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Abstract 32 

In the past decade, several studies have estimated the human per-generation germline 33 

mutation rate using large pedigrees. More recently, estimates for various non-human species 34 

have been published. However, methodological differences among studies in detecting 35 

germline mutations and estimating mutation rates make direct comparisons difficult. Here, 36 

we describe the many different steps involved in estimating pedigree-based mutation rates, 37 

including sampling, sequencing, mapping, variant calling, filtering, and how to appropriately 38 

account for false-positive and false-negative rates. For each step, we review the different 39 

methods and parameter choices that have been used in the recent literature. Additionally, we 40 

present the results from a <Mutationathon=, a competition organized among five research labs 41 

to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We 42 

report almost a two-fold variation in the final estimated rate among groups using different 43 

post-alignment processing, calling, and filtering criteria and provide details into the sources 44 

of variation across studies. Though the difference among estimates is not statistically 45 

significant, this discrepancy emphasizes the need for standardized methods in mutation rate 46 

estimations and the difficulty in comparing rates from different studies. Finally, this work 47 

aims to provide guidelines for computational and statistical benchmarks for future studies 48 

interested in identifying germline mutations from pedigrees. 49 

 50 

Introduction 51 

Germline mutations are the source of most genetic diseases and provide the raw material for 52 

evolution. Thus, it is crucial to accurately estimate the frequency at which mutations occur in 53 

order to better understand the course of evolutionary events. The development of high 54 

throughput next-generation sequencing offers the opportunity to directly estimate the 55 

germline mutation rate over a single generation, based on a whole-genome comparison of 56 

pedigree samples (mother, father, and offspring), without requiring assumptions about 57 

generation times or fossil calibrations (Tiley et al., 2020). Pedigree sequencing provides 58 

multiple pieces of information in addition to an overall mutation rate. For instance, the 59 

genomic locations, the spectrum of mutation types (e.g. transition or transversion), and the 60 

nucleotide context of all mutations can easily be gleaned. Furthermore, pedigree sequencing 61 

enables researchers to identify the parental origin of the mutations--that is, whether the 62 
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mutation arose in the maternal or paternal germline. Finally, using pedigrees means that 63 

researchers often have precise information about the age of the parents at the time of 64 

reproduction, and comparing several trios (i.e. three related individuals: mother, father, and 65 

offspring) at different parental ages can tell us about the effect of parental age on the total 66 

number of transmitted mutations, their location, and their spectrum. Thus, there has been a 67 

growing interest in applying this method to address medical and evolutionary questions.  68 

The first estimate of the human germline mutation rate using pedigrees was published more 69 

than ten years ago (Roach et al., 2010). Four years later, the first pedigree-based mutation 70 

rate for a non-human primate, the chimpanzee, was estimated (Venn et al., 2014). Today, at 71 

least 20 vertebrate species have mutation rates estimated by pedigree sequencing (Table 1), 72 

with half added in the past two years. Each study differs in the number of trios, the 73 

sequencing technology and depth, the ages of individuals included, and the bioinformatics 74 

pipelines used to analyze the data (see Table 1 and Supplementary Table 1). Thus, reported 75 

variation in mutation rates among studies might result from a combination of biological and 76 

methodological factors. With an increasing number of studies being published, an 77 

examination of the differences among studies and suggestions for standards that will 78 

minimize differences caused by methodological discrepancies are warranted. 79 

 80 

Table 1 – Vertebrate species with a direct estimate of the mutation rate using 81 

a pedigree approach. The list of species includes ten primates, five non-primate 82 

mammals, one bird, and four fish (see Supplementary Table 1 for differences in 83 

study design and methodology). 84 

Species Mutation 

rate per 

site per 

generation

: µ × 10 -8  

Number 

of trios 

Parental age * Reference 

Orangutan (Pongo abelii) 1.66 1 f: 31.00 and f: 15.00 (Besenbacher et al., 2019) 
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Human (Homo sapiens) 1.17 

0.97 

1.20 

1.20 

1.28 

1.05 

1.29 

1.28 

1.30 

1.10 

1.22 

1 (CEU) 

1 (YRI) 

78 

269 

13 

719 

1550 

150 

516 

593 

1449 

unspecified 

unspecified 

f: 29.10  and f: 26.50 

unspecified 

f: 29.80 

f: 33.40 

unspecified 

~ 27.70 

f: 33.40 

f: 29.10 and f: 26.00 

f: 29.70  and f: 26.90 

(Conrad et al., 2011)  

(Conrad et al., 2011) 

(Kong et al., 2012) 

(Francioli et al., 2015) 

(Rahbari et al., 2016) 

(Wong et al., 2016) 

(Jónsson et al., 2017) 

(Maretty et al., 2017) 

(Turner et al., 2017) 

(Sasani et al., 2019) 

(Kessler et al., 2020) 

Chimpanzee (Pan 

troglodytes) 

1.20 

1.48 

1.26 

6 

1 

7 

f: 18.90  and f: 15.00 

f: 24.00  and f: 24.00 

f: 19.30   and f: 15.90 

(Venn et al., 2014) 

(Tatsumoto et al., 2017) 

(Besenbacher et al., 2019) 

Gorilla (Gorilla gorilla) 1.13 2 f: 14.50  and f: 20.50 (Besenbacher et al., 2019) 

Baboon (Papio anubis) 0.57 12 f: 10.70  and f: 10.20 (Wu et al., 2020) 

Rhesus macaque 

(Macaca mulatta) 

0.58 

0.77 

14 

19 

f: 7.80  and f: 7.10 

f: 12.40  and f: 8.40 

(Wang et al., 2020)  

(Bergeron et al., 2021) 

Green monkey 

(Chlorocebus sabaeus) 

0.94 3 f: 8.70  and f: 4.70 (Pfeifer, 2017) 

Owl monkey (Aotus 

nancymaae) 

0.81 14 f: 6.60  and f: 6.50 (Thomas et al., 2018) 
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* Depending on the study, the parental ages are reported as average paternal age (f), average 85 

maternal age (f), average parental age (~), or unspecified.  86 

 87 

The key principle of the pedigree-based approach is to detect de novo mutations (DNMs) 88 

present in a heterozygous state in an offspring that are absent from its parents' genomes 89 

(Figure 1). A per-site per-generation mutation rate can be inferred by dividing the number of 90 

DNMs by the number of sites in the genome that mutations could possibly be identified in 91 

Marmoset (Callithrix 

jacchus) 

0.43 1 ~ 2.80 (Yang et al., 2021) 

Gray mouse lemur 

(Microcebus murinus) 

1.52 2 f: 4.55 and f: 1.45 (Campbell et al., 2021) 

Mouse (Mus musculus) 0.57 

0.39 

8 

15 

unspecified 

~ 0.47 

(Milholland et al., 2017) 

(Lindsay et al., 2019) 

Cattle (Bos taurus) 1.17 5 unspecified (Harland et al., 2017) 

Wolf (Canis lupus) 0.45 4 f: 4.00 and f: 2.25 (Koch et al., 2019) 

Domestic cat (Felis 

catus) 

0.86 11 f: 4.70 and f: 2.90 (Wang et al., 2021b) 

Platypus 

(Ornithorhynchus 

anatinus) 

0.70 2 unspecified (Martin et al., 2018) 

Collared flycatcher 

(Ficedula albicollis) 

0.46 7 unspecified (Smeds et al., 2016) 

Herring (Clupea 

harengus) 

0.20 12 unspecified (Feng et al., 2017) 

Cichlid (Astatotilapia  

calliptera, Aulonocara 

stuartgranti and Lethrino

ps lethrinus) 

