

1 Gut microbiome and its cofactors are linked to 2 lipoprotein distribution profiles

3
4 Josué L. Castro-Mejía^{1*}, Bekzod Khakimov¹, Mads V. Lind², Eva Garne^{1,3}, Petronela
5 Paulová^{1,4}, Elnaz Tavakkoli⁵, Lars H. Hansen⁶, Age K. Smilde^{1,5}, Lars Holm^{3,7}, Søren B.
6 Engelsen¹, Dennis S. Nielsen^{1*}

7
8 ¹ Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark

9 ² Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958
10 Frederiksberg C, Denmark

11 ³ Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N,
12 Denmark

13 ⁴ Institute of Experimental Endocrinology, Biomedical Research Center, University Science
14 Park for Biomedicine, Dúbravská cesta 9, 94505, Bratislava, Slovakia.

15 ⁵ Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215,
16 Amsterdam 1090 GE, The Netherlands

17 ⁶ Department of Plant and Environmental Sciences, University of Copenhagen, 1871
18 Frederiksberg C, Denmark

19 ⁷ School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham,
20 Birmingham, B15 2TT, United Kingdom

21

22

23

24 * Corresponding author(s):

25 Josué L. Castro-Mejía (jcame@food.ku.dk) and Dennis S. Nielsen (dn@food.ku.dk)

26 Rolighedsvej 26, Department of Food Science, University of Copenhagen, 1958

27 Frederiksberg C, Denmark

28

29

30

31

32 **Abstract**

33 Increasing evidence indicates that the gut microbiome (GM) plays an important role
34 in the etiology of dyslipidemia. To date, however, no in-depth characterization of the
35 associations between GM and its metabolic attributes with deep profiling of lipoproteins
36 distributions (LPD) among healthy individuals has been conducted. To determine associations
37 and contributions of GM composition and its cofactors with distribution profiles of
38 lipoprotein subfractions, we studied blood plasma LPD, fecal short-chain fatty acids (SCFA)
39 and GM of 262 healthy Danish subjects aged 19-89 years.

40 Stratification of LPD segregated subjects into three clusters of profiles that reflected
41 differences in the lipoprotein subclasses, corresponded well with limits of recommended
42 levels of main lipoprotein fractions and were largely explained by host characteristics such as
43 age and body mass index. Higher levels of HDL, particularly driven by large subfractions
44 (HDL2a and HDL2b), were associated with a higher relative abundance of Ruminococcaceae
45 and Christensenellaceae. Increasing levels of total cholesterol and LDL, which were primarily
46 associated with large 1 and 2 subclasses, were positively associated with Lachnospiraceae and
47 Coriobacteriaceae, and negatively with Bacteroidaceae and Bifidobacteriaceae. Metagenome
48 sequencing showed a higher abundance of genes involved in the biosynthesis of multiple B-
49 vitamins and SCFA metabolism among subjects with healthier LPD profiles. Metagenomic
50 assembled genomes (MAGs) affiliated mainly to Eggerthellaceae and Clostridiales were
51 identified as the contributors of these genes and whose relative abundance correlated
52 positively with larger subfractions of HDL.

53 The results of this study demonstrate that remarkable differences in composition and
54 metabolic traits of the GM are associated with variations in LPD among healthy subjects.
55 Findings from this study provide evidence for GM considerations in future research aiming to
56 shade light on mechanisms of the GM – dyslipidemia axis.

57

58 **Keywords:** gut microbiome, SCFAs, lipoproteins distribution, HDL, ¹H NMR

59 INTRODUCTION

60 Cholesterol is essential for keeping cellular integrity and is an important precursor for
61 steroid hormones and bile acids ¹. However, alterations of the cholesterol metabolism and
62 consequent dyslipidemia have been associated with various diseases, including
63 atherosclerosis and cardiovascular diseases (CVD) ², as well as breast cancer ³.

64 Recent advances in metabolomics research have allowed large-scale and high-
65 throughput profiling of lipoprotein distribution's (LPD) in human blood plasma based upon
66 their composition and concentration ⁴⁻⁶. It has been hypothesized that numerous medical
67 conditions such as glucose intolerance, type-2 diabetes, myocardial infarction, ischemic
68 stroke and intracerebral hemorrhage, might be associated with lower blood levels of larger
69 HDL particles (e.g. HDL2a and HDL2b) and a higher content of triglycerides within the
70 lipoproteins particles ^{7,8}.

71 During the last decade it has been shown that alterations in gut microbiome (GM)
72 composition contribute to the development and progression of several metabolic and
73 immunological complications ⁹. Furthermore, a handful of recent studies on different cohorts
74 have also demonstrated that the changes in intestinal microbiota are highly correlated to
75 variations in levels of lipoproteins in blood ¹⁰⁻¹², as well as to promote atherosclerosis ¹³, and
76 regulate cholesterol homeostasis ¹⁴.

77 The relationship between GM and LPD has only been scarcely investigated. Recently
78 Vojinovic et al. ⁵ reported the association of up to 32 GM members with very-low-density
79 (VLDL) and high-density (HDL) subfractions. Positive correlations between a number of
80 Clostridiales members with large particle size subfractions of HDL were elucidated. In other
81 studies, focusing on total lipoproteins fractions, an increasing abundance of GM members
82 affiliated to the Erysipelotrichaceae and Lachnospiraceae families have been linked to
83 elevated levels of total cholesterol and low-density lipoproteins (LDL) ¹⁰⁻¹². Interestingly,
84 common gut microbes like Lactobacillaceae members have been reported to assimilate and
85 lower cholesterol concentrations from growth media and incorporate it into their cellular

86 membrane ¹⁵, whereas butyrate-producing *Roseburia intestinalis* has been found to increase
87 fatty acid utilization and reduce atherosclerosis development in a murine model ¹⁶.

88 However, the relationship between GM and LPD distribution is still far from being
89 understood. Thus, with the aim of gaining a deeper understanding of the relationship between
90 GM and LPD in blood, we carried out a detailed compositional analysis of GM, its metabolic
91 functions, and studied its associations with blood lipoproteins quantified using a recently
92 developed method based on proton (¹H) nuclear magnetic resonance (NMR) spectroscopy ⁶.
93 We determined covariations between larger HDL subclasses and lower total cholesterol with
94 a several Clostridiales (Ruminococcaceae and Lachnospiraceae) and Eggertheliales members,
95 whose metabolic potential is linked to biosynthesis of cofactors essential for carrying out lipid
96 metabolism.

97 **METHODS**

98 **Study participants**

99 Two hundred and sixty-two men and women participants older than 20 years, who
100 had not received antibiotic treatment 3 months prior to the beginning of the study and who
101 had not received pre- or probiotics 1 month prior to the beginning of the study, were included
102 as part of the COUNTERSTRIKE (COUNTERacting Sarcopenia with proTeins and exeRcise
103 – Screening the CALM cohort for llipoprotein biomarKErs) project (counterstrike.ku.dk).
104 Pregnant and lactating women, as well as individuals suffering from CVD, diabetes or
105 chronic gastrointestinal disorders, were excluded from the study.

106

107 **Ethics approval and consent to participate**

108 The study was approved by the Research Ethics Committees of the Capital Region of
109 Denmark in accordance with the Helsinki Declaration (H-15008313) and the Danish Data

110 Protection Agency (2013-54-0522). Written informed consent was obtained from all
111 participants.

112

113 **Lipoprotein distribution profiles**

114 The human blood plasma lipoproteins were quantified using SigMa LP software ¹⁷.
115 The SigMa LP quantifies lipoproteins from blood plasma or serum using optimized partial
116 least squares (PLS) regression models developed for each lipoprotein variable using one-
117 dimensional (1D) ¹H NMR spectra of blood plasma or serum and ultracentrifugation based
118 quantified lipoproteins as response variables as determined in Khakimov et al. ⁶.

119

120 **Short chain fatty acids (SCFAs) quantification**

121 Targeted analysis and quantification of SCFA on fecal slurries were carried out as recently
122 described ¹⁸

123

124 **Samples processing, library preparation and DNA sequencing**

125 Fecal samples were collected and kept at 4°C for maximum 48 h after voidance and
126 stored at -60°C until further use. Extraction of genomic DNA and library preparation for
127 high-throughput sequencing of the V3-region of the 16S rRNA gene was performed as
128 previously described ¹⁸. Shotgun metagenome libraries for sequencing of genome DNA were
129 built using the Nextera XT DNA Library Preparation Kit (Cat. No. FC-131-1096) and
130 sequenced with Illumina HiSeq 4000 by NXT-DX.

