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Abstract

Ecological memory refers to the influence of past events on the response of an ecosystem to exogenous

or endogenous changes. Memory has been widely recognized as a key contributor to the dynamics of

ecosystems and other complex systems, yet quantitative community models often ignore memory and its

implications.

Recent modeling studies have shown how interactions between community members can lead to the

emergence of resilience and multistability under environmental perturbations. We demonstrate how

memory can be introduced in such models using the framework of fractional calculus. We study how the

outcomes of a well-characterized interaction model are affected by gradual increases in ecological memory

under varying initial conditions, perturbations, and stochasticity.

Our results highlight the implications of memory on several key aspects of community dynamics. In

general, memory introduces inertia into the dynamics. This favors species coexistence under perturbation,

enhances system resistance to state shifts, mitigates hysteresis, and can affect system resilience both

ways depending on the time scale considered. Memory also promotes long transient dynamics, such as
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long-standing oscillations and delayed regime shifts, and contributes to the emergence and persistence of

alternative stable states. Our study highlights the fundamental role of memory on ecological communities,

and provides quantitative tools to introduce it in ecological models and analyse its impact under varying

conditions.

Author summary

An ecosystem is said to exhibit ecological memory when its future states do not only depend on its

current state but also on its initial state and trajectory. Memory may arise through various mechanisms

as organisms adapt to their environment, modify it, and accumulate biotic and abiotic material. It may

also emerge from phenotypic heterogeneity at the population level. Despite its commonness in nature,

ecological memory and its potential influence on ecosystem dynamics have been so far overlooked in

many applied contexts. Here, we use modeling to investigate how memory can influence the dynamics,

composition, and stability landscape of ecological communities. We incorporate long-term memory

effects into a multi-species model recently introduced to investigate alternative stable states in microbial

communities. We assess the impact of memory on key aspects of model behavior and validate our

findings using a model parameterized by empirical data from the human gut microbiota. Our approach

for modeling memory and studying its implications has the potential to improve our understanding of

microbial community dynamics and ultimately our ability to predict, manipulate, and experimentally

design microbial ecosystems. It could also be applied more broadly in the study of systems composed of

interacting components.

Introduction1

The temporal variations observed in ecosystems arise from the interplay of complex deterministic and2

stochastic processes, the identification and characterization of which requires quantitative models. The3

empirical study of microbial communities provides an ideal source of data to inform the development4

of dynamical community models, since this active research area generates dense ecological time series5

under highly controlled experimental conditions and perturbations [1, 2]. Nevertheless, despite the recent6

advances in metagenomic sequencing and other high-throughput profiling technologies that are now7

transforming the analysis of microbial communities [3], there has been only limited success in accurately8

modeling and predicting the dynamics of microbial communities, even in well-controlled laboratory9

conditions [2, 4, 5]. This highlights the need to re-evaluate and extend the available models to better10

account for the various mechanisms that underlie community dynamics [2,6–9]. One notable shortcoming11

of the currently popular dynamical models of microbial communities is that they ignore the role of12
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memory, that is, they are based on the assumption that the community’s future behavior solely depends13

on its current state, perturbations, and stochasticity.14

Ecological memory is present when the community’s past states and trajectories influence its dynamics15

over extended periods. This is a fundamental and ubiquitous aspect of natural communities, and its16

influence on community dynamics has been widely recognized across ecological systems [10–12]. Memory17

can emerge at different time scales through a number of mechanisms, including the accumulation of abiotic18

and biotic material characterizing past legacies of the system, adaptations to past conditions, dormancy,19

or spatial structure [13–18]. Thus, developing and investigating new means to incorporate memory20

in dynamical models of ecological communities has the potential to yield more accurate mechanistic21

understanding and predictions.22

Diverse approaches have been proposed to explore ecological memory, including time delays [11,19,20],23

historical effects [21], exogenous memory [12], and buffering of disturbances [22]. A stochastic framework24

was recently used to evaluate the length, patterns, and strength of memory in a series of ecological case25

studies [11]. However, none of these approaches describes long-term memory with a power-law decay26

of the influence of past states. The lag times of antibiotic-tolerant persister cells have been shown to27

be power-law distributed in bacterial populations [23], and this type of long-term memory is likely to28

be common in microbial communities whenever memory emerges from phenotypic heterogeneity [16, 24].29

Furthermore, the impact of memory has not been systematically addressed in contemporary studies,30

and specific methods have been missing for incorporating memory into standard deterministic models of31

microbial community dynamics.32

Potential community assembly mechanisms have been recently investigated based on extensions of33

the generalized Lotka-Volterra (gLV) model, which provides a general modeling framework for species34

interactions [25–27]. The standard model has been extended by incorporating external perturbations [28]35

and sequencing noise [29], and to satisfy specific modeling constraints such as compositionality [30,31].36

gLV models have also been combined with Bayesian Networks for improved longitudinal predictions [32].37