0.35 9 unspecified (Malinsky et al., 2018) 
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(and accounting for the diploid length of the genome, as mutations can be transmitted by both 92 

the mother and father). As mutations are rare events, detecting all the true DNMs (or having a 93 

high sensitivity) while avoiding errors (or increasing precision) from a single generation 94 

remains challenging. False-positive calls (sites incorrectly detected as DNMs) can be caused 95 

by sequencing errors, errors introduced by read-mapping and genotyping steps, or somatic 96 

mutations in the offspring. Numerous filters are thus often applied on the variant sites to 97 

increase the precision of the candidate DNMs detection. However, filters that are too 98 

conservative can also discard true DNMs, reducing the sensitivity by increasing the rate of 99 

false-negative calls (true DNMs not detected). Therefore, a balance should be found between 100 

precision and sensitivity--a goal that has led to the development of multiple different methods 101 

to estimate germline mutation rates from pedigree samples. 102 

   103 

Figure 1 – Detection of a de novo mutation (DNM) in a trio sample (mother, 104 

father, and offspring). Potential candidates for DNMs are sites where 105 

approximately half of the reads (indicated as grey bars) from the offspring have a 106 

variant (indicated in green) that is absent from the parental reads. 107 

 108 

In this study, we aim to define what we consider to be the state-of-the-art in pedigree-based 109 

germline mutation rate estimation, to discuss the pros and cons of each methodological step, 110 

and to summarize best practices that should be used when calling germline mutations. We 111 

review several recently published methods that estimate germline mutation rates from 112 

pedigree samples. In parallel, we set up a competition--the <Mutationathon=--among five 113 

research groups to explore the effect of different methodologies on mutation rate estimates. 114 

Using a common genomic dataset consisting of a pedigree of the rhesus macaque (Macaca 115 

mulatta; Bergeron et al., 2021), each group estimated the number of candidate DNMs 116 

(validated by PCR amplification and Sanger resequencing) and a germline mutation rate. An 117 

examination of the estimated rates produced by different groups not only highlighted the 118 
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choices that can be made in estimating per-generation mutation rates, but it also provided us 119 

with an opportunity to characterize the impact of these choices on the systematic differences 120 

in estimated rates, which in turn yielded important insights into the parameters that could 121 

reduce the occurrence of false-positive calls.  122 

 123 

Results 124 

Comparison of methods 125 

The overall pipeline from high throughput next-generation sequencing data to an estimated 126 

mutation rate is similar across all studies listed in Table 1. It includes five steps (Figure 2):  127 

1. sampling and whole-genome sequencing of at least one trio or extended pedigrees that also 128 

include a third-generation (useful for validation of putative DNMs in the offspring),  129 

2. alignment of reads to a reference genome and post-processing of alignments,  130 

3. variant-calling to infer genotypes or genotype likelihoods for all individuals,  131 

4. detection of DNMs via filtering of candidates (including an assessment of the false 132 

discovery rate), and finally  133 

5. the estimation of a per-generation mutation rate accounting for the length of the accessible 134 

genome (including an assessment of the false-negative rate). 135 

 136 

Figure 2 – Flow of the main steps to call de novo mutations (DNMs) from 137 

pedigree samples. Each step lists the various choices in study design and 138 

methodology that might impact mutation rate estimates. 139 

  140 
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Step 1 - Sampling and sequencing 141 

Sample size. Pedigree-based study designs can vary significantly, from those that include 142 

only one trio (e.g., Besenbacher et al., 2019) to those that include thousands of trios (e.g., 143 

Halldorsson et al., 2019). The first study to estimate a pedigree-based human mutation rate 144 

used only two trios and estimated a mutation rate of 1.1 × 10-8 per site per generation (Roach 145 

et al., 2010), which is within the overall variation reported across studies with larger sample 146 

sizes (Table 1). Larger sample sizes reduce uncertainty in the average mutation rate for a 147 

species and offer more statistical power for the exploration of various parameters such as the 148 

parental age effect, the contribution of each parent to the total number of DNMs, the presence 149 

of mosaicism and shared mutations when including siblings, or the distribution of mutations 150 

across genomes. Moreover, multiple generation pedigrees, also referred to as extended trios, 151 

can be used to validate true DNMs and adjust quality filters by studying transmission to a 152 

third generation. Therefore, whenever possible, multiple trios should be analyzed and more 153 

than one generation should be included. Finally, the age of the parents at the time of 154 

reproduction is required for estimating the per-year mutation rate from the per-generation 155 

rates directly measured in the trios. In some studies, the age of the parents at conception is 156 

not available, and instead, the mean age of reproduction is used for the estimation of the per-157 

year mutation rate. While useful, this approximation can lead to biased results if the age of 158 

the parents at conception was much older or much younger compared to the mean age in the 159 

population. Thus, when possible, the information on the age of each parent at the time of 160 

conception should be collected as it is essential for the interpretation of results and to help 161 

understand parental age effects on mutation rate. 162 

Sample type. The most commonly used sample types are somatic tissues such as whole 163 

blood, muscle, or liver, which generally produce a high quantity of DNA with long fragment 164 

sizes and allow for high-coverage sequencing. The duration and temperature of storage can 165 

affect the quality of the extracted DNA and increase the rate of sequencing errors. Thus, to 166 

minimize DNA damage during storage, DNA is typically kept in TE (tris-EDTA) buffer. 167 

Moreover, it is advised to store DNA at -80°C for long-term storage (months to years) and in 168 

liquid nitrogen at -164°C for decades (Baust, 2008; Straube and Juen, 2013). Other materials 169 

such as buccal swabs or fur can be considered, but they can be technically challenging. For 170 

instance, as part of a recent study on rhesus macaques (Bergeron et al., 2021), DNA was 171 

extracted from hair samples and sequenced at 95X coverage, yet, due to the fragmentation, 172 
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only 38% of the reads were mappable to the reference genome. After variant calling, the 173 

average depth of usable reads was 6X, with only 10% of sites covered by more than 10 reads. 174 

To reduce the number of false-positive calls caused by somatic mutations, it is best to avoid 175 

tissues with an accumulation of such mutations, such as skin. In this regard, blood is often the 176 

preferred tissue: as many different tissues contribute cells to the blood, the hope is that a 177 

somatic mutation in any one of them will not be mistaken for a DNM. However, in rare cases, 178 

mainly in older individuals, clonal hematopoiesis can lead to high frequency somatic 179 

mutations in the blood. Sequencing more than one type of tissue, when feasible, should be 180 

considered in order to reduce the potential for mistaking somatic mutations as candidate 181 

DNMs.  182 

Libraries. After DNA extraction, genomic library preparation is another step that can 183 

introduce sequencing errors. Most studies have used Illumina sequencing platforms, yet, even 184 

for a single technology, there are different library preparation protocols available. PCR 185 

amplification is commonly used to increase the quantity of DNA, but this can generate 186 

artifacts caused by the introduction of sequence errors (PCR errors) or by the over-187 

amplification of some reads (PCR bias) (Acinas et al., 2005). Thus, for samples yielding a 188 

sufficient amount of DNA, PCR-free libraries that do not involve amplification prior to 189 

cluster generation are preferable. Moreover, as different library preparation methods can 190 

result in different amplification biases (Ross et al., 2013; Wingett, 2017), utilizing different 191 

types of library preparations may be advisable to reduce the sources of error.  192 

Sequencing. All Illumina sequencing platforms use similar sequencing chemistry 193 

(sequencing-by-synthesis) and mainly differ in running speed and throughput. Another 194 

equivalent technology, used in two studies (Bergeron et al., 2021; Roach et al., 2010), is 195 

BGISEQ-500, combining DNA nanoball nanoarrays with polymerase-based stepwise 196 

sequencing (Mak et al., 2017) and showing similar performances to Illumina on data quality 197 

(Chen et al., 2019; Patch et al., 2018). Another study used 10x Genomics linked reads, which 198 

can help phase maternal and paternal mutations (Campbell et al., 2021). However, it remains 199 

unclear if alternative library preparation and sequencing platforms introduce additional biases 200 

compared to standard Illumina protocols. Most pedigree-based studies of germline mutations 201 

have sequenced each individual to a depth between 30X and 50X (Besenbacher et al., 2019; 202 

Campbell et al., 2021; Jónsson et al., 2017; Kessler et al., 2020; Malinsky et al., 2018; 203 

Milholland et al., 2017; Sasani et al., 2019; Smeds et al., 2016; Thomas et al., 2018; Turner et 204 
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al., 2017; Wang et al., 2020; Wu et al., 2020), three studies sequenced at a higher depth of ∼ 205 

