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Abstract

Ecological memory refers to the influence of past events on the response of an ecosystem to exogenous
or endogenous changes. Memory has been widely recognized as a key contributor to the dynamics of
ecosystems and other complex systems, yet quantitative community models often ignore memory and its
implications.

Recent modeling studies have shown how interactions between community members can lead to the
emergence of resilience and multistability under environmental perturbations. We demonstrate how
memory can be introduced in such models using the framework of fractional calculus. We study how the
outcomes of a well-characterized interaction model are affected by gradual increases in ecological memory
under varying initial conditions, perturbations, and stochasticity.

Our results highlight the implications of memory on several key aspects of community dynamics. In
general, memory introduces inertia into the dynamics. This favors species coexistence under perturbation,
enhances system resistance to state shifts, mitigates hysteresis, and can affect system resilience both

ways depending on the time scale considered. Memory also promotes long transient dynamics, such as
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long-standing oscillations and delayed regime shifts, and contributes to the emergence and persistence of
alternative stable states. Our study highlights the fundamental role of memory on ecological communities,
and provides quantitative tools to introduce it in ecological models and analyse its impact under varying

conditions.

Author summary

An ecosystem is said to exhibit ecological memory when its future states do not only depend on its
current state but also on its initial state and trajectory. Memory may arise through various mechanisms
as organisms adapt to their environment, modify it, and accumulate biotic and abiotic material. It may
also emerge from phenotypic heterogeneity at the population level. Despite its commonness in nature,
ecological memory and its potential influence on ecosystem dynamics have been so far overlooked in
many applied contexts. Here, we use modeling to investigate how memory can influence the dynamics,
composition, and stability landscape of ecological communities. We incorporate long-term memory
effects into a multi-species model recently introduced to investigate alternative stable states in microbial
communities. We assess the impact of memory on key aspects of model behavior and validate our
findings using a model parameterized by empirical data from the human gut microbiota. Our approach
for modeling memory and studying its implications has the potential to improve our understanding of
microbial community dynamics and ultimately our ability to predict, manipulate, and experimentally
design microbial ecosystems. It could also be applied more broadly in the study of systems composed of

interacting components.

1 Introduction

2 The temporal variations observed in ecosystems arise from the interplay of complex deterministic and
3 stochastic processes, the identification and characterization of which requires quantitative models. The
4 empirical study of microbial communities provides an ideal source of data to inform the development
5 of dynamical community models, since this active research area generates dense ecological time series
6 under highly controlled experimental conditions and perturbations |1}2]. Nevertheless, despite the recent
7 advances in metagenomic sequencing and other high-throughput profiling technologies that are now
8 transforming the analysis of microbial communities [3], there has been only limited success in accurately
9 modeling and predicting the dynamics of microbial communities, even in well-controlled laboratory
10 conditions [2,[4,/5]. This highlights the need to re-evaluate and extend the available models to better
11 account for the various mechanisms that underlie community dynamics [2,|6H9]. One notable shortcoming

12 of the currently popular dynamical models of microbial communities is that they ignore the role of
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13 memory, that is, they are based on the assumption that the community’s future behavior solely depends
14 on its current state, perturbations, and stochasticity.

15 Ecological memory is present when the community’s past states and trajectories influence its dynamics
16 over extended periods. This is a fundamental and ubiquitous aspect of natural communities, and its
17 influence on community dynamics has been widely recognized across ecological systems [10H12]. Memory
18 can emerge at different time scales through a number of mechanisms, including the accumulation of abiotic
19 and biotic material characterizing past legacies of the system, adaptations to past conditions, dormancy,
20 or spatial structure [13H18]. Thus, developing and investigating new means to incorporate memory
21 in dynamical models of ecological communities has the potential to yield more accurate mechanistic
22 understanding and predictions.

23 Diverse approaches have been proposed to explore ecological memory, including time delays [11}{19}/20],
24 historical effects [21], exogenous memory [12], and buffering of disturbances [22]. A stochastic framework
25 was recently used to evaluate the length, patterns, and strength of memory in a series of ecological case
26 studies [11]. However, none of these approaches describes long-term memory with a power-law decay
27 of the influence of past states. The lag times of antibiotic-tolerant persister cells have been shown to
28 be power-law distributed in bacterial populations 23], and this type of long-term memory is likely to
29 be common in microbial communities whenever memory emerges from phenotypic heterogeneity [16124].
30 Furthermore, the impact of memory has not been systematically addressed in contemporary studies,
31 and specific methods have been missing for incorporating memory into standard deterministic models of
32 microbial community dynamics.