One goal of these modeling efforts is to understand how alternative community types reported in the38

human microbiome may arise, possibly in combination with external factors [33–36]. Despite the recent39

popularity of gLV models in microbial ecology, the impact of memory in these models has been largely40

ignored.41

We address the above shortcomings by explicitly incorporating long-term memory effects into42

community interaction models using fractional calculus, which provides well-established tools for modeling43

memory [37, 38]. We incorporate memory into a gLV model with multiplicative species interactions44

that was recently used to reproduce the alternative stable states observed empirically in the human gut45

microbiota [25], and we use this extended model to analyze and demonstrate how memory can influence46
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critical aspects of community dynamics. We then validate our findings by adding memory to a gLV model47

parameterized with experimental data [39]. Our work contributes to the growing body of quantitative48

techniques for studying community resistance, resilience, prolonged instability, transient dynamics, and49

abrupt regime shifts [40–44].50

Modi�ed

dynamical

properties

c

a b

d

Community model Perturbation

Memory Perturbation + Memory

Fig 1. Schematic illustration of a three-species community in the presence of memory and
perturbations. (a) Mutual interaction model introduced by Gonze et al. [25] to illustrate the emergence of
alternative stable states in human gut microbial communities. The model describes the dynamics of species
abundances Xi as functions of growth rates bi, death rates ki, and inhibition functions fi, where Kij and
n denote interaction constants and Hill coefficients, respectively. (b) Standard perturbations include pulse,
periodic, and stochastic variation in species immigration, death, or growth rates. Such perturbations may
trigger shifts between alternative states. (c) Memory (bolded circles) can be incorporated into dynamical
models by substituting the integer-order derivatives with fractional derivatives Dµi of order µi (see [37] and
Methods). As decreasing µi values correspond to increasing memory, memory is measured as 1− µi. When
all community members have the same memory (µi = µ for all i), the system is said to have commensurate

memory, otherwise incommensurate. Increasing memory changes community dynamics, in particular by
introducing inertia and modifying the stability landscape around stable states. (d) Ecological memory can
change the system dynamics under perturbations.

Results51

Modeling memory52

The gLV and its extensions are ordinary differential equation systems. This class of models has been53

commonly used to model community dynamics, but their standard formulations ignore memory effects.54

Here, we show how ecological memory can be included in these models using fractional calculus. This55

mathematical tool provides a principled framework for incorporating memory effects into differential56

equation systems (see e.g. [37, 38, 45]), thus allowing a systematic analysis and quantification of memory57
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effects in commonly used dynamical models of ecological communities.58

Let us first consider a simple community with three species that tend to inhibit each other’s growth59

(Fig 1a). We will later extend this model community to a larger number of species. To model this system,60

we employ a non-linear extension of the gLV model that was recently used to demonstrate possible61

mechanisms underlying the emergence of alternative states in a community [25]. This model describes62

the dynamics of a species i as a function of its growth rate, death rate, and a multiplicative interaction63

term function of the interaction matrix between all species pairs, as described in Fig 1a. Under certain64

conditions, this model gives rise to a tristable community, where each stable state corresponds to the65

dominance of a different species. The community can shift from one stable state to another following a66

perturbation (Fig 1b). Such transitions can be for instance controlled by changes in the species’ growth67

rates.68

To introduce memory, we extend this model by incorporating fractional derivatives. In this extended69

formulation, the classical derivative operator d/dt is replaced by the fractional derivative operator Dµi ,70

where µi ∈ (0, 1] is the non-integer derivative order for species i (Fig 1c). The fractional derivative is71

defined by a convolution integral with a power-law memory kernel (see Methods). The µi can then be72

used as a tuning parameter for memory, with lower values of µi indicating higher levels of memory for73

species i [37]. The strength of memory for species i is measured as 1−µi. This model includes two special74

cases: (i) no memory (µi = µ = 1 for all species i), which corresponds to the original community model75

with classical integer-order derivatives, and (ii) commensurate memory, where all species have equal76

memory (µi = µ ≤ 1). In contrast, the general case is referred to as incommensurate memory, where µi77

may be unique for each i, and hence the degree of memory may differ between species. We numerically78

solve the fractional-order model with varying values of the parameter µi, thus inducing varying levels79

of memory, and use it to analyse the effect of memory on various aspects of community dynamics, in80

particular its response to perturbations (Fig 1d).81

Resistance and resilience to perturbation82

Resistance refers to a system’s capacity to withstand a perturbation without changing its state, while83

resilience refers to its capacity to recover to its original state after a perturbation [46,47]. To examine84

the impact of ecological memory on community resistance and resilience in response to perturbations, we85

perturbed the system by changing the species growth rates over time. Specifically, we investigated the86

three-species community under pulse (Fig 2), periodic (Fig 3), and stochastic (Fig 4) perturbations, and87

analysed the impact of these three types of perturbations on community dynamics in the presence of88