80X (Bergeron et al., 2021; Maretty et al., 2017) and 150X (Tatsumoto et al., 2017), while 206 

six studies sequenced at a depth lower than 25X on average (Harland et al., 2017; Koch et al., 207 

2019; Lindsay et al., 2019; Martin et al., 2018; Pfeifer, 2017; Rahbari et al., 2016). A 208 

minimum coverage of 15X has been advised to call single nucleotide polymorphisms (SNPs) 209 

accurately (Fumagalli et al., 2013). Yet, this depth might not be sufficient to call germline 210 

mutations, since it might be hard to distinguish genuine germline mutations from somatic 211 

mutations that are present in a substantial fraction of cells. Furthermore, with low coverage 212 

the probability of calling a parent homozygous for the reference allele, when they are actually 213 

heterozygous, becomes non-negligible at the genome-wide level. For example, the binomial 214 

probability of not observing a read with one of the alleles in a heterozygote with 15X 215 

coverage is 0.515 = 3.05 × 10-5, which will happen by chance around 30 times in a genome 216 

with 1 million heterozygous positions. Likewise, based on the binomial distribution, the 217 

probability that a somatic mutation present in 10% of cells is seen in more than 30% of reads 218 

is 0.0113 with 20X coverage but falls to 0.0004 with 35X coverage. Thus, it is advised to aim 219 

for a minimum of 35X as a rule of thumb.  220 

Step 2 - Alignment and post-alignment processing 221 

Alignment. To find DNMs, we must first find where in the genome each of the short 222 

sequencing reads comes from. The Burrows-Wheeler Aligner (BWA; Li and Durbin, 2009) is 223 

an algorithm developed to map short reads (50-250 bp) to a reference genome and has been 224 

used in the majority of studies on direct mutation rate estimation (Bergeron et al., 2021; 225 

Besenbacher et al., 2019; Harland et al., 2017; Jónsson et al., 2017; Kessler et al., 2020; Koch 226 

et al., 2019; Malinsky et al., 2018; Maretty et al., 2017; Milholland et al., 2017; Pfeifer, 2017; 227 

Sasani et al., 2019; Smeds et al., 2016; Tatsumoto et al., 2017; Thomas et al., 2018; Turner et 228 

al., 2017; Wang et al., 2021b, 2020; Wu et al., 2020). In particular, the BWA-MEM 229 

algorithm is fast, accurate, and can be implemented with an insert size option to improve the 230 

matching of paired reads. Several aspects of the study organism and study design can have 231 

detrimental effects on read mapping. Some studies reported a trimming step to remove 232 

adapter sequences and poor-quality reads--those with a high proportion of unknown (<N=) 233 

bases or low quality-score bases (Bergeron et al., 2021; Maretty et al., 2017; Tatsumoto et al., 234 

2017; Wu et al., 2020). However, trimming might not be necessary as some mapping 235 

software will soft-clip (or mask) the adaptors, while low-quality reads can be removed during 236 
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the variant calling step. The quality of the reference genome can play an important role in 237 

obtaining a large proportion of reads with high mapping scores. In the case of a poor or non-238 

existent reference genome, using the reference genome of a phylogenetically related species 239 

is an option, but this could make the downstream analysis more complex (Prasad et al., 240 

2021). Moreover, BWA was designed to map low-divergence sequences, so that using a 241 

related species, or even a closely related individual in the same species when heterozygosity 242 

is high, could impact the mapping. Finally, low-complexity regions and repetitive sequences 243 

such as dinucleotide tandem repeats can be problematic for read-mapping. Standards have 244 

been proposed for human genome analysis and can be followed for germline mutation rate 245 

calling in species with comparable heterozygosity (for details, see Regier et al., 2018). 246 

Post-alignment processing. To correct for possible misalignment of sequencing reads to the 247 

reference genome, post-alignment quality control is necessary. This step often includes base-248 

quality score recalibration (BQSR), removing of duplicate reads, and realignment around 249 

indels. BQSR corrects for any bias in the base quality score assigned by the sequencer by 250 

utilizing information from a set of known variants for the studied species. When such a 251 

dataset is not available, as in many non-human species, the Best Practices of the Genome 252 

Analysis ToolKit (GATK) software from the Broad Institute advises to proceed first with 253 

variant calling in all available samples and subsequently using the best quality variants to 254 

recalibrate the base quality scores (GATK team, 2021). If multiple generations are available, 255 

high-quality variants fully transmitted across generations can be used for BQSR (Wu et al., 256 

2020). However, some studies have ignored this step due to the circularity of this method and 257 

its computational expense, as variants will be called twice (Bergeron et al., 2021; Thomas et 258 

al., 2018; Wang et al., 2020). A comparative study presented a difference of less than 0.1 % 259 

between the total variant sites called with and without recalibration (Li, 2014), and this 260 

difference was even lower for high-coverage (40X) sequencing (Tian et al., 2016); however, 261 

this step is still advised to increase the quality of variant calling (Li, 2020). Duplicates, 262 

identical reads due to amplification (PCR duplicates) or sequencing clusters (optical 263 

duplicates), can increase false-positive calls and erroneously inflate sequencing coverage. 264 

Therefore, duplicates should be marked or removed even for sequences from PCR-free 265 

libraries. Reads terminating with indels are more likely to be misaligned; thus, depending on 266 

the variant caller used, realignment around indels may be advised to correct for this artifact. 267 

Specifically, realignment around indels is required when calling variants with non-haplotype-268 

aware callers (such as GATK’s UnifiedGenotyper), but is not necessary with haplotype-269 
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aware variant callers (such as GATK HaplotypeCaller (Poplin et al., 2018), Platypus 270 

(Rimmer et al., 2014), or FreeBayes (Garrison and Marth, 2012)). From GATK release 3.6 271 

onward, the realigned reads around indels can be outputted during the variant calling step. 272 

Alternatively, BWA alignments can be used to construct a variation-aware graph with 273 

GraphTyper (Eggertsson et al., 2017), including known polymorphisms and newly genotyped 274 

variants. Thereby, reads are re-aligned to the graph, reducing reference bias and improving 275 

read alignment near indels (Eggertsson et al., 2017) and structural variants (Eggertsson et al., 276 

2019). Finally, other quality controls can be applied after mapping, such as removing reads 277 

mapping to multiple locations, as they could map with a good mapping quality in two or 278 

more locations and be ignored by further quality filters. However, the overall impact of many 279 

of these filters, such as BQSR and realignment around indels, on the final set of DNMs has 280 

not yet been studied.  281 

Step 3 - Variant calling 282 

Software. Different algorithms have been shown to perform similarly well in calling 283 

nucleotide variants (Li, 2014). GATK (Auwera and O’Connor, 2020) is widely used among 284 

studies that call germline DNMs (Bergeron et al., 2021; Besenbacher et al., 2019; Campbell 285 

et al., 2021; Feng et al., 2017; Harland et al., 2017; Jónsson et al., 2017; Koch et al., 2019; 286 

Malinsky et al., 2018; Maretty et al., 2017; Milholland et al., 2017; Pfeifer, 2017; Sasani et 287 

al., 2019; Smeds et al., 2016; Tatsumoto et al., 2017; Thomas et al., 2018; Turner et al., 2017; 288 

Wang et al., 2021b, 2020; Wong et al., 2016; Wu et al., 2020). Other commonly used variant 289 

callers are GraphTyper (Eggertsson et al., 2017; e.g., utilized by Beyter et al., 2021; 290 

Halldorsson et al., 2019; Jónsson et al., 2021, 2018) and FreeBayes (Garrison and Marth, 291 

2012; e.g., utilized by Turner et al., 2017). Using more than one variant caller can increase 292 

confidence in the SNP set but can become computationally expensive (Turner et al., 2017).  293 

Parameters. Even within the same variant caller, different methods can be used (see 294 