33 Potential community assembly mechanisms have been recently investigated based on extensions of
34 the generalized Lotka-Volterra (gLV) model, which provides a general modeling framework for species
35 interactions [25-27]. The standard model has been extended by incorporating external perturbations 28]
36 and sequencing noise [29], and to satisfy specific modeling constraints such as compositionality [30,31].
37 gLV models have also been combined with Bayesian Networks for improved longitudinal predictions [32].
38 Ome goal of these modeling efforts is to understand how alternative community types reported in the
39 human microbiome may arise, possibly in combination with external factors [33H36]. Despite the recent
40 popularity of gLV models in microbial ecology, the impact of memory in these models has been largely
41 ignored.

42 We address the above shortcomings by explicitly incorporating long-term memory effects into
43 community interaction models using fractional calculus, which provides well-established tools for modeling
44 memory [37,/38]. We incorporate memory into a gLV model with multiplicative species interactions
45 that was recently used to reproduce the alternative stable states observed empirically in the human gut

46 microbiota [25], and we use this extended model to analyze and demonstrate how memory can influence
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47 critical aspects of community dynamics. We then validate our findings by adding memory to a gLV model
48 parameterized with experimental data . Our work contributes to the growing body of quantitative

49 techniques for studying community resistance, resilience, prolonged instability, transient dynamics, and

50 abrupt regime shifts [40-44].
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Fig 1. Schematic illustration of a three-species community in the presence of memory and
perturbations. (a) Mutual interaction model introduced by Gonze et al. to illustrate the emergence of
alternative stable states in human gut microbial communities. The model describes the dynamics of species
abundances X; as functions of growth rates b;, death rates k;, and inhibition functions f;, where K;; and
n denote interaction constants and Hill coefficients, respectively. (b) Standard perturbations include pulse,
periodic, and stochastic variation in species immigration, death, or growth rates. Such perturbations may
trigger shifts between alternative states. (¢) Memory (bolded circles) can be incorporated into dynamical
models by substituting the integer-order derivatives with fractional derivatives D of order u; (see and
. As decreasing p; values correspond to increasing memory, memory is measured as 1 — p;. When
all community members have the same memory (u; = p for all ¢), the system is said to have commensurate
memory, otherwise incommensurate. Increasing memory changes community dynamics, in particular by
introducing inertia and modifying the stability landscape around stable states. (d) Ecological memory can
change the system dynamics under perturbations.

51 Results

52 Modeling memory

53 The gLV and its extensions are ordinary differential equation systems. This class of models has been
54 commonly used to model community dynamics, but their standard formulations ignore memory effects.
55 Here, we show how ecological memory can be included in these models using fractional calculus. This
56 mathematical tool provides a principled framework for incorporating memory effects into differential

57 equation systems (see e.g. ), thus allowing a systematic analysis and quantification of memory
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58 effects in commonly used dynamical models of ecological communities.

59 Let us first consider a simple community with three species that tend to inhibit each other’s growth
60 (Fig ) We will later extend this model community to a larger number of species. To model this system,
61 we employ a non-linear extension of the gLV model that was recently used to demonstrate possible
62 mechanisms underlying the emergence of alternative states in a community [25]. This model describes
63 the dynamics of a species ¢ as a function of its growth rate, death rate, and a multiplicative interaction
64 term function of the interaction matrix between all species pairs, as described in Fig[Th. Under certain
65 conditions, this model gives rise to a tristable community, where each stable state corresponds to the
66 dominance of a different species. The community can shift from one stable state to another following a
67 perturbation (Fig ) Such transitions can be for instance controlled by changes in the species’ growth
68 rates.

69 To introduce memory, we extend this model by incorporating fractional derivatives. In this extended
70 formulation, the classical derivative operator d/dt is replaced by the fractional derivative operator DH:,
71 where y; € (0,1] is the non-integer derivative order for species ¢ (Fig ) The fractional derivative is
72 defined by a convolution integral with a power-law memory kernel (see Methods)). The y; can then be
73 used as a tuning parameter for memory, with lower values of p; indicating higher levels of memory for
74 species i |37]. The strength of memory for species i is measured as 1 — p;. This model includes two special
75 cases: (i) no memory (pu; = p = 1 for all species ¢), which corresponds to the original community model
76 with classical integer-order derivatives, and (ii) commensurate memory, where all species have equal
77 memory (u; = ¢ < 1). In contrast, the general case is referred to as incommensurate memory, where p;
78 may be unique for each 7, and hence the degree of memory may differ between species. We numerically
79 solve the fractional-order model with varying values of the parameter p;, thus inducing varying levels
80 of memory, and use it to analyse the effect of memory on various aspects of community dynamics, in

81 particular its response to perturbations (Fig[I{).

s2 Resistance and resilience to perturbation

83 Resistance refers to a system’s capacity to withstand a perturbation without changing its state, while
g4 resilience refers to its capacity to recover to its original state after a perturbation [46L/47]. To examine
85 the impact of ecological memory on community resistance and resilience in response to perturbations, we
86 perturbed the system by changing the species growth rates over time. Specifically, we investigated the
g7 three-species community under pulse (Fig , periodic (Fig , and stochastic (Fig perturbations, and
g8 analysed the impact of these three types of perturbations on community dynamics in the presence of
89 (commensurate) memory.

