

1 Mutationathon: towards standardization in estimates of pedigree-based 2 germline mutation rates

3 **Lucie A. Bergeron^{1,*}, Søren Besenbacher², Tychele N. Turner³, Cyril J. Versoza⁴,**
4 **Richard J. Wang⁵, Alivia Lee Price¹, Ellie Armstrong⁶, Meritxell Riera⁷, Jedidiah**
5 **Carlson⁸, Hwei-yen Chen¹, Matthew W. Hahn⁵, Kelley Harris⁹, April Snøfrid Lo Natalie**
6 **M Kleppe², Elora H. López-Nandam¹⁰, Priya Moorjani¹¹, Susanne P. Pfeifer¹², George**
7 **P. Tiley¹³, Anne D. Yoder¹³, Guojie Zhang¹ and Mikkel H. Schierup^{7,*}**

- 8 1. Section for Ecology and Evolution, Department of Biology, University of
9 Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
- 10 2. Department of Molecular Medicine, Aarhus University, Brendstrupgårdsvej 21A,
11 8200 Aarhus N, Denmark
- 12 3. Department of Genetics, Washington University School of Medicine, St. Louis, MO
13 63110, USA
- 14 4. Center for Evolution and Medicine, School of Life Sciences, Arizona State
15 University, Tempe, AZ 85281 USA
- 16 5. Department of Biology and Department of Computer Science, Indiana University,
17 Bloomington, IN 47401 USA
- 18 6. Department of Biology, Stanford University, Stanford, CA, 94305 USA
- 19 7. Bioinformatics Research Centre, Aarhus University, C.F.Møllers Allé 8, 8000,
20 Aarhus C, Denmark
- 21 8. Helix Inc., San Mateo, CA, 94401 USA
- 22 9. Department of Genome Sciences, University of Washington, Seattle, Washington,
23 United States of America, Computational Biology Division, Fred Hutchinson Cancer
24 Research Center, Seattle, Washington, USA
- 25 10. California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA
26 94118 USA
- 27 11. Department of Molecular and Cell Biology, Center for Computational Biology,
28 University of California, Berkeley, CA 94720 USA
- 29 12. Center for Evolution and Medicine, Center for Mechanisms of Evolution, School of
30 Life Sciences, Arizona State University, Tempe, AZ 85281 USA
- 31 13. Department of Biology, Duke University, Durham, NC 27708 USA

32 Abstract

33 In the past decade, several studies have estimated the human per-generation germline
34 mutation rate using large pedigrees. More recently, estimates for various non-human species
35 have been published. However, methodological differences among studies in detecting
36 germline mutations and estimating mutation rates make direct comparisons difficult. Here,
37 we describe the many different steps involved in estimating pedigree-based mutation rates,
38 including sampling, sequencing, mapping, variant calling, filtering, and how to appropriately
39 account for false-positive and false-negative rates. For each step, we review the different
40 methods and parameter choices that have been used in the recent literature. Additionally, we
41 present the results from a “Mutationathon”, a competition organized among five research labs
42 to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We
43 report almost a two-fold variation in the final estimated rate among groups using different
44 post-alignment processing, calling, and filtering criteria and provide details into the sources
45 of variation across studies. Though the difference among estimates is not statistically
46 significant, this discrepancy emphasizes the need for standardized methods in mutation rate
47 estimations and the difficulty in comparing rates from different studies. Finally, this work
48 aims to provide guidelines for computational and statistical benchmarks for future studies
49 interested in identifying germline mutations from pedigrees.

50

51 Introduction

52 Germline mutations are the source of most genetic diseases and provide the raw material for
53 evolution. Thus, it is crucial to accurately estimate the frequency at which mutations occur in
54 order to better understand the course of evolutionary events. The development of high
55 throughput next-generation sequencing offers the opportunity to directly estimate the
56 germline mutation rate over a single generation, based on a whole-genome comparison of
57 pedigree samples (mother, father, and offspring), without requiring assumptions about
58 generation times or fossil calibrations (Tiley et al., 2020). Pedigree sequencing provides
59 multiple pieces of information in addition to an overall mutation rate. For instance, the
60 genomic locations, the spectrum of mutation types (e.g. transition or transversion), and the
61 nucleotide context of all mutations can easily be gleaned. Furthermore, pedigree sequencing
62 enables researchers to identify the parental origin of the mutations--that is, whether the

63 mutation arose in the maternal or paternal germline. Finally, using pedigrees means that
64 researchers often have precise information about the age of the parents at the time of
65 reproduction, and comparing several trios (i.e. three related individuals: mother, father, and
66 offspring) at different parental ages can tell us about the effect of parental age on the total
67 number of transmitted mutations, their location, and their spectrum. Thus, there has been a
68 growing interest in applying this method to address medical and evolutionary questions.

69 The first estimate of the human germline mutation rate using pedigrees was published more
70 than ten years ago (Roach et al., 2010). Four years later, the first pedigree-based mutation
71 rate for a non-human primate, the chimpanzee, was estimated (Venn et al., 2014). Today, at
72 least 20 vertebrate species have mutation rates estimated by pedigree sequencing (Table 1),
73 with half added in the past two years. Each study differs in the number of trios, the
74 sequencing technology and depth, the ages of individuals included, and the bioinformatics
75 pipelines used to analyze the data (see Table 1 and Supplementary Table 1). Thus, reported
76 variation in mutation rates among studies might result from a combination of biological and
77 methodological factors. With an increasing number of studies being published, an
78 examination of the differences among studies and suggestions for standards that will
79 minimize differences caused by methodological discrepancies are warranted.

80

81 **Table 1 – Vertebrate species with a direct estimate of the mutation rate** using
82 a pedigree approach. The list of species includes ten primates, five non-primate
83 mammals, one bird, and four fish (see Supplementary Table 1 for differences in
84 study design and methodology).

Species	Mutation rate per site per generation : $\mu \times 10^{-8}$	Number of trios	Parental age *	Reference
Orangutan (Pongo abelii)	1.66	1	♂: 31.00 and ♀: 15.00	(Besenbacher et al., 2019)

Human (<i>Homo sapiens</i>)	1.17	1 (CEU)	unspecified	(Conrad et al., 2011)
	0.97	1 (YRI)	unspecified	(Conrad et al., 2011)
	1.20	78	♂: 29.10 and ♀: 26.50	(Kong et al., 2012)
	1.20	269	unspecified	(Francioli et al., 2015)
	1.28	13	♂: 29.80	(Rahbari et al., 2016)
	1.05	719	♂: 33.40	(Wong et al., 2016)
	1.29	1550	unspecified	(Jónsson et al., 2017)
	1.28	150	~ 27.70	(Marety et al., 2017)
	1.30	516	♂: 33.40	(Turner et al., 2017)
	1.10	593	♂: 29.10 and ♀: 26.00	(Sasani et al., 2019)
	1.22	1449	♂: 29.70 and ♀: 26.90	(Kessler et al., 2020)
Chimpanzee (<i>Pan troglodytes</i>)	1.20	6	♂: 18.90 and ♀: 15.00	(Venn et al., 2014)
	1.48	1	♂: 24.00 and ♀: 24.00	(Tatsumoto et al., 2017)
	1.26	7	♂: 19.30 and ♀: 15.90	(Besenbacher et al., 2019)
Gorilla (<i>Gorilla gorilla</i>)	1.13	2	♂: 14.50 and ♀: 20.50	(Besenbacher et al., 2019)
Baboon (<i>Papio anubis</i>)	0.57	12	♂: 10.70 and ♀: 10.20	(Wu et al., 2020)
Rhesus macaque (<i>Macaca mulatta</i>)	0.58	14	♂: 7.80 and ♀: 7.10	(Wang et al., 2020)
	0.77	19	♂: 12.40 and ♀: 8.40	(Bergeron et al., 2021)
Green monkey (<i>Chlorocebus sabaeus</i>)	0.94	3	♂: 8.70 and ♀: 4.70	(Pfeifer, 2017)
Owl monkey (<i>Aotus nancymaae</i>)	0.81	14	♂: 6.60 and ♀: 6.50	(Thomas et al., 2018)

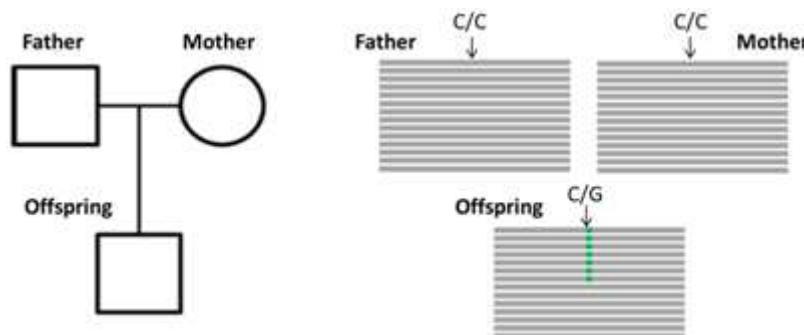
Marmoset (<i>Callithrix jacchus</i>)	0.43	1	~ 2.80	(Yang et al., 2021)
Gray mouse lemur (<i>Microcebus murinus</i>)	1.52	2	♂: 4.55 and ♀: 1.45	(Campbell et al., 2021)
Mouse (<i>Mus musculus</i>)	0.57	8	unspecified	(Milholland et al., 2017)
	0.39	15	~ 0.47	(Lindsay et al., 2019)
Cattle (<i>Bos taurus</i>)	1.17	5	unspecified	(Harland et al., 2017)
Wolf (<i>Canis lupus</i>)	0.45	4	♂: 4.00 and ♀: 2.25	(Koch et al., 2019)
Domestic cat (<i>Felis catus</i>)	0.86	11	♂: 4.70 and ♀: 2.90	(Wang et al., 2021b)
Platypus (<i>Ornithorhynchus anatinus</i>)	0.70	2	unspecified	(Martin et al., 2018)
Collared flycatcher (<i>Ficedula albicollis</i>)	0.46	7	unspecified	(Smeds et al., 2016)
Herring (<i>Clupea harengus</i>)	0.20	12	unspecified	(Feng et al., 2017)
Cichlid (<i>Astatotilapia calliptera, Aulonocara stuartgranti</i> and <i>Lethrinops lethrinus</i>)	0.35	9	unspecified	(Malinsky et al., 2018)

85 * Depending on the study, the parental ages are reported as average paternal age (♂), average
86 maternal age (♀), average parental age (~), or unspecified.

87

88 The key principle of the pedigree-based approach is to detect *de novo* mutations (DNMs)
89 present in a heterozygous state in an offspring that are absent from its parents' genomes
90 (Figure 1). A per-site per-generation mutation rate can be inferred by dividing the number of
91 DNMs by the number of sites in the genome that mutations could possibly be identified in

92 (and accounting for the diploid length of the genome, as mutations can be transmitted by both
93 the mother and father). As mutations are rare events, detecting all the true DNM (or having a
94 high sensitivity) while avoiding errors (or increasing precision) from a single generation
95 remains challenging. False-positive calls (sites incorrectly detected as DNM) can be caused
96 by sequencing errors, errors introduced by read-mapping and genotyping steps, or somatic
97 mutations in the offspring. Numerous filters are thus often applied on the variant sites to
98 increase the precision of the candidate DNM detection. However, filters that are too
99 conservative can also discard true DNM, reducing the sensitivity by increasing the rate of
100 false-negative calls (true DNM not detected). Therefore, a balance should be found between
101 precision and sensitivity--a goal that has led to the development of multiple different methods
102 to estimate germline mutation rates from pedigree samples.



103
104 **Figure 1 – Detection of a *de novo* mutation (DNM) in a trio sample (mother,
105 father, and offspring).** Potential candidates for DNM are sites where
106 approximately half of the reads (indicated as grey bars) from the offspring have a
107 variant (indicated in green) that is absent from the parental reads.
108

109 In this study, we aim to define what we consider to be the state-of-the-art in pedigree-based
110 germline mutation rate estimation, to discuss the pros and cons of each methodological step,
111 and to summarize best practices that should be used when calling germline mutations. We
112 review several recently published methods that estimate germline mutation rates from
113 pedigree samples. In parallel, we set up a competition--the “Mutationathon”--among five
114 research groups to explore the effect of different methodologies on mutation rate estimates.
115 Using a common genomic dataset consisting of a pedigree of the rhesus macaque (*Macaca*
116 *mulatta*; Bergeron et al., 2021), each group estimated the number of candidate DNM
117 (validated by PCR amplification and Sanger resequencing) and a germline mutation rate. An
118 examination of the estimated rates produced by different groups not only highlighted the

119 choices that can be made in estimating per-generation mutation rates, but it also provided us
120 with an opportunity to characterize the impact of these choices on the systematic differences
121 in estimated rates, which in turn yielded important insights into the parameters that could
122 reduce the occurrence of false-positive calls.

123

124 **Results**

125 **Comparison of methods**

126 The overall pipeline from high throughput next-generation sequencing data to an estimated
127 mutation rate is similar across all studies listed in Table 1. It includes five steps (Figure 2):

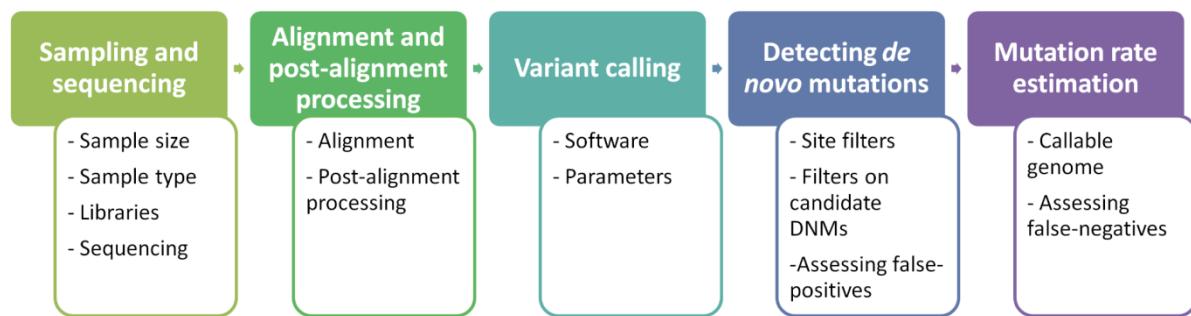
128 1. sampling and whole-genome sequencing of at least one trio or extended pedigrees that also
129 include a third-generation (useful for validation of putative DNMs in the offspring),

130 2. alignment of reads to a reference genome and post-processing of alignments,

131 3. variant-calling to infer genotypes or genotype likelihoods for all individuals,

132 4. detection of DNMs via filtering of candidates (including an assessment of the false
133 discovery rate), and finally

134 5. the estimation of a per-generation mutation rate accounting for the length of the accessible
135 genome (including an assessment of the false-negative rate).