(commensurate) memory.89

Our results show that memory tends to increase resistance to perturbations by allowing the competing90
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Fig 2. Impact of commensurate memory on community resistance and resilience. (a) A pulse
perturbation is applied to the community (left panel): the growth rate of the blue species is lowered while
that of the green species is simultaneously raised. The perturbation temporarily moves the community
away from its initial stable state, characterized by blue species dominance (middle panel). Introducing
commensurate memory (right panel) increases resistance to perturbation since the community is not
displaced as far from its initial state compared to the memoryless case (shown in superimposition). The
effect on resilience depends on the time scale considered: while memory initially hastens the recovery after
the perturbation, it slows down the later stages of the recovery (starting around the time step 150). (b) A
slightly stronger pulse perturbation is applied (left panel), triggering a shift toward an alternative stable
state dominated by the green species (middle panel). Memory can prevent the state shift (right panel).
Thus, here, not only does memory increase community resistance to perturbation, but also resilience as
manifested by the prevented state shift.

species’ coexistence for a longer time. In the presence of memory, switches between alternative community91

states take place more slowly following a pulse perturbation (Fig 2a), or in some cases may be prevented92

entirely (Fig 2b). S1 Fig provides a further example of the increased resistance provided by memory in a93

larger, unstructured community where memory helps preserve the stable state after a pulse perturbation94

compared to the corresponding memoryless system.95

After the perturbation has ceased, memory initially hastens the return to the original state, but then96

slows it down in the later stages of the recovery (Fig 2a). Thus, the impact of memory on resilience is97

multi-faceted: depending on the time scale considered, memory either hastens or slows down the recovery98

from perturbations, thus increasing or reducing resilience, respectively. Long-term memory may indeed99

act across several time scales owing to the slow (here power-law) decay of the influence of past states.100

Furthermore, in multistable systems, memory enhances resilience by promoting the persistence of the101

original stable state (Fig 2b).102
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Fig 3. Multi-pulse and periodic perturbations: commensurate memory impact on hysteresis
and transient oscillations. (a) Two opposite pulse perturbations are applied successively: the blue
species growth rate is first briefly lowered, and then raised for a longer time. (b) The top panel shows the
hysteresis in the system: the state shift towards the dominance of the green species occurs faster after the
first perturbation than the shift back to the initial stable state after the second perturbation. Introducing
commensurate memory (middle and bottom panels) delays the first state shift, thus increasing resistance,
and hastens the second state shift, thus mitigating the hysteresis effect and increasing long-term resilience.
(c) Rapidly alternating opposite perturbations are applied to the blue species growth rate with a regular
frequency. (d) Without memory (top), the hysteresis effect leads to a permanent shift towards the
green-dominated alternative stable state after a few oscillations. Adding commensurate memory mitigates
the hysteresis, thus extending the transitory period (middle), which may generate longstanding oscillations
in community composition before the community converges to a stable state (bottom).
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Considering two successive pulse perturbations in opposite directions (Fig 3a) highlights another way103

memory can affect resilience in multistable systems. After a state shift triggered by a first perturbation,104

memory hastens recovery to the initial state following a second, opposite perturbation, hence increasing105

long-term resilience (Fig 3b). Memory can thus mitigate the hysteresis that is typical of many ecological106

systems.107

In the presence of regularly alternating opposite pulse perturbations (Fig 3c), akin to those experienced108

by the gut microbiome or marine plankton, the community may not be able to recover its initial state if109

the perturbations follow each other too rapidly. In such circumstances, memoryless communities reach a110

new stable state faster than the communities with memory, as the latter resist the perturbations for a111

longer time because of the reduced hysteresis (Fig 3d). This may lead to community dynamics being112

trapped in long-lasting transient oscillations.113

Finally, we analyse the role of stochastic perturbations, which form an essential component of variation114

in real systems. Under stochastic perturbation (Fig 4a), ecological memory dampens the fluctuations and115

can significantly delay the shift towards an alternative stable state (Fig 4b). This demonstrates in a more116

realistic perturbation setting how memory promotes community resistance to perturbation. Our results117

thus show that memory can enable long-term species coexistence under stochastic or alternating pulse118

perturbations.119

Memory can have unexpected effects on community dynamics when its strength is tuned to bring the120

system in the vicinity of the tristable region, where the outcome of the dynamics is highly sensitive to121

initial conditions. Under such conditions, minute changes in memory can push the system over a tipping122

point towards another attractor, radically changing the outcome (Fig 4c). This illustrates that, beyond123

introducing inertia into the dynamics and damping perturbations, memory can have non-trivial effects on124

the system’s stability landscape, which we investigate in the next section.125

Impact on stability landscape126

Let us now consider a tristable model equivalent to the one used so far, where the 3-species community127

is replaced for more generality by a 15-species community structured into three groups through its128

interaction matrix. Each of these groups represents a set of weakly competing species—e.g., because129