Supplementary Table 1). For instance, in GATK v3, three strategies are available: 1. per-295 

sample variant calling, 2. batch calling, in which samples are analyzed separately and 296 

concatenated for downstream analysis, and 3. joint calling, in which variants are called 297 

simultaneously across all samples (with the UnifiedGenotyper command). In GATK v4, the 298 

new recommendation is to first call variants for each sample separately (HaplotypeCaller in 299 

ERC mode), and then combine all the samples (GenomicsDBImport) to jointly genotype 300 

them (GenotypeGVCFs)--thus, the initial identification of variant sites is separable from the 301 
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assignment of genotypes to each individual. UnifiedGenotyper and HaplotypeCaller should 302 

have a similar ability to detect SNPs, but differences in variant sets have been observed 303 

(Lescai et al., 2014). Moreover, the GATK HaplotypeCaller ERC mode has two options: the 304 

BP_RESOLUTION option provides records for every single site in the genome, even non-305 

variant sites, while the GVCF option groups the non-variant sites into a block of record. This 306 

variant-calling step is computationally expensive, especially if variants are called in BP-307 

RESOLUTION mode, but it can be useful to determine the part of the genome in which there 308 

is full power to detect mutations. It is still unclear which strategy should be prioritized; thus, 309 

it is advised to report the method used and any additional options that have been 310 

implemented. The default settings of GATK applied during variant calling should also be 311 

kept in mind. For instance, the heterozygosity prior is by default at 0.001, which could have 312 

an impact when analyzing species with much higher or much lower heterozygosity, though 313 

the effect of this prior has not been evaluated in the context of mutation rate studies. 314 

Step 4 - Detecting de novo mutations 315 

Site filters. GATK’s Best Practices (Auwera and O’Connor, 2020) advise a Variant Quality 316 

Score Recalibration (VQSR) step to ensure that genotypes are correctly called. However, this 317 

tool is not suitable for DNMs as it would remove many rare variants; instead, hard-filtering 318 

should be applied. GATK provides some general recommendations for these filters, warning 319 

that these should be a starting point and filters may need to be adjusted depending on the 320 

callset or the species studied (GATK team, 2020). The currently advised hard filter criteria 321 

for germline short variant discovery are:  QD < 2.0; MQ < 40.0; FS > 60.0; SOR > 3.0; 322 

MQRankSum < -12.5; ReadPosRankSum < -8.0. These parameters take into account the 323 

quality of a call at a given site (QD), the mapping quality (MQ), the strand bias (FS and 324 

SOR), the mapping quality bias between reference and alternative allele (MQRankSum), the 325 

position bias within reads (ReadPosRankSum); see Supplementary Table 2 for details on each 326 

filter). Although some studies followed these best practices (Jónsson et al., 2017; Wu et al., 327 

2020), others implemented only a subset of filters (e.g., three studies reported the GATK 328 

filters without SOR > 3.0 (Koch et al., 2019; Thomas et al., 2018; Wang et al., 2020) and 329 

Besenbacher et al. (2019) kept only four parameters -- FS, ReadPosRankSum, 330 

BaseQualityRankSum, and MQRankSum -- as they are calculated based on statistical tests 331 

following a known distribution) or readjusted the filtering thresholds based on previous 332 

results (e.g., Koch et al. (2019) changed the ReadPosRankSum threshold from -8 to 15 while 333 
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Bergeron et al. (2021) changed the site filters by first using the advised parameters and then 334 

adjusting them to reduce the apparent false-positive calls). Several of the earlier studies 335 

implemented a different suite of site filters altogether (Pfeifer, 2017; Smeds et al., 2016; 336 

Tatsumoto et al., 2017). Given this plethora of choices, we suggest that reporting filter details 337 

should be common practice to improve the comparability of mutation rate estimates. Another 338 

site filter is the Phred-scaled probability that a certain site is polymorphic in one or more 339 

individuals (QUAL), which has been used in some studies (Harland et al., 2017; Pfeifer, 340 

2017; Wu et al., 2020).  341 

Filters of candidate DNMs. From pedigrees, germline mutations are detected as <Mendelian 342 

violations= where at least one of the alleles observed in the offspring is absent from both of 343 

its parents. Most mutation rate studies restrict Mendelian violations to sites where both 344 

parents are homozygous for the reference allele (HomRef; 0/0) and the offspring is 345 

heterozygous (Het; 0/1 or 1/0) (Bergeron et al., 2021; Besenbacher et al., 2019; Jónsson et al., 346 

2017; Koch et al., 2019; Pfeifer, 2017; Smeds et al., 2016; Thomas et al., 2018; Wang et al., 347 

2020; Wu et al., 2020). Other combinations of genotypes could also be caused by germline 348 

mutations such as parents homozygous for the alternative allele (HomAlt; 1/1) with 349 

heterozygous offspring (0/1 or 1/0), or one parent HomRef (0/0) and the other HomAlt (1/1) 350 

with an offspring either HomRef (0/0) or HomAlt (1/1). These sites are usually filtered out 351 

and assumed to represent a small portion of the genome to avoid the added uncertainty 352 

associated with these genotypes (Wang et al., 2021a). However, before excluding these sites, 353 

researchers should note that their expected frequency increases with the level of 354 

heterozygosity of the species studied and the phylogenetic distance to the reference genome 355 

used for mapping. For a phylogenetic distance to the reference genome of 2%, ~1 in 50 true 356 

DNMs is expected to occur in a background where both parents are homozygous for the 357 

alternative allele (1/1). After selecting the final set of Mendelian violations, several filters are 358 

applied to ensure the genotypes of each individual are of high quality and to reduce false-359 

positive calls. The individual filters and thresholds used vary substantially between studies 360 

(see Supplementary Table 3), but generally include a depth filter (i.e., the number of reads for 361 

each individual at a particular site), a genotype quality filter (i.e., the Phred-scaled confidence 362 

of the assigned genotype), as well as a filter on the allelic depth (i.e., the number of reads 363 

supporting the alternative allele and the reference allele). 364 
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Sites with low read depth (DP) are prone to exhibit Mendelian violations due to sequencing 365 

and genotyping errors, while positions with particularly high depth could indicate a 366 

misalignment of reads in low complexity or paralogous regions. As each study analyzed 367 

pedigrees sequenced at various depths, different cutoffs were chosen for this filter, some 368 

more permissive than others. Some studies only set a minimum DP of approximately 10 reads 369 

(e.g., Jónsson et al., 2017; Pfeifer, 2017; Sasani et al., 2019), while other higher coverage 370 

studies were able to set more conservative minimum and maximum thresholds, varying from 371 

a minimum of 10 to 20 to a maximum of 60 to 150 (e.g., Maretty et al., 2017: DP < 10 and 372 

DP > 150; Thomas et al., 2018: DP < 20 and DP > 60; Wang et al., 2020: DP < 20 and DP > 373 

60). Another approach is to use a relative depth threshold for each individual (e.g., 374 

depthindividual ± 3σ, with σ being the standard deviation around the average depth (Tatsumoto 375 

et al., 2017), or a maximum threshold of 2 × depthindividual (Besenbacher et al., 2019)) or, 376 

when all individuals were sequenced at a similar depth, an relative depth per trio (e.g., a DP 377 

filter of 0.5 × depthtrio and 2 × depthtrio (Bergeron et al., 2021)). Alternatively, Rahbari et al. 378 

(2016) and Wu et al. (2020) tested if the depth at each site followed a Poisson distribution 379 

under the null hypothesis that lambda was depthindividual, and filtered away sites where at least 380 

one individual of the trio had a p-value higher than 2 × 10-4.   381 

To correct for genotyping errors, two parameters from the output variant-calling file can be 382 

used: the Phred-scaled likelihood of the genotype (PL) and the genotype quality (GQ). The 383 

most likely genotype has a PL of 0, while the least likely genotype has the highest PL value. 384 

GQ is the difference between the PL2nd most likely and PL1st most likely, with a maximum reported 385 

of 99. Applied GQ thresholds vary between 20 (Jónsson et al., 2017; Sasani et al., 2019) and 386 

