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Abstract

Increasing evidence indicates that the gut microbiome (GM) plays an important role
in the etiology of dyslipidemia. To date, however, no in-depth characterization of the
associations between GM and its metabolic attributes with deep profiling of lipoproteins
distributions (LPD) among healthy individuals has been conducted. To determine associations
and contributions of GM composition and its cofactors with distribution profiles of
lipoprotein subfractions, we studied blood plasma LPD, fecal short-chain fatty acids (SCFA)
and GM of 262 healthy Danish subjects aged 19-89 years.

Stratification of LPD segregated subjects into three clusters of profiles that reflected
differences in the lipoprotein subclasses, corresponded well with limits of recommended
levels of main lipoprotein fractions and were largely explained by host characteristics such as
age and body mass index. Higher levels of HDL, particularly driven by large subfractions
(HDL2a and HDL?2b), were associated with a higher relative abundance of Ruminococcaceae
and Christensenellaceae. Increasing levels of total cholesterol and LDL, which were primarily
associated with large 1 and 2 subclasses, were positively associated with Lachnospiraceae and
Coriobacteriaceae, and negatively with Bacteroidaceae and Bifidobacteriaceae. Metagenome
sequencing showed a higher abundance of genes involved in the biosynthesis of multiple B-
vitamins and SCFA metabolism among subjects with healthier LPD profiles. Metagenomic
assembled genomes (MAGs) affiliated mainly to Eggerthellaceae and Clostridiales were
identified as the contributors of these genes and whose relative abundance correlated
positively with larger subfractions of HDL.

The results of this study demonstrate that remarkable differences in composition and
metabolic traits of the GM are associated with variations in LPD among healthy subjects.
Findings from this study provide evidence for GM considerations in future research aiming to

shade light on mechanisms of the GM — dyslipidemia axis.

Keywords: gut microbiome, SCFAs, lipoproteins distribution, HDL, '"H NMR
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INTRODUCTION

Cholesterol is essential for keeping cellular integrity and is an important precursor for
steroid hormones and bile acids !. However, alterations of the cholesterol metabolism and
consequent dyslipidemia have been associated with various diseases, including
atherosclerosis and cardiovascular diseases (CVD) 2, as well as breast cancer °.

Recent advances in metabolomics research have allowed large-scale and high-
throughput profiling of lipoprotein distribution’s (LPD) in human blood plasma based upon
their composition and concentration . It has been hypothesized that numerous medical
conditions such as glucose intolerance, type-2 diabetes, myocardial infarction, ischemic
stroke and intracerebral hemorrhage, might be associated with lower blood levels of larger
HDL particles (e.g. HDL2a and HDL2b) and a higher content of triglycerides within the
lipoproteins particles 7%,

During the last decade it has been shown that alterations in gut microbiome (GM)
composition contribute to the development and progression of several metabolic and
immunological complications °. Furthermore, a handful of recent studies on different cohorts
have also demonstrated that the changes in intestinal microbiota are highly correlated to

10712 "as well as to promote atherosclerosis '*, and

variations in levels of lipoproteins in blood
regulate cholesterol homeostasis '.

The relationship between GM and LPD has only been scarcely investigated. Recently
Vojinovic et al. ° reported the association of up to 32 GM members with very-low-density
(VLDL) and high-density (HDL) subfractions. Positive correlations between a number of
Clostridiales members with large particle size subfractions of HDL were elucidated. In other
studies, focusing on total lipoproteins fractions, an increasing abundance of GM members
affiliated to the Erysipelotrichaceae and Lachnospiraceae families have been linked to
elevated levels of total cholesterol and low-density lipoproteins (LDL) !*'2, Interestingly,

common gut microbes like Lactobacillaceae members have been reported to assimilate and

lower cholesterol concentrations from growth media and incorporate it into their cellular
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86  membrane '°, whereas butyrate-producing Roseburia intestinalis has been found to increase
87  fatty acid utilization and reduce atherosclerosis development in a murine model '°.

