervised

model for disentanglement learning. We apply β-VAE on

scRNA-seq data and show that the model successfully de-

composes data into major interpretable generating factors

such as cell-types and perturbations. We further demon-

strate that obtained interpretable factors can be exploited for

OOD predictions. Finally, we illustrate that β-VAE outper-

forms dHSIC in both disentanglement learning and OOD

prediction.

2. Methods

A modified Variational Autoencoder (VAE) (Kingma &

Welling, 2013; Kingma et al., 2014; Rezende et al., 2014)

was employed for disentanglement learning as proposed

previously by (Higgins et al., 2017; Burgess et al., 2018). It

includes a linearly increasing controlling capacity C such

that the KL divergence term is driven towards C. This

allows more information to flow through the latent space,

thus encouraging disentanglement. The deviation of the KL

divergence loss from C is penalized by β. This model is

referred to as ’β-VAE’ model. Here the two available tuning

parameters were β and C.
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Figure 1. Comparison between latent representations of β-VAE (β=5 and C=30) and dHSIC (β=1 and γ=50) models in the Kang dataset.

(a) shows units that disentangle ’cell-type’ and ’condition’ best in β-VAE along with KL divergence plot. Similarly, (b) shows the units

for dHSIC model.

The second approach restricts the search space for the ap-

proximated posterior in a VAE by kernel-based measures of

independence (Lopez et al., 2018). In particular it uses the

d-variable Hilbert-Schmidt Independence Criterion (dHSIC)

(Gretton et al., 2005; Pfister et al., 2016) to enforce inde-

pendence between the latent representations and arbitrary

nuisance factors. This was modified to enforce indepen-

dence between the different dimensions of latent space. By

scaling and adding this to the original VAE objective func-

tion, a new regularisation criteria was created. Therefore, by

penalizing the dHSIC kernel value for sampled latent space,

the model makes the dimensions independent of each other

which in turn encourages disentanglement. This model is

referred to as ’dHSIC-VAE’ model. Here the two parame-

ters were β, weight for KL divergence loss and γ, weight

for dHSIC kernel value.

To identify suitable hyper-parameters for the models, we

systematically ran grid-searches and selected a set of hyper-

parameters for each model that provided both good disen-

tanglement as well as good reconstruction performance on

the validation data.

To quantify disentanglement, we used the Disentanglement

Score proposed by (Higgins et al., 2017). It relies on the

main assumption that a few of the generative factors are

conditionally independent and also interpretable. To apply

the metric, data points which shared a single feature (e.g.

same cell-type) were randomly picked. They were mapped

to the latent space and their differences to each other were

calculated. If the independence and interpretability proper-

ties hold for the learnt representations, there should be less

variance in the inferred latent dimension that correspond to

the fixed feature (cell-type in this case). A linear classifier

was then used to identify this fixed feature by classifying the

difference value in latent spaces and report the accuracy as

the final disentanglement metric score. Smaller variance in

the latent unit corresponding to the target factor will make

the classifier more accurate, resulting in a higher score.
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3. Results

3.1. Disentanglement learning enable predicting

cellular responses

To compare disentanglement performance, we trained both

β-VAE and dHSIC on a peripheral blood mononuclear cell

(PBMC) scRNA-seq data. This dataset contains, 13944

cells, 14053 genes and 12 different cell-types in both con-

trol and IFN-β stimulated conditions (Kang et al., 2018).

Both models learnt to disentangle two features ’condition’

and ’cell-type’. The dHSIC model also gave promising

results, however not better than the β-VAE . Figure 1 com-

pares the latent representations and values of KL divergence

loss. It can be seen from the KL loss plots in the figure, that

only the units that were active earlier in the training phase

are disentangled. Additionally, the units that gain high value

of KL loss later in the training, are not disentangling with

’condition’ or ’cell-type’ features. They could be associated

with some other unknown generative factors. Table 1 com-

pares the disentanglement scores. It can be seen that the

scores are very close for both models. However, the β-VAE

model performs slightly better than the dHSIC model.

Table 1. Disentanglement Scores (best dimension in bold).

β-VAE model on Kang data: β=5, C=30; dHSIC model on Kang

data: β=1, γ=50. β-VAE model on Dent. Gyrus data: β=50,

C=30; dHSIC model on Dent. Gyrus data: β=1, γ=50.

β: β-VAE model; dH: dHSIC model; CT: cell-type disentangle-

ment; C: condition disentanglement; Dim: latent dimension.