70 (Wang et al., 2021b, 2020). Instead of using GQ, some studies used the difference 387 

between PL2nd most likely and PL1st most likely, which is not limited to a maximum of 99, and 388 

applied more conservative criteria for the offspring heterozygous genotype than for the 389 

homozygous parents (Maretty et al., 2017: homozygous PL2nd most likely - PL1st most likely < 80, 390 

heterozygous PL2nd most likely - PL1st most likely < 250; Tatsumoto et al., 2017: homozygous PL2nd 391 

most likely - PL1st most likely < 100, heterozygous PL2nd most likely - PL1st most likely < 200). 392 

Variants can also be filtered using allelic depth: the number of reads supporting the reference 393 

allele and the alternative allele. To ensure the homozygosity of the parents, some studies filter 394 

away sites where alternative alleles are present in the parents' reads. AD refers to the number 395 

of reads supporting the alternative allele, with previously utilized thresholds include AD > 0 396 
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(Besenbacher et al., 2019; Harland et al., 2017; Koch et al., 2019; Pfeifer, 2017; Sasani et al., 397 

2019; Smeds et al., 2016; Wang et al., 2021b), AD > 1 (Jónsson et al., 2017; Wang et al., 398 

2020), or AD > 4 (Maretty et al., 2017). Even more conservative, one study used a lowQ 399 

AD2 > 1, i.e. the number of alternative alleles in the low-quality reads (not used for variant 400 

calling) should not exceed 1 (Besenbacher et al., 2019). 401 

Allelic depth is also used to calculate the allelic balance (AB): the proportion of reads 402 

supporting the alternative allele relative to the total depth at this position. In the case of a 403 

DNM, the offspring should have approximately 50% of its reads supporting each allele. 404 

Purely somatic mutations are expected to cause only a small fraction of reads to carry an 405 

alternate allele, though this fraction can be different for mutations occurring early in the 406 

zygote stage of the offspring and leading to germline mosaicism. A previous large-scale 407 

analysis of human pedigrees recovered a bi-modal allelic balance distribution of Mendelian 408 

violations in the offspring before applying an AB filter, with a peak around 50% interpreted 409 

as DNMs, and another peak around 20% likely corresponding to somatic mutations 410 

(Besenbacher et al., 2015), mismapping errors, or sample contamination (Karczewski et al., 411 

2019). Thus, careful filtering on AB is required to avoid false positives. Thresholds used for 412 

the AB filter vary between a minimum of 20% (Pfeifer, 2017) to 40% (Thomas et al., 2018), 413 

and a maximum, when applied, of 60% (Thomas et al., 2018) to 75% (Jónsson et al., 2017). 414 

Instead of a hard cutoff, one study used a binomial test on the allelic balance under the null 415 

hypothesis of a 0.5 frequency, removing positions with a p-value lower than 0.05 (Wu et al., 416 

2020).  417 

Additional filters can be used, for instance, to remove candidate DNMs present in individuals 418 

other than the focal offspring, including siblings (Pfeifer, 2017; Smeds et al., 2016), only 419 

unrelated individuals in the same dataset (Bergeron et al., 2021; Besenbacher et al., 2019; 420 

Campbell et al., 2021; Thomas et al., 2018; Wu et al., 2020) or polymorphism datasets of the 421 

same species (Pfeifer, 2017; Smeds et al., 2016; Wu et al., 2020). This filter is based on the 422 

idea that the chance of getting a DNM at a position already being polymorphic is very low 423 

unless there is very high heterozygosity, thus guarding against the possibility that a 424 

heterozygous site was missed in the parents. Filters can also be applied to the distance 425 

between mutations, again assuming that the probability of having two mutations close to each 426 

other is low. For instance, in some studies, candidate DNMs were removed if four or more 427 

candidates were located in a 200 base-pairs window (Koch et al., 2019), or two candidates 428 
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were less than 10 base-pairs (Tatsumoto et al., 2017) or 100 base-pairs apart (Wu et al., 2020) 429 

from each other. However, the underlying assumptions for these filters are not always 430 

fulfilled. Indeed, recurrent mutations can occur, especially at CpG locations (Acuna-Hidalgo 431 

et al., 2016; Ségurel et al., 2014), and there is evidence of nonrandom clustering of mutations 432 

(Brandler et al., 2016; Turner et al., 2016). Finally, some studies removed DNM candidates 433 

located in the locus control region (LCR; Sasani et al., 2019) or repetitive regions of the 434 

genome (Pfeifer, 2017) which are prone to mismapping. 435 

Assessing false-positives. After choosing each filter according to the dataset, a total number 436 

of candidate DNMs per offspring is found. Yet, as stringent as the filters can be, there are still 437 

chances for false positives (FPs) to be introduced in the final set of DNMs. Even though there 438 

is no perfect method to correct the false-positive calls, this issue should be addressed.  439 

One of the most straightforward methods to validate DNMs is by PCR amplification followed 440 

by resequencing such as Sanger sequencing, to ensure the genotype of each individual of the 441 

trio (Bergeron et al., 2021; Koch et al., 2019; Maretty et al., 2017; Tatsumoto et al., 2017; 442 

Wu et al., 2020). However, this PCR amplification and resequencing method can be 443 

challenging. In addition to the cost, designing primers for the region of the candidate DNMs 444 

can be difficult, especially for candidates located in repeat regions. Furthermore, most Sanger 445 

resequencing is aimed at validating the heterozygous state of the offspring, not the 446 

homozygous state of the parents. If all candidate DNMs are successfully validated, the false 447 

positives can be removed from the set of candidate DNMs. However, it is often the case that 448 

we cannot check every candidate DNM. In these cases, it is common to estimate the false 449 

discovery rate (FDR) from a subset of candidates that can be checked. The FDR can be 450 

estimated as: 451 

                                      , 452 

with PCRvalidated being the number of candidate DNMs successfully amplified and passing the 453 

resequencing validation and PCRfailed being the number of candidate DNMs successfully 454 

amplified but failing the resequencing validation. We can then adjust the total number (nb) of 455 

DNMs in the entire dataset by using the following relationship: 456                                                     , 457 
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where                            is the updated number of DNMs in the dataset. Of note, 458 

some studies refer to a false positive rate instead of the FDR (eg. Bergeron et al., 2021; 459 

Jónsson et al., 2017; Wang et al., 2020), yet, it also refers to the ratio of false-positive calls on 460 

the total number of candidates (i.e. true positives and false positives). 461 

A second method to check candidate DNMs is manual curation, using visualization software 462 

such as the Integrative Genome Viewer (IGV; Robinson et al., 2011). By comparing the read 463 

mappings of the parents and their offspring at candidate DNMs, false-positive calls can be 464 

detected. Estimates of the false discovery rate using this approach have varied widely 465 

depending on the study design, from 91% (Pfeifer, 2017) at low coverage to 35% (Smeds et 466 

al., 2016) at medium coverage to 11% at high coverage (Bergeron et al., 2021). Further work 467 

is needed to ensure that manual curation is consistent when applied by different researchers 468 

working in different systems.  469 

A third method to estimate the false discovery rate, based on deviations from the expected 470 

50% transmission rate of DNMs to the next generation, can be used if an extended pedigree is 471 

available. With this method, Wu et al. (2020) estimated a false discovery rate of 18%. 472 

However, such a deviation from 50% can arise from the expected variance of a binomial 473 

distribution, especially if the number of mutations is small. Moreover, clusters of mutations 474 

could increase this variance if linked mutations are passed on together to the next generation, 475 

especially if the number of trios is small. When this method is used, transmission should be 476 

clearly defined as it can be when the grandchild has been genotyped as heterozygote with the 477 

mutant allele, or alternatively when at least a few reads contain the mutant allele. Jónsson et 478 

al. (2017) used multiple individuals and haplotype sharing to assess the consistent 479 

segregation of DNM allele in the next generation. 480 

A fourth method of estimating the false discovery rate takes advantage of monozygotic twins. 481 

Germline mutations transmitted from parents to monozygotic twins are expected to be present 482 

in both twins, as they are derived from the same zygote. Jónsson et al. (2017) exploited the 483 

discordance between candidate DNMs in monozygotic twins to derive the false discovery rate 484 