88 However, the relationship between GM and LPD distribution is still far from being
89  understood. Thus, with the aim of gaining a deeper understanding of the relationship between
90  GM and LPD in blood, we carried out a detailed compositional analysis of GM, its metabolic
91  functions, and studied its associations with blood lipoproteins quantified using a recently

92  developed method based on proton ('H) nuclear magnetic resonance (NMR) spectroscopy ©.
93  We determined covariations between larger HDL subclasses and lower total cholesterol with
94  aseveral Clostridiales (Ruminococcaceae and Lachnospiraceae) and Eggerthelalles members,
95  whose metabolic potential is linked to biosynthesis of cofactors essential for carrying out lipid

96  metabolism.

97 METHODS

98  Study participants

99 Two hundred and sixty-two men and women participants older than 20 years, who
100 had not received antibiotic treatment 3 months prior to the beginning of the study and who
101  had not received pre- or probiotics 1 month prior to the beginning of the study, were included
102 as part of the COUNTERSTRIKE (COUNTERacting Sarcopenia with proTeins and exeRcise

103 — Screening the CALM cohort for llpoprotein biomarKErs) project (counterstrike.ku.dk).

104  Pregnant and lactating women, as well as individuals suffering from CVD, diabetes or

105  chronic gastrointestinal disorders, were excluded from the study.

106

107  Ethics approval and consent to participate

108 The study was approved by the Research Ethics Committees of the Capital Region of

109  Denmark in accordance with the Helsinki Declaration (H-15008313) and the Danish Data
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Protection Agency (2013-54-0522). Written informed consent was obtained from all

participants.

Lipoprotein distribution profiles

The human blood plasma lipoproteins were quantified using SigMa LP software 7.
The SigMa LP quantifies lipoproteins from blood plasma or serum using optimized partial
least squares (PLS) regression models developed for each lipoprotein variable using one-
dimensional (1D) '"H NMR spectra of blood plasma or serum and ultracentrifugation based

quantified lipoproteins as response variables as determined in Khakimov et al. .

Short chain fatty acids (SCFAs) quantification

Targeted analysis and quantification of SCFA on fecal slurries were carried out as recently

described '®

Samples processing, library preparation and DNA sequencing

Fecal samples were collected and kept at 4°C for maximum 48 h after voidance and
stored at -60°C until further use. Extraction of genomic DNA and library preparation for
high-throughput sequencing of the V3-region of the 16S rRNA gene was performed as
previously described '®. Shotgun metagenome libraries for sequencing of genome DNA were
built using the Nextera XT DNA Library Preparation Kit (Cat. No. FC-131-1096) and

sequenced with [llumina HiSeq 4000 by NXT-DX.

Analysis of sequencing data
The raw dataset containing pair-end amplicon reads we analyzed following recently
described procedures '®. The metabolic potential of the amplicon sequencing dataset was

determined through PICRUSt ', briefly, zero-radious operational taxonomical units (zOTUSs)
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136  abundances were first normalized by copy number and then KEGG orthologues was obtained
137 by predicted metagenome function.

138 For shotgun sequencing, the reads were trimmed from adaptors and barcodes and the
139  high-quality sequences (>99% quality score) using Trimmomatic v0.35 2° with a minimum
140  size of 50nt were retained. Subsequently, sequences were dereplicated and check for the

141  presence of Phix179 using USEARCH v10 2!, as well as human and plant genomes associated
142  DNA using Kraken2 %, High-quality reads were then subjected to within-sample de-novo

143 assembly-only using Spades v3.13.1 2

and the contigs with a minimum length of 2,000 nt
144 were retained. Within-sample binning was performed with metaWRAP ?* using Metabatl %,
145  Metabat2 2 and MaxBin2 %/, and bin-refinement *® was allowed to a <10% contamination and
146  >70% completeness. Average nucleotide identity (ANI) of metagenome bins, or metagenome
147  assembled genomes (MAGs), was calculated with fastANI %° and distances between MAGs
148  were summarized with bactaxR °. To determined abundance across samples, reads were

149  mapped against MAGs with Subread aligner *' and a contingency-table of reads per Kbp of
150  contig sequence per million reads sample (RPKM) was generated. Taxonomic annotation of
151 MAGs was determined as follows: ORF calling and gene predictions were performed with
152 Prodigal *2, the predicted proteins were blasted (blastp) against NCBI NR bacterial and

153  archaeal protein database. Using Basic Sequence Taxonomy Annotation tool (BASTA) ¥, the
154  Lowest Common Ancestor (LCA) for every MAG was estimated based on percentage of hits
155  of LCA of 60, minimum identity of 0.7, minimum alignment of 0.7 and a minimum number
156  of hits for LCA of 10.