136

137 **Figure 2 – Flow of the main steps to call *de novo* mutations (DNMs) from**
138 **pedigree samples.** Each step lists the various choices in study design and
139 methodology that might impact mutation rate estimates.

140

141 **Step 1 - Sampling and sequencing**

142 **Sample size.** Pedigree-based study designs can vary significantly, from those that include
143 only one trio (e.g., Besenbacher et al., 2019) to those that include thousands of trios (e.g.,
144 Halldorsson et al., 2019). The first study to estimate a pedigree-based human mutation rate
145 used only two trios and estimated a mutation rate of 1.1×10^{-8} per site per generation (Roach
146 et al., 2010), which is within the overall variation reported across studies with larger sample
147 sizes (Table 1). Larger sample sizes reduce uncertainty in the average mutation rate for a
148 species and offer more statistical power for the exploration of various parameters such as the
149 parental age effect, the contribution of each parent to the total number of DNM, the presence
150 of mosaicism and shared mutations when including siblings, or the distribution of mutations
151 across genomes. Moreover, multiple generation pedigrees, also referred to as extended trios,
152 can be used to validate true DNM and adjust quality filters by studying transmission to a
153 third generation. Therefore, whenever possible, multiple trios should be analyzed and more
154 than one generation should be included. Finally, the age of the parents at the time of
155 reproduction is required for estimating the per-year mutation rate from the per-generation
156 rates directly measured in the trios. In some studies, the age of the parents at conception is
157 not available, and instead, the mean age of reproduction is used for the estimation of the per-
158 year mutation rate. While useful, this approximation can lead to biased results if the age of
159 the parents at conception was much older or much younger compared to the mean age in the
160 population. Thus, when possible, the information on the age of each parent at the time of
161 conception should be collected as it is essential for the interpretation of results and to help
162 understand parental age effects on mutation rate.

163 **Sample type.** The most commonly used sample types are somatic tissues such as whole
164 blood, muscle, or liver, which generally produce a high quantity of DNA with long fragment
165 sizes and allow for high-coverage sequencing. The duration and temperature of storage can
166 affect the quality of the extracted DNA and increase the rate of sequencing errors. Thus, to
167 minimize DNA damage during storage, DNA is typically kept in TE (tris-EDTA) buffer.
168 Moreover, it is advised to store DNA at -80°C for long-term storage (months to years) and in
169 liquid nitrogen at -164°C for decades (Baust, 2008; Straube and Juen, 2013). Other materials
170 such as buccal swabs or fur can be considered, but they can be technically challenging. For
171 instance, as part of a recent study on rhesus macaques (Bergeron et al., 2021), DNA was
172 extracted from hair samples and sequenced at 95X coverage, yet, due to the fragmentation,

173 only 38% of the reads were mappable to the reference genome. After variant calling, the
174 average depth of usable reads was 6X, with only 10% of sites covered by more than 10 reads.
175 To reduce the number of false-positive calls caused by somatic mutations, it is best to avoid
176 tissues with an accumulation of such mutations, such as skin. In this regard, blood is often the
177 preferred tissue: as many different tissues contribute cells to the blood, the hope is that a
178 somatic mutation in any one of them will not be mistaken for a DNM. However, in rare cases,
179 mainly in older individuals, clonal hematopoiesis can lead to high frequency somatic
180 mutations in the blood. Sequencing more than one type of tissue, when feasible, should be
181 considered in order to reduce the potential for mistaking somatic mutations as candidate
182 DNMs.

183 **Libraries.** After DNA extraction, genomic library preparation is another step that can
184 introduce sequencing errors. Most studies have used Illumina sequencing platforms, yet, even
185 for a single technology, there are different library preparation protocols available. PCR
186 amplification is commonly used to increase the quantity of DNA, but this can generate
187 artifacts caused by the introduction of sequence errors (PCR errors) or by the over-
188 amplification of some reads (PCR bias) (Acinas et al., 2005). Thus, for samples yielding a
189 sufficient amount of DNA, PCR-free libraries that do not involve amplification prior to
190 cluster generation are preferable. Moreover, as different library preparation methods can
191 result in different amplification biases (Ross et al., 2013; Wingett, 2017), utilizing different
192 types of library preparations may be advisable to reduce the sources of error.

193 **Sequencing.** All Illumina sequencing platforms use similar sequencing chemistry
194 (sequencing-by-synthesis) and mainly differ in running speed and throughput. Another
195 equivalent technology, used in two studies (Bergeron et al., 2021; Roach et al., 2010), is
196 BGISEQ-500, combining DNA nanoball nanoarrays with polymerase-based stepwise
197 sequencing (Mak et al., 2017) and showing similar performances to Illumina on data quality
198 (Chen et al., 2019; Patch et al., 2018). Another study used 10x Genomics linked reads, which
199 can help phase maternal and paternal mutations (Campbell et al., 2021). However, it remains
200 unclear if alternative library preparation and sequencing platforms introduce additional biases
201 compared to standard Illumina protocols. Most pedigree-based studies of germline mutations
202 have sequenced each individual to a depth between 30X and 50X (Besenbacher et al., 2019;
203 Campbell et al., 2021; Jónsson et al., 2017; Kessler et al., 2020; Malinsky et al., 2018;
204 Milholland et al., 2017; Sasani et al., 2019; Smeds et al., 2016; Thomas et al., 2018; Turner et

205 al., 2017; Wang et al., 2020; Wu et al., 2020), three studies sequenced at a higher depth of ~
206 80X (Bergeron et al., 2021; Maretty et al., 2017) and 150X (Tatsumoto et al., 2017), while
207 six studies sequenced at a depth lower than 25X on average (Harland et al., 2017; Koch et al.,
208 2019; Lindsay et al., 2019; Martin et al., 2018; Pfeifer, 2017; Rahbari et al., 2016). A
209 minimum coverage of 15X has been advised to call single nucleotide polymorphisms (SNPs)
210 accurately (Fumagalli et al., 2013). Yet, this depth might not be sufficient to call germline
211 mutations, since it might be hard to distinguish genuine germline mutations from somatic
212 mutations that are present in a substantial fraction of cells. Furthermore, with low coverage
213 the probability of calling a parent homozygous for the reference allele, when they are actually
214 heterozygous, becomes non-negligible at the genome-wide level. For example, the binomial
215 probability of not observing a read with one of the alleles in a heterozygote with 15X
216 coverage is $0.5^{15} = 3.05 \times 10^{-5}$, which will happen by chance around 30 times in a genome
217 with 1 million heterozygous positions. Likewise, based on the binomial distribution, the
218 probability that a somatic mutation present in 10% of cells is seen in more than 30% of reads
219 is 0.0113 with 20X coverage but falls to 0.0004 with 35X coverage. Thus, it is advised to aim
220 for a minimum of 35X as a rule of thumb.

221 **Step 2 - Alignment and post-alignment processing**

222 **Alignment.** To find DNM, we must first find where in the genome each of the short
223 sequencing reads comes from. The Burrows-Wheeler Aligner (BWA; Li and Durbin, 2009) is
224 an algorithm developed to map short reads (50-250 bp) to a reference genome and has been
225 used in the majority of studies on direct mutation rate estimation (Bergeron et al., 2021;
226 Besenbacher et al., 2019; Harland et al., 2017; Jónsson et al., 2017; Kessler et al., 2020; Koch
227 et al., 2019; Malinsky et al., 2018; Maretty et al., 2017; Milholland et al., 2017; Pfeifer, 2017;
228 Sasani et al., 2019; Smeds et al., 2016; Tatsumoto et al., 2017; Thomas et al., 2018; Turner et
229 al., 2017; Wang et al., 2021b, 2020; Wu et al., 2020). In particular, the BWA-MEM
230 algorithm is fast, accurate, and can be implemented with an insert size option to improve the
231 matching of paired reads. Several aspects of the study organism and study design can have
232 detrimental effects on read mapping. Some studies reported a trimming step to remove
233 adapter sequences and poor-quality reads--those with a high proportion of unknown ("N")
234 bases or low quality-score bases (Bergeron et al., 2021; Maretty et al., 2017; Tatsumoto et al.,
235 2017; Wu et al., 2020). However, trimming might not be necessary as some mapping
236 software will soft-clip (or mask) the adaptors, while low-quality reads can be removed during

237 the variant calling step. The quality of the reference genome can play an important role in
238 obtaining a large proportion of reads with high mapping scores. In the case of a poor or non-
239 existent reference genome, using the reference genome of a phylogenetically related species
240 is an option, but this could make the downstream analysis more complex (Prasad et al.,
241 2021). Moreover, BWA was designed to map low-divergence sequences, so that using a
242 related species, or even a closely related individual in the same species when heterozygosity
243 is high, could impact the mapping. Finally, low-complexity regions and repetitive sequences
244 such as dinucleotide tandem repeats can be problematic for read-mapping. Standards have
245 been proposed for human genome analysis and can be followed for germline mutation rate
246 calling in species with comparable heterozygosity (for details, see Regier et al., 2018).

247 **Post-alignment processing.** To correct for possible misalignment of sequencing reads to the
248 reference genome, post-alignment quality control is necessary. This step often includes base-
249 quality score recalibration (BQSR), removing of duplicate reads, and realignment around
250 indels. BQSR corrects for any bias in the base quality score assigned by the sequencer by
251 utilizing information from a set of known variants for the studied species. When such a
252 dataset is not available, as in many non-human species, the Best Practices of the Genome
253 Analysis ToolKit (GATK) software from the Broad Institute advises to proceed first with
254 variant calling in all available samples and subsequently using the best quality variants to
255 recalibrate the base quality scores (GATK team, 2021). If multiple generations are available,
256 high-quality variants fully transmitted across generations can be used for BQSR (Wu et al.,
257 2020). However, some studies have ignored this step due to the circularity of this method and
258 its computational expense, as variants will be called twice (Bergeron et al., 2021; Thomas et
259 al., 2018; Wang et al., 2020). A comparative study presented a difference of less than 0.1 %
260 between the total variant sites called with and without recalibration (Li, 2014), and this
261 difference was even lower for high-coverage (40X) sequencing (Tian et al., 2016); however,
262 this step is still advised to increase the quality of variant calling (Li, 2020). Duplicates,
263 identical reads due to amplification (PCR duplicates) or sequencing clusters (optical
264 duplicates), can increase false-positive calls and erroneously inflate sequencing coverage.
265 Therefore, duplicates should be marked or removed even for sequences from PCR-free
266 libraries. Reads terminating with indels are more likely to be misaligned; thus, depending on
267 the variant caller used, realignment around indels may be advised to correct for this artifact.
268 Specifically, realignment around indels is required when calling variants with non-haplotype-
269 aware callers (such as GATK's UnifiedGenotyper), but is not necessary with haplotype-

270 aware variant callers (such as GATK HaplotypeCaller (Poplin et al., 2018), Platypus
271 (Rimmer et al., 2014), or FreeBayes (Garrison and Marth, 2012)). From GATK release 3.6
272 onward, the realigned reads around indels can be outputted during the variant calling step.
273 Alternatively, BWA alignments can be used to construct a variation-aware graph with
274 GraphTyper (Eggertsson et al., 2017), including known polymorphisms and newly genotyped
275 variants. Thereby, reads are re-aligned to the graph, reducing reference bias and improving
276 read alignment near indels (Eggertsson et al., 2017) and structural variants (Eggertsson et al.,
277 2019). Finally, other quality controls can be applied after mapping, such as removing reads
278 mapping to multiple locations, as they could map with a good mapping quality in two or
279 more locations and be ignored by further quality filters. However, the overall impact of many
280 of these filters, such as BQSR and realignment around indels, on the final set of DNMAs has
281 not yet been studied.

282 **Step 3 - Variant calling**

283 **Software.** Different algorithms have been shown to perform similarly well in calling
284 nucleotide variants (Li, 2014). GATK (Auwerda and O'Connor, 2020) is widely used among
285 studies that call germline DNMAs (Bergeron et al., 2021; Besenbacher et al., 2019; Campbell
286 et al., 2021; Feng et al., 2017; Harland et al., 2017; Jónsson et al., 2017; Koch et al., 2019;
287 Malinsky et al., 2018; Maretty et al., 2017; Milholland et al., 2017; Pfeifer, 2017; Sasani et
288 al., 2019; Smeds et al., 2016; Tatsumoto et al., 2017; Thomas et al., 2018; Turner et al., 2017;
289 Wang et al., 2021b, 2020; Wong et al., 2016; Wu et al., 2020). Other commonly used variant
290 callers are GraphTyper (Eggertsson et al., 2017; e.g., utilized by Beyter et al., 2021;
291 Halldorsson et al., 2019; Jónsson et al., 2021, 2018) and FreeBayes (Garrison and Marth,
292 2012; e.g., utilized by Turner et al., 2017). Using more than one variant caller can increase
293 confidence in the SNP set but can become computationally expensive (Turner et al., 2017).