90 Our results show that memory tends to increase resistance to perturbations by allowing the competing
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Fig 2. Impact of commensurate memory on community resistance and resilience. (a) A pulse
perturbation is applied to the community (left panel): the growth rate of the blue species is lowered while
that of the green species is simultaneously raised. The perturbation temporarily moves the community
away from its initial stable state, characterized by blue species dominance (middle panel). Introducing
commensurate memory (right panel) increases resistance to perturbation since the community is not
displaced as far from its initial state compared to the memoryless case (shown in superimposition). The
effect on resilience depends on the time scale considered: while memory initially hastens the recovery after
the perturbation, it slows down the later stages of the recovery (starting around the time step 150). (b) A
slightly stronger pulse perturbation is applied (left panel), triggering a shift toward an alternative stable
state dominated by the green species (middle panel). Memory can prevent the state shift (right panel).
Thus, here, not only does memory increase community resistance to perturbation, but also resilience as
manifested by the prevented state shift.

91 species’ coexistence for a longer time. In the presence of memory, switches between alternative community
92 states take place more slowly following a pulse perturbation (Fig ), or in some cases may be prevented
93 entirely (Fig ) S1 Fig provides a further example of the increased resistance provided by memory in a
94 larger, unstructured community where memory helps preserve the stable state after a pulse perturbation
95 compared to the corresponding memoryless system.

96 After the perturbation has ceased, memory initially hastens the return to the original state, but then
97 slows it down in the later stages of the recovery (Fig ) Thus, the impact of memory on resilience is
98 multi-faceted: depending on the time scale considered, memory either hastens or slows down the recovery
99 from perturbations, thus increasing or reducing resilience, respectively. Long-term memory may indeed
100 act across several time scales owing to the slow (here power-law) decay of the influence of past states.
101 Furthermore, in multistable systems, memory enhances resilience by promoting the persistence of the

102 original stable state (Fig [2p).
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Fig 3. Multi-pulse and periodic perturbations: commensurate memory impact on hysteresis
and transient oscillations. (a) Two opposite pulse perturbations are applied successively: the blue
species growth rate is first briefly lowered, and then raised for a longer time. (b) The top panel shows the
hysteresis in the system: the state shift towards the dominance of the green species occurs faster after the
first perturbation than the shift back to the initial stable state after the second perturbation. Introducing
commensurate memory (middle and bottom panels) delays the first state shift, thus increasing resistance,
and hastens the second state shift, thus mitigating the hysteresis effect and increasing long-term resilience.
(c) Rapidly alternating opposite perturbations are applied to the blue species growth rate with a regular
frequency. (d) Without memory (top), the hysteresis effect leads to a permanent shift towards the
green-dominated alternative stable state after a few oscillations. Adding commensurate memory mitigates
the hysteresis, thus extending the transitory period (middle), which may generate longstanding oscillations
in community composition before the community converges to a stable state (bottom).
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103 Considering two successive pulse perturbations in opposite directions (Fig ) highlights another way
104 memory can affect resilience in multistable systems. After a state shift triggered by a first perturbation,
105 memory hastens recovery to the initial state following a second, opposite perturbation, hence increasing
106 long-term resilience (Fig ) Memory can thus mitigate the hysteresis that is typical of many ecological
107 systems.

108 In the presence of regularly alternating opposite pulse perturbations (Fig ), akin to those experienced
109 by the gut microbiome or marine plankton, the community may not be able to recover its initial state if
110 the perturbations follow each other too rapidly. In such circumstances, memoryless communities reach a
111 new stable state faster than the communities with memory, as the latter resist the perturbations for a
112 longer time because of the reduced hysteresis (Fig ) This may lead to community dynamics being
113 trapped in long-lasting transient oscillations.

114 Finally, we analyse the role of stochastic perturbations, which form an essential component of variation
115 in real systems. Under stochastic perturbation (Figlh), ecological memory dampens the fluctuations and
116 can significantly delay the shift towards an alternative stable state (Fig ) This demonstrates in a more
117 realistic perturbation setting how memory promotes community resistance to perturbation. Our results
118 thus show that memory can enable long-term species coexistence under stochastic or alternating pulse
119 perturbations.

120 Memory can have unexpected effects on community dynamics when its strength is tuned to bring the
121 system in the vicinity of the tristable region, where the outcome of the dynamics is highly sensitive to
122 initial conditions. Under such conditions, minute changes in memory can push the system over a tipping
123 point towards another attractor, radically changing the outcome (Fig ) This illustrates that, beyond
124 introducing inertia into the dynamics and damping perturbations, memory can have non-trivial effects on

125 the system’s stability landscape, which we investigate in the next section.