157 To determine the metabolic potential of metagenomes, ORF calling and gene

158  predictions (similar as above) were performed on both, binned and unbinned contigs, and the
159  predicted proteins were subsequently clustered at 90% similarity using USEARCH v10. To
160  assign functions, protein sequences were blasted (90% id and 90% cover query) against the
161  integrated reference catalog of the human gut microbiome (IRCHGM) **, while using only

162  target sequences containing KEGG ortholog entries. Similar as above, to determine
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163  abundance of protein-encoding genes across metagenomes, reads were mapped against

164  protein clusters (PC) with DIAMOND *° and a contingency-table of reads mapped to PCs was
165  also generated. To avoid bias due to sequencing depth across protein-encoding genes, samples
166  were subsampled to 15,000,000 reads per sample.

167

168  Statistical analysis

169 Stratification and clustering of LPD was carried out using Euclidean distances and
170  general agglomerative hierarchical clustering procedure based on “Ward2”, as implemented
171  in the gplots R-package *°. For univariate data analyses, pairwise comparisons were carried
172 out with unpaired two-tailed Student’s ¢-test, Spearman’s rank coefficient was used for

173 determining correlations and Chi-Square test for evaluating group distributions. For

174  multivariate data analyses, the association of covariates (e.g. age, BMI, sex) with LPD were
175  assessed by redundancy analysis (RDA) (999 permutations), whereas the association of LPD
176  clusters with GM were analyzed by distance-based RDA (999 permutations) on Canberra

177  distances (implemented in the vegan R-package *7).

178 Feature selection for zZOTUs was performed with Random Forest. Briefly, for a given
179  training set (training: 70%, test: 30%), the party R-package ** was run for feature selection
180  using unbiased-trees (cforest unbiased with 6,000 trees and variable importance with 999

181  permutations) and subsequently the selected variables were used to predict (6,000 trees with
182 999 permutations) their corresponding test set using randomForest R-package *°. The selected
183  features were subjected to sequential rounds of feature selection until prediction could no

184  longer be improved. All statistical analyses were performed in R versions <3.6.0.

185

186  Data availability

187 Sequence data are available at the Sequence Read Archive (SRA), BioProject

188  SUB9304449 submissions SUB9305011 and SUB9304442. Supplementary Table 1 provides
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189  samples information. Non-sequence data that support the findings of this study are available

190  from the corresponding authors upon reasonable request.

191 RESULTS

192  Participants and data collection

193 Two hundred and sixty two individuals (men:women 90:172) with an age between 20
194  and 85 years (Figure 1A) and BMI ranging between 19 and 37 kg/m? (Figure 1B) were

195  included in this study. Subjects are representatives of community dwelling and apparently
196  healthy adults living in the Danish Capital Region. In this study, we included '"H NMR

197  spectroscopy based quantified lipoproteins from human blood plasma® , short-chain fatty

198 acids profiling and GM composition on fecal samples based on 16S rRNA-gene amplicon
199  sequencing and shotgun metagenome sequencing for a subset of samples (Figure 1C).

200

201  LPD profiles, stratification and host covariates

202 LPD profiles of the study subjects were predicted from 'H NMR measurements of
203  blood plasma. A total of 55 lipoproteins-subfractions were quantified including cholesterol,
204  triglycerides (TG), cholesterol ester (CE), free cholesterol, phospholipids, apolipoprotein A
205  (ApoAl) and apolipoprotein B (ApoB) content in all or in some of lipoprotein in plasma

206  (VLDL, IDL, HDL, LDL) and/or in lipoprotein subfractions (HDL2a, HDL2b, HDL3, LDLI,
207  LDL2, LDL3, LDL4, LDL5, LDL6)°. Linking host covariates and LPD profiles, redundancy
208  analysis (RDA) of LPD profiles showed a significant (p < 0.01) effect of age, BMI and sex on
209  LPD profiles (Figure 2B) with a combined size effect of up to 24.6% (Figure 2B-C).