294 **Parameters.** Even within the same variant caller, different methods can be used (see
295 Supplementary Table 1). For instance, in GATK v3, three strategies are available: 1. per-
296 sample variant calling, 2. batch calling, in which samples are analyzed separately and
297 concatenated for downstream analysis, and 3. joint calling, in which variants are called
298 simultaneously across all samples (with the UnifiedGenotyper command). In GATK v4, the
299 new recommendation is to first call variants for each sample separately (HaplotypeCaller in
300 ERC mode), and then combine all the samples (GenomicsDBImport) to jointly genotype
301 them (GenotypeGVCFs)--thus, the initial identification of variant sites is separable from the

302 assignment of genotypes to each individual. UnifiedGenotyper and HaplotypeCaller should
303 have a similar ability to detect SNPs, but differences in variant sets have been observed
304 (Lescai et al., 2014). Moreover, the GATK HaplotypeCaller ERC mode has two options: the
305 BP_RESOLUTION option provides records for every single site in the genome, even non-
306 variant sites, while the GVCF option groups the non-variant sites into a block of record. This
307 variant-calling step is computationally expensive, especially if variants are called in BP-
308 RESOLUTION mode, but it can be useful to determine the part of the genome in which there
309 is full power to detect mutations. It is still unclear which strategy should be prioritized; thus,
310 it is advised to report the method used and any additional options that have been
311 implemented. The default settings of GATK applied during variant calling should also be
312 kept in mind. For instance, the heterozygosity prior is by default at 0.001, which could have
313 an impact when analyzing species with much higher or much lower heterozygosity, though
314 the effect of this prior has not been evaluated in the context of mutation rate studies.

315 **Step 4 - Detecting *de novo* mutations**

316 **Site filters.** GATK's Best Practices (Auwera and O'Connor, 2020) advise a Variant Quality
317 Score Recalibration (VQSR) step to ensure that genotypes are correctly called. However, this
318 tool is not suitable for DNMAs as it would remove many rare variants; instead, hard-filtering
319 should be applied. GATK provides some general recommendations for these filters, warning
320 that these should be a starting point and filters may need to be adjusted depending on the
321 callset or the species studied (GATK team, 2020). The currently advised hard filter criteria
322 for germline short variant discovery are: QD < 2.0; MQ < 40.0; FS > 60.0; SOR > 3.0;
323 MQRankSum < -12.5; ReadPosRankSum < -8.0. These parameters take into account the
324 quality of a call at a given site (QD), the mapping quality (MQ), the strand bias (FS and
325 SOR), the mapping quality bias between reference and alternative allele (MQRankSum), the
326 position bias within reads (ReadPosRankSum); see Supplementary Table 2 for details on each
327 filter). Although some studies followed these best practices (Jónsson et al., 2017; Wu et al.,
328 2020), others implemented only a subset of filters (e.g., three studies reported the GATK
329 filters without SOR > 3.0 (Koch et al., 2019; Thomas et al., 2018; Wang et al., 2020) and
330 Besenbacher et al. (2019) kept only four parameters -- FS, ReadPosRankSum,
331 BaseQualityRankSum, and MQRankSum -- as they are calculated based on statistical tests
332 following a known distribution) or readjusted the filtering thresholds based on previous
333 results (e.g., Koch et al. (2019) changed the ReadPosRankSum threshold from -8 to 15 while

334 Bergeron et al. (2021) changed the site filters by first using the advised parameters and then
335 adjusting them to reduce the apparent false-positive calls). Several of the earlier studies
336 implemented a different suite of site filters altogether (Pfeifer, 2017; Smeds et al., 2016;
337 Tatsumoto et al., 2017). Given this plethora of choices, we suggest that reporting filter details
338 should be common practice to improve the comparability of mutation rate estimates. Another
339 site filter is the Phred-scaled probability that a certain site is polymorphic in one or more
340 individuals (QUAL), which has been used in some studies (Harland et al., 2017; Pfeifer,
341 2017; Wu et al., 2020).

342 **Filters of candidate DNM**s. From pedigrees, germline mutations are detected as “Mendelian
343 violations” where at least one of the alleles observed in the offspring is absent from both of
344 its parents. Most mutation rate studies restrict Mendelian violations to sites where both
345 parents are homozygous for the reference allele (HomRef; 0/0) and the offspring is
346 heterozygous (Het; 0/1 or 1/0) (Bergeron et al., 2021; Besenbacher et al., 2019; Jónsson et al.,
347 2017; Koch et al., 2019; Pfeifer, 2017; Smeds et al., 2016; Thomas et al., 2018; Wang et al.,
348 2020; Wu et al., 2020). Other combinations of genotypes could also be caused by germline
349 mutations such as parents homozygous for the alternative allele (HomAlt; 1/1) with
350 heterozygous offspring (0/1 or 1/0), or one parent HomRef (0/0) and the other HomAlt (1/1)
351 with an offspring either HomRef (0/0) or HomAlt (1/1). These sites are usually filtered out
352 and assumed to represent a small portion of the genome to avoid the added uncertainty
353 associated with these genotypes (Wang et al., 2021a). However, before excluding these sites,
354 researchers should note that their expected frequency increases with the level of
355 heterozygosity of the species studied and the phylogenetic distance to the reference genome
356 used for mapping. For a phylogenetic distance to the reference genome of 2%, ~1 in 50 true
357 DNM is expected to occur in a background where both parents are homozygous for the
358 alternative allele (1/1). After selecting the final set of Mendelian violations, several filters are
359 applied to ensure the genotypes of each individual are of high quality and to reduce false-
360 positive calls. The individual filters and thresholds used vary substantially between studies
361 (see Supplementary Table 3), but generally include a depth filter (i.e., the number of reads for
362 each individual at a particular site), a genotype quality filter (i.e., the Phred-scaled confidence
363 of the assigned genotype), as well as a filter on the allelic depth (i.e., the number of reads
364 supporting the alternative allele and the reference allele).

365 Sites with low read depth (DP) are prone to exhibit Mendelian violations due to sequencing
366 and genotyping errors, while positions with particularly high depth could indicate a
367 misalignment of reads in low complexity or paralogous regions. As each study analyzed
368 pedigrees sequenced at various depths, different cutoffs were chosen for this filter, some
369 more permissive than others. Some studies only set a minimum DP of approximately 10 reads
370 (e.g., Jónsson et al., 2017; Pfeifer, 2017; Sasani et al., 2019), while other higher coverage
371 studies were able to set more conservative minimum and maximum thresholds, varying from
372 a minimum of 10 to 20 to a maximum of 60 to 150 (e.g., Maretty et al., 2017: $DP < 10$ and
373 $DP > 150$; Thomas et al., 2018: $DP < 20$ and $DP > 60$; Wang et al., 2020: $DP < 20$ and $DP >$
374 60). Another approach is to use a relative depth threshold for each individual (e.g.,
375 $depth_{individual} \pm 3\sigma$, with σ being the standard deviation around the average depth (Tatsumoto
376 et al., 2017), or a maximum threshold of $2 \times depth_{individual}$ (Besenbacher et al., 2019)) or,
377 when all individuals were sequenced at a similar depth, an relative depth per trio (e.g., a DP
378 filter of $0.5 \times depth_{trio}$ and $2 \times depth_{trio}$ (Bergeron et al., 2021)). Alternatively, Rahbari et al.
379 (2016) and Wu et al. (2020) tested if the depth at each site followed a Poisson distribution
380 under the null hypothesis that lambda was $depth_{individual}$, and filtered away sites where at least
381 one individual of the trio had a p-value higher than 2×10^{-4} .

382 To correct for genotyping errors, two parameters from the output variant-calling file can be
383 used: the Phred-scaled likelihood of the genotype (PL) and the genotype quality (GQ). The
384 most likely genotype has a PL of 0, while the least likely genotype has the highest PL value.
385 GQ is the difference between the $PL_{2nd \ most \ likely}$ and $PL_{1st \ most \ likely}$, with a maximum reported
386 of 99. Applied GQ thresholds vary between 20 (Jónsson et al., 2017; Sasani et al., 2019) and
387 70 (Wang et al., 2021b, 2020). Instead of using GQ, some studies used the difference
388 between $PL_{2nd \ most \ likely}$ and $PL_{1st \ most \ likely}$, which is not limited to a maximum of 99, and
389 applied more conservative criteria for the offspring heterozygous genotype than for the
390 homozygous parents (Maretty et al., 2017: homozygous $PL_{2nd \ most \ likely} - PL_{1st \ most \ likely} < 80$,
391 heterozygous $PL_{2nd \ most \ likely} - PL_{1st \ most \ likely} < 250$; Tatsumoto et al., 2017: homozygous PL_{2nd}
392 most likely - $PL_{1st \ most \ likely} < 100$, heterozygous $PL_{2nd \ most \ likely} - PL_{1st \ most \ likely} < 200$).

393 Variants can also be filtered using allelic depth: the number of reads supporting the reference
394 allele and the alternative allele. To ensure the homozygosity of the parents, some studies filter
395 away sites where alternative alleles are present in the parents' reads. AD refers to the number
396 of reads supporting the alternative allele, with previously utilized thresholds include $AD > 0$

397 (Besenbacher et al., 2019; Harland et al., 2017; Koch et al., 2019; Pfeifer, 2017; Sasani et al.,
398 2019; Smeds et al., 2016; Wang et al., 2021b), $AD > 1$ (Jónsson et al., 2017; Wang et al.,
399 2020), or $AD > 4$ (Marety et al., 2017). Even more conservative, one study used a lowQ
400 $AD2 > 1$, i.e. the number of alternative alleles in the low-quality reads (not used for variant
401 calling) should not exceed 1 (Besenbacher et al., 2019).

402 Allelic depth is also used to calculate the allelic balance (AB): the proportion of reads
403 supporting the alternative allele relative to the total depth at this position. In the case of a
404 DNM, the offspring should have approximately 50% of its reads supporting each allele.
405 Purely somatic mutations are expected to cause only a small fraction of reads to carry an
406 alternate allele, though this fraction can be different for mutations occurring early in the
407 zygote stage of the offspring and leading to germline mosaicism. A previous large-scale
408 analysis of human pedigrees recovered a bi-modal allelic balance distribution of Mendelian
409 violations in the offspring before applying an AB filter, with a peak around 50% interpreted
410 as DNMs, and another peak around 20% likely corresponding to somatic mutations
411 (Besenbacher et al., 2015), mismapping errors, or sample contamination (Karczewski et al.,
412 2019). Thus, careful filtering on AB is required to avoid false positives. Thresholds used for
413 the AB filter vary between a minimum of 20% (Pfeifer, 2017) to 40% (Thomas et al., 2018),
414 and a maximum, when applied, of 60% (Thomas et al., 2018) to 75% (Jónsson et al., 2017).
415 Instead of a hard cutoff, one study used a binomial test on the allelic balance under the null
416 hypothesis of a 0.5 frequency, removing positions with a p-value lower than 0.05 (Wu et al.,
417 2020).

418 Additional filters can be used, for instance, to remove candidate DNMs present in individuals
419 other than the focal offspring, including siblings (Pfeifer, 2017; Smeds et al., 2016), only
420 unrelated individuals in the same dataset (Bergeron et al., 2021; Besenbacher et al., 2019;
421 Campbell et al., 2021; Thomas et al., 2018; Wu et al., 2020) or polymorphism datasets of the
422 same species (Pfeifer, 2017; Smeds et al., 2016; Wu et al., 2020). This filter is based on the
423 idea that the chance of getting a DNM at a position already being polymorphic is very low
424 unless there is very high heterozygosity, thus guarding against the possibility that a
425 heterozygous site was missed in the parents. Filters can also be applied to the distance
426 between mutations, again assuming that the probability of having two mutations close to each
427 other is low. For instance, in some studies, candidate DNMs were removed if four or more
428 candidates were located in a 200 base-pairs window (Koch et al., 2019), or two candidates

429 were less than 10 base-pairs (Tatsumoto et al., 2017) or 100 base-pairs apart (Wu et al., 2020)
430 from each other. However, the underlying assumptions for these filters are not always
431 fulfilled. Indeed, recurrent mutations can occur, especially at CpG locations (Acuna-Hidalgo
432 et al., 2016; Ségurel et al., 2014), and there is evidence of nonrandom clustering of mutations
433 (Brandler et al., 2016; Turner et al., 2016). Finally, some studies removed DNM candidates
434 located in the locus control region (LCR; Sasani et al., 2019) or repetitive regions of the
435 genome (Pfeifer, 2017) which are prone to mismapping.

436 **Assessing false-positives.** After choosing each filter according to the dataset, a total number
437 of candidate DNMs per offspring is found. Yet, as stringent as the filters can be, there are still
438 chances for false positives (FPs) to be introduced in the final set of DNMs. Even though there
439 is no perfect method to correct the false-positive calls, this issue should be addressed.

440 One of the most straightforward methods to validate DNMs is by PCR amplification followed
441 by resequencing such as Sanger sequencing, to ensure the genotype of each individual of the
442 trio (Bergeron et al., 2021; Koch et al., 2019; Maretty et al., 2017; Tatsumoto et al., 2017;
443 Wu et al., 2020). However, this PCR amplification and resequencing method can be
444 challenging. In addition to the cost, designing primers for the region of the candidate DNMs
445 can be difficult, especially for candidates located in repeat regions. Furthermore, most Sanger
446 resequencing is aimed at validating the heterozygous state of the offspring, not the
447 homozygous state of the parents. If all candidate DNMs are successfully validated, the false
448 positives can be removed from the set of candidate DNMs. However, it is often the case that
449 we cannot check every candidate DNM. In these cases, it is common to estimate the false
450 discovery rate (FDR) from a subset of candidates that can be checked. The FDR can be
451 estimated as:

452
$$FDR = \frac{PCR_{failed}}{PCR_{validated} + PCR_{failed}},$$

453 with $PCR_{validated}$ being the number of candidate DNMs successfully amplified and passing the
454 resequencing validation and PCR_{failed} being the number of candidate DNMs successfully
455 amplified but failing the resequencing validation. We can then adjust the total number (nb) of
456 DNMs in the entire dataset by using the following relationship:

457
$$nb_{candidate\ DNMs\ corrected} = nb_{candidate\ DNMs} \times (1 - FDR),$$

458 where $nb_{candidate\ DNM}s_{corrected}$ is the updated number of DNM^s in the dataset. Of note,
459 some studies refer to a false positive rate instead of the FDR (eg. Bergeron et al., 2021;
460 Jónsson et al., 2017; Wang et al., 2020), yet, it also refers to the ratio of false-positive calls on
461 the total number of candidates (i.e. true positives and false positives).