131

132 **Analysis of sequencing data**

133 The raw dataset containing pair-end amplicon reads we analyzed following recently
134 described procedures ¹⁸. The metabolic potential of the amplicon sequencing dataset was
135 determined through PICRUSt ¹⁹, briefly, zero-radius operational taxonomical units (zOTUs)

136 abundances were first normalized by copy number and then KEGG orthologues was obtained
137 by predicted metagenome function.

138 For shotgun sequencing, the reads were trimmed from adaptors and barcodes and the
139 high-quality sequences (>99% quality score) using Trimmomatic v0.35²⁰ with a minimum
140 size of 50nt were retained. Subsequently, sequences were dereplicated and check for the
141 presence of Phix179 using USEARCH v10²¹, as well as human and plant genomes associated
142 DNA using Kraken2²². High-quality reads were then subjected to within-sample *de-novo*
143 assembly-only using Spades v3.13.1²³ and the contigs with a minimum length of 2,000 nt
144 were retained. Within-sample binning was performed with metaWRAP²⁴ using Metabat1²⁵,
145 Metabat2²⁶ and MaxBin2²⁷, and bin-refinement²⁸ was allowed to a $\leq 10\%$ contamination and
146 $\geq 70\%$ completeness. Average nucleotide identity (ANI) of metagenome bins, or metagenome
147 assembled genomes (MAGs), was calculated with fastANI²⁹ and distances between MAGs
148 were summarized with bactaxR³⁰. To determined abundance across samples, reads were
149 mapped against MAGs with Subread aligner³¹ and a contingency-table of reads per Kbp of
150 contig sequence per million reads sample (RPKM) was generated. Taxonomic annotation of
151 MAGs was determined as follows: ORF calling and gene predictions were performed with
152 Prodigal³², the predicted proteins were blasted (blastp) against NCBI NR bacterial and
153 archaeal protein database. Using Basic Sequence Taxonomy Annotation tool (BASTA)³³, the
154 Lowest Common Ancestor (LCA) for every MAG was estimated based on percentage of hits
155 of LCA of 60, minimum identity of 0.7, minimum alignment of 0.7 and a minimum number
156 of hits for LCA of 10.

157 To determine the metabolic potential of metagenomes, ORF calling and gene
158 predictions (similar as above) were performed on both, binned and unbinned contigs, and the
159 predicted proteins were subsequently clustered at 90% similarity using USEARCH v10. To
160 assign functions, protein sequences were blasted (90% id and 90% cover query) against the
161 integrated reference catalog of the human gut microbiome (IRCHGM)³⁴, while using only
162 target sequences containing KEGG ortholog entries. Similar as above, to determine

163 abundance of protein-encoding genes across metagenomes, reads were mapped against
164 protein clusters (PC) with DIAMOND ³⁵ and a contingency-table of reads mapped to PCs was
165 also generated. To avoid bias due to sequencing depth across protein-encoding genes, samples
166 were subsampled to 15,000,000 reads per sample.

167

168 **Statistical analysis**

169 Stratification and clustering of LPD was carried out using Euclidean distances and
170 general agglomerative hierarchical clustering procedure based on “Ward2”, as implemented
171 in the *gplots* R-package ³⁶. For univariate data analyses, pairwise comparisons were carried
172 out with unpaired two-tailed Student’s *t*-test, Spearman’s rank coefficient was used for
173 determining correlations and Chi-Square test for evaluating group distributions. For
174 multivariate data analyses, the association of covariates (e.g. age, BMI, sex) with LPD were
175 assessed by redundancy analysis (RDA) (999 permutations), whereas the association of LPD
176 clusters with GM were analyzed by distance-based RDA (999 permutations) on Canberra
177 distances (implemented in the *vegan* R-package ³⁷).

178 Feature selection for zOTUs was performed with Random Forest. Briefly, for a given
179 training set (training: 70%, test: 30%), the *party* R-package ³⁸ was run for feature selection
180 using unbiased-trees (cforest_unbiased with 6,000 trees and variable importance with 999
181 permutations) and subsequently the selected variables were used to predict (6,000 trees with
182 999 permutations) their corresponding test set using *randomForest* R-package ³⁹. The selected
183 features were subjected to sequential rounds of feature selection until prediction could no
184 longer be improved. All statistical analyses were performed in R versions $\leq 3.6.0$.

185

186 **Data availability**

187 Sequence data are available at the Sequence Read Archive (SRA), BioProject
188 SUB9304449 submissions SUB9305011 and SUB9304442. Supplementary Table 1 provides

189 samples information. Non-sequence data that support the findings of this study are available
190 from the corresponding authors upon reasonable request.

191 **RESULTS**

192 **Participants and data collection**

193 Two hundred and sixty two individuals (men:women 90:172) with an age between 20
194 and 85 years (Figure 1A) and BMI ranging between 19 and 37 kg/m² (Figure 1B) were
195 included in this study. Subjects are representatives of community dwelling and apparently
196 healthy adults living in the Danish Capital Region. In this study, we included ¹H NMR
197 spectroscopy based quantified lipoproteins from human blood plasma⁶, short-chain fatty
198 acids profiling and GM composition on fecal samples based on 16S rRNA-gene amplicon
199 sequencing and shotgun metagenome sequencing for a subset of samples (Figure 1C).

200

201 **LPD profiles, stratification and host covariates**

202 LPD profiles of the study subjects were predicted from ¹H NMR measurements of
203 blood plasma. A total of 55 lipoproteins-subfractions were quantified including cholesterol,
204 triglycerides (TG), cholesterol ester (CE), free cholesterol, phospholipids, apolipoprotein A
205 (ApoA1) and apolipoprotein B (ApoB) content in all or in some of lipoprotein in plasma
206 (VLDL, IDL, HDL, LDL) and/or in lipoprotein subfractions (HDL2a, HDL2b, HDL3, LDL1,
207 LDL2, LDL3, LDL4, LDL5, LDL6)⁶. Linking host covariates and LPD profiles, redundancy
208 analysis (RDA) of LPD profiles showed a significant ($p \leq 0.01$) effect of age, BMI and sex on
209 LPD profiles (Figure 2B) with a combined size effect of up to 24.6% (Figure 2B-C).

210 Clustering of LPD profiles segregated study participants into three groups (Figure
211 2A, Figure I in the Data Supplement). Cluster 1A and 1B were characterized by higher
212 concentrations of LDL sub-fractions and their constituents (particularly evident in subclasses
213 1 and 2). Clusters 1A and 2, on the other hand, were characterized by lower concentrations of

214 HDL sub-fractions (associated with HDL2a and HDL2b), whereas higher concentrations of
215 HDL-3 particles in subjects of cluster 1A were observed (Figure I in the Data Supplement).
216 Furthermore, plasma concentrations of CE, phospholipids and CE were higher among cluster
217 1A and 1B. When comparing the plasma fractions of the study participants to the
218 recommendations of cholesterol classes provided by the National Institute of Health (NIH)⁴⁰,
219 for clusters 1A and 1B total cholesterol and LDL levels were above the recommendations,
220 while for clusters 1B and 2 the levels of HDL were below the recommended values.

221 LPD profiles were also found to covariate with host attributes, cluster 2 subjects was
222 significantly younger than clusters 1A and 1B (Figure 2D), and cluster 1B showed the lowest
223 BMI (Figure 2E). These results were also consistent even after correcting for sex effects,
224 given that cluster 1B had a significantly higher proportion of women (Fisher test $p < 0.01$,
225 Figure 2A) compared to clusters 1A and 2 (Figure I in the Data Supplement).

226

227 **LPD clusters are linked with GM profiles**

228 The GM of study participants ($n = 262$) was profiled using high-throughput amplicon
229 sequencing the V3-region of the 16S rRNA gene (11,544 zOTUs), as well as shotgun
230 metagenome sequencing of total genomic DNA for a subset of samples ($n = 58$). Gene
231 content and functionality (based on KEGG orthologues - KOs) were predicted based on
232 PICRUSt¹⁹ (for 16S rRNA gene amplicons), as well as through ORF calling and gene
233 prediction of assembled contigs reconstructed from shotgun metagenome data. Validation of
234 PICRUSt against metagenome calling KO yielded a high correlation coefficient (Pearson $r =$
235 0.77, Figure 3A) between the gene richness of both datasets. Alpha diversity analyses
236 between LPD clusters revealed no significant (t -test $p > 0.05$) differences in phylotypes
237 (Figure 3B) nor KOs richness as predicted by the PICRUSt (Figure 3C). A significant (Dip-
238 test $p < 0.001$) bimodal distribution of KO richness among the study participants was
239 observed, but a higher-/lower- gene count was not associated to LPD clusters (Figure 3C) or
240 BMI categories (Figure 3D). Significant differences in composition (beta-diversity) between

241 LPD clusters were observed among phylotypes (Canberra distance, Adonis test $p < 0.05$, $R^2 =$
242 0.62-1%), but not among PICRUSTs predicted KOs.