210 Clustering of LPD profiles segregated study participants into three groups (Figure
211  2A, Figure I in the Data Supplement). Cluster 1A and 1B were characterized by higher

212 concentrations of LDL sub-fractions and their constituents (particularly evident in subclasses

213 1 and 2). Clusters 1A and 2, on the other hand, were characterized by lower concentrations of
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214  HDL sub-fractions (associated with HDL2a and HDL2b), whereas higher concentrations of
215  HDL-3 particles in subjects of cluster 1A were observed (Figure I in the Data Supplement).
216  Furthermore, plasma concentrations of CE, phospholipids and CE were higher among cluster
217 1A and 1B. When comparing the plasma fractions of the study participants to the

218  recommendations of cholesterol classes provided by the National Institute of Health (NIH) °,
219  for clusters 1A and 1B total cholesterol and LDL levels were above the recommendations,
220  while for clusters 1B and 2 the levels pf HDL were below the recommended values.

221 LPD profiles were also found to covariate with host attributes, cluster 2 subjects was
222 significantly younger than clusters 1A and 1B (Figure 2D), and cluster 1B showed the lowest
223 BMI (Figure 2E). These results were also consistent even after correcting for sex effects,
224 given that cluster 1B had a significantly higher proportion of women (Fisher test p <0.01,
225  Figure 2A) compared to clusters 1A and 2 (Figure I in the Data Supplement).

226

227  LPD clusters are linked with GM profiles

228 The GM of study participants (n = 262) was profiled using high-throughput amplicon
229  sequencing the V3-region of the 16S rRNA gene (11,544 zOTUs), as well as shotgun

230  metagenome sequencing of total genomic DNA for a subset of samples (n = 58). Gene

231  content and functionality (based on KEGG orthologues - KOs) were predicted based on

232 PICRUSt " (for 16S rRNA gene amplicons), as well as through ORF calling and gene

233 prediction of assembled contigs reconstructed from shotgun metagenome data. Validation of
234 PICRUSt against metagenome calling KO yielded a high correlation coefficient (Pearson r =
235 0.77, Figure 3A) between the gene richness of both datasets. Alpha diversity analyses

236  between LPD clusters revealed no significant (¢-test p > 0.05) differences in phylotypes

237  (Figure 3B) nor KOs richness as predicted by the PICRUSt (Figure 3C). A significant (Dip-
238  test p <0.001) bimodal distribution of KO richness among the study participants was

239  observed, but a higher-/lower- gene count was not associated to LPD clusters (Figure 3C) or

240  BMI categories (Figure 3D). Significant differences in composition (beta-diversity) between


https://doi.org/10.1101/2021.09.01.458531
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.01.458531; this version posted September 2, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

267

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Castro-Mejia et al.,

LPD clusters were observed among phylotypes (Canberra distance, Adonis test p < 0.05, R? =

0.62-1%), but not among PICRUSTS predicted KOs.

LPD clusters correspond with GM and KOs features

After feature selection based on random forest, LPD clusters were partially
discriminated (Figure 4A) by 206 selected sequence variants (zOTUs) distributed to over 10
families (Figure 4B). Among these, zOTUs affiliated to Ruminococcaceae (75) and
Lachnospiraceae (58) represented 64%, followed by Bacteroidaceae (8), Bifidobacteriaceae
(7), Christensenellaceae (6), Coriobacteriaceae (5) and four other sparse bacterial families
(47). The cumulative abundance (cumulative sum scaling, CSS) of those families showed
differences between LPD clusters, with cluster 1A being associated with a higher abundance
of Lachnospiraceae and a lower abundance of Christensenellaceae members, while cluster 1B
was characterized by a larger proportion of Ruminococcaceae phylotypes, and cluster 2
showed increased proportion of Bifidobacteriaceae, Bacteroidaceae and reduced abundance of
Coriobacteriaceae (Figure 4B-C).