462 A second method to check candidate DNM^s is manual curation, using visualization software
463 such as the Integrative Genome Viewer (IGV; Robinson et al., 2011). By comparing the read
464 mappings of the parents and their offspring at candidate DNM^s, false-positive calls can be
465 detected. Estimates of the false discovery rate using this approach have varied widely
466 depending on the study design, from 91% (Pfeifer, 2017) at low coverage to 35% (Smeds et
467 al., 2016) at medium coverage to 11% at high coverage (Bergeron et al., 2021). Further work
468 is needed to ensure that manual curation is consistent when applied by different researchers
469 working in different systems.

470 A third method to estimate the false discovery rate, based on deviations from the expected
471 50% transmission rate of DNM^s to the next generation, can be used if an extended pedigree is
472 available. With this method, Wu et al. (2020) estimated a false discovery rate of 18%.
473 However, such a deviation from 50% can arise from the expected variance of a binomial
474 distribution, especially if the number of mutations is small. Moreover, clusters of mutations
475 could increase this variance if linked mutations are passed on together to the next generation,
476 especially if the number of trios is small. When this method is used, transmission should be
477 clearly defined as it can be when the grandchild has been genotyped as heterozygote with the
478 mutant allele, or alternatively when at least a few reads contain the mutant allele. Jónsson et
479 al. (2017) used multiple individuals and haplotype sharing to assess the consistent
480 segregation of DNM allele in the next generation.

481 A fourth method of estimating the false discovery rate takes advantage of monozygotic twins.
482 Germline mutations transmitted from parents to monozygotic twins are expected to be present
483 in both twins, as they are derived from the same zygote. Jónsson et al. (2017) exploited the
484 discordance between candidate DNM^s in monozygotic twins to derive the false discovery rate
485 (3%). This estimate is an upper bound because discordance between monozygotic twins is a
486 combination of post-zygotic mutations and false-positive calls. However, the authors
487 analyzed a unique dataset of 91 human trios with monozygotic twins -- data that will be hard
488 to obtain in most species.

489 **Step 5 – Mutation rate estimation**

490 To calculate a per-site per-generation mutation rate, the total number of candidate DNMs
491 (corrected for false positives), should be divided by the number of sites in the genome with
492 full detection power. The denominator takes into account the callable genome (CG) - sites
493 where mutations could have been detected, and the false-negative rate (FNR) - the rate at
494 which actual DNMs have been missed by the pipeline that has been applied to this point.
495 Assuming that the rate of mutation is similar in the remaining part of the genome, the
496 mutation rate per-site per-generation μ of a diploid species can be estimated as:

497
$$\mu = \frac{nb_{candidate\ DNMs} \times (1-FDR)}{2 \times CG \times (1-FNR)}.$$

498 **Callable genome.** Different methods have been used to estimate the CG, the number of sites
499 where a DNM would have been detected if it was there (Supplementary Table 1). Many
500 studies used the strict individual filters applied during the detection of candidate DNMs,
501 including all sites where the parents were homozygotes for the reference allele and each
502 individual met the DP, GQ, and any other filters. However, the set of filters and input files
503 used to infer CG differ between studies (Supplementary Table 1) and, consequently,
504 estimates vary widely from CG representing 45% (Tatsumoto et al., 2017) to 91.5%
505 (Malinsky et al., 2018) of the total genome. For instance, some studies used GATK's
506 CallableLoci tool (Van der Auwera et al., 2013) that estimates the number of sites that pass
507 the DP filters from the read alignment (.bam) files (e.g., Wu et al., 2020) while another study
508 (Wang et al., 2020) used the variant calling files (.vcf) from the samtools mpileup caller (Li
509 et al., 2009). From GATK 4 onward, CallableLoci is no longer supported, yet, with the
510 BP_RESOLUTION mode, every single site of the genome has a depth and genotype quality
511 value that can be used to estimate the callable sites (used in e.g., Bergeron et al., 2021;
512 Pfeifer, 2017). Moreover, some studies restrict the CG to the orthologous genome in order to
513 match for base composition when making comparisons across species (e.g., Wu et al., 2020).
514 Due to these differences, it is important to report which methodology and filters are used to
515 estimate CG.

516 **Assessing false-negatives.** On the number of sites considered callable, additional corrections
517 for the FNR can be included. Indeed, even if the CG represents the sites that pass most of the
518 individual filters, some filters can simply not be applied to non-polymorphic sites. The

519 methods and results differ between studies, with an estimated FNR from 0 (Smeds et al.,
520 2016; Tatsumoto et al., 2017) to 44% (Thomas et al., 2018).

521 One way to estimate a FNR is to introduce random DNM to the sequencing reads and run
522 the entire pipeline (steps 2-4) to calculate its efficiency in finding these simulated DNM
523 (e.g., Feng et al., 2017; Jónsson et al., 2017; Pfeifer, 2017; Wu et al., 2020). The false-
524 negative rate can then be estimated as:

$$FNR = \frac{de novo_{missed}}{de novo_{simulated}}$$

525 This method corrects for errors during alignment, post-alignment processing, calling, and
526 filtering as the reads are passed into the pipeline a second time. However, it can be
527 computationally intensive as variant calling needs to be run multiple times and is a resource
528 and time-intensive step.

529 Another way to estimate the FNR is to use the number of callable sites that will be filtered
530 away by filters different from those taken into account in the CG estimation, such as site or
531 allelic balance filters (Bergeron et al., 2021; Besenbacher et al., 2019; Thomas et al., 2018).
532 As some site filters are inferred during variant calling based on statistical tests following
533 known null distributions, it is possible to estimate the proportion of callable sites filtered
534 away by these site filters (Bergeron et al., 2021; Besenbacher et al., 2015). Moreover, some
535 true DNM could have an allelic balance outside the allelic balance filter chosen due to
536 sequencing variability or mosaicism. This bias can be estimated by the heterozygous sites in
537 the offspring (that are not DNM) presenting an allelic balance outside the allelic balance
538 filter, assuming that this bias occurs at the same rate at DNM and heterozygous sites in the
539 offspring (i.e. one parent is homozygous for the reference allele, one parent is homozygous
540 for the alternative allele, and the offspring heterozygous). Therefore, FNR can be inferred as
541 the proportion of true heterozygous sites outside the AB filter as:

$$FNR = \frac{True\ heterozygous\ sites_{outside\ AB}}{True\ heterozygous\ sites}.$$

543 Finally, the denominator can be estimated based on a probability to detect a DNM at a site,
544 given various parameters at that site. Thus, there is no clear distinction between CG and FNR,
545 as the latter is part of the CG estimation. Specifically, Besenbacher et al. (2019) used
546 inherited variants to estimate the probability that a DNM at a given site would pass all filters

547 conditional on the depth of each individual. They then summed these probabilities to
548 calculate the number of callable sites in the genome.

549

550 **Mutationathon: two-fold variation in estimated rates from the same trio**

551 To understand the effect of various methods on mutation rate estimates from a single dataset,
552 a three-generation pedigree of rhesus macaque (*Macaca mulatta*) was analyzed by
553 researchers from five groups: Lucie Bergeron (LB), Søren Besenbacher (SB), Cyril Versoza
554 (CV), Tychele Turner (TT), and Richard Wang (RW). The macaque pedigree consisted of
555 Noot (father), M (mother), Heineken (daughter), and Hoegaarde (Heineken's daughter)
556 (Figure 3a). Each individual was sequenced with BGISEQ-500 at an average coverage
557 between 40X (Noot) and 70X (all other individuals). The raw data were trimmed using
558 SOAPnuke (Chen et. al, 2017) to remove adaptors, low-quality reads, and N-reads (see
559 Material and Methods for more information). Trimmed reads were shared with all
560 participants, who applied their respective pipelines to identify DNM^s in Heineken and to
561 estimate a per-site per-generation germline mutation rate.

562 Each group of investigators implemented their own set of filters (Supplementary Table 4) and
563 detected between 18 (CV) and 32 (SB) candidate DNM^s. After PCR amplification and
564 Sanger sequencing validation of the DNM candidates from all research groups (43 distinct
565 sites), we validated 33 positions as true positive DNM^s, six were determined to be false-
566 positive calls, and four did not successfully amplify (Figure 3b and Supplementary Table 5).
567 No group found all true positive DNM^s. Of the 33 true positive DNM^s, only 7 were detected
568 by all research groups (Figure 3c). Fourteen additional true positive mutations were detected
569 by at least four groups; 6 detected by all except CV, 4 by all except RW, 2 by all except LB,
570 1 by all except SB, and 1 by all except TT. Of the 12 remaining true positive mutations, 5
571 were detected by three groups, 1 by two groups, and 6 by a single group. The candidate
572 DNM^s found by a single group are more likely to be false positives as the six false-positive
573 candidates revealed by the PCR experiment were all candidates detected by a single pipeline.
574 The transmission rate to the next generation varied between 52% (with SB pipeline: 15 true
575 positive DNM^s transmitted on 29 true positive candidates) and 67% (with RW pipeline: 14
576 true positive DNM^s transmitted on 21 true positive candidates). The transmission rate of all
577 true positive DNM^s (33) was 67% with 21 DNM^s transmitted to the next generation; this rate

578 is not significantly different from the expected 50% inheritance (binomial test p-value =
579 0.08).

580

581

582

583

584

585

506

1

592

593

594

595

596

503

598

888

601

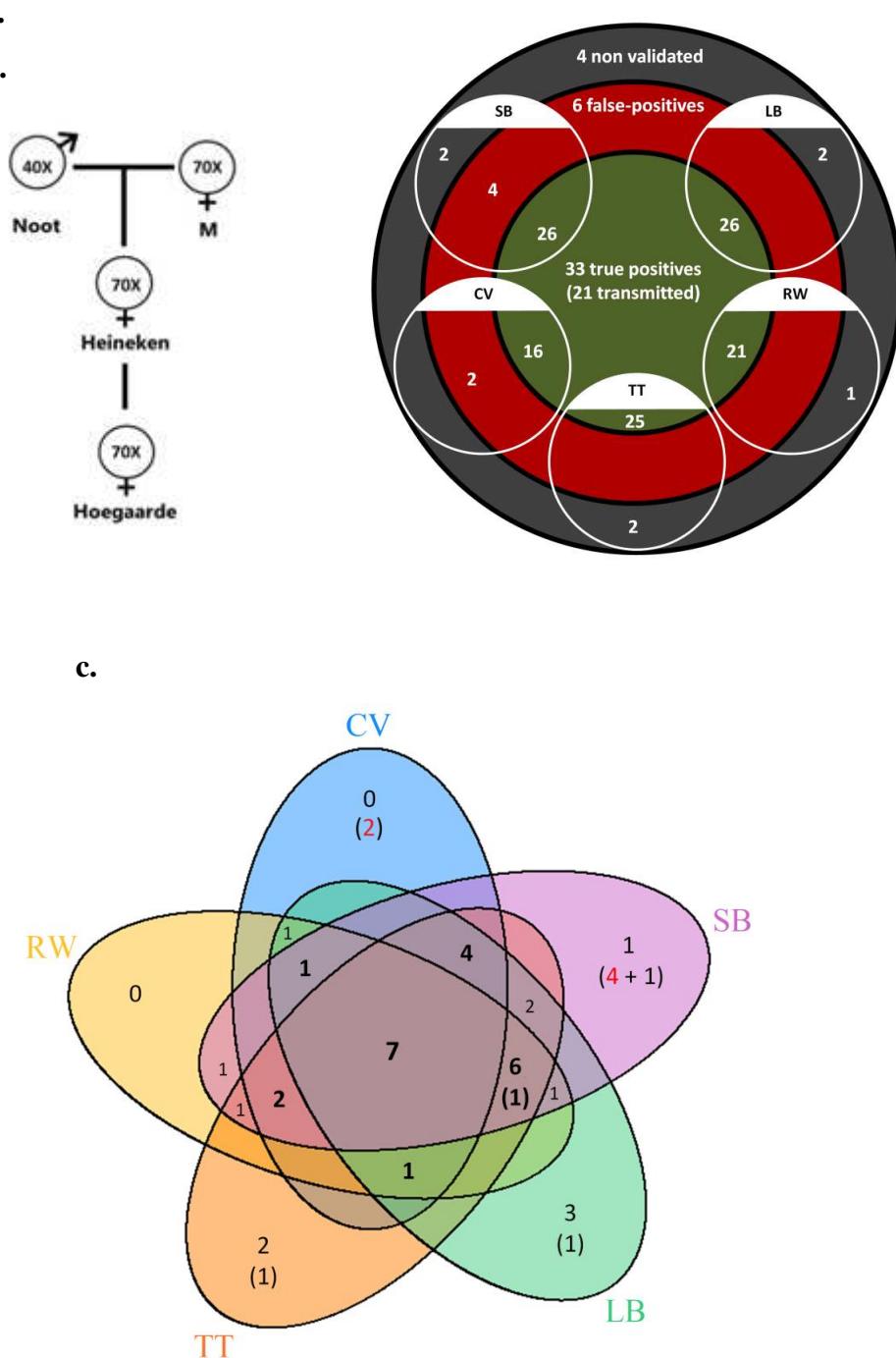


Figure 3 – Candidate DNMs from the Mutationathon. a. The pedigree of three generations of rhesus macaques was sequenced and shared with five groups of researchers. Sequencing coverage is indicated for each individual. b. The five groups (LB: Lucie Bergeron, SB: Søren Besenbacher, CV: Cyril Versoza, TT:

602 Tychele Turner, RW: Richard Wang) detected a total of 43 candidate DNM^s in
603 Heineken. The PCR amplification and Sanger sequencing validation showed that
604 33 of those candidates were true positive DNM^s, six were false-positive calls, and
605 four did not successfully amplify. c. Venn diagram of the mutations found by
606 each research group. In bold are the candidates shared by at least four different
607 groups. Between brackets are the candidates that were not validated by the PCR
608 experiment either because they did not successfully amplify (in black) or because
609 the sequencing revealed false-positive calls (in red). See Material and Methods
610 for details on the experiment and Supplementary Figure 1 for the results of the
611 PCR experiment.