243

244 **LPD clusters correspond with GM and KOs features**

245 After feature selection based on random forest, LPD clusters were partially
246 discriminated (Figure 4A) by 206 selected sequence variants (zOTUs) distributed to over 10
247 families (Figure 4B). Among these, zOTUs affiliated to Ruminococcaceae (75) and
248 Lachnospiraceae (58) represented 64%, followed by Bacteroidaceae (8), Bifidobacteriaceae
249 (7), Christensenellaceae (6), Coriobacteriaceae (5) and four other sparse bacterial families
250 (47). The cumulative abundance (cumulative sum scaling, CSS) of those families showed
251 differences between LPD clusters, with cluster 1A being associated with a higher abundance
252 of Lachnospiraceae and a lower abundance of Christensenellaceae members, while cluster 1B
253 was characterized by a larger proportion of Ruminococcaceae phylotypes, and cluster 2
254 showed increased proportion of Bifidobacteriaceae, Bacteroidaceae and reduced abundance of
255 Coriobacteriaceae (Figure 4B-C).

256 KEGG orthologues predicted through PICRUSt demonstrated very weak
257 discrimination power towards LPD clusters (Figure 4D, Figure II-A in the Data Supplement
258 shows detailed 3rd level KEGG functions), this included 54 KOs affiliated to >9 primary and
259 secondary metabolism processes, as well as signaling and cellular processes (Figure 4E).

260 Despite its documented limitations ⁴¹ PICRUSt was still able to reveal a decreasing
261 abundance of functional modules among subjects of cluster 1A and 2 as compared to those of
262 cluster 1B (Figure 4E-F). Analysis on aggregated functions per KOs (2nd level KEGG)
263 showed that cluster 1B was characterized by a higher abundance (t-test $p < 0.05$) of functions
264 related to metabolism of amino acids (e.g., Phe, Tyr and Trp biosynthesis), carbohydrates
265 (e.g., pyruvate, propanoate and butanoate metabolism), lipids (glycerolipids and
266 glycerophospholipids metabolism) and genetic information processing (e.g., transcriptional
267 factors) (Figure 4F).

268 Correlation analyses of selected zOTUs vs LPD profiles displayed several significant
269 (Spearman FDR $p \leq 0.05$) associations (Figure 4G, Figure II-B in the Data Supplement).
270 Most Ruminococcaceae (74/75 phylotypes, mostly unclassified), a division of
271 Lachnospiraceae (13/58 phylotypes, mostly unclassified), Bacteroidaceae (e.g., *B.*
272 *massiliensis*, *B. caccae*) Christensenellaceae (unclassified genus) and Coriobacteriaceae
273 (unclassified genus) showed positive correlations with HDL subfractions and negative
274 correlations with VLDL and LDL (e.g. LDL3, 4, 5, 6). Contrary to this, most
275 Lachnospiraceae (45/58), Veillonellaceae (e.g., *V. invisus*) and Bifidobacteriaceae (e.g., *Bf.*
276 *adolescentis*, *Bf. bifidum*) phylotypes correlated negatively with HDL subfractions, and
277 positively with subfractions composed of IDL, LDL and VLDL. For KOs vs LPD (Figure 4H,
278 Figure II-C in the Data Supplement), increasing abundance of functions linked to
279 glycerophospholipids metabolism and amino acids (His, Phe, Tyr and Trp) biosynthesis
280 correlated positively with HDL fractions and negatively with LDL and VLDL. Furthermore,
281 the production of glycosphingolipids, biotin (Vit_{B7}) and lipopolysaccharides correlated
282 negatively with small LDL subfractions (e.g. LDL3, 4, 5, 6).

283

284 **Metagenome bins and functions associated with LPD clusters**

285 Fifty-eight samples were subjected to shotgun metagenome sequencing (Figure 1C)
286 generating on average 5.2 GB per sample. ORF calling on the entire assembled dataset of
287 generated ~1.4 million gene-clusters (90% similarity clusters, here termed “genes”), with
288 84,560 core genes being present in at least 90% of the metagenome sequenced samples. RDA
289 analysis of the core-gene dataset showed significant ($p = 0.001$) differences between LPD
290 clusters and explaining up to 23.7% of the total variance in gene composition (Figure 5A).
291 Ranking of variables (i.e. top 150) within the 1st and 2nd canonical components of the CAP
292 analyses provided an overview of 35 “known” metabolic genes (>90% identity match to the
293 integrated non-redundant gene catalog with KEGG ortholog entries ³⁴, Figure 5B, Figure III-
294 A in the Data Supplement) linked to >10 2nd level KEGG functions, which resembled the

295 large majority of those predicted by PICRUSt (see Figure 4E-F). A higher abundance of these
296 genes was observed among subjects grouped within Cluster 1B relative to cluster 1A and
297 Cluster 2. To determine the species associated with these genes, gene-sequences were mapped
298 back to 1,419 metagenome-assembled genomes (MAGs) (Figure 5C). Sixty MAGs affiliated
299 to Lachnospiraceae, Clostridiales, Coriobacteriaceae and Firmicutes and clustered within 19
300 species were found to contribute with 27 out of the 35 genes that discriminated LPD clusters
301 (Figure 5D, Figure III-B in the Data Supplement). MAGs-G1 to G5 contributed with
302 peptidoglycan and glycan biosynthesis. MAGs-G6 to G12 contributed with thiamine ($\text{Vit}_{\text{B}1}$)
303 and pantothenate ($\text{Vit}_{\text{B}5}$) metabolism, starch degradation and butyric acid metabolism (butanol
304 dehydrogenase that may lead to increased concentrations of 1-butanol at the expense of
305 butyrate production, Figure 5E) and glycerolipid metabolism. Finally, MAGs-G13 to G19
306 promoted biosynthesis of glucosinates, metabolism of propionic acid, biosynthesis of fatty
307 acids, $\text{Vit}_{\text{B}6}$ metabolism, as well as folate ($\text{Vit}_{\text{B}9}$) biosynthesis (Figure 5D, 5F, Figure III-B in
308 the Data Supplement). Subjects belonging to LPD-cluster 1B had a significantly higher
309 relative abundance of MAGs-G7, MAGs-G9 to G19 (those comprising Clostridiales,
310 Eggerthellaceae and Firmicutes bins, Figure 5G-H), MAGs-G1 and MAGs-G5 (those
311 affiliated to Lachnospiraceae, Figure 5I) than subjects in clusters 1A and 2. Likewise, their
312 cumulative abundance reached significant positive (spearman $p < 0.001$) correlations with
313 constituents (e.g., Cholesteryl ester) of larger HDL sub-classes (HDL2a and HDL2b) (Figure
314 5J).

315 The concentrations of the SCFAs acetate and propionate in fecal samples showed no
316 differences between LPD clusters. However, higher concentrations of butyrate, isobutyrate, 2-
317 methylbutyrate, valerate and isovalerate (ANOVA Tukey's HSD $p < 0.05$) were observed in
318 cluster 2 (Figure 6A-D). To determine whether microbial activity was linked to the
319 production of such branched-chain fatty-acids, we then focused on analyzing the abundance
320 of isobutyrate kinase (Figure IV-C in the Data Supplement) and 2-methylbutanoyl-CoA
321 (Figure 6F) dehydrogenase in the metagenomic samples (Figure 6E-F). For 2-

322 methylbutanoyl-CoA dehydrogenase 86% of the gene-variants were also mapped to those 60
323 MAGs displayed in Figure 6F (ANOVA Tukey's HSD $p < 0.05$ for cluster 2 LPD subjects),
324 but none of these had significant matches to isobutyrate kinase. Isobutyrate kinase was found
325 in 86 MAGs (Figure IV-A in the Data Supplement) belonging to *Bacteroides*,
326 Ruminococcaceae, Alistipes, Desulfovibrionaceae and Lachnospiraceae, and whose
327 cumulative relative abundance varied (Figure IV-B in the Data Supplement) substantially
328 between LPD clusters.