of cross-feeding interactions that mitigate competition, whereas species belonging to different groups130

compete more strongly with each other (Fig 5a). We show that adding memory in such a system can131

change the outcome of the dynamics even in the absence of perturbation. In particular, increasing the132

strength of (incommensurate) memory in the group that is dominant in the stable state of the memoryless133

system can lead to its exclusion from the new stable state (Fig 5b-c). This happens because memory134

shifts the boundary between stable states in the space of initial conditions.135
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Fig 4. Stochastic perturbations with commensurate memory effects. (a) Species growth rates
bi vary stochastically through time according to an Ornstein-Uhlenbeck process (see Table in S1 Table).
(b) Dynamical behavior of the system in response to the stochastic perturbation for equal initial species
abundances and varying memory level: in addition to slowing down community dynamics, increasing
memory limits the overall variation in species abundances, thus enhancing the overall resistance of the
system and promoting species coexistence. (c) For some memory strengths, the final state of the system
can be sensitive to slight variations in memory, with drastic consequences on community composition.

Adding memory in a given species may lead to either a reduction or an increase in its abundance136

depending on the conditions. Whereas Fig 5b-c and S2 Fig illustrate the exclusion of a group of species137

with higher memory from the stable state in the absence of perturbation, memory may conversely increase138

the persistence or abundance of a species, as illustrated in S3b Fig in the presence of perturbation. In139

fact, in the presence of perturbation, tuning memory in a given species may lead to the dominance of any140

of the species depending on the perturbation and initial conditions. This result holds both in the case of141

pulse (S3a Fig) and stochastic (S3b Fig) perturbation.142

When setting the memory strength close to the threshold value between two alternative stable states143

for a given initial condition, we observe long transient dynamics where the community may remain stuck144

in an unstable state for an extended period of time. After a long period of subtle, gradual changes, the145

community eventually converges to its stable state in an abrupt regime shift that it not triggered by any146

perturbation or changes in the model parameters (Fig 5d).147

Remarkably, memory can also induce similar long transient dynamics when the system is outside the148

region of the model’s parameter space exhibiting multistability. S4 Fig illustrates how, depending on149

initial conditions, incommensurate memory may induce long transient states in a community that would,150

in the absence of memory, rapidly converge to a single stable state irrespective of initial conditions. These151

transient states are characterized by the dominance of a species or group of species that is not dominant152

in the stable state. A bifurcation diagram shows that the region of the model’s parameter space that153
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Inh

Fig 5. Impact of incommensurate memory on the community stability landscape: regime
shifts without perturbation. (a) A 15-species version of Gonze’s mutual interaction model (see Gonze et
al. [25]). The 15 species form three groups, blue, red, and green, and within-group species interactions are
stronger than between-group interactions. The resulting system exhibits three stable states, each dominated
by a different group. (b) Starting from random initial conditions, the blue group of species dominates the
community in the stable state when no memory is present (top). Starting from the same initial conditions,
imposing memory on the blue species leads to a temporary rise in abundance, but ultimately another (red)
group of species dominates instead (bottom). (c) Ternary plots represent the stable state distributions
of 50 simulations with random initial conditions and noise in model parameters. Each dot shows, for
one simulation at convergence time, the identity of the dominant group (color) and the average relative
abundances of the three groups (position in the triangle; see S1 Appendix for details). In the memoryless
system (top), the three groups roughly have the same chance of dominating the stable state, whereas
imposing memory effects on the blue set of species (bottom) favors stable states where those species are not
dominant. (d) Setting incommensurate memory in the blue species around the threshold separating two
stable states (here, 0.14816) leads to an abrupt regime shift after a long period of subtle, gradual inclines,
without changing any model parameters or adding noise.
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Fig 6. Memory induces long transient dynamics in a region of the parameter space adjacent
to the multistable region. Bifurcation diagrams for the 3-species Gonze model showing the relative
abundances at time 1,000 of the blue, red, and green species as functions of the blue species’ growth
rate, for three different initial conditions (leading to three distinct curves per plot), and in the absence
(left column) or presence (right column) of memory. The light and dark yellow regions exhibit several
alternative states for the same parameter values. However, it can be shown analytically that the system
only admits a single stable state in the dark yellow region, whereas it admits multiple stable states in the
light yellow region. Therefore, alternative states at time 1,000 in the dark yellow region correspond to
instances of long transient dynamics, where the system remains stuck near ghost attractor states. See S4
Fig for illustrations of the dynamics in the dark yellow region.

exhibits long transient dynamics is next to the multistability region (Fig 6). Memory therefore reveals154

the “imprint” of alternative stable states that exist in adjacent regions of the parameter space.155

Empirically parameterized model156

Our approach to modeling memory effects is general and could be applied to any differential equation157

system. To validate some of our results in a more realistic setting, we applied our approach to a gLV158

system that has been parameterized with extensive experimental data from synthetic human gut microbial159

communities [39]. For demonstration purposes, we restricted ourselves to communities of just two160

species, which we formed by virtually combining the following bacterial species: Bacteroides uniformis161