KEGG orthologues predicted through PICRUSt demonstrated very weak
discrimination power towards LPD clusters (Figure 4D, Figure II-A in the Data Supplement
shows detailed 3™ level KEGG functions), this included 54 KOs affiliated to >9 primary and
secondary metabolism processes, as well as signaling and cellular processes (Figure 4E).
Despite its documented limitations *' PICRUSt was still able to reveal a decreasing
abundance of functional modules among subjects of cluster 1A and 2 as compared to those of
cluster 1B (Figure 4E-F). Analysis on aggregated functions per KOs (2™ level KEGG)
showed that cluster 1B was characterized by a higher abundance (t-test p < 0.05) of functions
related to metabolism of amino acids (e.g., Phe, Tyr and Trp biosynthesis), carbohydrates
(e.g., pyruvate, propanoate and butanoate metabolism), lipids (glycerolipids and
glycerophospholipids metabolism) and genetic information processing (e.g., transcriptional

factors) (Figure 4F).

10
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Correlation analyses of selected zOTUs vs LPD profiles displayed several significant
(Spearman FDR p < 0.05) associations (Figure 4G, Figure 1I-B in the Data Supplement).
Most Ruminococcaceae (74/75 phylotypes, mostly unclassified), a division of
Lachnospiraceae (13/58 phylotypes, mostly unclassified), Bacteroidaceae (e.g., B.
massiliensis, B. caccae) Christensenellaceae (unclassified genus) and Coriobacteriaceae
(unclassified genus) showed positive correlations with HDL subfractions and negative
correlations with VLDL and LDL (e.g. LDL3, 4, 5 ,6). Contrary to this, most
Lachnospiraceae (45/58), Veillonellaceae (e.g., V. invisus) and Bifidobacteriaceae (e.g., Bf.
adolescentis, Bf. bifidum) phylotypes correlated negatively with HDL subfractions, and
positively with subfractions composed of IDL, LDL and VLDL. For KOs vs LPD (Figure 4H,
Figure II-C in the Data Supplement), increasing abundance of functions linked to
glycerophospholipids metabolism and amino acids (His, Phe, Tyr and Trp) biosynthesis
correlated positively with HDL fractions and negatively with LDL and VLDL. Furthermore,
the production of glycosphingolipids, biotin (Vits7) and lipopolysaccharides correlated

negatively with small LDL subfractions (e.g. LDL3, 4, 5 ,6).

Metagenome bins and functions associated with LPD clusters

Fifty-eight samples were subjected to shotgun metagenome sequencing (Figure 1C)
generating on average 5.2 GB per sample. ORF calling on the entire assembled dataset of
generated ~1.4 million gene-clusters (90% similarity clusters, here termed “genes”), with
84,560 core genes being present in at least 90% of the metagenome sequenced samples. RDA
analysis of the core-gene dataset showed significant (p = 0.001) differences between LPD
clusters and explaining up to 23.7% of the total variance in gene composition (Figure 5A).
Ranking of variables (i.e. top 150) within the 1** and 2™ canonical components of the CAP
analyses provided an overview of 35 “known” metabolic genes (>90% identity match to the
integrated non-redundant gene catalog with KEGG ortholog entries **, Figure 5B, Figure III-

A in the Data Supplement) linked to >10 2™ level KEGG functions, which resembled the

11
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large majority of those predicted by PICRUSt (see Figure 4E-F). A higher abundance of these
genes was observed among subjects grouped within Cluster 1B relative to cluster 1A and
Cluster 2. To determine the species associated with these genes, gene-sequences were mapped
back to 1,419 metagenome-assembled genomes (MAGs) (Figure 5C). Sixty MAGs affiliated
to Lachnospiraceae, Clostridiales, Coriobacteriaceae and Firmicutes and clustered within 19
species were found to contribute with 27 out of the 35 genes that discriminated LPD clusters
(Figure 5D, Figure III-B in the Data Supplement). MAGs-G1 to G5 contributed with
peptidoglycan and glycan biosynthesis. MAGs-G6 to G12 contributed with thiamine (Vitg;)
and pantothenate (Vitss) metabolism, starch degradation and butyric acid metabolism (butanol
dehydrogenase that may lead to increased concentrations of 1-butanol at the expense of
butyrate production, Figure SE) and glycerolipid metabolism. Finally, MAGs-G13 to G19
promoted biosynthesis of glucosinates, metabolism of propionic acid, biosynthesis of fatty
acids, Vitge metabolism, as well as folate (Vitgo) biosynthesis (Figure 5D, 5F, Figure III-B in
the Data Supplement). Subjects belonging to LPD-cluster 1B had a significantly higher
relative abundance of MAGs-G7, MAGs-G9 to G19 (those comprising Clostridiales,
Eggerthellaceae and Firmicutes bins, Figure 5G-H), MAGs-G1 and MAGs-GS5 (those
affiliated to Lachnospiraceae, Figure 5I) than subjects in clusters 1A and 2. Likewise, their
cumulative abundance reached significant positive (spearman p < 0.001) correlations with
constituents (e.g., Cholesteryl ester) of larger HDL sub-classes (HDL2a and HDL2b) (Figure
5)).