329 Discussion

330 It is well established that certain LPD profiles are associated with elevated CVD risk,
331 but relatively little is known on the links between GM and LPD. Building on recently
332 published LPD profiles of 262 adult individuals⁶ the present study investigates the
333 correlations between LPD-profiles and GM, and its genetic functional assignments.

334 Stratification of study participants based on their LPD profiles yielded three LPD
335 clusters (1A, 1B and 2) that corresponded well with within- and outside- suggested levels of
336 total cholesterol, triglycerides, LDL, HDL and VLDL as those recommended by the NIH⁴⁰
337 and as shown in Figure 2A. Our study demonstrates that lower levels of total HDL are
338 associated with a decrease in the concentration of large subfractions (e.g. HDL2a and
339 HDL2b), while higher levels of LDL correspond with an increase in the concentration of
340 large LDL subfractions (e.g. LDL1). Similarly, high levels of cholesterol corresponded with
341 high levels of circulating levels of VLDL. As confirmed by our results and others, the LPD
342 profiles are influenced by host factors like age, sex and BMI^{5,10}. These components are able
343 to explain up to 25% of the total variance in the LPD. To the best of our knowledge, this
344 study represents the first to show the contribution of LPD subfractions to the collective levels
345 of cholesterol, cholesterol-types and triglycerides, as well as recommendations among an age-
346 /BMI- diverse group of apparently healthy adults.

347 Increasing evidence supports the role of GM to modulate lipids homeostasis and
348 development of dyslipidemia^{16,42-44}. GM profiling did not show major differences in the
349 number of sequence-variants and gene-richness counts among subjects with remarkably
350 distinct LPD profiles (e.g., C1A, C1B and C2 clusters). Despite the fact that a bimodal
351 distribution of gene-richness counts was reproduced as in previous studies^{45,46} no significant
352 differences in the gene-frequencies between normal and overweight participants were
353 observed.

354 Beta diversity analyses showed significant differences that discriminated LPD
355 clusters (e.g., Figure 4A). Lachnospiraceae members correlated positively with small LDL
356 particles (e.g., LDL3, LDL4 and LDL5), ILDL and VLDL, while Ruminococcaceae, a
357 subgroup of Lachnospiraceae phylotypes and other less abundant families showed positive
358 correlations with large particles of HDL (HDL2a and HDL2b (see e.g., Figure 4G).
359 Moreover, in agreement with our findings, a recent large-scale study published by Vojinovic
360 et al.⁵ also reported that Lachnospiraceae and Ruminococcaceae members were related to the
361 HDL/LDL ratios. High HDL levels have been consistently correlated to a low risk of
362 developing CVD^{7,8} and recent evidence support that the heterogeneity of HDL display
363 different associations with the incidence of CVD and metabolic syndrome^{7,47,48}. Recent
364 findings suggest that *Akkermansia muciniphila* induces expression of low-density lipoprotein
365 receptors and ApoE in the hepatocytes, facilitating the clearance of triglyceride-rich
366 lipoprotein remnants, chylomicron remnants, and intermediate-density lipoproteins, from
367 circulation⁴². In line with this, our study elucidates a possible link between dyslipidemia and
368 the metabolic potential of MAGs for biosynthesizing important bioactive compounds such as
369 vitamin B complex and peptidoglycans, as well as SCFA metabolism. Among these
370 compounds, pantothenate (Vit_{B5}), Vit_{B6} and folate (Vit_{B9}) have been inversely associated with
371 low-grade inflammation⁴⁹ and mortality risk of CVD in a mechanism that may involve
372 regulation of blood homocysteine concentrations⁵⁰ and one-carbon metabolism⁵¹. SCFA like
373 butyrate and valerate have been shown to decrease total cholesterol and the expression of

374 mRNA associated with fatty acid synthase and sterol regulatory element binding protein 1c,
375 to enhance mRNA expression of carnitine palmitoyltransferase-1 α (CPT-1 α) in liver^{52,53}, as
376 well as to ameliorate arteriosclerosis via ABCA1-mediates cholesterol efflux in macrophages
377⁵⁴. Biosynthesis of peptidoglycans by some GM members has been associated with incidence
378 of stenotic atherosclerotic plaques and insulin resistance^{55,56}. However, emerging evidence
379 suggests that these potent signaling molecules play positive roles for enhancing systemic
380 innate immunity⁵⁷ and neurodevelopmental processes⁵⁸, relaying on a species-dependent
381 fashion⁵⁹. In conclusion, our study provides evidence that GM members (e.g., MAGs) and
382 their genes related to the biosynthesis of bioactive molecules needed to carry out lipid
383 metabolism, e.g., vitamin B complex and S/B-CFA, are more abundant among subjects with
384 healthier LPD profiles (e.g., higher HDL2a, HDL2b, and lower LDL). Furthermore,
385 variations in LPD subfractions correlates with differences in the GM composition⁵, but these
386 are not necessarily associated to a higher or lower microbial diversity as reported in previous
387 studies^{45,46}. Given the cross-sectional nature of our study and its inherent limitations, it is not
388 possible to depict the mechanism by which GM may influence variability in LPD
389 subfractions. However, our results provide evidence for GM considerations in future research
390 aiming at unravelling the processes of LPD particles assembly through longitudinal
391 mechanistic approaches that include the activity of enzymes and transfer proteins, membrane
392 modulators⁶⁰ and integrative multi-omics.

393

394

395 ARTICLE INFORMATION

396 Affiliations

397 Department of Food Science, University of Copenhagen (JLC, BK, EG, PP, SBE, DSN).
398 Department of Nutrition, Exercise and Sports, University of Copenhagen (MVL). Department

399 of Biomedical Sciences, University of Copenhagen (EG, LH). Institute of Experimental
400 Endocrinology, Biomedical Research Center, University Science Park for Biomedicine,
401 Slovakia (PP). Swammerdam Institute for Life Sciences, University of Amsterdam (ET, AS).
402 Department of Plant and Environmental Sciences, University of Copenhagen (LHH). School
403 of Sport, Exercise and Rehabilitation Sciences, University of Birmingham (LH).

404

405 **Source of Funding**

406 The present study received funding from the Innovation Foundation Denmark
407 through the COUNTERSTRIKE project (4105-00015B).

408

409 **Disclosures**

410 None.

411

412 **Supplemental Materials**

413 Data Supplement Figures I – IV

414 Supplementary-table_1

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429 **References**

430 1. Zhang H, Temel RE, Martel C. Cholesterol and lipoprotein metabolism: Early career
431 committee contribution. *Arterioscler Thromb Vasc Biol* 2014;34:1791–1794.
432 doi:10.1161/ATVBAHA.114.304267.

433 2. Vallejo-Vaz AJ, Robertson M, Catapano AL, Watts GF, Kastelein JJ, Packard CJ, Ford I, Ray
434 KK. Low-Density Lipoprotein Cholesterol Lowering for the Primary Prevention of
435 Cardiovascular Disease Among Men With Primary Elevations of Low-Density Lipoprotein
436 Cholesterol Levels of 190 mg/dL or Above: Analyses From the WOSCOPS (West of Scotland
437 Coronary Prevention Study) 5-Year Randomized Trial and 20-Year Observational Follow-Up.
438 *Circulation* 2017;136:1878–1891. doi:10.1161/CIRCULATIONAHA.117.027966.

439 3. Nelson ER, Chang C yi, McDonnell DP. Cholesterol and breast cancer pathophysiology.
440 *Trends Endocrinol Metab* 2014;25:649–655. doi:10.1016/j.tem.2014.10.001.

441 4. Aru V, Lam C, Khakimov B, et al. Quantification of lipoprotein profiles by nuclear magnetic
442 resonance spectroscopy and multivariate data analysis. *TrAC - Trends Anal Chem*
443 2017;94:210–219. doi:10.1016/j.trac.2017.07.009.

444 5. Vojinovic D, Radjabzadeh D, Kurilshikov A, et al. Relationship between gut microbiota and
445 circulating metabolites in population-based cohorts. *Nat Commun* 2019;10:5813.
446 doi:10.1038/s41467-019-13721-1.

447 6. Khakimov B, Hoefsloot HCJ, Mobaraki N, et al. Human blood lipoprotein predictions from 1
448 H NMR spectra: protocol, model performances and cage of covariance. *BioRxiv*
449 2021.02.24.432509. doi: <https://doi.org/10.1101/2021.02.24.432509>

450 7. Holmes M V., Millwood IY, Kartsonaki C, et al. Lipids, Lipoproteins, and Metabolites and
451 Risk of Myocardial Infarction and Stroke. *J Am Coll Cardiol* 2018;71:620–632.
452 doi:10.1016/j.jacc.2017.12.006.