(3%). This estimate is an upper bound because discordance between monozygotic twins is a 485 

combination of post-zygotic mutations and false-positive calls. However, the authors 486 

analyzed a unique dataset of 91 human trios with monozygotic twins -- data that will be hard 487 

to obtain in most species. 488 
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Step 5 – Mutation rate estimation 489 

To calculate a per-site per-generation mutation rate, the total number of candidate DNMs 490 

(corrected for false positives), should be divided by the number of sites in the genome with 491 

full detection power. The denominator takes into account the callable genome (CG) - sites 492 

where mutations could have been detected, and the false-negative rate (FNR) - the rate at 493 

which actual DNMs have been missed by the pipeline that has been applied to this point. 494 

Assuming that the rate of mutation is similar in the remaining part of the genome, the 495 

mutation rate per-site per-generation µ  of a diploid species can be estimated as: 496 

                                          . 497 

Callable genome. Different methods have been used to estimate the CG, the number of sites 498 

where a DNM would have been detected if it was there (Supplementary Table 1). Many 499 

studies used the strict individual filters applied during the detection of candidate DNMs, 500 

including all sites where the parents were homozygotes for the reference allele and each 501 

individual met the DP, GQ, and any other filters. However, the set of filters and input files 502 

used to infer CG differ between studies (Supplementary Table 1) and, consequently, 503 

estimates vary widely from CG representing 45% (Tatsumoto et al., 2017) to 91.5% 504 

(Malinsky et al., 2018) of the total genome. For instance, some studies used GATK’s 505 

CallableLoci tool (Van der Auwera et al., 2013) that estimates the number of sites that pass 506 

the DP filters from the read alignment (.bam) files (e.g., Wu et al., 2020) while another study 507 

(Wang et al., 2020) used the variant calling files (.vcf) from the samtools mpileup caller (Li 508 

et al., 2009). From GATK 4 onward, CallableLoci is no longer supported, yet, with the 509 

BP_RESOLUTION mode, every single site of the genome has a depth and genotype quality 510 

value that can be used to estimate the callable sites (used in e.g., Bergeron et al., 2021; 511 

Pfeifer, 2017). Moreover, some studies restrict the CG to the orthologous genome in order to 512 

match for base composition when making comparisons across species  (e.g., Wu et al., 2020). 513 

Due to these differences, it is important to report which methodology and filters are used to 514 

estimate CG.  515 

Assessing false-negatives. On the number of sites considered callable, additional corrections 516 

for the FNR can be included. Indeed, even if the CG represents the sites that pass most of the 517 

individual filters, some filters can simply not be applied to non-polymorphic sites. The 518 
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methods and results differ between studies, with an estimated FNR from 0 (Smeds et al., 519 

2016; Tatsumoto et al., 2017) to 44% (Thomas et al., 2018).  520 

One way to estimate a FNR is to introduce random DNMs to the sequencing reads and run 521 

the entire pipeline (steps 2-4) to calculate its efficiency in finding these simulated DNMs 522 

(e.g., Feng et al., 2017; Jónsson et al., 2017; Pfeifer, 2017; Wu et al., 2020). The false-523 

negative rate can then be estimated as: 524 

                                   

This method corrects for errors during alignment, post-alignment processing, calling, and 525 

filtering as the reads are passed into the pipeline a second time. However, it can be 526 

computationally intensive as variant calling needs to be run multiple times and is a resource 527 

and time-intensive step.  528 

Another way to estimate the FNR is to use the number of callable sites that will be filtered 529 

away by filters different from those taken into account in the CG estimation, such as site or 530 

allelic balance filters (Bergeron et al., 2021; Besenbacher et al., 2019; Thomas et al., 2018). 531 

As some site filters are inferred during variant calling based on statistical tests following 532 

known null distributions, it is possible to estimate the proportion of callable sites filtered 533 

away by these site filters (Bergeron et al., 2021; Besenbacher et al., 2015). Moreover, some 534 

true DNMs could have an allelic balance outside the allelic balance filter chosen due to 535 

sequencing variability or mosaicism. This bias can be estimated by the heterozygous sites in 536 

the offspring (that are not DNMs) presenting an allelic balance outside the allelic balance 537 

filter, assuming that this bias occurs at the same rate at DNMs and heterozygous sites in the 538 

offspring (i.e. one parent is homozygous for the reference allele, one parent is homozygous 539 

for the alternative allele, and the offspring heterozygous). Therefore, FNR can be inferred as 540 

the proportion of true heterozygous sites outside the AB filter as: 541 

                                                              . 542 

Finally, the denominator can be estimated based on a probability to detect a DNM at a site, 543 

given various parameters at that site. Thus, there is no clear distinction between CG and FNR, 544 

as the latter is part of the CG estimation. Specifically, Besenbacher et al. (2019) used 545 

inherited variants to estimate the probability that a DNM at a given site would pass all filters 546 
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conditional on the depth of each individual. They then summed these probabilities to 547 

calculate the number of callable sites in the genome. 548 

 549 

Mutationathon: two-fold variation in estimated rates from the same trio 550 

To understand the effect of various methods on mutation rate estimates from a single dataset, 551 

a three-generation pedigree of rhesus macaque (Macaca mulatta) was analyzed by 552 

researchers from five groups: Lucie Bergeron (LB), Søren Besenbacher (SB), Cyril Versoza 553 

(CV), Tychele Turner (TT), and Richard Wang (RW). The macaque pedigree consisted of 554 

Noot (father), M (mother), Heineken (daughter), and Hoegaarde (Heineken’s daughter) 555 

(Figure 3a). Each individual was sequenced with BGISEQ-500 at an average coverage 556 

between 40X (Noot) and 70X (all other individuals). The raw data were trimmed using 557 

SOAPnuke (Chen et. al, 2017) to remove adaptors, low-quality reads, and N-reads (see 558 

Material and Methods for more information). Trimmed reads were shared with all 559 

participants, who applied their respective pipelines to identify DNMs in Heineken and to 560 

estimate a per-site per-generation germline mutation rate.  561 

Each group of investigators implemented their own set of filters (Supplementary Table 4) and 562 

detected between 18 (CV) and 32 (SB) candidate DNMs. After PCR amplification and 563 

Sanger sequencing validation of the DNM candidates from all research groups (43 distinct 564 

sites), we validated 33 positions as true positive DNMs, six were determined to be false-565 

positive calls, and four did not successfully amplify (Figure 3b and Supplementary Table 5). 566 

No group found all true positive DNMs. Of the 33 true positive DNMs, only 7 were detected 567 

by all research groups (Figure 3c). Fourteen additional true positive mutations were detected 568 

by at least four groups; 6 detected by all except CV, 4 by all except RW, 2 by all except LB, 569 

1 by all except SB, and 1 by all except TT. Of the 12 remaining true positive mutations, 5 570 

were detected by three groups, 1 by two groups, and 6 by a single group. The candidate 571 

DNMs found by a single group are more likely to be false positives as the six false-positive 572 

candidates revealed by the PCR experiment were all candidates detected by a single pipeline. 573 

The transmission rate to the next generation varied between 52% (with SB pipeline: 15 true 574 

positive DNMs transmitted on 29 true positive candidates) and 67% (with RW pipeline: 14 575 

true positive DNMs transmitted on 21 true positive candidates). The transmission rate of all 576 

true positive DNMs (33) was 67% with 21 DNMs transmitted to the next generation; this rate 577 
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is not significantly different from the expected 50% inheritance (binomial test p-value = 578 

0.08). 579 

 580 

a.   581 

 b. 582 

 583 

 584 

 585 

 586 

 587 

 588 

c. 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 

Figure 3 – Candidate DNMs from the Mutationathon. a. The pedigree of three 598 

generations of rhesus macaques was sequenced and shared with five groups of 599 

researchers. Sequencing coverage is indicated for each individual. b. The five 600 

groups (LB: Lucie Bergeron, SB: Søren Besenbacher, CV: Cyril Versoza, TT: 601 
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Tychele Turner, RW: Richard Wang) detected a total of 43 candidate DNMs in 602 