612

613 In addition to identifying DNM^s, each group was tasked with estimating the per-site per
614 generation rate of mutation. The final estimated rate depends on the size of the callable
615 genome (CG) considered by each group, as well as corrections for false positives and false
616 negatives. Even with the variation in the number of candidate DNM^s from each group
617 (Figure 4a), different values for these additional parameters could still have resulted in
618 equivalent rate estimates between different groups. However, differences in methodology led
619 to almost a two-fold variation in the estimated rates, greater than the variation in the number
620 of DNM^s. TT estimated the lowest rate of 0.46×10^{-8} mutations per-site per generation
621 (Figure 4b). This estimate was based on autosomes and the X chromosome (where two
622 candidates were found), and the CG represented almost the full genome size. Using the full
623 genome size in the denominator is commonly used in human studies, for which most of the
624 genome is callable due to the high-quality reference genome, while stricter corrections are
625 usually applied in non-human studies. CV, RW, SB, and LB found similar rates, with 25%
626 differences between the lowest and the highest rate and large overlap of the confidence
627 intervals (Figure 4c). RW estimated the highest rate with 0.85×10^{-8} mutations per-site per
628 generation, from a relatively small set of candidates (22), yet the denominator was also small
629 as CG represented about 50% of the autosomal genome. SB and LB estimated a similar value
630 of CG, representing approximately 80% of the autosomal genome; however, there was a
631 difference in rates due to the smaller number of candidates found by LB (28) compared to SB
632 (32).

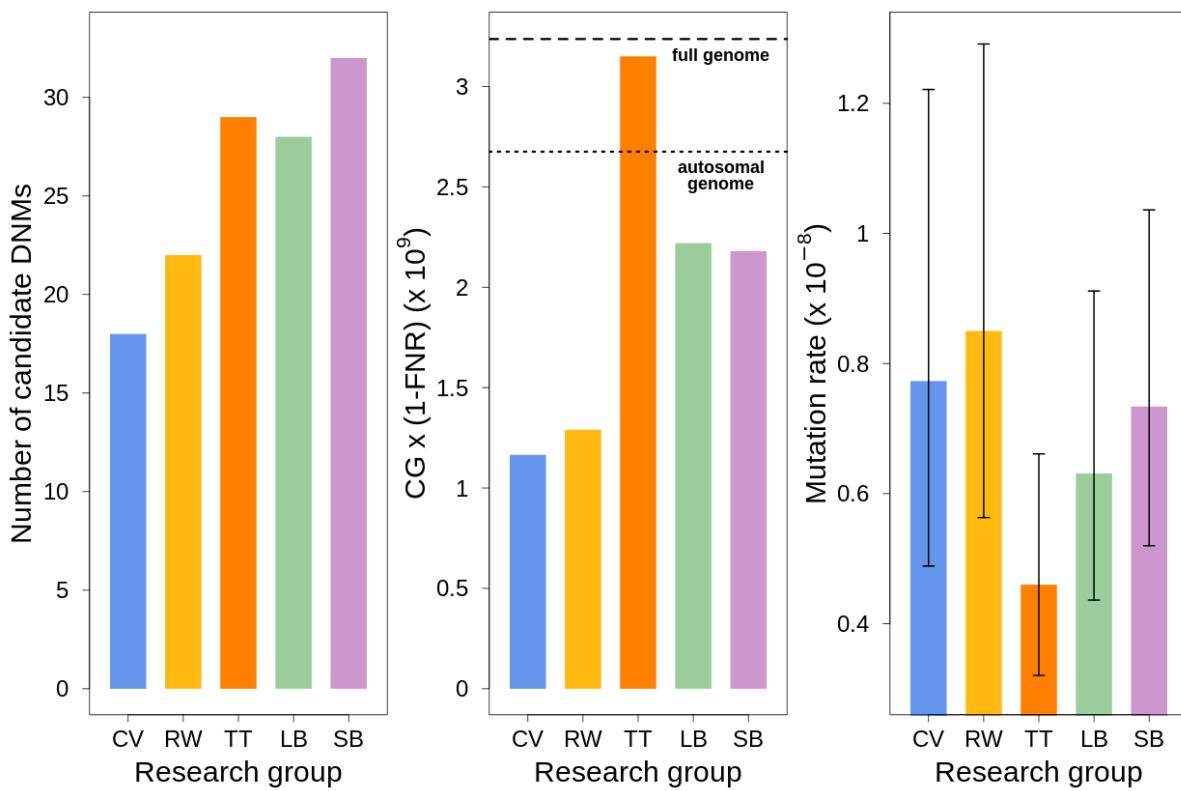
633

634

635

636

637 **a.** **b.** **c.**



638

Figure 4 – Estimated germline mutation rates from the Mutationathon. a.

639

Number of candidates DNM_s found by each group (TT found 2 candidates on a sex chromosome). b. Estimation of the denominator (i.e. the callable genome corrected by the FNR) by each group. c. Estimated mutation rate per-site per generation, the error bars correspond to the confidence intervals for binomial probabilities (calculated using the R package 'binconf').

640

641

642

643

644

The different individual filters applied by each group explain some of the differences in the candidate DNM_s (Table 2 and Supplementary Table 4). For instance, many groups filtered away candidate sites where the parents were heterozygotes, as they could be more prone to false-positive calls. TT's pipeline was the only one to find a candidate mutation at a site where the father was heterozygous C/G, the mother was homozygous for the reference allele G/G, and the offspring was heterozygous A/G. These genotypes were validated by the PCR

651 experiment, indicating that a true germline mutation has arisen at a heterozygous site in a
652 parental genome. Each method varied in power to detect the true DNM (sensitivity), and in
653 the proportion of validated true candidates on the overall candidates found (precision). For
654 instance, RW used especially conservative filters on the allelic balance for both the offspring
655 (AB) and the number of alternative alleles allowed in the parents (AD). It resulted in a lower
656 sensitivity, only 22 candidates were found, but a high precision as no candidates were
657 determined to be false-positive calls. Similarly to RW, some groups were conservative on the
658 AB filter, while other groups were more conservative on the GQ filter (SB and LB) or DP
659 filter (LB, CV, RW). For instance, SB used a relaxed filter on DP, with a minimum threshold
660 of 10X, but a relatively conservative threshold on AB and GQ criteria. TT did not use strict
661 filters for any parameter, however, the precision was increased by the required overlap
662 among multiple variant callers.

663
664
665
666

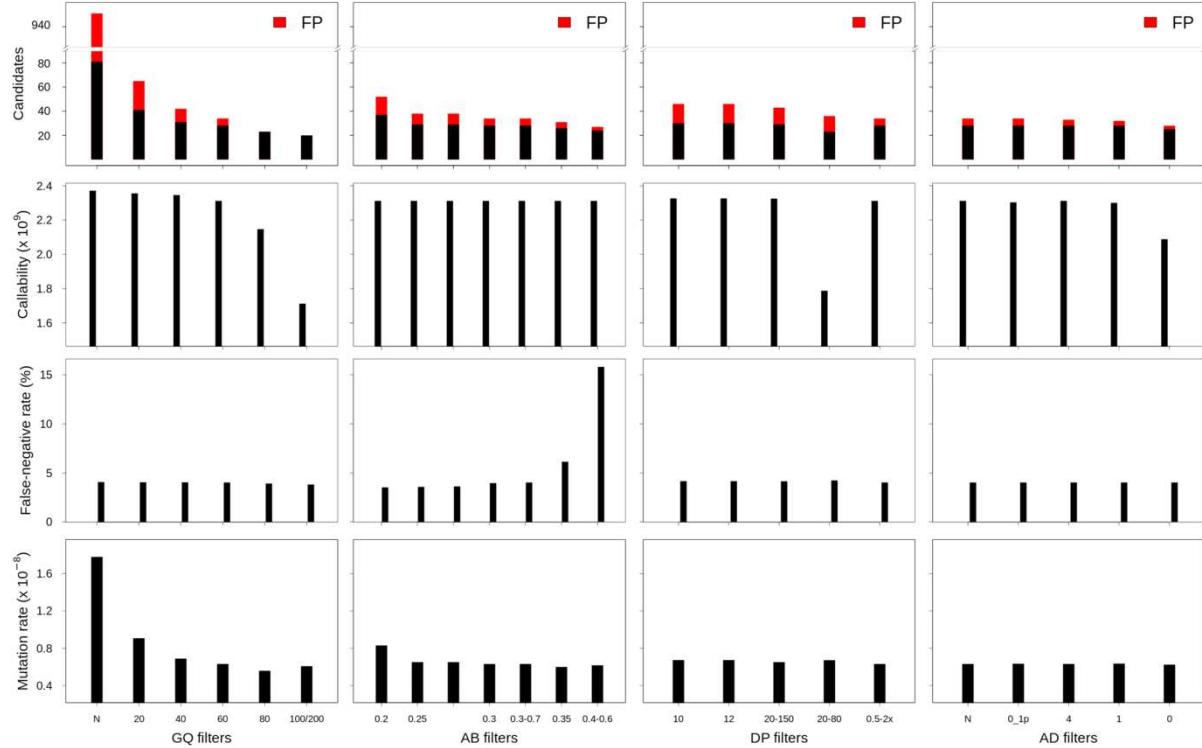
Table 2 – Individual filters used by the different groups to detect DNM in Heineken (difference in the other steps of the pipeline in Supplementary Table 4).

Research group	Candidates DNM	DP filter	GQ filter	AD filter	AB filter	Additional filters
CV	18	$0.5 \times dp_{ind} - 2 \times dp_{ind}$	40	0	0.25 - 0.75	
RW	22	20 - 80	20	0	0.35	Alternative allele on both strands
TT	27	Minimum 10 X	20	0	0.25	Overlap 3 different variant callers
LB	28	$0.5 \times dp_{ind} - 2 \times dp_{ind}$	60	none	0.3 - 0.7	Manual curation (6 candidates removed)

SB	32	Minimum 10 X – Maximum $1.75 \times dp_{ind}$	55	0	0.3	Alternative allele in both strands. lowQ AD2 > 1
-----------	----	--	----	---	-----	--

667

668 We explored the effect of the individual filter on the number of candidate DNM_s, the number
669 of false-positive calls (FP), the callable genome (CG), the false-negative rate (FNR), and the
670 final estimated mutation rate per-site per generation (μ). We used the LB pipeline (see
671 individual filters in Table 2 and other methods in Supplementary Table 4) and changed one
672 filter at a time using various criteria used by the Mutationathon participants and in the
673 literature (Figure 5 and Supplementary Table 6). The GQ filter had the largest impact on the
674 number of mutations and the final estimated mutation rate. The number of candidate DNM_s
675 found with GQ < 20 was three times higher than the one obtained with the most conservative
676 GQ filter ($GQ_{Hom} < 100$ and $GQ_{Het} < 200$), and the difference was still two-fold after
677 correcting for FP calls. The callable genome (CG) also decreased with GQ < 80, leading to an
678 estimated rate 39% lower when GQ < 80 ($\mu = 0.56 \times 10^{-8}$) compared to when GQ < 20 ($\mu =$
679 0.91×10^{-8}). This filter also seems to be the most efficient at reducing the number of FP calls,
680 estimated here with the manual curation method, as more than 90% of the candidates DNM_s
681 were false positives with no GQ filter while we found no false positives with conservative
682 GQ filters (GQ < 80 and $GQ_{Hom} < 100$ and $GQ_{Het} < 200$). Another important filter was the
683 allelic balance on the heterozygous offspring, resulting in a two-fold difference in the number
684 of candidate DNM_s detected, and 1.5-fold difference after the correction for FP calls. Yet, the
685 estimated FNR was almost five times higher when using a conservative AB filter ($AB < 0.4$
686 and $AB > 0.6$; FNR = 15.8%) compared to the least conservative AB filter ($AB < 0.2$; FNR =
687 3.5%). This led to a mutation rate estimate 28% lower with the conservative AB filter ($AB <$
688 0.4 and $AB > 0.6$; $\mu = 0.69 \times 10^{-8}$ and $AB < 0.2$; $\mu = 0.83 \times 10^{-8}$). The DP filter also impacted
689 the estimated rate but to a lesser extent with only a 6% difference between the estimated
690 mutation rate with $DP < 10$ ($\mu = 0.67 \times 10^{-8}$) and the most conservative DP filter ($DP < 0.5 \times$
691 $depth_{individual}$ and $DP > 2 \times depth_{individual}$; $\mu = 0.63 \times 10^{-8}$). Finally, the AD filter did not show
692 a large impact on the mutation rate, with less than 2% difference between no filter on AD (μ
693 = 0.63×10^{-8}) and the conservative $AD > 0$ ($\mu = 0.62 \times 10^{-8}$).



694

695 **Figure 5 – The impact of individual filters on the estimated rate of a trio of**
 696 **rhesus macaques.** The default filters used by LB pipeline were: DP < 0.5 × depth
 697 individual; DP > 2 × depth_{individual}; GQ < 60; AB < 0.3; AB > 0.7, no AD filter.
 698 The mutation rate was calculated with LB pipeline as $\mu = \frac{nb_{candidate\,DNMs} - FP}{2 \times CG \times (1 - FNR)}$.