The concentrations of the SCFAs acetate and propionate in fecal samples showed no
differences between LPD clusters. However, higher concentrations of butyrate, isobutyrate, 2-
methylbutyrate, valerate and isovalerate (ANOVA Tukey’s HSD p < 0.05) were observed in
cluster 2 (Figure 6A-D). To determine whether microbial activity was linked to the
production of such branched-chain fatty-acids, we then focused on analyzing the abundance
of isobutyrate kinase (Figure IV-C in the Data Supplement) and 2-methylbutanoyl-CoA

(Figure 6F) dehydrogenase in the metagenomic samples (Figure 6E-F). For 2-

12


https://doi.org/10.1101/2021.09.01.458531
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.01.458531; this version posted September 2, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

322

323

324

325

326

327

328

329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

346

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Castro-Mejia et al.,

methylbutanoyl-CoA dehydrogenase 86% of the gene-variants were also mapped to those 60
MAGs displayed in Figure 6F (ANOVA Tukey’s HSD p < 0.05 for cluster 2 LPD subjects),
but none of these had significant matches to isobutyrate kinase. Isobutyrate kinase was found
in 86 MAGs (Figure IV-A in the Data Supplement) belonging to Bacteroides,
Ruminococcaceae, Alistipes, Desulfovibrionaceae and Lachnospiraceae, and whose
cumulative relative abundance varied (Figure IV-B in the Data Supplement) substantially

between LPD clusters.

Discussion

It is well established that certain LPD profiles are associated with elevated CVD risk,
but relatively little is known on the links between GM and LPD. Building on recently
published LPD profiles of 262 adult individuals ¢ the present study investigates the
correlations between LPD-profiles and GM, and its genetic functional assignments.

Stratification of study participants based on their LPD profiles yielded three LPD
clusters (1A, 1B and 2) that corresponded well with within- and outside- suggested levels of
total cholesterol, triglycerides, LDL, HDL and VLDL as those recommended by the NIH*
and as shown in Figure 2A. Our study demonstrates that lower levels of total HDL are
associated with a decrease in the concentration of large subfractions (e.g. HDL2a and
HDL2b), while higher levels of LDL correspond with an increase in the concentration of
large LDL subfractions (e.g. LDL1). Similarly, high levels of cholesterol corresponded with
high levels of circulating levels of VLDL. As confirmed by our results and others, the LPD
profiles are influenced by host factors like age, sex and BMI >!°, These components are able
to explain up to 25% of the total variance in the LPD. To the best of our knowledge, this
study represents the first to show the contribution of LPD subfractions to the collective levels
of cholesterol, cholesterol-types and triglycerides, as well as recommendations among an age-

/BMI- diverse group of apparently healthy adults.

13
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347 Increasing evidence supports the role of GM to modulate lipids homeostasis and
348  development of dyslipidemia '®**** GM profiling did not show major differences in the
349  number of sequence-variants and gene-richness counts among subjects with remarkably
350  distinct LPD profiles (e.g., C1A, C1B and C2 clusters). Despite the fact that a bimodal

351  distribution of gene-richness counts was reproduced as in previous studies >4

no significant
352  differences in the gene-frequencies between normal and overweight participants were

353 observed.