Heineken. The PCR amplification and Sanger sequencing validation showed that 603 

33 of those candidates were true positive DNMs, six were false-positive calls, and 604 

four did not successfully amplify. c. Venn diagram of the mutations found by 605 

each research group. In bold are the candidates shared by at least four different 606 

groups. Between brackets are the candidates that were not validated by the PCR 607 

experiment either because they did not successfully amplify (in black) or because 608 

the sequencing revealed false-positive calls (in red). See  Material and Methods 609 

for details on the experiment and Supplementary Figure 1 for the results of the 610 

PCR experiment. 611 

 612 

In addition to identifying DNMs, each group was tasked with estimating the per-site per 613 

generation rate of mutation. The final estimated rate depends on the size of the callable 614 

genome (CG) considered by each group, as well as corrections for false positives and false 615 

negatives. Even with the variation in the number of candidate DNMs from each group 616 

(Figure 4a), different values for these additional parameters could still have resulted in 617 

equivalent rate estimates between different groups. However, differences in methodology led 618 

to almost a two-fold variation in the estimated rates, greater than the variation in the number 619 

of DNMs. TT estimated the lowest rate of 0.46 × 10-8 mutations per-site per generation 620 

(Figure 4b). This estimate was based on autosomes and the X chromosome (where two 621 

candidates were found), and the CG represented almost the full genome size. Using the full 622 

genome size in the denominator is commonly used in human studies, for which most of the 623 

genome is callable due to the high-quality reference genome, while stricter corrections are 624 

usually applied in non-human studies. CV, RW, SB, and LB found similar rates, with 25% 625 

differences between the lowest and the highest rate and large overlap of the confidence 626 

intervals (Figure 4c). RW estimated the highest rate with 0.85 × 10-8 mutations per-site per 627 

generation, from a relatively small set of candidates (22), yet the denominator was also small 628 

as CG represented about 50% of the autosomal genome. SB and LB estimated a similar value 629 

of CG, representing approximately 80% of the autosomal genome; however, there was a 630 

difference in rates due to the smaller number of candidates found by LB (28) compared to SB 631 

(32).  632 

 633 
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 634 

 635 

 636 

a.                                      b.                                         c. 637 

 638 

Figure 4 – Estimated germline mutation rates from the Mutationathon. a. 639 

Number of candidates DNMs found by each group (TT found 2 candidates on a 640 

sex chromosome). b. Estimation of the denominator (i.e. the callable genome 641 

corrected by the FNR) by each group. c. Estimated mutation rate per-site per 642 

generation, the error bars correspond to the confidence intervals for binomial 643 

probabilities (calculated using the R package 'binconf'). 644 

The different individual filters applied by each group explain some of the differences in the 645 

candidate DNMs (Table 2 and Supplementary Table 4). For instance, many groups filtered 646 

away candidate sites where the parents were heterozygotes, as they could be more prone to 647 

false-positive calls. TT's pipeline was the only one to find a candidate mutation at a site 648 

where the father was heterozygous C/G, the mother was homozygous for the reference allele 649 

G/G, and the offspring was heterozygous A/G. These genotypes were validated by the PCR 650 
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experiment, indicating that a true germline mutation has arisen at a heterozygous site in a 651 

parental genome. Each method varied in power to detect the true DNMs (sensitivity), and in 652 

the proportion of validated true candidates on the overall candidates found (precision). For 653 

instance, RW used especially conservative filters on the allelic balance for both the offspring 654 

(AB) and the number of alternative alleles allowed in the parents (AD). It resulted in a lower 655 

sensitivity, only 22 candidates were found, but a high precision as no candidates were 656 

determined to be false-positive calls. Similarly to RW, some groups were conservative on the 657 

AB filter, while other groups were more conservative on the GQ filter (SB and LB) or DP 658 

filter (LB, CV, RW). For instance, SB used a relaxed filter on DP, with a minimum threshold 659 

of 10X, but a relatively conservative threshold on AB and GQ criteria. TT did not use strict 660 

filters for any parameter, however, the precision was increased by the required overlap 661 

among multiple variant callers. 662 

 663 

Table 2 – Individual filters used by the different groups to detect DNMs in 664 

Heineken (difference in the other steps of the pipeline in Supplementary Table 665 

4). 666 

Research 

group 

Candidates 

DNMs 

DP filter GQ 

filter 

AD 

filter 

AB filter Additional 

filters 

CV 18 0.5 × dpind - 

2 × dpind 

40 0 0.25 - 0.75  

RW 22 20 - 80 20 0 0.35 Alternative allele 

on both strands 

TT 27 Minimum 

10 X 

20 0 0.25 Overlap 3 

different variant 

callers 

LB 28 0.5 × dpind - 

2 × dpind 

60 none 0.3 - 0.7 Manual curation 

(6 candidates 

removed) 
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SB 32 Minimum 

10 X – 

Maximum 

1.75 × dpind 

55 0 0.3 Alternative allele 

in both strands. 

lowQ AD2 > 1 

 667 

We explored the effect of the individual filter on the number of candidate DNMs, the number 668 

of false-positive calls (FP), the callable genome (CG), the false-negative rate (FNR), and the 669 

final estimated mutation rate per-site per generation (µ). We used the LB pipeline (see 670 

individual filters in Table 2 and other methods in Supplementary Table 4) and changed one 671 

filter at a time using various criteria used by the Mutationathon participants and in the 672 

literature (Figure 5 and Supplementary Table 6). The GQ filter had the largest impact on the 673 

number of mutations and the final estimated mutation rate. The number of candidate DNMs 674 

found with GQ < 20 was three times higher than the one obtained with the most conservative 675 

GQ filter (GQHom < 100 and GQHet < 200), and the difference was still two-fold after 676 

correcting for FP calls. The callable genome (CG) also decreased with GQ < 80, leading to an 677 

estimated rate 39% lower when GQ < 80 (µ = 0.56 × 10-8) compared to when GQ < 20 (µ = 678 

0.91 × 10-8). This filter also seems to be the most efficient at reducing the number of FP calls, 679 

estimated here with the manual curation method, as more than 90% of the candidates DNMs 680 

were false positives with no GQ filter while we found no false positives with conservative 681 

GQ filters (GQ < 80 and GQHom < 100 and GQHet < 200). Another important filter was the 682 

allelic balance on the heterozygous offspring, resulting in a two-fold difference in the number 683 

of candidate DNMs detected, and 1.5-fold difference after the correction for FP calls. Yet, the 684 

estimated FNR was almost five times higher when using a conservative AB filter (AB < 0.4 685 

and AB > 0.6; FNR = 15.8%) compared to the least conservative AB filter (AB < 0.2; FNR = 686 

3.5%). This led to a mutation rate estimate 28% lower with the conservative AB filter (AB < 687 

0.4 and AB > 0.6; µ = 0.69 × 10-8 and AB < 0.2; µ = 0.83 × 10-8). The DP filter also impacted 688 

the estimated rate but to a lesser extent with only a 6% difference between the estimated 689 

mutation rate with DP < 10 (µ = 0.67 × 10-8) and the most conservative DP filter (DP < 0.5 × 690 

depthindividual and DP  >  2 × depthindividual; µ = 0.63 × 10-8). Finally, the AD filter did not show 691 

a large impact on the mutation rate, with less than 2% difference between no filter on AD (µ 692 

= 0.63 × 10-8) and the conservative AD > 0 (µ = 0.62 × 10-8). 693 
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 694 

Figure 5 – The impact of individual filters on the estimated rate of a trio of 695 

rhesus macaques. The default filters used by LB pipeline were: DP < 0.5 × depth 696 

individual; DP  >  2 × depthindividual; GQ  <  60; AB  <  0.3; AB  >  0.7, no AD filter. 697 

The mutation rate was calculated with LB pipeline as                                       .  698 

 699 

These results show that some of the differences in estimated rates between the five research 700 

groups may be attributed to the individual filters. Yet, earlier steps in the different 701 

bioinformatic pipelines could also lead to differences in candidate DNMs and estimated rates. 702 

For instance, the site filters were different between some of the groups (see Supplementary 703 