453 8. Wang J, Stančáková A, Soininen P, Kangas AJ, Paananen J, Kuusisto J, Ala-Korpela M,
454 Laakso M. Lipoprotein subclass profiles in individuals with varying degrees of glucose
455 tolerance: A population-based study of 9399 Finnish men. *J Intern Med* 2012;272:562–572.
456 doi:10.1111/j.1365-2796.2012.02562.x.

457 9. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and
458 disease. *Cell Res* 2020;30:492–506. doi:10.1038/s41422-020-0332-7.

459 10. Fu J, Bonder MJ, Cenit MC, et al. The gut microbiome contributes to a substantial proportion
460 of the variation in blood lipids. *Circ Res* 2015;117:817–824.

461 doi:10.1161/CIRCRESAHA.115.306807.

462 11. Falony G, Joossens M, Vieira-Silva S, et al. Population-level analysis of gut microbiome
463 variation. *Science* 2016;352:560–564. doi:10.1126/science.aad3503.

464 12. Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in
465 shaping human gut microbiota. *Nature* 2018;555:210–215. doi:10.1038/nature25973.

466 13. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of l-carnitine, a
467 nutrient in red meat, promotes atherosclerosis. *Nat Med* 2013;19:576–585.
468 doi:10.1038/nm.3145.

469 14. Le Roy T, Lécuyer E, Chassaing B, et al. The intestinal microbiota regulates host cholesterol
470 homeostasis. *BMC Biol* 2019;17:94. doi:10.1186/s12915-019-0715-8.

471 15. Liang MT, Shah NP. Acid and bile tolerance and cholesterol removal ability of lactobacilli
472 strains. *J Dairy Sci* 2005;88:55–66. doi:10.3168/jds.S0022-0302(05)72662-X.

473 16. Kasahara K, Krautkramer KA, Org E, et al. Interactions between *Roseburia intestinalis* and diet
474 modulate atherogenesis in a murine model. *Nat Microbiol* 2018;3:1461–1471.
475 doi:10.1038/s41564-018-0272-x.

476 17. Khakimov B, Mobaraki N, Trimigno A, Aru V, Engelsen SB. Signature Mapping (SigMa): An
477 efficient approach for processing complex human urine ¹H NMR metabolomics data. *Anal
478 Chim Acta* 2020;1108:142–151. doi:10.1016/j.aca.2020.02.025.

479 18. Castro-Mejía JL, Khakimov B, Krych Ł, et al. Physical fitness in community-dwelling older
480 adults is linked to dietary intake, gut microbiota, and metabolomic signatures. *Aging Cell*
481 2020;19:e13105.

482 19. Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial
483 communities using 16S rRNA marker gene sequences. *Nat Biotechnol* 2013;31:814–821.
484 doi:10.1038/nbt.2676.

485 20. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data.
486 *Bioinformatics* 2014;30:2114–2120. doi:10.1093/bioinformatics/btu170.

487 21. Edgar R. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing.
488 *BioRxiv* 2016:081257. doi:10.1101/081257.

489 22. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. *Genome Biol*
490 2019;20:257. doi:10.1186/s13059-019-1891-0.

491 23. Bankevich A, Nurk S, Antipov D, et al. SPAdes: A new genome assembly algorithm and its
492 applications to single-cell sequencing. *J Comput Biol* 2012;19:455–477.
493 doi:10.1089/cmb.2012.0021.

494 24. Uritskiy G V., Diruggiero J, Taylor J. MetaWRAP - A flexible pipeline for genome-resolved
495 metagenomic data analysis. *Microbiome* 2018;6:158. doi:10.1186/s40168-018-0541-1.

496 25. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing
497 single genomes from complex microbial communities. *PeerJ* 2015;3:e1165.
498 doi:10.7717/peerj.1165.

499 26. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Zhong. MetaBAT 2: An adaptive

500 binning algorithm for robust and efficient genome reconstruction from metagenome
501 assemblies. *PeerJ* 2019; 7:e7359. doi:10.7717/peerj.7359.

502 27. Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning
503 method to recover individual genomes from metagenomes using. *Microbiome* 2014;2:26.
504 doi.org/10.1186/2049-2618-2-26

505 28. Song WZ, Thomas T. Binning-refiner: Improving genome bins through the combination of
506 different binning programs. *Bioinformatics* 2017;33:1873–1875.
507 doi:10.1093/bioinformatics/btx086.

508 29. Jain C, Rodriguez-R LM, Phillip AM, Konstantinidis KT, Aluru S. High throughput ANI
509 analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun*
510 2018;9:5114. doi:10.1038/s41467-018-07641-9.

511 30. Carroll LM, Wiedmann M, Kovac J. Proposal of a taxonomic nomenclature for the bacillus
512 cereus group which reconciles genomic definitions of bacterial species with clinical and
513 industrial phenotypes. *MBio* 2020;11: e00034-20. doi:10.1128/mBio.00034-20.

514 31. Liao Y, Smyth GK, Shi W. The Subread aligner: Fast, accurate and scalable read mapping by
515 seed-and-vote. *Nucleic Acids Res* 2013;e108. doi:10.1093/nar/gkt214.

516 32. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: Prokaryotic
517 gene recognition and translation initiation site identification. *BMC Bioinformatics*
518 2010;11:119. doi:10.1186/1471-2105-11-119.

519 33. Kahlke T, Ralph PJ. BASTA – Taxonomic classification of sequences and sequence bins using
520 last common ancestor estimations. *Methods Ecol Evol* 2019;10:100–103. doi:10.1111/2041-
521 210X.13095.

522 34. Li J, Wang J, Jia H, et al. An integrated catalog of reference genes in the human gut
523 microbiome. *Nat Biotechnol* 2014;32:834–841. doi:10.1038/nbt.2942.

524 35. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. *Nat*
525 *Methods* 2015;12:59–60. doi:10.1038/nmeth.3176.

526 36. Warnes G, Bolker B, Bonebakker L, et al. gplots. *R Packag* 2020

527 37. Oksanen AJ, Blanchet FG, Kindt R, et al. vegan: Community Ecology Package. *R Packag*
528 2015.

529 38. Hothorn T, Hornik K, Strobl C, Zeileis A. Party: a laboratory for recursive partytioning. *R*
530 *Packag* 2016.

531 39. Liaw A, Wiener M. Classification and Regression by randomFores. *R Packag* 2014.

532 40. National Insititute of Health (NIH). Detection, Evaluation, and Treatmentof High Blood
533 Cholesterol in Adults (Adult TreatmentPanel III). NIH Publication 2002; 02-5215.

534 41. Sun S, Jones RB, Fodor AA. Inference-based accuracy of metagenome prediction tools varies
535 across sample types and functional categories. *Microbiome* 2020;8:46. doi:10.1186/s40168-
536 020-00815-y.

537 42. Shen J, Tong X, Sud N, Khound R, Song Y, Maldonado-Gomez MX, Walter J, Su Q, et al.
538 Low-Density Lipoprotein Receptor Signaling Mediates the Triglyceride-Lowering Action of

539 Akkermansia muciniphila in Genetic-Induced Hyperlipidemia. *Arterioscler Thromb Vasc Biol*
540 2016;36:1448–1456. doi:10.1161/ATVBAHA.116.307597.

541 43. Kiouptsi K, Jäckel S, Pontarollo G, et al. The microbiota promotes arterial thrombosis in low-
542 density lipoprotein receptor-deficient mice. *MBio* 2019;10: e02298-19.
543 doi:10.1128/mBio.02298-19.

544 44. Rune I, Rolin B, Larsen C, et al. Modulating the gut microbiota improves glucose tolerance,
545 lipoprotein profile and atherosclerotic plaque development in ApoE-deficient mice. *PLoS One*
546 2016;11: e0146439. doi:10.1371/journal.pone.0146439.

547 45. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with
548 metabolic markers. *Nature* 2013;500:541–546. doi:10.1038/nature12506.

549 46. Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene
550 richness. *Nature* 2013;500:585–588. doi:10.1038/nature12480.

551 47. Kontush A. HDL particle number and size as predictors of cardiovascular disease. *Front*
552 *Pharmacol* 2015;6:218. doi:10.3389/fphar.2015.00218.

553 48. Camont L, Chapman MJ, Kontush A. Biological activities of HDL subpopulations and their
554 relevance to cardiovascular disease. *Trends Mol Med* 2011;17:594–603.
555 doi:10.1016/j.molmed.2011.05.013.