699

700 These results show that some of the differences in estimated rates between the five research
 701 groups may be attributed to the individual filters. Yet, earlier steps in the different
 702 bioinformatic pipelines could also lead to differences in candidate DNMs and estimated rates.
 703 For instance, the site filters were different between some of the groups (see Supplementary
 704 Table 4). Testing different combinations of site filters on the shared trio of rhesus macaques
 705 affected the set of SNPs detected, which could lead to variation in candidate DNMs detected.
 706 For instance, on the 12,634,956 variants found by LB pipeline, 473,142 SNPs were removed
 707 when using GATK advised filters (QD < 2.0; MQ < 40.0; FS > 60.0; SOR > 3.0;
 708 MQRankSum < -12.5; ReadPosRankSum < -8.0), while the stringent filters used by LB
 709 pipeline (QD < 2.0, FS > 20.0, MQ < 40.0, MQRankSum < -2.0, MQRankSum > 4.0,
 710 ReadPosRankSum < -3.0, ReadPosRankSum > 3.0 and SOR > 3.0) removed 1,124,005
 711 SNPs. Despite this difference in the number of SNPs, using the LB pipeline to detect
 712 candidate DNMs on the three callset (no filters, GATK advised filter or stringent filters), led

713 to the same final number of candidate DNM_s due to the stringent individual filters applied in
714 the following steps of the pipeline. Other steps, such as mapping and variant calling, could
715 also lead to some of the differences between the five groups. For instance, the six candidates
716 identified as false positives by the Sanger sequencing were filtered away in the LB pipeline.
717 Four of the false-positive candidates were not detected because all individuals were
718 genotyped as homozygous for the reference allele, one position was filtered out by the
719 mapping quality site filter (MQ < 40), one position had DP = 0. Thus, differences in the
720 mapping of the reads and variant callers explain some of the discrepancies between pipelines.

721 Overall, these results show that for the same dataset, differences in estimated mutation rates
722 caused by methodological discrepancies are non-negligible. Therefore, such differences
723 should be considered when comparing mutation rates between different species when they are
724 estimated by different pipelines. Some of the differences in estimated rates between groups
725 can be attributed to the different individual filters applied for the detection of candidate
726 DNM_s. Most notably, varying the GQ and AB filters leads to large variations in estimated
727 rates. Some of the difference is also introduced in earlier steps when mapping reads and
728 calling variants. Moreover, the estimated callable genome is different between the five
729 groups; in addition to changing the denominator of the mutation rate calculation, this
730 difference could reflect the ability of individual methods to query mutation in different
731 genomic regions. Some variation might therefore be explained by true mutation rate
732 heterogeneity between genomic regions (such as low or high complex regions). Our results
733 also suggest that despite the different methods and filters, the estimated rates are comparable
734 when both the numerator (number of candidates and false positives) and the denominator
735 (CG and false-negative rate) are carefully corrected. For instance, CV, SB, LB, and RW
736 estimated similar rates, but SB and RW used a probabilistic method to calculate the CG,
737 while LB used strict filters (DP and GQ) on a base-pair resolution variant calling file (vcf)
738 and corrected for FNR using the site filters and the allelic balance filter and CV used a
739 similar method to estimate CG, yet, did not apply a correction for FNR.

740

741 **Best practices**

742 When estimating germline mutation rates from pedigree samples, there is no standardized set
743 of methods. Different studies use different software versions and filtering thresholds, which

744 can impact the estimated rate and can complicate the comparison of rates between or within
745 species across studies (in addition to the biological variation introduced by the age of the
746 parents used in each study; Table 1). Here, we provide guidelines for each step in DNM
747 calling and rate estimation. However, we note that sample quality, reference genomes, and
748 other technical factors differ across studies and thus require study- or species-specific
749 thresholds. Therefore, it is advised to report the methodology used in a standardized way.
750 Table 3 proposes a checklist of parameters that should be reported in studies of germline
751 mutation rates.

752

753 **Table 3 – Information that should ideally be reported when presenting**
754 **results on DNM s. See Supplementary Table 4 for an example of this table filled**
755 **out for the five pipelines used to analyze the trio of rhesus macaques.**

Step of the analysis	Information to report
1 – Sampling and sequencing	Type of sample (tissue, etc.)
	Storage duration, buffer, temperature
	Type of library preparation
	Average sequencing coverage
	Sequencing technology and read lengths
2 – Alignment and post-alignment processing	Trimming of adaptors and low-quality reads
	Reference assembly version
	Autosomes only or whole genome?
	Mapping software and version
	Duplicate removal software and version
	Base quality score recalibration (yes/no)
	If yes, which type of data used as known variants

	Realignments around indels?
	Other filters?
3 – Variant calling	Software and version
	Mode: joint genotyping? Gvcf blocks? Gvcf in base-pair resolution?
4 – Detecting <i>de novo</i> mutations	Site filters on vcf files and justification
	Individual filters, threshold, and remaining candidates after each filter
	False discovery rate estimation method: PCR validation? Manual curation? Transmission rate deviation?
5 – Mutation rate estimation	Callable genome estimation method: File used? Filters taken into account?
	False-negative rate estimation method: simulation? Filters? Probability?

756

757 Moreover, some benchmarks could be helpful to ease the comparison between studies such
758 as:

759 • the transition-to-transversion ratio (ti/tv),
760 • the spectrum of mutations (see Supplementary Figure 2 for an example from the
761 Mutationathon),
762 • percentage of mutations in CpG locations,
763 • base composition (percentage of A/T or C/G),
764 • nucleotide heterozygosity in unrelated individuals,
765 • if population data are available, the number of DNM s that are in known SNPs of the
766 population,

767 • the contribution of each sex to the total number of mutation bias when phasing of
768 mutations is possible,
769 • transmission rate to the next generation when extended trios are available,
770 • the average age of the parents at the time of reproduction, if known
771 • distribution of the allelic balance of true heterozygotes, candidate DNNs after all
772 filters except the allelic balance, and the final set of candidate DNNs.

773

774 Conclusion and perspectives

775 Different filters can lead to differences in estimated rates, which emphasizes the difficulty in
776 comparing pedigree-based germline mutation rates estimated from different studies. The
777 variation observed could be partially due to the biology and life-history traits of species, but
778 some of the variations will also be caused by methodological differences. Here, we provided
779 some best practices that can be used when estimating germline mutation rates from pedigree
780 samples. However, it is hard to provide hard cutoffs of filters that apply to every situation,
781 and we advise choosing appropriate filters depending on the data available. We have also
782 raised some points that should be addressed in individual studies, such as estimation of the
783 false discovery rate, false-negative rate, and the callable genome size. Nevertheless, more
784 exploration should be done to understand the best strategy for the different steps required in
785 every study of the mutation rates. Without a clear consensus on approaches for estimating the
786 germline mutation rate, it seems that the best strategy will be to carefully report all methods
787 and parameters used. The trio of rhesus macaque used in this analysis is publically available,
788 along with the validated candidate DNNs, and could serve as a resource for testing new
789 strategies. On a more positive note, it is important to point out that two recent, independent
790 studies of the per-generation mutation rate in rhesus macaque reported rates that were within
791 5% of each other for individuals of the same age (Bergeron et al., 2021; Wang et al., 2020).
792 We hope that careful studies using a variety of methods will be able to similarly arrive at
793 accurate estimates of important biological parameters.

794 With the growing number of studies on pedigree-based estimation of germline mutation rate,
795 some directions that have been neglected could be explored. For instance, even when the
796 sample size is large, most studies use samples originating from small geographic regions; it
797 would be of great interest to further explore potential variation in mutation rates across

798 diverse populations (e.g. Kessler et al., 2020). Most studies are conducted on genomic DNA
799 collected from somatic tissues. As a result, if samples come from only a single trio, one
800 cannot distinguish early postzygotic mutations occurring in the offspring from germline
801 mutations in the parents. While mutations occurring early enough in offspring development
802 will be passed on to the next generation--and should therefore still be considered *de novo*
803 mutations--they will behave differently from mutations arising in the parental generation. For
804 instance, we will not expect an increase of these mutations with parental age (Jónsson et al.,
805 2018). Therefore, it is of interest to distinguish between these two types of mutation,
806 especially for biomedical research. A possible way to discard those mutations would be to
807 compare somatic and germline cells from the same individual. However, extracting DNA
808 directly from sperm and eggs can be challenging, especially for non-human species, limiting
809 the application of this strategy. Another area for additional future work is to look at *de novo*
810 structural variants. As they are even rarer than SNPs, it is hard to detect them over a single
811 generation. Yet, with the growing number of trios and generations considered in recent
812 studies, it would be of interest to quantify and describe those DNMAs as well (e.g. Belyeu et
813 al., 2021; Thomas et al., 2021). The development of accurate long-read sequencing
814 technologies also offers opportunities for better detection of DNMAs and *de novo* structural
815 variants. Finally, most studies on non-human species only explore the autosomal
816 chromosomes, largely because important filters such as allelic balance cannot be used on the
817 sex chromosomes in both sexes. However, given the consistent differences observed between
818 species in the rate of evolution on autosomes and sex chromosomes (e.g. Wilson Sayres and
819 Makova, 2011), it would be very interesting to look more closely at the per-generation
820 mutation rate on sex chromosomes.

821 **Material and methods**

822 **Mutationathon sequences.** The pedigree used for the Mutationathon was previously
823 sequenced as part of a larger project on the mutation rate of rhesus macaques (BioProject:
824 PRJNA588178; Bergeron et al., 2021). Nine lanes were used in this analysis (three lanes for
825 the father and two lanes for the other individuals) and are publically available on NCBI:

826 • CL100066413_L01 (SRA run SRR10426295), mother M
827 • CL100089164_L01 (SRA run SRR10426294), mother M
828 • CL100078308_L01 (SRA run SRR10426275), father Noot

829 • CL100078335_L01 (SRA run SRR10426264), father Noot
830 • CL100078335_L02 (SRA run SRR10426253), father Noot
831 • CL100066412_L02 (SRA run SRR10426291), offspring Heineken
832 • CL100095002_L02 (SRA run SRR10426290), offspring Heineken
833 • CL100066408_L01 (SRA run SRR10426256), next generation offspring Hoegaarde
834 • CL100094917_L01 (SRA run SRR10426255), next generation offspring Hoegaarde

835 A trimming step was done on all sequences to remove the adaptors (allowing a mismatch of
836 two bases), the low-quality reads (with more than 5% of N bases or a base quality score < 10
837 in more than 20% of the read), and the reads smaller than 60 bases after the quality control.
838 Trimming was done using SOAPnuke version 1.5.6 (Chen et al., 2017), with the following
839 command:

840 > *SOAPnuke filter -f AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA -r*
841 *AAGTCGGATCGTAGCCATGTCGTTCTGTGAGCCAAGGAGTTG -1 sequence_read_1 -2*
842 *sequence_read_2 -G -Q 2 -l 10 -q 0.2 -E 60 -5 0 -M 2 -o sequence_clean -C sequence_read_1_clean -*
843 *D sequence_read_2_clean*

844 Each group implemented its pipeline to estimate a rate (details are provided in Supplementary
845 Table 4).

846 **Data analysis.** The comparison of each individual filter was done using LB pipeline,
847 changing one filter at a time and recalculating the number of candidates DNM detected, the
848 potential false-positive candidates with the manual curation method, the callable genome, the
849 FNR on the allelic balance filter and site filters, and the mutation rate per site per generation.
850 The comparison of the site filters was also done on the SNPs found by LB pipeline.

851 **PCR experiment and Sanger resequencing.** We designed multiple sets of primers for the
852 43 candidate sites on NCBI primer blast tool (Ye et al., 2012: <https://www.ncbi.nlm.nih.gov/tools/primer-blast/>). In some cases, sequencing primers were
853 adjusted to avoid sequencing failure due to poly-AAA or TTT runs. PCRs were carried out in
854 25 μ L volumes [2.5 units Dream Taq DNA Polymerase (Thermo Scientific), 1X Dream Taq
855 Green Buffer, 0.2mM dNTPs, 2–3mM MgCl₂, 2.5–44 ng DNA template, filled to 25 μ L with
856 double-distilled (ddH₂O) water]. Thermocycling was performed in a BIORAD PTC-100
857 thermocycler. The cycle program comprised of an initial denaturation at 95°C for 2min,
858 followed by 35 cycles of 15sec at 95°C, 15sec at 52°C- 55°C, and 30sec at 72°C. Cycling

860 was terminated with a 5min extension at 72°C. PCR products were purified using
861 commercially available spin columns (Invitek) or PureIT ExoZap PCR Clean-up (Ampliqon).
862 Sanger sequencing was conducted at Eurofins Genomics, Europe using the primers of the
863 amplification procedure using both forward and reverse primers. In Supplementary Figure 1,
864 the chromatograms with the best base quality value are provided. Supplementary Table 7
865 provides details about the primers and accession number of the sequences on GenBank.

866

867 **Data and code availability**

868 All the sequences used for the Mutationathon were previously generated and released in
869 NCBI (Bergeron et al., 2021). The sequences used were for the mother M (BioSample
870 SAMN13230631), lanes CL100066413_L01 (SRA run SRR10426295) and
871 CL100089164_L01 (SRA run SRR10426294); for the father Noot (BioSample
872 SAMN13230623): lanes CL100078308_L01 (SRA run SRR10426275), CL100078335_L01
873 (SRA run SRR10426264) and CL100078335_L02 (SRA run SRR10426253); for the
874 offspring Heineken (BioSample SAMN13230633): lanes CL100066412_L02 (SRA run
875 SRR10426291) and CL100095002_L02 (SRA run SRR10426290); and for the second
876 generation offspring Hoegaarde (BioSample SAMN13230649): lanes CL100066408_L01
877 (SRA run SRR10426256) and CL100094917_L01 (SRA run SRR10426255). The Sanger
878 sequences generated during the PCR validation, were deposited on GenBank under the
879 accession number MZ661796 - MZ662076.

880 The scripts used by the participants of the Mutationathon are publically available:

881 • CV: <https://github.com/PfeiferLab/mutationathon>;

882 • RW: <https://github.com/Wang-RJ/mutationathon>;

883 • TT: Wilfert, A. B., Turner, T. N., Murali, S. C., Hsieh, P., Sulovari, A., Wang, T., ... &
884 Eichler, E. E. 2021. Recent ultra-rare inherited variants implicate new autism
885 candidate risk genes. *Nature Genetics*, 53(8):1125-1134. doi: 10.1038/s41588-021-
886 00899-8;

887 • LB: https://github.com/luciebergeron/germline_mutation_rate;

888 • SB: <https://github.com/besenbacher/GreatApeMutationRate2018>

889

890 **Acknowledgments**

891 We would like to thank GenomeDK at Aarhus University and Arizona State University's
892 Research Computing for providing computational resources and support for the LB pipeline
893 and CV pipeline respectively. We also thank Hákon Jónsson for helpful comments on the
894 manuscript and Maria Kamilari for helpful input on the PCR validation experiment. SPP is
895 supported by a US National Science Foundation CAREER grant (DEB-2045343).