126 Impact on stability landscape

127 Let us now consider a tristable model equivalent to the one used so far, where the 3-species community
128 is replaced for more generality by a 15-species community structured into three groups through its
129 interaction matrix. Each of these groups represents a set of weakly competing species—e.g., because
130 of cross-feeding interactions that mitigate competition, whereas species belonging to different groups
131 compete more strongly with each other (Fig ) We show that adding memory in such a system can
132 change the outcome of the dynamics even in the absence of perturbation. In particular, increasing the
133 strength of (incommensurate) memory in the group that is dominant in the stable state of the memoryless
134 system can lead to its exclusion from the new stable state (Fig —c). This happens because memory

135 shifts the boundary between stable states in the space of initial conditions.



https://doi.org/10.1101/2021.09.01.458486
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.01.458486; this version posted April 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

136

137

138

139

140

142

143

144

145

146

147

148

149

150

151

152

made available under aCC-BY 4.0 International license.

2 stochastic perturbation b Dynamical behavior € Pparticular cases

0
=

Memory= 0.0842041

(1]

0.0842046

o

0.0842048

Growth rates
Abundance
8 no & B .
BHEE B
Memory Weaker
(=}

Stronger

[

o O wm
o
m

-
)

100 200 300 400 500 600 700
Time

)

|

°
°

100 200 300 400 500 600 700
Time

Fig 4. Stochastic perturbations with commensurate memory effects. (a) Species growth rates
b; vary stochastically through time according to an Ornstein-Uhlenbeck process (see Table in S1 Table).
(b) Dynamical behavior of the system in response to the stochastic perturbation for equal initial species
abundances and varying memory level: in addition to slowing down community dynamics, increasing
memory limits the overall variation in species abundances, thus enhancing the overall resistance of the
system and promoting species coexistence. (c) For some memory strengths, the final state of the system
can be sensitive to slight variations in memory, with drastic consequences on community composition.

Adding memory in a given species may lead to either a reduction or an increase in its abundance
depending on the conditions. Whereas Fig [fp-c and S2 Fig illustrate the exclusion of a group of species
with higher memory from the stable state in the absence of perturbation, memory may conversely increase
the persistence or abundance of a species, as illustrated in S3b Fig in the presence of perturbation. In
fact, in the presence of perturbation, tuning memory in a given species may lead to the dominance of any
of the species depending on the perturbation and initial conditions. This result holds both in the case of
pulse (S3a Fig) and stochastic (S3b Fig) perturbation.

When setting the memory strength close to the threshold value between two alternative stable states
for a given initial condition, we observe long transient dynamics where the community may remain stuck
in an unstable state for an extended period of time. After a long period of subtle, gradual changes, the
community eventually converges to its stable state in an abrupt regime shift that it not triggered by any
perturbation or changes in the model parameters (Fig [5).

Remarkably, memory can also induce similar long transient dynamics when the system is outside the
region of the model’s parameter space exhibiting multistability. S4 Fig illustrates how, depending on
initial conditions, incommensurate memory may induce long transient states in a community that would,
in the absence of memory, rapidly converge to a single stable state irrespective of initial conditions. These
transient states are characterized by the dominance of a species or group of species that is not dominant

in the stable state. A bifurcation diagram shows that the region of the model’s parameter space that
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Fig 5. Impact of incommensurate memory on the community stability landscape: regime
shifts without perturbation. (a) A 15-species version of Gonze’s mutual interaction model (see Gonze et
al. ) The 15 species form three groups, blue, red, and green, and within-group species interactions are
stronger than between-group interactions. The resulting system exhibits three stable states, each dominated
by a different group. (b) Starting from random initial conditions, the blue group of species dominates the
community in the stable state when no memory is present (top). Starting from the same initial conditions,
imposing memory on the blue species leads to a temporary rise in abundance, but ultimately another (red)
group of species dominates instead (bottom). (c) Ternary plots represent the stable state distributions
of 50 simulations with random initial conditions and noise in model parameters. Each dot shows, for
one simulation at convergence time, the identity of the dominant group (color) and the average relative
abundances of the three groups (position in the triangle; see S1 Appendix for details). In the memoryless
system (top), the three groups roughly have the same chance of dominating the stable state, whereas
imposing memory effects on the blue set of species (bottom) favors stable states where those species are not
dominant. (d) Setting incommensurate memory in the blue species around the threshold separating two
stable states (here, 0.14816) leads to an abrupt regime shift after a long period of subtle, gradual inclines,
without changing any model parameters or adding noise.
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Fig 6. Memory induces long transient dynamics in a region of the parameter space adjacent
to the multistable region. Bifurcation diagrams for the 3-species Gonze model showing the relative
abundances at time 1,000 of the blue, red, and green species as functions of the blue species’ growth
rate, for three different initial conditions (leading to three distinct curves per plot), and in the absence
(left column) or presence (right column) of memory. The light and dark yellow regions exhibit several
alternative states for the same parameter values. However, it can be shown analytically that the system
only admits a single stable state in the dark yellow region, whereas it admits multiple stable states in the
light yellow region. Therefore, alternative states at time 1,000 in the dark yellow region correspond to
instances of long transient dynamics, where the system remains stuck near ghost attractor states. See S4
Fig for illustrations of the dynamics in the dark yellow region.