556 49. Jung S, Kim MK, Choi BY. The long-term relationship between dietary pantothenic acid
557 (vitamin B5) intake and C-reactive protein concentration in adults aged 40 years and older.
558 *Nutr Metab Cardiovasc Dis* 2017;27:806–816. doi:10.1016/j.numecd.2017.05.008.

559 50. Cui R, Iso H, Date C, Kikuchi S, Tamakoshi A. Dietary folate and vitamin B6 and B12 intake
560 in relation to mortality from cardiovascular diseases: Japan collaborative cohort study. *Stroke*
561 2010;41:1285–1289. doi:10.1161/STROKEAHA.110.578906.

562 51. Walker AK, Jacobs RL, Watts JL, et al. A Conserved SREBP-1/Phosphatidylcholine Feedback
563 Circuit Regulates Lipogenesis in Metazoans. *Cell* 2011;147:840–852.
564 doi:10.1016/j.cell.2011.09.045.

565 52. Nguyen TD, Prykhodko O, Fåk Hållenius F, Nyman M. Monovalerin and trivalerin increase
566 brain acetic acid, decrease liver succinic acid, and alter gut microbiota in rats fed high-fat diets.
567 *Eur J Nutr* 2019;58:1545–1560. doi:10.1007/s00394-018-1688-z.

568 53. Jiao AR, Diao H, Yu B, et al. Oral administration of short chain fatty acids could attenuate fat
569 deposition of pigs. *PLoS One* 2018;13: e0196867. doi:10.1371/journal.pone.0196867.

570 54. Du Y, Li X, Su C, Xi M, Zhang X, Jiang Z, Wang L, Hong B. Butyrate protects against high-
571 fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-
572 deficiency mice. *Br J Pharmacol* 2020;177:1754–1772. doi:10.1111/bph.14933.

573

574 55. Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, Nielsen
575 J. Symptomatic atherosclerosis is associated with an altered gut metagenome. *Nat Commun*
576 2012;3:1245. doi:10.1038/ncomms2266.

577 56. Denou E, Lolmède K, Garidou L, et al. Defective NOD 2 peptidoglycan sensing promotes

578 diet-induced inflammation, dysbiosis, and insulin resistance . EMBO Mol Med 2015;7:259–
579 274. doi:10.15252/emmm.201404169.

580 57. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of
581 peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med
582 2010;16:228–231. doi:10.1038/nm.2087.

583 58. Tosoni G, Conti M, Diaz Heijtz R. Bacterial peptidoglycans as novel signaling molecules from
584 microbiota to brain. Curr Opin Pharmacol 2019;48:107–113. doi:10.1016/j.coph.2019.08.003.

585 59. Baik JE, Jang YO, Kang SS, Cho K, Yun CH, Han SH. Differential profiles of gastrointestinal
586 proteins interacting with peptidoglycans from *Lactobacillus plantarum* and *Staphylococcus*
587 *aureus*. Mol Immunol 2015;65:77–85. doi:10.1016/j.molimm.2015.01.007.

588 60. Superko HR. Advanced Lipoprotein Testing and Subfractionation Are Clinically Useful.
589 Circulation 2009;119: 2383–2395. doi:10.1161/CIRCULATIONAHA.108.809582.

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

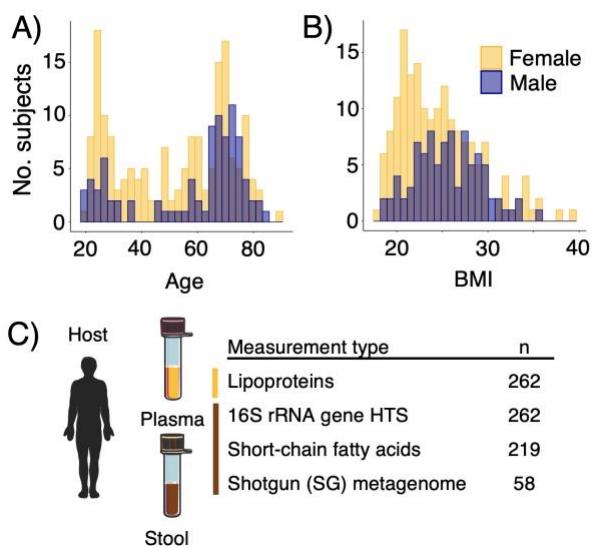
609

610

611

612 **FIGURE LEGENDS**

613

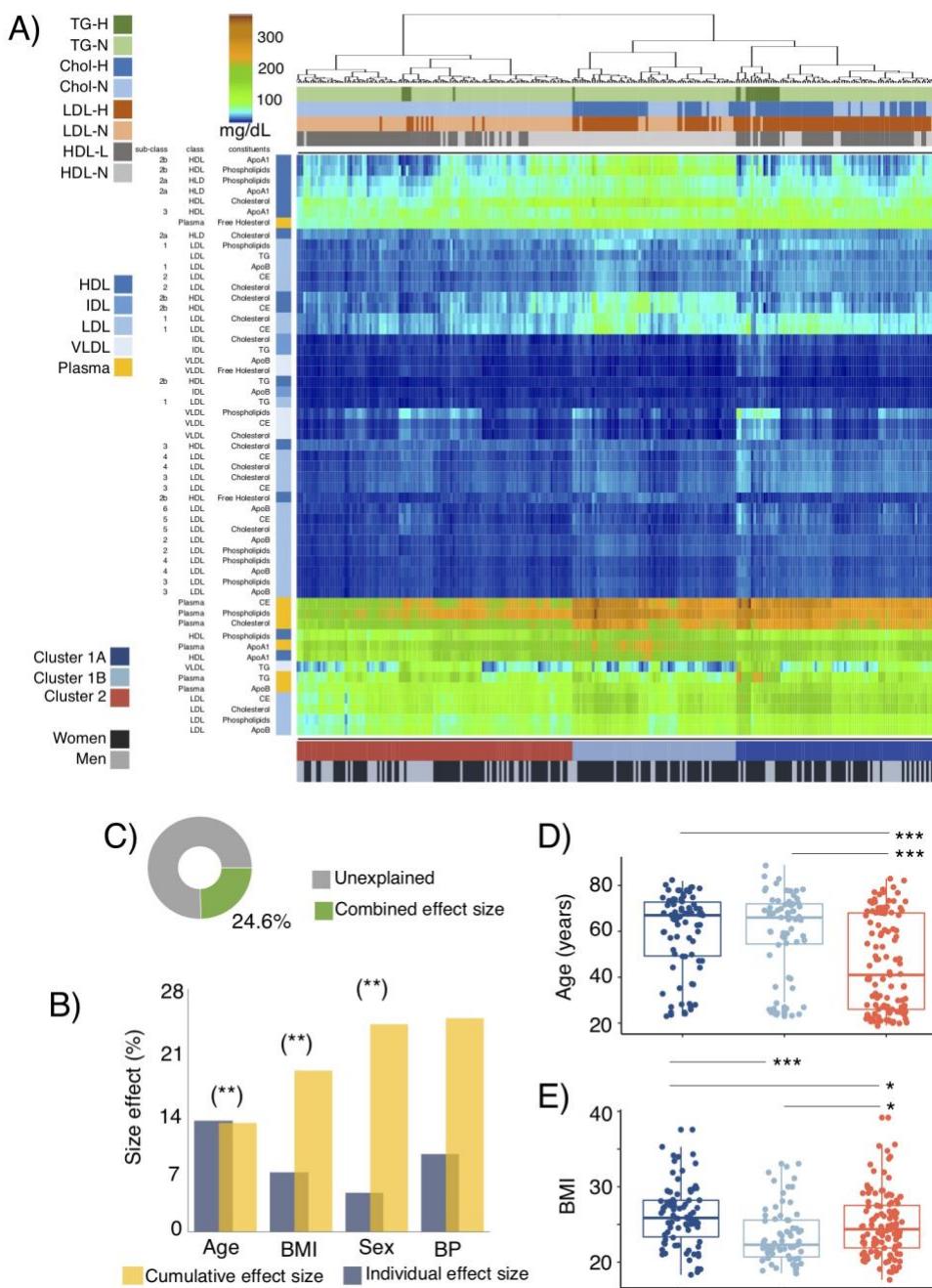


614

615

616 **Figure 1. COUNTERSTRIKE participants and sample overview**

617 A) Age and B) body mass index (BMI) distribution of the study participants. C) samples and
618 datasets included and analyzed in this study.