(BU), Bacteroides thetaiotaomicron (BT), Clostridium hiranonis (CH), and Eubacterium rectale (ER).162

We analyzed three different combinations of two species: (i) combining BU and BT, we obtained a163

bistable community converging to distinct stable states depending on initial conditions, similarly to the164

communities investigated so far (S5c-d Fig); (ii) combining CH and ER, we obtained a monostable165

community exhibiting stable coexistence, where neither of the species makes up more than 95% of the166

total abundance in the stable state (S5e Fig); and (iii) combining BT and CH, we obtained a monostable167
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community exhibiting single species dominance in the stable state (S5f Fig). We compared the results168

obtained by introducing memory in these empirically parameterized communities with those obtained169

in a two-species version of the multistable (here bistable) model studied so far, hereafter referred to as170

Gonze model. We systematically tested a wide range of memory strength values to assess the robustness171

of our results.172

We first measured the resistance and resilience of the two bistable community types (i.e., the BU-BT173

community and the two-species Gonze model) to a pulse perturbation. We measured resistance as174

the strongest perturbation the community can withstand before shifting to an alternative stable state175

(see Resistance and resilience metrics). In agreement with our previous results, we find that memory176

consistently increases resistance over the tested range of memory strengths (S6 Fig and S7 Fig). We177

measured resilience as the recovery time to the stable state after perturbation. In agreement with our178

previous results, we find that memory hastens the recovery over short time scales and (S8a Fig and179

S9a Fig) but slows it down over longer time scales (S8b Fig and S9b Fig).180

We then measured the convergence time to the stable state in the absence of perturbation under varying181

memory strength in all community types, that is, in the three empirically parameterized communities182

as well as in the two-species Gonze model. In all cases, introducing memory lengthens the convergence183

time to the stable state, illustrating the inertia induced by memory (S10-S13 Fig). Nevertheless, in the184

two bistable communities, introducing memory reduces the convergence time in cases where memory185

leads to a change in stable state (S10 Fig and S11 Fig). Interestingly, in every community type, varying186

the level of memory in the two species independently (i.e., introducing incommensurate memory) shows187

that the convergence time is mostly determined by the strength of memory in the species that is less188

abundant in the stable state, while memory in the species that is more abundant in the stable state plays189

comparatively little role. This suggests that memory does not have the same influence on all species in a190

community, and in particular that community dynamics is more sensitive to the introduction of memory191

in less abundant species.192

Discussion193

Our understanding of ecological community dynamics heavily relies on mathematical modeling. Dynamical194

community modeling is a particularly active research area in microbial ecology, where recent studies have195

proposed numerous mechanistic models of microbial community dynamics exploring the role of interactions,196

stochasticity, and external factors [2, 25,48–50]. These studies have, however, largely neglected the role of197

ecological memory despite its potentially remarkable impact on community variation. We have shown198

here how ecological memory can be incorporated into models of microbial community dynamics and199
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used this modeling tool to demonstrate the role of memory as a potential key determinant of community200

dynamics. This has allowed us to expand our understanding of the impact of memory on community201

response to perturbation, the emergence of alternative community states, long transient dynamics and202

delayed regime shifts.203

Ecological memory is a systemic property that can arise through various mechanisms. First,204

memory-like delay effects may arise through intracellular mechanisms, such as cell lag phases or inertia in205

transcriptional regulation, which may be effectively memoryless. In such cases, the dampening effect on206

the dynamics may be simply modeled by introducing a break, which creates a lag in community dynamics207

without inducing long-term memory effects. In contrast, long-term memory may arise if communities208

can alter their environment and thus modify environmental parameters in ways that reflect past events,209

or if organisms exhibit context-specific growth rates that reflect past adaptations [51,52]. It may also210

emerge only at the population or community level through phenotypic heterogeneity [23, 24], which can211

be favored by dormancy, spatial structure, or adaptive bet-hedging mechanisms [15–18].212

Ecological communities are constantly subject to perturbations arising from external factors, and our213

analysis therefore focuses on the combined effect of perturbations and memory on community dynamics.214

Environmental fluctuations through time have a fundamental influence on ecological communities: they215

may promote species coexistence, increase community diversity [53, 54], contribute to the properties216

of stable states [43], and in some cases trigger abrupt regime shifts [55]. Our analysis of memory in217

perturbed communities is particularly relevant to recent studies analysing the response of experimental218

microbial communities to antibiotic pulse perturbation [1], or the impact of periodic perturbations on the219

evolution of antimicrobial resistance [40].220

The emergence of alternative community states has been recently debated in the microbiome research221

literature [36,56]. Gonze et al. [25] demonstrated how pulse perturbations can bring a tristable system222

to a boundary of the tristability region, which then triggers a transition to an alternative stable state.223