896

897 **Competing Interests**

898 The authors declare that they have no competing interests.

899

900 **References**

901 Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF. 2005. PCR-induced sequence artifacts
902 and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same
903 sample. *Appl Environ Microbiol* **71**:8966–8969. doi:10.1128/AEM.71.12.8966-8969.2005

904 Acuna-Hidalgo R, Veltman JA, Hoischen A. 2016. New insights into the generation and role of de
905 novo mutations in health and disease. *Genome Biol.* doi:10.1186/s13059-016-1110-1

906 Auwera G Van der, O'Connor B. 2020. Genomics in the Cloud: Using Docker, GATK, and WDL in
907 Terra.

908 Baust JG. 2008. Strategies for the Storage of DNA. *Biopreserv Biobank* **6**:251–252.
909 doi:10.1089/BIO.2008.0604.LETT

910 Belyeu JR, Brand H, Wang H, Zhao X, Pedersen BS, Feusier J, Gupta M, Nicholas TJ, Brown J,
911 Baird L, Devlin B, Sanders SJ, Jorde LB, Talkowski ME, Quinlan AR. 2021. De novo structural
912 mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396
913 families. *Am J Hum Genet* **108**:597–607. doi:10.1016/J.AJHG.2021.02.012

914 Bergeron LA, Besenbacher S, Bakker J, Zheng J, Li P, Pacheco G, Sinding M-HS, Kamilari M,
915 Gilbert MTP, Schierup MH, Zhang G. 2021. The germline mutational process in rhesus macaque
916 and its implications for phylogenetic dating. *Gigascience* **10**:1–14.

917 doi:10.1093/GIGASCIENCE/GIAB029

918 Besenbacher S, Hvilsom C, Marques-Bonet T, Mailund T, Schierup MH. 2019. Direct estimation of
919 mutations in great apes reconciles phylogenetic dating. *Nat Ecol Evol* **3**:286–292.
920 doi:10.1038/s41559-018-0778-x

921 Besenbacher S, Liu S, Izarzugaza JMG, Grove J, Belling K, Bork-Jensen J, Huang S, Als TD, Li S,
922 Yadav R, Rubio-García A, Lescai F, Demontis D, Rao J, Ye W, Mailund T, Friberg RM,
923 Pedersen CNS, Xu R, Sun J, Liu H, Wang O, Cheng X, Flores D, Rydza E, Rapacki K, Damm
924 Sørensen J, Chmura P, Westergaard D, Dworzynski P, Sørensen TIA, Lund O, Hansen T, Xu X,
925 Li N, Bolund L, Pedersen O, Eiberg H, Krogh A, Børglum AD, Brunak S, Kristiansen K,
926 Schierup MH, Wang J, Gupta R, Villesen P, Rasmussen S. 2015. Novel variation and de novo
927 mutation rates in population-wide de novo assembled Danish trios. *Nat Commun* **6**:5969.
928 doi:10.1038/ncomms6969

929 Beyter D, Ingimundardottir H, Oddsson A, Eggertsson HP, Bjornsson E, Jonsson H, Atlason BA,
930 Kristmundsdottir S, Mehringer S, Hardarson MT, Gudjonsson SA, Magnusdottir DN,
931 Jonasdottir Aslaug, Jonasdottir Adalbjorg, Kristjansson RP, Sverrisson ST, Holley G, Palsson G,
932 Stefansson OA, Eyjolfsson G, Olafsson I, Sigurdardottir O, Torfason B, Masson G, Helgason A,
933 Thorsteinsdottir U, Holm H, Gudbjartsson DF, Sulem P, Magnusson OT, Halldorsson B V,
934 Stefansson K. 2021. Long-read sequencing of 3,622 Icelanders provides insight into the role of
935 structural variants in human diseases and other traits. *Nat Genet* **53**:779–786.
936 doi:10.1038/s41588-021-00865-4

937 Brandler WM, Antaki D, Gujral M, Noor A, Rosario G, Chapman TR, Barrera DJ, Lin GN, Malhotra
938 D, Watts AC, Wong LC, Estabillo JA, Gadomski TE, Hong O, Fajardo KVF, Bhandari A, Owen
939 R, Baughn M, Yuan J, Solomon T, Moyzis AG, Maile MS, Sanders SJ, Reiner GE, Vaux KK,
940 Strom CM, Zhang K, Muotri AR, Akshoomoff N, Leal SM, Pierce K, Courchesne E, Iakoucheva
941 LM, Corsello C, Sebat J. 2016. Frequency and Complexity of De Novo Structural Mutation in
942 Autism. *Am J Hum Genet* **98**:667–679. doi:10.1016/J.AJHG.2016.02.018

943 Campbell CR, Tiley GP, Poelstra JW, Hunnicutt KE, Larsen PA, Lee H-J, Thorne JL, dos Reis M,
944 Yoder AD. 2021. Pedigree-based and phylogenetic methods support surprising patterns of
945 mutation rate and spectrum in the gray mouse lemur. *Heredity (Edinb)* **127**:233–244.
946 doi:10.1038/s41437-021-00446-5

947 Chen J, Li X, Zhong H, Meng Y, Du H. 2019. Systematic comparison of germline variant calling
948 pipelines cross multiple next-generation sequencers. *Sci Rep* **9**:1–13. doi:10.1038/s41598-019-
949 45835-3

950 Chen Yuxin, Chen Yongsheng, Shi C, Huang Z, Zhang Y, Li S, Li Y, Ye J, Yu C, Li Z, Zhang X,
951 Wang J, Yang H, Fang L, Chen Q. 2017. SOAPnuke: A MapReduce acceleration-supported
952 software for integrated quality control and preprocessing of high-throughput sequencing data.
953 *Gigascience* **7**:1–6. doi:10.1093/gigascience/gix120

954 Conrad DF, Keebler JEM, Depristo MA, Lindsay SJ, Zhang Y, Cassals F, Idaghdour Y, Hartl CL,
955 Torroja C, Garimella K V, Zilversmit M, Cartwright R, Rouleau G, Daly M, Stone EA, Hurles
956 ME, Awadalla P. 2011. Variation in genome-wide mutation rates within and between human
957 families. *Nat Genet* **43**:712. doi:10.1038/ng.862

958 Eggertsson HP, Jónsson H, Kristmundsdottir S, Hjartarson E, Kehr B, Masson G, Zink F, Hjorleifsson
959 KE, Jonasdottir Aslaug, Jonasdottir Adalbjorg, Jonsdottir I, Gudbjartsson DF, Melsted P,
960 Stefansson K, Halldorsson B V. 2017. GraphTyper enables population-scale genotyping using
961 pangenome graphs. *Nat Genet* **49**:1654–1660. doi:10.1038/ng.3964

962 Eggertsson HP, Kristmundsdottir S, Beyter D, Jonsson H, Skuladottir A, Hardarson MT,
963 Gudbjartsson DF, Stefansson K, Halldorsson B V, Melsted P. 2019. GraphTyper2 enables
964 population-scale genotyping of structural variation using pangenome graphs. *Nat Commun* **10**:1–
965 8. doi:10.1038/S41467-019-13341-9

966 Feng C, Pettersson M, Lamichhaney S, Rubin C-J, Rafati N, Casini M, Folkvord A, Andersson L.
967 2017. Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation
968 rate. *eLife* **6**:e23907. doi:10.7554/eLife.23907.001

969 Francioli LC, Polak PP, Koren A, Menelaou A, Chun S, Renkens I. 2015. Genome-wide patterns and
970 properties of de novo mutations in humans. *Nat Genet* **47**:822. doi:10.1038/ng.3292

971 Fumagalli M, Vieira FG, Korneliussen TS, Linderöth T, Huerta-Sánchez E, Albrechtsen A, Nielsen R.
972 2013. Quantifying population genetic differentiation from next-generation sequencing data.
973 *Genetics* **195**:979–992. doi:10.1534/genetics.113.154740

974 Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. *arXiv
975 Prepr arXiv* **1207.3907**.

976 GATK team. 2021. Base Quality Score Recalibration (BQSR). *Genome Anal Toolkit Doc.*
977 <https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score->
978 [Recalibration-BQSR-](#)

979 GATK team. 2020. I am unable to use VQSR (recalibration) to filter variants. *Genome Anal Toolkit
980 Doc.* <https://gatk.broadinstitute.org/hc/en-us/articles/360037499012-I-am-unable-to-use-VQSR->

981 recalibration-to-filter-variants

982 Halldorsson B V., Palsson G, Stefansson OA, Jonsson H, Hardarson MT, Eggertsson HP, Gunnarsson
983 B, Oddsson A, Halldorsson GH, Zink F, Gudjonsson SA, Frigge ML, Thorleifsson G,
984 Sigurdsson A, Stacey SN, Sulem P, Masson G, Helgason A, Gudbjartsson DF, Thorsteinsdottir
985 U, Stefansson K. 2019. Characterizing mutagenic effects of recombination through a sequence-
986 level genetic map. *Science* **363**:eaau1043. doi:10.1126/science.aau1043

987 Harland C, Charlier C, Karim L, Cambisano N, Deckers M, Mni M, Mullaart E, Coppieters W,
988 Georges M. 2017. Frequency of mosaicism points towards mutation-prone early cleavage cell
989 divisions in cattle. *bioRxiv* 079863. doi:10.1101/079863

990 Jónsson H, Magnusdottir E, Eggertsson HP, Stefansson OA, Arnadottir GA, Eiriksson O, Zink F,
991 Helgason EA, Jonsdottir I, Gylfason A, Jonasdottir Adalbjorg, Jonasdottir Aslaug, Beyer D,
992 Steingrimsdottir T, Nordahl GL, Magnusson OT, Masson G, Halldorsson B V., Thorsteinsdottir
993 U, Helgason A, Sulem P, Gudbjartsson DF, Stefansson K. 2021. Differences between germline
994 genomes of monozygotic twins. *Nat Genet* **53**:27–34. doi:10.1038/s41588-020-00755-1

995 Jónsson H, Sulem P, Arnadottir GA, Pálsson G, Eggertsson HP, Kristmundsdottir S, Zink F, Kehr B,
996 Hjorleifsson KE, Jansson BÖ, Jonsdottir I, Marelsson SE, Gudjonsson SA, Gylfason A,
997 Jonasdottir Adalbjorg, Jonasdottir Aslaug, Stacey SN, Magnusson OT, Thorsteinsdottir U,
998 Masson G, Kong A, Halldorsson B V., Helgason A, Gudbjartsson DF, Stefansson K. 2018.
999 Multiple transmissions of de novo mutations in families. *Nat Genet* **50**:1674.
1000 doi:10.1038/s41588-018-0259-9

1001 Jónsson H, Sulem P, Kehr B, Kristmundsdottir S, Zink F, Hjartarson E, Hardarson MT, Hjorleifsson
1002 KE, Eggertsson HP, Gudjonsson SA, Ward LD, Arnadottir GA, Helgason EA, Helgason H,
1003 Gylfason A, Jonasdottir Adalbjorg, Jonasdottir Aslaug, Rafnar T, Frigge M, Stacey SN, Th.
1004 Magnusson O, Thorsteinsdottir U, Masson G, Kong A, Halldorsson B V., Helgason A,
1005 Gudbjartsson DF, Stefansson K. 2017. Parental influence on human germline de novo mutations
1006 in 1,548 trios from Iceland. *Nature* **549**:519–522. doi:10.1038/nature24018

1007 Karczewski KJ, Gauthier LD, Daly MJ. 2019. Technical artifact drives apparent deviation from
1008 Hardy-Weinberg equilibrium at CCR5-Δ32 and other variants in gnomAD. *bioRxiv* 784157.
1009 doi:10.1101/784157

1010 Kessler MD, Loesch DP, Perry JA, Heard-Costa NL, Taliun D, Cade BE, Wang H, Daya M, Ziniti J,
1011 Datta S, Celedón JC, Soto-Quiros ME, Avila L, Weiss ST, Barnes K, Redline SS, Vasan RS,
1012 Johnson AD, Mathias RA, Hernandez R, Wilson JG, Nickerson DA, Abecasis G, Browning SR,

1013 Zöllner S, O'Connell JR, Mitchell BD, O'Connor TD. 2020. De novo mutations across 1,465
1014 diverse genomes reveal mutational insights and reductions in the Amish founder population.
1015 *Proc Natl Acad Sci U S A* **117**:2560–2569. doi:10.1073/pnas.1902766117

1016 Koch EM, Schweizer RM, Schweizer TM, Stahler DR, Smith DW, Wayne RK, Novembre J. 2019.
1017 De Novo Mutation Rate Estimation in Wolves of Known Pedigree. *Mol Biol Evol* **36**:2536–
1018 2547. doi:10.1093/molbev/msz159

1019 Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson
1020 A, Jonasdottir Aslaug, Jonasdottir Adalbjorg, W Wong WS, Sigurdsson G, Bragi Walters G,
1021 Steinberg S, Helgason H, Thorleifsson G, Gudbjartsson DF, Helgason A, Th Magnusson O,
1022 Thorsteinsdottir U, Stefansson K. 2012. Rate of de novo mutations and the importance of
1023 father's age to disease risk. *Nature* **488**:471. doi:10.1038/nature11396

1024 Lescai F, Marasco E, Bacchelli C, Stanier P, Mantovani V, Beales P. 2014. Identification and
1025 validation of loss of function variants in clinical contexts. *Mol Genet Genomic Med* **2**:58–63.
1026 doi:10.1002/mgg3.42

1027 Li H. 2020. Base quality scores are essential to short read variant calling.
1028 <http://lh3.github.io/2020/05/27/base-quality-scores-are-essential-to-short-read-variant-calling.html>
1029 <http://lh3.github.io/2020/05/27/base-quality-scores-are-essential-to-short-read-variant-calling.html>