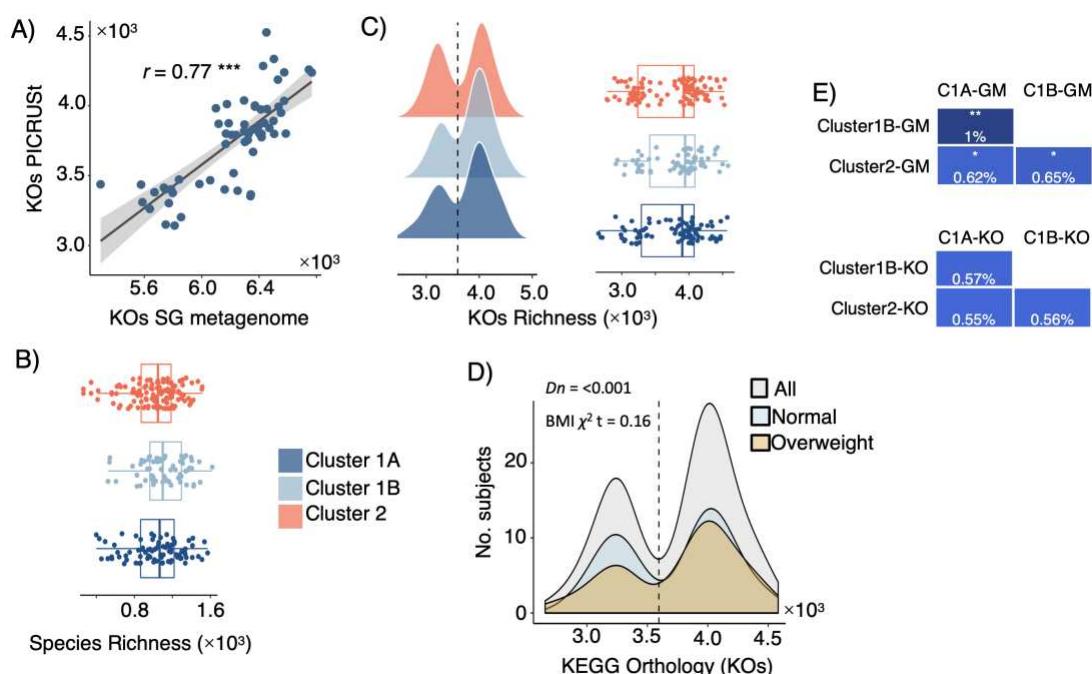


619

Figure 2. Plasma lipoprotein distribution (LPD) profiles and covariates

621 A) Profiles of main and sub-fractions of plasma lipoprotein distribution (LPD) determined by
 622 $^1\text{H-NMR}^6$. LPD are clustered using Euclidean distances and general agglomerative
 623 hierarchical clustering procedure. Upper color bars represent within-/out- of the
 624 recommended levels of main lipoprotein fractions suggested by the NIH ⁴⁰ (total cholesterol
 625 $<200\text{mg/dL}$, LDL $<100\text{mg/dL}$, HDL $>60\text{mg/dL}$, Triglycerides $<150\text{ mg/dL}$). Lower color
 626 bars depict 3 clusters (C1A, C1B and C2) of study participants given their LPD profile and
 627 the sex distribution of subjects. B) Cumulative effect size of non-redundant covariates of LPD
 628 determined by stepwise RDA analysis (right bars) as compared to individual effect sizes
 629 assuming independence (left bars). C) Fraction of LPD variation explained with the stepwise
 630 approach. Distribution of D) age and E) body mass index (BMI) between subjects belonging
 631 to C1A, C1B and C2. Stars show statistical level of significance (* $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq$
 632 0.001)

633



634

635

636 Figure 3. Diversity metrics on gut microbiota and metabolic content

637 A) Spearman's rank correlation between fecal microbial KEGG Orthologues (KOs) from
638 shotgun metagenome (SG) sequencing and KO predicted by PICRUSt. B) Richness of
639 microbial phylotypes (zOTUs) richness and C) KO predicted by PICRUSt among subjects
640 catalogued as being C1A, C1B and C2 based on their LPD. D) KO counts (richness) among
641 all subjects and those with $\text{BMI} \leq 25$ (normal) and $\text{BMI} > 25$ (overweighed); the observed
642 bimodal distribution was statistically significant by the dip-test. E) Adonis test based on
643 Canberra dissimilarities quantifying variance explained (R^2) and significance of phylotypes
644 and KO abundance with LPD clustering. Stars show statistical level of significance (* $p \leq 0.05$,
645 ** $p \leq 0.01$, *** $p \leq 0.001$)

646

647

648

649

650

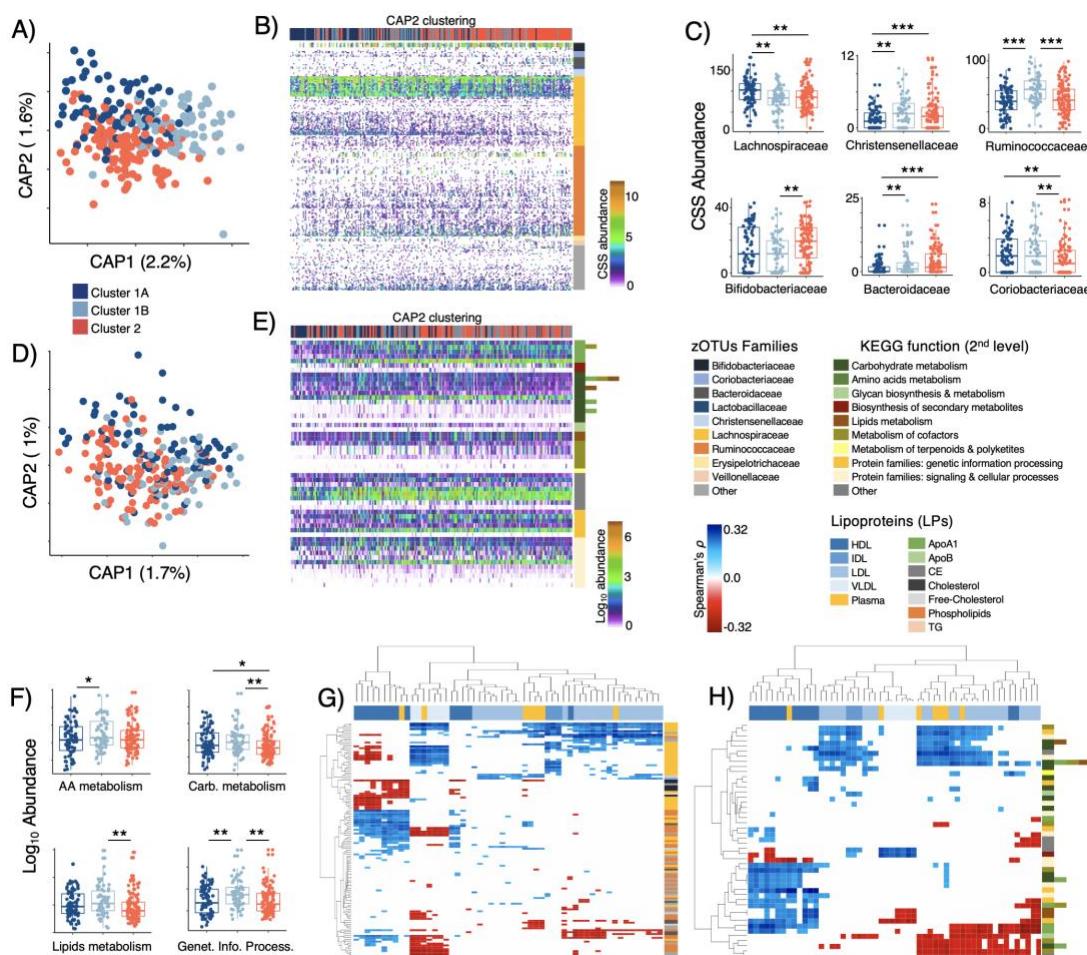
651

652

653

654

655



657 **Figure 4. Phylotypes and KO functions associated with LPD clustering**
658 Distance-based RDA (Canberra dissimilarity) displaying discrimination of LPD clusters
659 based on selected **A**) zOTUs ($p = 0.001$, explained variance = 3.8%) and **D**) KOs-PICRUSt (p
660 = 0.001, explained variance = 2.7%) selected through Random Forests. Overview of selected
661 **B**) zOTUs and **E**) KOs-PICRUSt clustered using Canberra distances and general
662 agglomerative hierarchical clustering procedure based on ward2. Distribution of **C**) zOTUs
663 summarized to family level and **F**) KOs-PICRUSt summarized to 2nd level KEGG function
664 across subjects belonging C1A, C1B and C2 LPD groups. Heatmaps displaying significant
665 (False Discovery Rate corrected, FDR ≤ 0.05) Spearman's rank correlations between **G**)
666 zOTUs and LPD sub-fractions, as well as **H**) KOs-PICRUSt and LPD sub-fractions. Stars
667 show statistical level of significance (* $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$)