We have shown how introducing memory into this model can exert additional influence on the resulting224

dynamics and alter the community’s stability landscape. We have then assessed the generality and225

robustness of some of our results by reproducing them in empirically parameterized models.226

We based our modeling of memory on fractional calculus [37], an extensively studied mathematical227

framework that benefits from well-established mathematical properties (e.g., regarding the existence and228

uniqueness of solutions). It has a broad range of applications and has already been used to model memory229

in other fields [57, 58]. In this framework, memory is represented by fractional derivatives and their230

associated kernel, which determines how quickly the influence of past states fades out (see Methods, Fig 7).231

Fractional calculus allows introducing memory characterized by a power-law kernel, that is, a power-law232

decay of the influence of past states on the present state. It can be considered as a general approach to233
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the modeling of gradually declining long-term memory, such as the one emerging from phenotypically234

heterogeneous bacterial populations [15,16,23]. Hence, our qualitative results on the influence of long-term235

memory on community dynamics are likely to hold more generally. One major advantage of fractional236

calculus is that it can be readily used to introduce memory in any existing dynamical model based on237

ordinary or partial differential equations. It also allows for fast numerical simulations (see S2 Appendix238

for details). This makes the resulting models potentially suitable for simulation-based inference from239

data, which represents an interesting avenue for future research.240

In general, memory adds a certain inertia in community dynamics that tends to damp down fluctuations241

and can therefore mitigate or prevent more extreme and sudden changes in the system. This may favor242

species coexistence in the presence of perturbation, and lead to qualitative changes in the dynamics and in243

community composition under certain conditions. We have clarified in particular how memory influences244

resistance and resilience to perturbations in ecological communities. An interesting line of research for245

future work would be to further quantify the influence of memory on the response to perturbation using246

recently proposed general measures of resilience, such as exit time [59]. Our findings are in agreement247

with previous studies showing that commensurate fractional derivatives cause intrinsic damping in a248

system [60,61], which may delay transitions or shift critical thresholds [38]. Models with incommensurate249

memory, i.e., with different memory strengths in different species, yield differential equation systems that250

are mathematically more challenging to analyse, and therefore remain less well understood. Our analyses251

with incommensurate memory show that memory in a less abundant species tends to have a stronger252

influence on the overall dynamics than in a dominant one (true in most tested configurations), and that253

memory in a given species may or may not favor it depending on the context, such as the presence of254

perturbations.255

We have shown in particular that memory can induce prolonged periods of instability [42], or long256

transient dynamics [44]. More specifically, memory appears to favor long “saddle point crawl-by” in257

regions of the parameter space that exhibit multistability, and to reinforce “ghost attractor states” in258

neighboring regions of the parameter space [44]. The long transient states we observed could easily be259

mistaken for genuine stable states over insufficiently long observation times. Long transient dynamics260

have previously been reported in ecological systems [62] and chemostat experiments [63], and have been261

linked to stochasticity, multiple time scales, and high dimensionality [44]. Ecological memory provides an262

alternative, and largely overlooked, mechanism for their emergence. It has been argued that regime shifts263

may abruptly occur without parameter changes during such long transient dynamics [44], and our results264

support this view since we have shown that the presence of memory can lead to abrupt regime shifts even265

in the absence of perturbations.266

Several extensions of our model could be considered in future studies to enhance its flexibility and267
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to model memory more generally, such as switching memory on and off along time [38] or applying268

fractional differential equations with time-varying derivative orders [64]. Alternative approaches have269

been considered to model ecological memory: a simple approach is to incorporate autocorrelation into270

the model structure [20], but one could also model memory using distributed delay differential equations271

(DDE) [65], fractional delay differential equations [66], or memory-dependent integer derivatives [67], which272

allow for greater flexibility in the shape of kernel functions. However, constructing fractional derivatives273

analogs of standard models by using kernels other than power-law is mathematically challenging [68], and274

may fail to meaningfully describe long-term memory effects [69].275

The modeling of real systems using models that incorporate memory would benefit from the ability to276

gather empirical evidence for the presence, strength, and type of memory in the system. Recent literature277

suggests that it might be possible to empirically detect the presence of memory based on the broad278

properties of a time series. It has been shown that longitudinal time series of microbial communities279

may carry detectable signatures of underlying ecological processes [7, 70]. Recently, Bayesian hierarchical280

models [11, 19], random forests [12], neural networks [71], and unsupervised Hebbian learning [24] have281

been proposed to detect signatures of memory in other contexts. Furthermore, specifically designed282

longitudinal experiments could be used to characterize memory in real communities. Although direct283

experimental manipulation of memory in a microbial system is challenging, the manipulation of lag times284

in E. coli’s diauxic shift provides a recent example [72]. We have here incorporated memory and evaluated285

its impact in a two-species system with experimentally obtained parameters [39], and this approach could286

be used to provide experimentally testable predictions on community dynamics.287

Improving our understanding of the key mechanisms underlying community dynamics is a necessity288

to generate more accurate predictions, and ultimately to develop new techniques for the manipulation of289

ecological communities. We have combined here theoretical analysis and simulations to explore the various290

facets of ecological memory and highlight its often overlooked role as a key determinant of community291

dynamics.292

Methods293

In the following, we detail the mathematical aspects of incorporating ecological memory into two non-linear294

models belonging to the gLV family.295
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Model 1: Gonze model296