Kang Dataset Dent. Gyrus

Dim β CT β C dH CT dH C β CT dH CT

1 0.41 0.33 0.00 0.25 0.23 0.29
2 0.98 0.45 0.78 0.38 0.63 0.76
3 0.48 0.00 0.34 0.86 0.00 0.66
4 0.76 0.38 0.96 0.44 0.00 0.00
5 0.34 0.86 0.36 0.27 0.87 0.72

Next, we sought to predict OOD ’CD4 Naive T’ cells. We

excluded both control and stimulated ’CD4 Naive T’ cells

during the training phase. After training, we identified the

latent dimensions encoding ’cell-type’ feature. By linearly

interpolating this dimension, we could start from one cell-

type and then generate new cells that would vary in only

’cell-type’ feature, recovering the held-out cells. We took a

stimulated B-cell (source cell) and mapped it to the latent

space. Then, we manipulated the values in the dimension

that disentangled ’cell-type’. This way we could recover

stimulated ’CD4 Naive T’ cell (target cell). As this dimen-

sion encoded ’cell-type’ feature only, we kept the perturba-

tion feature invariant and changed only ’cell-type’. Simi-

larly, we recovered control ’CD4 Naive T’ from a control ’B’

cell-type using the same dimension that encoded ’cell-type’

feature. Figure (2) compares OOD prediction from both the

β-VAE model and dHSIC. β-VAE outperformed dHSIC by

achieving more accurate predictions (Figure 2, left column).

The PCA plot shows that the predicted cells in the β-VAE

are closer to the real cells when compared to dHSIC.
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Figure 2. (a-b) OOD prediction comparison between β-VAE

(β=20 and C=30) model and dHSIC (β=1 and γ=50) models.

R2 denote the squared Pearson correlation of mean gene expres-

sion between predicted and real cells. Red dots denote top 5 DEGs

in target cells. The PCA plot shows the target cell (’CD4 Naive

T’), source cells (’B’) and the newly predicted cells.

3.2. Disentanglement learning allows recovery of

missing cell-type from developmental trajectory

We further evaluated disentanglement performance of both

models on a dataset from mouse dentate gyrus (Hochgerner

et al., 2018). The data consists of 25,919 genes across

2,930 cells forming multiple lineages. The cells are grouped

into 14 clusters by graph-based clustering. In the Dentate

Gyrus dataset, both models learnt to disentangle cell-types.

The dHSIC model also gave promising results, however not

better than the β-VAE. Figure 3 compares the latent repre-

sentations and value of KL loss for both the models. The

units that were active initially and had the highest KL diver-

gence showed the most disentanglement. Table 1 compares

the disentanglement scores. It can be seen that β-VAE had

higher scores than dHSIC model.

We hypothesised the cell type dimension could also capture

the order of development and thus represent a developmen-

tal trajectory. To test this, we performed velocity analysis

using scVelo (Bergen et al., 2019). A dominating devel-

opmental trajectory can be seen starting from ’nIPC’ to

’Granule immature’ via ’Neuroblast’ (Figure 4). It shows

that ’Neuroblast’ develops into ’Granule immature’ cells.

We excluded ’Granule immature’ cells from the training

data and attempted to recover them using ’Neuroblast’ cells.

We sought to find latent dimensions that would encode the
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Figure 3. Comparison between latent representations of β-VAE

(β=50 and C=30) and dHSIC (β=1 and γ=50) models in the Den-

tate Gyrus dataset. (a) shows units that disentangle ’cell type’ best

in β-VAE along with KL divergence plot. Similarly, (b) illustrates

the unit for dHSIC model.

development trajectories of these cells. We tested recovery

of ’Granule immature’ through linear interpolation starting

from ’Neuroblast’ for all dimensions. The dimension that

recovered ’Granule immature’ was the one that disentangled

cell types.
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Figure 4. RNA Velocity on Dentate Gyrus dataset.

We observe β-VAE achieved more accurate results (Figure

5 left column) while having smoother transition between

source and target cell types (Figure 5 right column). This

observation confirms that β-VAE accurately captured con-

tinuous transition between cell types in a developmental

trajectory.
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Figure 5. (a-b), OOD prediction comparison in Dentate Gyrus

Dataset between β-VAE (β=100 and C=30) and dHSIC (β=1 and

γ=50) models. R2 denote the squared Pearson correlation of mean

gene expression between predicted and real cells. Red dots denote

top 5 DEGs in target cells. The PCA plot shows the target cell

(’Neuroblast’), source cells (’Granule immature’) and the newly

predicted cells.

4. Conclusion

We demonstrated that disentanglement representation learn-

ing provides interpretable factors for downstream tasks. We

exemplified this by leveraging these factors to predict gene

expression of cell types not seen in training data after a

perturbation and also during brain development. We further

illustrated that the β-VAE model achieves better feature dis-

entanglement and prediction than the state-of-the-art dHSIC

method on single-cell data. We envision that disentangle-

ment learning on single-cell data can provide more inter-

pretable representations leading to better understating of the

underlying biology and cellular heterogeneity. The code for

the model and the accompanying data can be obtained from

https://bit.ly/3bRLpzL
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