154 exhibits long transient dynamics is next to the multistability region (Fig @ Memory therefore reveals

155 the “imprint” of alternative stable states that exist in adjacent regions of the parameter space.

156 Empirically parameterized model

157 Our approach to modeling memory effects is general and could be applied to any differential equation
158 system. To validate some of our results in a more realistic setting, we applied our approach to a gLV
159 system that has been parameterized with extensive experimental data from synthetic human gut microbial
160 communities [39]. For demonstration purposes, we restricted ourselves to communities of just two
161 species, which we formed by virtually combining the following bacterial species: Bacteroides uniformis
162 (BU), Bacteroides thetaiotaomicron (BT), Clostridium hiranonis (CH), and Eubacterium rectale (ER).
163 We analyzed three different combinations of two species: (i) combining BU and BT, we obtained a
164 bistable community converging to distinct stable states depending on initial conditions, similarly to the
165 communities investigated so far (Sbc-d Fig); (ii) combining CH and ER, we obtained a monostable
166 community exhibiting stable coexistence, where neither of the species makes up more than 95% of the

167 total abundance in the stable state (She Fig); and (iii) combining BT and CH, we obtained a monostable

11/26]
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168 community exhibiting single species dominance in the stable state (S5f Fig). We compared the results
169 obtained by introducing memory in these empirically parameterized communities with those obtained
170 in a two-species version of the multistable (here bistable) model studied so far, hereafter referred to as
171 Gonze model. We systematically tested a wide range of memory strength values to assess the robustness
172 of our results.

173 We first measured the resistance and resilience of the two bistable community types (i.e., the BU-BT
174 community and the two-species Gonze model) to a pulse perturbation. We measured resistance as

175 the strongest perturbation the community can withstand before shifting to an alternative stable state

176 (see [Resistance and resilience metrics). In agreement with our previous results, we find that memory

177 consistently increases resistance over the tested range of memory strengths (S6 Fig and S7 Fig). We
178 measured resilience as the recovery time to the stable state after perturbation. In agreement with our
179 previous results, we find that memory hastens the recovery over short time scales and (S8a Fig and
180 S9a Fig) but slows it down over longer time scales (S8b Fig and S9b Fig).

181 We then measured the convergence time to the stable state in the absence of perturbation under varying
182 memory strength in all community types, that is, in the three empirically parameterized communities
183 as well as in the two-species Gonze model. In all cases, introducing memory lengthens the convergence
184 time to the stable state, illustrating the inertia induced by memory (S10-S13 Fig). Nevertheless, in the
185 two bistable communities, introducing memory reduces the convergence time in cases where memory
186 leads to a change in stable state (S10 Fig and S11 Fig). Interestingly, in every community type, varying
187 the level of memory in the two species independently (i.e., introducing incommensurate memory) shows
188 that the convergence time is mostly determined by the strength of memory in the species that is less
189 abundant in the stable state, while memory in the species that is more abundant in the stable state plays
190 comparatively little role. This suggests that memory does not have the same influence on all species in a
191 community, and in particular that community dynamics is more sensitive to the introduction of memory

192 in less abundant species.

103 Discussion

194 Our understanding of ecological community dynamics heavily relies on mathematical modeling. Dynamical
195 community modeling is a particularly active research area in microbial ecology, where recent studies have
196 proposed numerous mechanistic models of microbial community dynamics exploring the role of interactions,
197 stochasticity, and external factors [2,/25,48-50]. These studies have, however, largely neglected the role of
198 ecological memory despite its potentially remarkable impact on community variation. We have shown

199 here how ecological memory can be incorporated into models of microbial community dynamics and
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200 used this modeling tool to demonstrate the role of memory as a potential key determinant of community
201 dynamics. This has allowed us to expand our understanding of the impact of memory on community
202 response to perturbation, the emergence of alternative community states, long transient dynamics and
203 delayed regime shifts.

204 Ecological memory is a systemic property that can arise through various mechanisms. First,
205 memory-like delay effects may arise through intracellular mechanisms, such as cell lag phases or inertia in
206 transcriptional regulation, which may be effectively memoryless. In such cases, the dampening effect on
207 the dynamics may be simply modeled by introducing a break, which creates a lag in community dynamics
208 without inducing long-term memory effects. In contrast, long-term memory may arise if communities
209 can alter their environment and thus modify environmental parameters in ways that reflect past events,
210 or if organisms exhibit context-specific growth rates that reflect past adaptations [51,/52]. It may also
211 emerge only at the population or community level through phenotypic heterogeneity [23.]24], which can
212 be favored by dormancy, spatial structure, or adaptive bet-hedging mechanisms [15H18].