We used, as a starting point, the following memoryless model introduced by Gonze et al. [25] and referred297

to in this paper as “Gonze model”:298

dXi

dt
= Xi (bifi({Xk})− kiXi) ,

fi({Xk}) =
N
∏

k=1

k ̸=i

Kn
ik

Kn
ik +Xn

k

.
(1)

This model describes the dynamics of each microbial species abundance Xi according to its growth rate299

bi, its death rate ki, and an inhibition term fi defined by the inter-specific interaction constants Kij and300

their exponent n (known as the Hill coefficient). Kij represents the inhibition of species i by species j: the301

lower it is, the stronger the inhibition. Although Xi denotes absolute abundances, we represent relative302

abundances in most figures to ease visual comparison (except in Figs 2 and 5b,d, and in Supplementary303

Figures S6-S13 Fig).304

Three-group model. We define three sets of species indexed by B (blue), R (red), and G (green).305

Each species i belongs to exactly one of these three groups. We define the growth rate of each group by306

the growth vector b = [bB , bR, bG], where bB = {bi | i ∈ B}, bR = {bi | i ∈ R}, and bG = {bi | i ∈ G}.307

We also define the inter-specific interaction matrix K = {Kij | i, j ∈ B or R or G} such that Kij only308

depends on the group memberships of species i and j, plus a small noise term (see Fig 5a and Methods).309

We first considered a community of three species (i.e., only one species per group), and then a community310

of 15 species forming three groups with strong inter-group inhibition and weak intra-group inhibition. If311

the inhibition strength is large enough (small Kij), this model can have three coexisting stable states312

(tristability). This tristable community is dominated by one of the three groups depending on initial313

species abundances, interaction matrix K, and growth vector b.314

Two-species version. In the “Empirically parameterized model” section of the Results, we315

additionally use a two-species version of this model for the sake of comparison with the empirically316

parameterized two-species gLV models we introduce in that section (see below). This two-species version317

exhibits similar properties but is bistable instead of tristable, each stable state being dominated by one of318

species.319

Model 2: empirically parameterized gLV model320

To validate the observed impact of memory on model (1), we examined memory effects in the following321

dynamic species abundance model of the human gut microbiome, parameterized using in vitro interaction322
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experiments [39]:323

dXi

dt
= Xi



bi +
N
∑

j=1

KijXj



 , (2)

where N , bi, and Kij indicate the number of species, growth rates, intra-specific interaction coefficients324

(i = j), and inter-specific interaction coefficients (i ̸= j), respectively. We considered four microbial325

species: Bacteroides uniformis (BU), which is negatively associated with immunological dysfunction [73],326

Bacteroides thetaiotaomicron (BT), which is positively associated with Ulcerative Colitis [74], Clostridium327

hiranonis (CH), and Eubacterium rectale (ER), which is positively associated with Type II diabetes [75].328

We focused on three two-species communities exhibiting different qualitative behaviors: coexistence (CH329

and ER, with +/- interaction), dominance (BT and CH, with -/- interaction), and bistability (BU and330

BT, with -/- interaction). The interaction coefficients and growth rates are based on the training set T3331

from Venturelli et al. [39].332

Incorporating memory using fractional calculus333

Fractional order derivatives have been successfully used to account for memory effects in many disciplines [37,334

38,57]. To introduce memory in the initial models defined by equations (1) and (2), we replaced the ordinary335

first-order time derivatives by fractional derivatives Dµi (more precisely, Caputo fractional derivatives [76]).336

These modified models can be expressed, using the simplifying notation Fi := Xi (bifi({Xk})− kiXi) or337

Fi := Xi

(

bi +
∑N

j=1
KijXj

)

, as:338

D
µiXi = Fi, 0 < µi f 1, µi ∈ R. (3)

Fractional derivatives implicitly introduce a time correlation function, or “memory kernel”, which339

imposes a dependency between the current system state and its past trajectory via a convolution integral340

(Fig 7a). That is to say, equation (3) can also be expressed using a first-order derivative, as:341

dXi(t)

dt
=

∫ t

t0

Kµi
(t− τ)Fi(τ)dτ. (4)

The memory kernel’s decay rate depends on µi: the lower the value of µi, the slower it will decay (Fig 7).342

Throughout this article, we quantify memory as 1 − µi. In the memoryless case (µi = 1), the kernel343

becomes a Dirac delta function, δ(t− τ), which results in an ordinary integer-order differential equation.344