1030 Li H. 2014. Toward better understanding of artifacts in variant calling from high-coverage samples.
1031 *Bioinformatics*. doi:10.1093/bioinformatics/btu356

1032 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform.
1033 *Bioinformatics* **25**:1754–176010. doi:10.1093/bioinformatics/btp324

1034 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009.
1035 The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**:2078–2079.
1036 doi:10.1093/bioinformatics/btp352

1037 Lindsay SJ, Rahbari R, Kaplantis J, Keane T, Hurles ME. 2019. Similarities and differences in patterns
1038 of germline mutation between mice and humans. *Nat Commun* **10**:1–12. doi:10.1038/s41467-
1039 019-12023-w

1040 Mak SST, Gopalakrishnan S, Carøe C, Geng C, Liu S, Sinding MHS, Kuderna LFK, Zhang W, Fu S,
1041 Vieira FG, Germonpré M, Bocherens H, Fedorov S, Petersen B, Sicheritz-Pontén T, Marques-
1042 Bonet T, Zhang G, Jiang H, Gilbert MTP. 2017. Comparative performance of the BGISEQ-500
1043 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. *Gigascience* **6**:1–

1044 13. doi:10.1093/gigascience/gix049

1045 Malinsky M, Svardal H, Tyers AM, Miska EA, Genner MJ, Turner GF, Durbin R. 2018. Whole-
1046 genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow.
1047 *Nat Ecol Evol* **2**:1940–1955. doi:10.1038/s41559-018-0717-x

1048 Maretty L, Jensen JM, Petersen B, Sibbesen JA, Liu S, Villesen P, Skov L, Belling K, Theil Have C,
1049 Izarzugaza JMG, Grosjean M, Bork-Jensen J, Grove J, Als TD, Huang S, Chang Y, Xu R, Ye
1050 W, Rao J, Guo X, Sun J, Cao H, Ye C, van Beusekom J, Espeseth T, Flindt E, Friberg RM,
1051 Halager AE, Le Hellard S, Hultman CM, Lescai F, Li S, Lund O, Løngren P, Mailund T, Matey-
1052 Hernandez ML, Mors O, Pedersen CNS, Sicheritz-Pontén T, Sullivan P, Syed A, Westergaard
1053 D, Yadav R, Li N, Xu X, Hansen T, Krogh A, Bolund L, Sørensen TIA, Pedersen O, Gupta R,
1054 Rasmussen S, Besenbacher S, Børglum AD, Wang J, Eiberg H, Kristiansen K, Brunak S,
1055 Schierup MH. 2017. Sequencing and de novo assembly of 150 genomes from Denmark as a
1056 population reference. *Nature* **548**:87–91. doi:10.1038/nature23264

1057 Martin HC, Batty EM, Hussin J, Westall P, Daish T, Kolomyjec S, Piazza P, Bowden R, Hawkins M,
1058 Grant T, Moritz C, Grutzner F, Gongora J, Donnelly P. 2018. Insights into Platypus Population
1059 Structure and History from Whole-Genome Sequencing. *Mol Biol Evol* **35**:1238–1252.
1060 doi:10.1093/molbev/msy041

1061 Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J. 2017. Differences between germline and
1062 somatic mutation rates in humans and mice. *Nat Commun* **8**:15183. doi:10.1038/ncomms15183

1063 Patch AM, Nones K, Kazakoff SH, Newell F, Wood S, Leonard C, Holmes O, Xu Q, Addala V,
1064 Creaney J, Robinson BW, Fu S, Geng C, Li T, Zhang W, Liang X, Rao J, Wang J, Tian M, Zhao
1065 Y, Teng F, Gou H, Yang B, Jiang H, Mu F, Pearson J V., Waddell N. 2018. Germline and
1066 somatic variant identification using BGISEQ-500 and HiSeq X Ten whole genome sequencing.
1067 *PLoS One* **13**:e0190264. doi:10.1371/journal.pone.0190264

1068 Pfeifer SP. 2017. Direct estimate of the spontaneous germ line mutation rate in African green
1069 monkeys. *Evolution (N Y)* **71**:2858–2870. doi:10.1111/evo.13383

1070 Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Auwera GA Van der, Kling DE,
1071 Gauthier LD, Levy-Moonshine A, Roazen D, Shakir K, Thibault J, Chandran S, Whelan C, Lek
1072 M, Gabriel S, Daly MJ, Neale B, MacArthur DG, Banks E. 2018. Scaling accurate genetic
1073 variant discovery to tens of thousands of samples. *bioRxiv* 201178. doi:10.1101/201178

1074 Prasad A, Lorenzen ED, Westbury M V. 2021. Evaluating the role of reference-genome phylogenetic
1075 distance on evolutionary inference. *bioRxiv* 2021.03.03.433733. doi:10.1101/2021.03.03.433733

1076 Rahbari R, Wuster A, Lindsay SJ, Hardwick RJ, Alexandrov LB, Turki S Al, Dominiczak A, Morris
1077 A, Porteous D, Smith B, Stratton MR, Consortium U, Hurles ME. 2016. Timing, rates and
1078 spectra of human germline mutation. *Nat Genet* **48**:126–133. doi:10.1038/ng.3469

1079 Regier AA, Farjoun Y, Larson DE, Krasheninina O, Kang HM, Howrigan DP, Chen BJ, Kher M,
1080 Banks E, Ames DC, English AC, Li H, Xing J, Zhang Y, Matise T, Abecasis GR, Salerno W,
1081 Zody MC, Neale BM, Hall IM. 2018. Functional equivalence of genome sequencing analysis
1082 pipelines enables harmonized variant calling across human genetics projects. *Nat Commun*
1083 **9**:4038. doi:10.1038/s41467-018-06159-4

1084 Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SR, Consortium W, Wilkie AO, McVean G, Lunter
1085 G. 2014. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in
1086 clinical sequencing applications. *Nat Genet* **46**:912–918. doi:10.1038/NG.3036

1087 Roach JC, Glusman G, Smit AFA, Huff CD, Hubley R, Shannon PT, Rowen L, Pant KP, Goodman
1088 N, Bamshad M, Shendure J, Drmanac R, Jorde LB, Hood L, Galas DJ. 2010. Analysis of genetic
1089 inheritance in a family quartet by whole-genome sequencing. *Science* **328**:636–639.
1090 doi:10.1126/science.1186802

1091 Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011.
1092 Integrative genomics viewer. *Nat Biotechnol*. doi:10.1038/nbt.1754

1093 Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB. 2013.
1094 Characterizing and measuring bias in sequence data. *Genome Biol* 2013 **14**:1–20.
1095 doi:10.1186/GB-2013-14-5-R51

1096 Sasani TA, Pedersen BS, Gao Z, Baird L, Przeworski M, Jorde LB, Quinlan AR. 2019. Large, three-
1097 generation human families reveal post-zygotic mosaicism and variability in germline mutation
1098 accumulation. *Elife* **8**:e46922. doi:10.7554/eLife.46922

1099 Ségurel L, Wyman MJ, Przeworski M. 2014. Determinants of mutation rate variation in the human
1100 germline. *Annu Rev Genomics Hum Genet* **15**:47–70. doi:10.1146/annurev-genom-031714-
1101 125740

1102 Smeds L, Qvarnström A, Ellegren H. 2016. Direct estimate of the rate of germline mutation in a bird.
1103 *Genome Res* **26**:1211–1218. doi:10.1101/gr.204669.116

1104 Straube D, Juen A. 2013. Storage and shipping of tissue samples for DNA analyses: A case study on
1105 earthworms. *Eur J Soil Biol* **57**:13–18. doi:10.1016/J.EJSOBI.2013.04.001

1106 Tatsumoto S, Go Y, Fukuta K, Noguchi H, Hayakawa T, Tomonaga M, Hirai H, Matsuzawa T, Agata
1107 K, Fujiyama A. 2017. Direct estimation of de novo mutation rates in a chimpanzee parent-
1108 offspring trio by ultra-deep whole genome sequencing. *Sci Rep* **7**:1–12. doi:10.1038/s41598-
1109 017-13919-7

1110 Thomas GWC, Wang RJ, Nguyen J, Alan Harris R, Raveendran M, Rogers J, Hahn MW. 2021.
1111 Origins and Long-Term Patterns of Copy-Number Variation in Rhesus Macaques. *Mol Biol Evol*
1112 **38**:1460–1471. doi:10.1093/MOLBEV/MSAA303

1113 Thomas GWC, Wang RJ, Puri A, Rogers J, Radivojac P, Hahn MW, Thomas GWC, Wang RJ, Puri
1114 A, Harris RA, Raveendran M. 2018. Reproductive longevity predicts mutation rates in primates.
1115 *Curr Biol* **28**:1–5. doi:10.1016/j.cub.2018.08.050

1116 Tian S, Yan H, Kalmbach M, Slager SL. 2016. Impact of post-alignment processing in variant
1117 discovery from whole exome data. *BMC Bioinformatics* **17**:403. doi:10.1186/s12859-016-1279-z

1118 Tiley GP, Poelstra JW, Reis M Dos, Yang Z, Yoder AD. 2020. Molecular Clocks without Rocks:
1119 New Solutions for Old Problems. *Trends Genet* **2020**. doi:10.1016/j.tig.2020.06.002

1120 Turner TN, Coe BP, Dickel DE, Hoekzema K, Nelson BJ, Zody MC, Kronenberg ZN, Hormozdiari F,
1121 Raja A, Pennacchio LA, Darnell RB, Eichler EE. 2017. Genomic Patterns of De Novo Mutation
1122 in Simplex Autism. *Cell* **171**:710-722.e12. doi:10.1016/J.CELL.2017.08.047

1123 Turner TN, Hormozdiari F, Duyzend MH, McClymont SA, Hook PW, Iossifov I, Raja A, Baker C,
1124 Hoekzema K, Stessman HA, Zody MC, Nelson BJ, Huddleston J, Sandstrom R, Smith JD,
1125 Hanna D, Swanson JM, Faustman EM, Bamshad MJ, Stamatoyannopoulos J, Nickerson DA,
1126 McCallion AS, Darnell R, Eichler EE. 2016. Genome Sequencing of Autism-Affected Families
1127 Reveals Disruption of Putative Noncoding Regulatory DNA. *Am J Hum Genet* **98**:58–74.
1128 doi:10.1016/J.AJHG.2015.11.023

1129 Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T,
1130 Shakir K, Roazen D, Thibault J, Banks E, Garimella K V, Altshuler D, Gabriel S, DePristo
1131 Geraldine A Van der Auwera MA. 2013. From FastQ data to high confidence variant calls: the
1132 Genome Analysis Toolkit best practices pipeline. *Curr Protoc Bioinforma* **11**:10.
1133 doi:10.1002/0471250953.bi1110s43

1134 Venn O, Turner I, Mathieson I, De Groot N, Bontrop R, McVean G. 2014. Strong male bias drives
1135 germline mutation in chimpanzees. *Science* **344**:1272–1275. doi:10.1126/science.344.6189.1272

1136 Wang RJ, Radivojac P, Hahn MW. 2021a. Distinct error rates for reference and nonreference

1137 genotypes estimated by pedigree analysis. *Genetics* **217**:1–10.
1138 doi:10.1093/GENETICS/IYAA014

1139 Wang RJ, Raveendran M, Harris RA, Murphy WJ, Lyons LA, Rogers J, Hahn MW. 2021b. De novo
1140 mutations in domestic cat are consistent with an effect of reproductive longevity on both the rate
1141 and spectrum of mutations. *bioRxiv* 2021.04.06.438608. doi:10.1101/2021.04.06.438608

1142 Wang RJ, Thomas GWC, Raveendran M, Harris RA, Doddapaneni H, Muzny DM, Capitanio JP,
1143 Radivojac P, Rogers J, Hahn MW. 2020. Paternal age in rhesus macaques is positively
1144 associated with germline mutation accumulation but not with measures of offspring sociability.
1145 *Genome Res* **30**:826–834. doi:10.1101/gr.255174.119

1146 Wilson Sayres MA, Makova KD. 2011. Genome analyses substantiate male mutation bias in many
1147 species. *BioEssays* **33**:938–945. doi:10.1002/bies.201100091

1148 Wingett S. 2017. Illumina Patterned Flow Cells Generate Duplicated Sequences. *QC Fail Artic about*
1149 *common next-generation Seq Probl.*

1150 Wong WSW, Solomon BD, Bodian DL, Kothiyal P, Eley G, Huddleston KC, Baker R, Thach DC,
1151 Iyer RK, Vockley JG, Niederhuber JE. 2016. New observations on maternal age effect on
1152 germline de novo mutations. *Nat Commun* **7**:1–10. doi:10.1038/ncomms10486

1153 Wu FL, Strand AI, Cox LA, Ober C, Wall JD, Moorjani P, Przeworski M. 2020. A comparison of
1154 humans and baboons suggests germline mutation rates do not track cell divisions. *PLOS Biol*
1155 **18**:e3000838. doi:10.1371/journal.pbio.3000838

1156 Yang C, Zhou Y, Marcus S, Formenti G, Bergeron LA, Song Z, Bi X, Bergman J, Rousselle MMC,
1157 Zhou C, Zhou L, Deng Y, Fang M, Xie D, Zhu Y, Tan S, Mountcastle J, Haase B, Balacco J,
1158 Wood J, Chow W, Rhie A, Pippel M, Fabiszak MM, Koren S, Fedrigo O, Freiwald WA, Howe
1159 K, Yang H, Phillippy AM, Schierup MH, Jarvis ED, Zhang G. 2021. Evolutionary and
1160 biomedical insights from a marmoset diploid genome assembly. *Nat 2021* **594**:227–
1161 233. doi:10.1038/s41586-021-03535-x

1162 Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. 2012. Primer-BLAST: a tool to
1163 design target-specific primers for polymerase chain reaction. *BMC Bioinformatics* **13**:134.
1164 doi:10.1186/1471-2105-13-134

1165