213 Ecological communities are constantly subject to perturbations arising from external factors, and our
214 analysis therefore focuses on the combined effect of perturbations and memory on community dynamics.
215  Environmental fluctuations through time have a fundamental influence on ecological communities: they
216 may promote species coexistence, increase community diversity [53,54], contribute to the properties
217 of stable states [43], and in some cases trigger abrupt regime shifts [55]. Our analysis of memory in
218 perturbed communities is particularly relevant to recent studies analysing the response of experimental
219 microbial communities to antibiotic pulse perturbation [1], or the impact of periodic perturbations on the
220 evolution of antimicrobial resistance [40].

221 The emergence of alternative community states has been recently debated in the microbiome research
222 literature [36,556]. Gonze et al. [25] demonstrated how pulse perturbations can bring a tristable system
223 to a boundary of the tristability region, which then triggers a transition to an alternative stable state.
224 We have shown how introducing memory into this model can exert additional influence on the resulting
225 dynamics and alter the community’s stability landscape. We have then assessed the generality and
226 robustness of some of our results by reproducing them in empirically parameterized models.

227 We based our modeling of memory on fractional calculus [37], an extensively studied mathematical
228 framework that benefits from well-established mathematical properties (e.g., regarding the existence and
220 uniqueness of solutions). It has a broad range of applications and has already been used to model memory
230 in other fields [57,/58]. In this framework, memory is represented by fractional derivatives and their
231 associated kernel, which determines how quickly the influence of past states fades out (see Fig.
232 Fractional calculus allows introducing memory characterized by a power-law kernel, that is, a power-law

233 decay of the influence of past states on the present state. It can be considered as a general approach to
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234 the modeling of gradually declining long-term memory, such as the one emerging from phenotypically
235 heterogeneous bacterial populations [15/[161/23]. Hence, our qualitative results on the influence of long-term
236 memory on community dynamics are likely to hold more generally. One major advantage of fractional
237 calculus is that it can be readily used to introduce memory in any existing dynamical model based on
238 ordinary or partial differential equations. It also allows for fast numerical simulations (see S2 Appendix
239 for details). This makes the resulting models potentially suitable for simulation-based inference from
240 data, which represents an interesting avenue for future research.

241 In general, memory adds a certain inertia in community dynamics that tends to damp down fluctuations
242 and can therefore mitigate or prevent more extreme and sudden changes in the system. This may favor
243 species coexistence in the presence of perturbation, and lead to qualitative changes in the dynamics and in
244 community composition under certain conditions. We have clarified in particular how memory influences
245 resistance and resilience to perturbations in ecological communities. An interesting line of research for
246 future work would be to further quantify the influence of memory on the response to perturbation using
247 recently proposed general measures of resilience, such as exit time [59]. Our findings are in agreement
248 with previous studies showing that commensurate fractional derivatives cause intrinsic damping in a
249 system [60,61], which may delay transitions or shift critical thresholds [38]. Models with incommensurate
250 memory, i.e., with different memory strengths in different species, yield differential equation systems that
251 are mathematically more challenging to analyse, and therefore remain less well understood. Our analyses
252 with incommensurate memory show that memory in a less abundant species tends to have a stronger
253 influence on the overall dynamics than in a dominant one (true in most tested configurations), and that
254 memory in a given species may or may not favor it depending on the context, such as the presence of
255 perturbations.

256 We have shown in particular that memory can induce prolonged periods of instability [42], or long
257 transient dynamics [44]. More specifically, memory appears to favor long “saddle point crawl-by” in
258 regions of the parameter space that exhibit multistability, and to reinforce “ghost attractor states” in
259 neighboring regions of the parameter space [44]. The long transient states we observed could easily be
260 mistaken for genuine stable states over insufficiently long observation times. Long transient dynamics
261 have previously been reported in ecological systems [62] and chemostat experiments [63], and have been
262 linked to stochasticity, multiple time scales, and high dimensionality [44]. Ecological memory provides an
263 alternative, and largely overlooked, mechanism for their emergence. It has been argued that regime shifts
264 may abruptly occur without parameter changes during such long transient dynamics [44], and our results
265 support this view since we have shown that the presence of memory can lead to abrupt regime shifts even
266 in the absence of perturbations.