For 0 < µi < 1, the memory thus introduced can be considered to have a power-law decay in time, a345

temporal scaling behavior that is common in nature [23,58,61,62,77]. Indeed, it can be shown that there346

is a parameter µ > 0 such that the limit limt→∞ t−µKµ(t− τ) is a finite constant for fixed τ [78]. Efficient347

numerical methods exist to solve fractional-order differential equation systems (see S2 Appendix).348
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Fig 7. An intuitive interpretation of the memory introduced by fractional derivatives and of
its effect on convergence time for the logistic curve. (a) The F function in equation (4) for the
standard logistic equation, and a sketch of the memory effects introduced by fractional derivatives on a
time series: the weight of past states on the present decreases as a power-law of time. (b) Influence of a
range of memory strengths on the classic logistic growth curve.

Resistance and resilience metrics349

We define here quantitative metrics of resistance and resilience, which we use to rigorously investigate and350

summarise the influence of memory on the two-species community models analyzed in the “Empirically351

parameterized model” section of the results.352

Convergence time: To measure the time of convergence to the stable state, we measured through353

time the Bray-Curtis dissimilarity between the current state of the community, defined by the set354

of the abundances of all its component species, and its stable state, corresponding to a fixed point355

of the dynamical system. We measured Bray-Curtis dissimilarity between communities 1 and 2 as356

BC =
(

∑S

i=1
|Xi,1 −Xi,2|

)

/
(

∑S

i=1
(Xi,1 +Xi,2)

)

, where Xi,1 and Xi,2 are the absolute abundances of357

species i in community 1 and 2 and S is the total number of species. We considered the community to have358

converged once this dissimilarity was lower than a certain threshold, referred to as the convergence interval.359

In some cases, we then compared the convergence times obtained with more or less stringent convergence360

intervals. We used this approach to quantify the convergence time to stability in Supplementary Figures361

S8-S13 Fig.362

Resistance: We measured resistance to perturbation of a multistable community as the strongest363

perturbation for which the community still recovers to its initial stable state (instead of shifting to an364

alternative stable state). We used this approach in S6 Fig and S7 Fig to quantify the resistance of365

two-species bistable communities to a pulse perturbation in the growth rate of one of the species, starting366

from the stable state. The intensity of the perturbation is defined as the value at which the growth rate367

is set during the pulse.368

Resilience: We measured resilience to perturbation as the recovery time to the initial stable state369
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after a perturbation. We used the strongest perturbation for which the community still recovers to its370

initial stable state. We measured the recovery time as the convergence time to the stable state. We used371

this approach in S8 Fig and S9 Fig to quantify the resilience of two-species bistable communities to a372

pulse perturbation, as above.373

Data availability374

The computational results for this article have been generated with MATLAB. All data and code used375

for running the simulations and generating the figures is available in GitHub, and accessible via the376

permanent Zenodo DOI: https://doi.org/10.5281/zenodo.5979561.377
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28. Stein RR, Bucci V, Toussaint NC, Buffie CG, Rätsch G, Pamer EG, et al. Ecological modeling from445

time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput446

Biol. 2013;9(12):e1003388. doi:10.1371/journal.pcbi.1003388.447

29. Bucci V, Tzen B, Li N, Simmons M, Tanoue T, Bogart E, et al. MDSINE: Microbial Dynamical448

Systems INference Engine for microbiome time-series analyses. Genome Biol. 2016;17(1):1–17.449

doi:10.1186/s13059-016-0980-6.450

30. Li C, Chng KR, Kwah JS, Av-Shalom TV, Tucker-Kellogg L, Nagarajan N. An451

expectation-maximization algorithm enables accurate ecological modeling using longitudinal452

microbiome sequencing data. Microbiome. 2019;7(1):1–14. doi:10.1186/s40168-019-0729-z.453

31. Joseph TA, Shenhav L, Xavier JB, Halperin E, Pe’er I. Compositional Lotka-Volterra454

describes microbial dynamics in the simplex. PLoS Comput Biol. 2020;16(5):e1007917.455

doi:10.1371/journal.pcbi.1007917.456

21/26

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 4, 2022. ; https://doi.org/10.1101/2021.09.01.458486doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.01.458486
http://creativecommons.org/licenses/by/4.0/


32. McGeachie MJ, Sordillo JE, Gibson T, Weinstock GM, Liu YY, Gold DR, et al. Longitudinal457

prediction of the infant gut microbiome with dynamic bayesian networks. Sci Rep. 2016;6:20359.458

doi:10.1038/srep20359.459

33. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of460

gut microbiome variation. Science. 2016;352(6285):560–564. doi:10.1126/science.aad3503.461

34. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the462

human gut microbiome. Nature. 2011;473(7346):174–180. doi:10.1038/nature09944.463

35. Ding T, Schloss PD. Dynamics and associations of microbial community types across the human464

body. Nature. 2014;509(7500):357–360. doi:10.1038/nature13178.465
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