354 Beta diversity analyses showed significant differences that discriminated LPD

355  clusters (e.g., Figure 4A). Lachnospiraceac members correlated positively with small LDL
356  particles (e.g., LDL3, LDL4 and LDL5), ILDL and VLDL, while Ruminococcaceae, a

357  subgroup of Lachnospiraceae phylotypes and other less abundant families showed positive
358  correlations with large particles of HDL (HDL2a and HDL2b (see e.g., Figure 4G).

359  Moreover, in agreement with our findings, a recent large-scale study published by Vojinovic
360 etal.’ also reported that Lachnospiraceae and Ruminococcaceae members were related to the
361  HDL/LDL ratios. High HDL levels have been consistently correlated to a low risk of

362  developing CVD ”® and recent evidence support that the heterogeneity of HDL display

363  different associations with the incidence of CVD and metabolic syndrome 7475, Recent

364  findings suggest that Akkermansia muciniphila induces expression of low-density lipoprotein
365  receptors and ApoE in the hepatocytes, facilitating the clearance of triglyceride-rich

366 lipoprotein remnants, chylomicron remnants, and intermediate-density lipoproteins, from
367  circulation . In line with this, our study elucidates a possible link between dyslipidemia and
368  the metabolic potential of MAGs for biosynthesizing important bioactive compounds such as
369  vitamin B complex and peptidoglycans, as well as SCFA metabolism. Among these

370  compounds, pantothenate (Vitgs), Vitge and folate (Vitge) have been inversely associated with
371  low-grade inflammation *’ and mortality risk of CVD in a mechanism that may involve

372  regulation of blood homocysteine concentrations *° and one-carbon metabolism °!. SCFA like

373  butyrate and valerate have been shown to decrease total cholesterol and the expression of
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mRNA associated with fatty acid synthase and sterol regulatory element binding protein 1c,

to enhance mRNA expression of carnitine palmitoyltransferase-1a (CPT-1a) in liver °°3,

as
well as to ameliorate arteriosclerosis via ABCA1-mediates cholesterol efflux in macrophages
54, Biosynthesis of peptidoglycans by some GM members has been associated with incidence
of stenotic atherosclerotic plaques and insulin resistance . However, emerging evidence
suggests that these potent signaling molecules play positive roles for enhancing systemic
innate immunity >’ and neurodevelopmental processes %, relaying on a species-dependent
fashion %. In conclusion, our study provides evidence that GM members (e.g., MAGs) and
their genes related to the biosynthesis of bioactive molecules needed to carry out lipid
metabolism, e.g., vitamin B complex and S/B-CFA, are more abundant among subjects with
healthier LPD profiles (e.g., higher HDL2a, HDL2b, and lower LDL). Furthermore,
variations in LPD subfractions correlates with differences in the GM composition >, but these
are not necessarily associated to a higher or lower microbial diversity as reported in previous
studies 4, Given the cross-sectional nature of our study and its inherent limitations, it is not
possible to depict the mechanism by which GM may influence variability in LPD
subfractions. However, our results provide evidence for GM considerations in future research
aiming at unravelling the processes of LPD particles assembly through longitudinal

mechanistic approaches that include the activity of enzymes and transfer proteins, membrane

modulators % and integrative multi-omics.
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616  Figure 1. COUNTERSTRIKE participants and sample overview

617  A) Age and B) body mass index (BMI) distribution of the study participants. C) samples and
618  datasets included and analyzed in this study.
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Figure 2. Plasma lipoprotein distribution (LPD) profiles and covariates

A) Profiles of main and sub-fractions of plasma lipoprotein distribution (LPD) determined by
"H-NMR®. LPD are clustered using Euclidean distances and general agglomerative
hierarchical clustering procedure. Upper color bars represent within-/out- of the
recommended levels of main lipoprotein fractions suggested by the NIH * (total cholesterol
<200mg/dL, LDL <100mg/dL, HDL >60mg/dL, Triglycerides <150 mg/dL). Lower color
bars depict 3 clusters (C1A, C1B and C2) of study participants given their LPD profile and
the sex distribution of subjects. B) Cumulative effect size of non-redundant covariates of LPD
determined by stepwise RDA analysis (right bars) as compared to individual effect sizes
assuming independence (left bars). C) Fraction of LPD variation explained with the stepwise
approach. Distribution of D) age and E) body mass index (BMI) between subjects belonging
to C1A, C1B and C2. Stars show statistical level of significance (*p< 0.05, **p< 0.01, ***P<
0.001)
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636  Figure 3. Diversity metrics on gut microbiota and metabolic content