267 Several extensions of our model could be considered in future studies to enhance its flexibility and
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268 to model memory more generally, such as switching memory on and off along time [38] or applying
269 fractional differential equations with time-varying derivative orders [64]. Alternative approaches have
270  been considered to model ecological memory: a simple approach is to incorporate autocorrelation into
271 the model structure [20], but one could also model memory using distributed delay differential equations
272 (DDE) [65], fractional delay differential equations [66], or memory-dependent integer derivatives [67], which
273 allow for greater flexibility in the shape of kernel functions. However, constructing fractional derivatives
274 analogs of standard models by using kernels other than power-law is mathematically challenging [68], and
275 may fail to meaningfully describe long-term memory effects [69)].

276 The modeling of real systems using models that incorporate memory would benefit from the ability to
277 gather empirical evidence for the presence, strength, and type of memory in the system. Recent literature
278 suggests that it might be possible to empirically detect the presence of memory based on the broad
279 properties of a time series. It has been shown that longitudinal time series of microbial communities
280 may carry detectable signatures of underlying ecological processes [7.[70]. Recently, Bayesian hierarchical
281 models [11,[19], random forests [12], neural networks |71], and unsupervised Hebbian learning [24] have
282 been proposed to detect signatures of memory in other contexts. Furthermore, specifically designed
283 longitudinal experiments could be used to characterize memory in real communities. Although direct
284 experimental manipulation of memory in a microbial system is challenging, the manipulation of lag times
285 in E. coli’s diauxic shift provides a recent example [72]. We have here incorporated memory and evaluated
286 its impact in a two-species system with experimentally obtained parameters |39], and this approach could
287  be used to provide experimentally testable predictions on community dynamics.

288 Improving our understanding of the key mechanisms underlying community dynamics is a necessity
289 to generate more accurate predictions, and ultimately to develop new techniques for the manipulation of
200 ecological communities. We have combined here theoretical analysis and simulations to explore the various
291 facets of ecological memory and highlight its often overlooked role as a key determinant of community

292 dynamics.

203 Methods

204 In the following, we detail the mathematical aspects of incorporating ecological memory into two non-linear

295 models belonging to the gLV family.
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20 Model 1: Gonze model

207 We used, as a starting point, the following memoryless model introduced by Gonze et al. [25] and referred

298 to in this paper as “Gonze model”:

dx;
dt

X (bi fi({Xk}) — ki Xa)

{x
Ji{Xey) = H K, +X"
k:;éz

299 This model describes the dynamics of each microbial species abundance X; according to its growth rate
300 b;, its death rate k;, and an inhibition term f; defined by the inter-specific interaction constants K;; and
301 their exponent n (known as the Hill coefficient). K;; represents the inhibition of species ¢ by species j: the
302 lower it is, the stronger the inhibition. Although X; denotes absolute abundances, we represent relative
303 abundances in most figures to ease visual comparison (except in Figs 2| and ,d, and in Supplementary
304 Figures S6-S13 Fig).

305 Three-group model. We define three sets of species indexed by B (blue), R (red), and G (green).
306 Each species i belongs to exactly one of these three groups. We define the growth rate of each group by
307 the growth vector b = [bp, bgr, bg], where bp = {b; | i € B}, bgp = {b; | i € R}, and bg = {b; | i € G}.
308 We also define the inter-specific interaction matrix K = {Kj;; | ¢,j € B or R or G} such that K;; only
309 depends on the group memberships of species i and j, plus a small noise term (see Fig [5h and .
310 We first considered a community of three species (i.e., only one species per group), and then a community
311 of 15 species forming three groups with strong inter-group inhibition and weak intra-group inhibition. If
312 the inhibition strength is large enough (small K;), this model can have three coexisting stable states
313 (tristability). This tristable community is dominated by one of the three groups depending on initial

314 species abundances, interaction matrix K, and growth vector b.

315 Two-species version. In the [*Empirically parameterized model”| section of the Results, we

316 additionally use a two-species version of this model for the sake of comparison with the empirically
317 parameterized two-species gLV models we introduce in that section (see below). This two-species version
318 exhibits similar properties but is bistable instead of tristable, each stable state being dominated by one of

319 species.

3220 Model 2: empirically parameterized gLV model

321 To validate the observed impact of memory on model , we examined memory effects in the following

322 dynamic species abundance model of the human gut microbiome, parameterized using in vitro interaction

16/126


https://doi.org/10.1101/2021.09.01.458486
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.01.458486; this version posted April 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

323  experiments [39):

dX;
dt

N
=X, b+ ZKinj ; (2)
=1

324 where N, b;, and K;; indicate the number of species, growth rates, intra-specific interaction coefficients
325 (i = j), and inter-specific interaction coefficients (i # j), respectively. We considered four microbial
326 species: Bacteroides uniformis (BU), which is negatively associated with immunological dysfunction [73],
327 Bacteroides thetaiotaomicron (BT), which is positively associated with Ulcerative Colitis [74], Clostridium
328  hiranonis (CH), and Eubacterium rectale (ER), which is positively associated with Type II diabetes |75].
329 We focused on three two-species communities exhibiting different qualitative behaviors: coexistence (CH
330 and ER, with +/- interaction), dominance (BT and CH, with -/- interaction), and bistability (BU and
331 BT, with -/- interaction). The interaction coefficients and growth rates are based on the training set T3

332 from Venturelli et al. [39)].