668

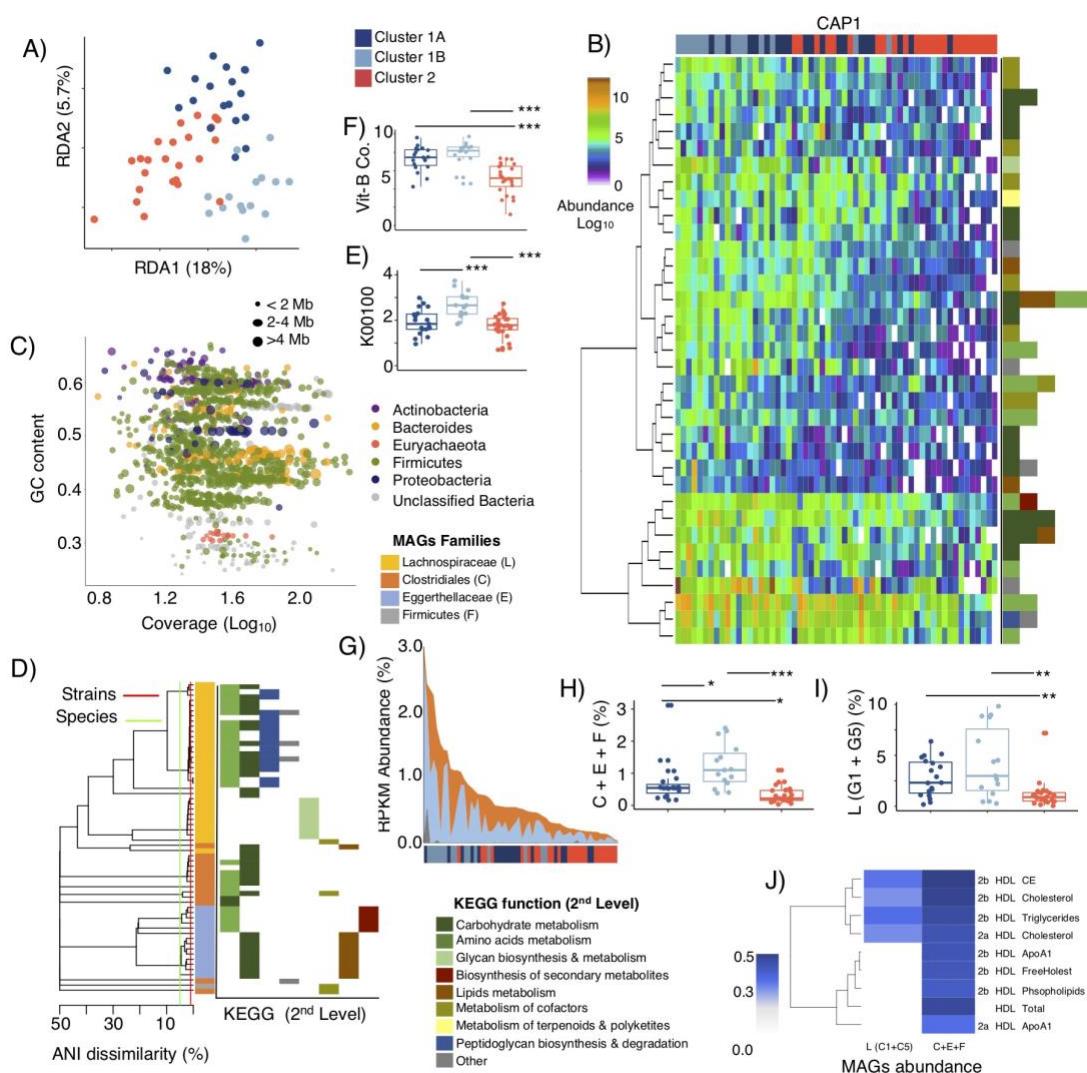
669

670

671

672

673

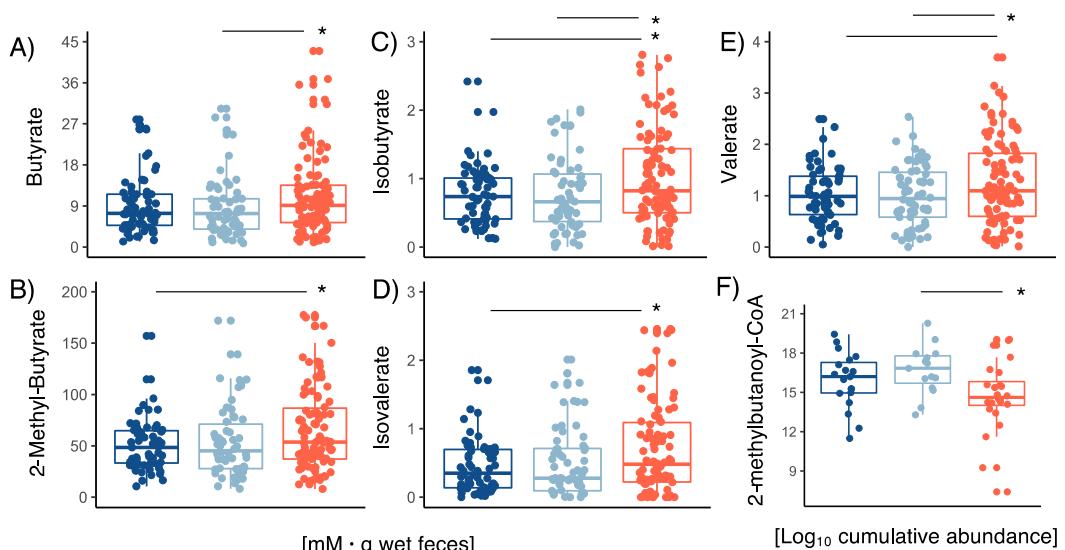


674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

Figure 5. Metagenome metabolic functions and associated MAGs

A) RDA displaying discrimination of LPD clusters based on selected KOs obtained from shotgun metagenome and assembly ($p = 0.001$, explained variance = 23.7%). B) Overview of most discriminatory (based on CAP1 and CAP2 within db-RDA) KOs with known metabolic functions clustered using Canberra distances and general agglomerative hierarchical clustering procedure based on ward2. C) GC-content – Coverage plot of metagenome assembled genomes (MAGs) with $\leq 10\%$ contamination and $\geq 70\%$ completeness. MAGs are colored according to phylum-level taxonomic affiliation and bubble size indicates their genome size in mega-bases (Mb). D) Phylogeny of MAGs containing KOs that discriminate LPD clusters (1A, 1B and 2), a cut-off of 95-ANI (species-level) and 99-ANI (strain-level) are denoted. MAGs are colored at family level affiliations and their KOs contribution at the 2nd level KEGG function pathways are provided. E) Relative abundance of protein-encoding genes associated with butanol dehydrogenase (K00100), and F) protein-encoding genes associated metabolism and biosynthesis of vitamin B1, B2, B5 and B9. G-H) Distribution of cumulative abundance (RPKM) of MAGs (containing discriminatory KOs) associated with Clostridiales, Coriobacteriaceae and Firmicutes (C1 + Co + F) among LPD clusters. I) Distribution of cumulative abundance (RPKM) of MAGs (G1 + G5 – see Figure III-B in the Data Supplement, containing discriminatory KOs) associated with Lachnospiraceae among LPD clusters. J) Heatmaps displaying significant (False Discovery Rate corrected, FDR ≤ 0.05) Spearman's rank correlations between MAGs and HDL subfractions.

696



697

698 **Figure 6. Short chain fatty acid concentrations**

699 Range of fecal **A)** butyrate, **B)** 2-methylbutyrate, **C)** isobutyrate, **D)** isovalerate, **E)** valerate
700 concentrations within the different LPD clusters. Cumulative abundance 2-methylbutanoyl-
701 CoA genes screened on metagenomes within LPD clusters. Stars show statistical level of
702 significance (*p≤ 0.05)

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717