637  A) Spearman’s rank correlation between fecal microbial KEGG Orthologues (KOs) from
638  shotgun metagenome (SG) sequencing and KO predicted by PICRUSt. B) Richness of

639  microbial phylotypes (zOTUs) richness and C) KO predicted by PICRUSt among subjects
640  catalogued as being C1A, C1B and C2 based on their LPD. D) KO counts (richness) among
641  all subjects and those with BMI <25 (normal) and BMI >25 (overweighed); the observed
642  bimodal distribution was statistically significant by the dip-test. E) Adonis test based on
643  Canberra dissimilarities quantifying variance explained (R?) and significance of phylotypes
644  and KO abundance with LPD clustering. Stars show statistical level of significance (*p< 0.05,
645  **p<0.01, ***P<0.001)
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657  Figure 4. Phylotypes and KO functions associated with LPD clustering

658  Distance-based RDA (Canberra dissimilarity) displaying discrimination of LPD clusters

659  based on selected A) zOTUs (p = 0.001, explained variance = 3.8%) and D) KOs-PICRUSt (p
660  =0.001, explained variance = 2.7%) selected through Random Forests. Overview of selected
661  B)zOTUs and E) KOs-PICRUSt clustered using Canberra distances and general

662  agglomerative hierarchical clustering procedure based on ward2. Distribution of C) zOTUs
663  summarized to family level and F) KOs-PICRUSt summarized to 2™ level KEGG function
664  across subjects belonging C1A, C1B and C2 LPD groups. Heatmaps displaying significant
665  (False Discovery Rate corrected, FDR < 0.05) Spearman’s rank correlations between G)

666  zOTUs and LPD sub-fractions, as well as H) KOs-PICRUSt and LPD sub-fractions. Stars
667  show statistical level of significance (*p< 0.05, **p< 0.01, ***P<0.001)
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Figure 5. Metagenome metabolic functions and associated MAGs

A) RDA displaying discrimination of LPD clusters based on selected KOs obtained from
shotgun metagenome and assembly (p = 0.001, explained variance = 23.7%). B) Overview of
most discriminatory (based on CAP1 and CAP2 within db-RDA) KOs with known metabolic
functions clustered using Canberra distances and general agglomerative hierarchical
clustering procedure based on ward2. C) GC-content — Coverage plot of metagenome
assembled genomes (MAGs) with <10% contamination and >70% completeness. MAGs are
colored according to phylum-level taxonomic affiliation and bubble size indicates their
genome size in mega-bases (Mb). D) Phylogeny of MAGs containing KOs that discriminate
LPD clusters (1A, 1B and 2), a cut-off of 95-ANI (species-level) and 99-ANI (strain-level)
are denoted. MAGs are colored at family level affiliations and their KOs contribution at the
2" Jevel KEGG function pathways are provided. E) Relative abundance of protein-encoding
genes associated with butanol dehydrogenase (K00100), and F) protein-encoding genes
associated metabolism and biosynthesis of vitamin B1, B2, B5 and B9. G-H) Distribution of
cumulative abundance (RPKM) of MAGs (containing discriminatory KOs) associated with
Clostridiales, Coriobacteriaceae and Firmicutes (Cl + Co + F) among LPD clusters. I)
Distribution of cumulative abundance (RPKM) of MAGs (G1 + G5 — see Figure I1I-B in the
Data Supplement, containing discriminatory KOs) associated with Lachnospiraceac among
LPD clusters. I) Heatmaps displaying significant (False Discovery Rate corrected, FDR <
0.05) Spearman’s rank correlations between MAGs and HDL subfractions.
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Figure 6. Short chain fatty acid concentrations

Range of fecal A) butyrate, B) 2-methylbutyrate, C) isobutyrate, D) isovalerate, E) valerate
concentrations within the different LPD clusters. Cumulative abundance 2-methylbutanoyl-
CoA genes screened on metagenomes within LPD clusters. Stars show statistical level of
significance (*p< 0.05)
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