333 Incorporating memory using fractional calculus

334 Fractional order derivatives have been successfully used to account for memory effects in many disciplines 37,
335 |3857]. To introduce memory in the initial models defined by equations (1)) and , we replaced the ordinary

336 first-order time derivatives by fractional derivatives ©#¢ (more precisely, Caputo fractional derivatives [76]).
337 These modified models can be expressed, using the simplifying notation F; := X; (b; f;({Xr}) — k: X;) or

338 I = X; (bi + Zszl Kinj), as:

OFX; =F;, 0<p <1, €R. (3)

339 Fractional derivatives implicitly introduce a time correlation function, or “memory kernel”, which
340 imposes a dependency between the current system state and its past trajectory via a convolution integral

341 (Fig ) That is to say, equation can also be expressed using a first-order derivative, as:

dXi(t)
dt

- / 'K, (t = 7)F(r)dr. )
to
342 The memory kernel’s decay rate depends on p;: the lower the value of p;, the slower it will decay (Fig 7).
343 Throughout this article, we quantify memory as 1 — ;. In the memoryless case (u; = 1), the kernel
344 becomes a Dirac delta function, §(¢ — 7), which results in an ordinary integer-order differential equation.
345 For 0 < p; < 1, the memory thus introduced can be considered to have a power-law decay in time, a
346 temporal scaling behavior that is common in nature [23,/58,61,/62,/77]. Indeed, it can be shown that there
347 is a parameter p > 0 such that the limit lim, ., t7#*K,(t —7) is a finite constant for fixed 7 |78]. Efficient

348 numerical methods exist to solve fractional-order differential equation systems (see S2 Appendix).

17/126


https://doi.org/10.1101/2021.09.01.458486
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.01.458486; this version posted April 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

a b
0 2 4 6 8 10 S
Past ) . rrent =1
Time series curre v
e
et
=
)
—
> S)
o
: o
g o
- >
K,,= Power-Law Kernel ° S
Ky
o
] 0 ‘ ‘ ‘ ‘
= 0 2 4 6 8 10

Time

Fig 7. An intuitive interpretation of the memory introduced by fractional derivatives and of
its effect on convergence time for the logistic curve. (a) The F function in equation for the
standard logistic equation, and a sketch of the memory effects introduced by fractional derivatives on a
time series: the weight of past states on the present decreases as a power-law of time. (b) Influence of a
range of memory strengths on the classic logistic growth curve.

349 Resistance and resilience metrics

350 We define here quantitative metrics of resistance and resilience, which we use to rigorously investigate and

351 summarise the influence of memory on the two-species community models analyzed in the

352 [parameterized model”| section of the results.

353 Convergence time: To measure the time of convergence to the stable state, we measured through
354 time the Bray-Curtis dissimilarity between the current state of the community, defined by the set
355 of the abundances of all its component species, and its stable state, corresponding to a fixed point
356 of the dynamical system. We measured Bray-Curtis dissimilarity between communities 1 and 2 as
357 BC = (Zil | X1 — Xi72|) / (Zf:1(Xi71 + Xi)g)), where X; 1 and X, » are the absolute abundances of
358 species ¢ in community 1 and 2 and S is the total number of species. We considered the community to have
359 converged once this dissimilarity was lower than a certain threshold, referred to as the convergence interval.
360 In some cases, we then compared the convergence times obtained with more or less stringent convergence
361 intervals. We used this approach to quantify the convergence time to stability in Supplementary Figures
362 S8-S13 Fig.

363 Resistance: We measured resistance to perturbation of a multistable community as the strongest
364 perturbation for which the community still recovers to its initial stable state (instead of shifting to an
365 alternative stable state). We used this approach in S6 Fig and S7 Fig to quantify the resistance of
366 two-species bistable communities to a pulse perturbation in the growth rate of one of the species, starting
367 from the stable state. The intensity of the perturbation is defined as the value at which the growth rate
368 is set during the pulse.

369 Resilience: We measured resilience to perturbation as the recovery time to the initial stable state
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370 after a perturbation. We used the strongest perturbation for which the community still recovers to its
371 initial stable state. We measured the recovery time as the convergence time to the stable state. We used
372 this approach in S8 Fig and S9 Fig to quantify the resilience of two-species bistable communities to a

373 pulse perturbation, as above.

372 Data availability

375 The computational results for this article have been generated with MATLAB. All data and code used
376 for running the simulations and generating the figures is available in GitHub, and accessible via the

377 permanent Zenodo DOI: https://doi.org/10.5281/zenodo.5979561.
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