Table 4). Testing different combinations of site filters on the shared trio of rhesus macaques 704 

affected the set of SNPs detected, which could lead to variation in candidate DNMs detected. 705 

For instance, on the 12,634,956 variants found by LB pipeline, 473,142 SNPs were removed 706 

when using GATK advised filters (QD < 2.0; MQ < 40.0; FS > 60.0; SOR > 3.0; 707 

MQRankSum < -12.5; ReadPosRankSum < -8.0), while the stringent filters used by LB 708 

pipeline (QD < 2.0, FS > 20.0, MQ < 40.0, MQRankSum < - 2.0, MQRankSum > 4.0,  709 

ReadPosRankSum < - 3.0, ReadPosRankSum > 3.0 and SOR > 3.0) removed 1,124,005 710 

SNPs. Despite this difference in the number of SNPs, using the LB pipeline to detect 711 

candidate DNMs on the three callset (no filters, GATK advised filter or stringent filters), led 712 
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to the same final number of candidate DNMs due to the stringent individual filters applied in 713 

the following steps of the pipeline. Other steps, such as mapping and variant calling, could 714 

also lead to some of the differences between the five groups. For instance, the six candidates 715 

identified as false positives by the Sanger sequencing were filtered away in the LB pipeline. 716 

Four of the false-positive candidates were not detected because all individuals were 717 

genotyped as homozygous for the reference allele, one position was filtered out by the 718 

mapping quality site filter (MQ < 40), one position had DP = 0. Thus, differences in the 719 

mapping of the reads and variant callers explain some of the discrepancies between pipelines. 720 

Overall, these results show that for the same dataset, differences in estimated mutation rates 721 

caused by methodological discrepancies are non-negligible. Therefore, such differences 722 

should be considered when comparing mutation rates between different species when they are 723 

estimated by different pipelines. Some of the differences in estimated rates between groups 724 

can be attributed to the different individual filters applied for the detection of candidate 725 

DNMs. Most notably, varying the GQ and AB filters leads to large variations in estimated 726 

rates. Some of the difference is also introduced in earlier steps when mapping reads and 727 

calling variants. Moreover, the estimated callable genome is different between the five 728 

groups; in addition to changing the denominator of the mutation rate calculation, this 729 

difference could reflect the ability of individual methods to query mutation in different 730 

genomic regions. Some variation might therefore be explained by true mutation rate 731 

heterogeneity between genomic regions (such as low or high complex regions). Our results 732 

also suggest that despite the different methods and filters, the estimated rates are comparable 733 

when both the numerator (number of candidates and false positives) and the denominator 734 

(CG and false-negative rate) are carefully corrected. For instance, CV, SB, LB, and RW 735 

estimated similar rates, but SB and RW used a probabilistic method to calculate the CG, 736 

while LB used strict filters (DP and GQ) on a base-pair resolution variant calling file (vcf) 737 

and corrected for FNR using the site filters and the allelic balance filter and CV used a 738 

similar method to estimate CG, yet, did not apply a correction for FNR. 739 

 740 

Best practices 741 

When estimating germline mutation rates from pedigree samples, there is no standardized set 742 

of methods. Different studies use different software versions and filtering thresholds, which 743 
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can impact the estimated rate and can complicate the comparison of rates between or within 744 

species across studies (in addition to the biological variation introduced by the age of the 745 

parents used in each study; Table 1). Here, we provide guidelines for each step in DNM 746 

calling and rate estimation. However, we note that sample quality, reference genomes, and 747 

other technical factors differ across studies and thus require study- or species-specific 748 

thresholds. Therefore, it is advised to report the methodology used in a standardized way. 749 

Table 3 proposes a checklist of parameters that should be reported in studies of germline 750 

mutation rates. 751 

 752 

Table 3 – Information that should ideally be reported when presenting 753 

results on DNMs. See Supplementary Table 4 for an example of this table filled 754 

out for the five pipelines used to analyze the trio of rhesus macaques. 755 

Step of the analysis Information to report 

1 – Sampling 

and sequencing 

Type of sample (tissue, etc.) 

Storage duration, buffer, temperature 

Type of library preparation 

Average sequencing coverage 

Sequencing technology and read lengths 

2 – Alignment and 

post-alignment processing 

Trimming of adaptors and low-quality reads  

Reference assembly version 

Autosomes only or whole genome? 

Mapping software and version 

Duplicate removal software and version 

Base quality score recalibration (yes/no) 

If yes, which type of data used as known variants 
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Realignments around indels?  

Other filters? 

3 – Variant calling Software and version 

Mode: joint genotyping? Gvcf blocks? Gvcf in base-

pair resolution? 

4 – Detecting 

de novo mutations 

Site filters on vcf files and justification 

Individual filters, threshold, and remaining candidates 

after each filter 

False discovery rate estimation method: PCR 

validation? Manual curation? Transmission rate 

deviation?  

5 – Mutation rate estimation 

  

Callable genome estimation method: File used? Filters 

taken into account? 

False-negative rate estimation method: simulation? 

Filters? Probability? 

  756 

Moreover, some benchmarks could be helpful to ease the comparison between studies such 757 

as: 758 

 the transition-to-transversion ratio (ti/tv), 759 

 the spectrum of mutations (see Supplementary Figure 2 for an example from the 760 

Mutationathon), 761 

 percentage of mutations in CpG locations, 762 

 base composition (percentage of A/T or C/G), 763 

 nucleotide heterozygosity in unrelated individuals, 764 

 if population data are available, the number of DNMs that are in known SNPs of the 765 

population, 766 
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 the contribution of each sex to the total number of mutation bias when phasing of 767 

mutations is possible, 768 

 transmission rate to the next generation when extended trios are available, 769 

 the average age of the parents at the time of reproduction, if known 770 

 distribution of the allelic balance of true heterozygotes, candidate DNMs after all 771 

filters except the allelic balance, and the final set of candidate DNMs. 772 

  773 

Conclusion and perspectives 774 

Different filters can lead to differences in estimated rates, which emphasizes the difficulty in 775 

comparing pedigree-based germline mutation rates estimated from different studies. The 776 

variation observed could be partially due to the biology and life-history traits of species, but 777 

some of the variations will also be caused by methodological differences. Here, we provided 778 

some best practices that can be used when estimating germline mutation rates from pedigree 779 

samples. However, it is hard to provide hard cutoffs of filters that apply to every situation, 780 

and we advise choosing appropriate filters depending on the data available. We have also 781 

raised some points that should be addressed in individual studies, such as estimation of the 782 

false discovery rate, false-negative rate, and the callable genome size. Nevertheless, more 783 

exploration should be done to understand the best strategy for the different steps required in 784 

every study of the mutation rates. Without a clear consensus on approaches for estimating the 785 

germline mutation rate, it seems that the best strategy will be to carefully report all methods 786 

and parameters used. The trio of rhesus macaque used in this analysis is publically available, 787 

along with the validated candidate DNMs, and could serve as a resource for testing new 788 

strategies. On a more positive note, it is important to point out that two recent, independent 789 

studies of the per-generation mutation rate in rhesus macaque reported rates that were within 790 

5% of each other for individuals of the same age (Bergeron et al., 2021; Wang et al., 2020). 791 

We hope that careful studies using a variety of methods will be able to similarly arrive at 792 

accurate estimates of important biological parameters.  793 

With the growing number of studies on pedigree-based estimation of germline mutation rate, 794 

some directions that have been neglected could be explored. For instance, even when the 795 

sample size is large, most studies use samples originating from small geographic regions; it 796 

would be of great interest to further explore potential variation in mutation rates across 797 
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diverse populations (e.g. Kessler et al., 2020). Most studies are conducted on genomic DNA 798 

collected from somatic tissues. As a result, if samples come from only a single trio, one 799 

cannot distinguish early postzygotic mutations occurring in the offspring from germline 800 

mutations in the parents. While mutations occurring early enough in offspring development 801 

will be passed on to the next generation--and should therefore still be considered de novo 802 

mutations--they will behave differently from mutations arising in the parental generation. For 803 

instance, we will not expect an increase of these mutations with parental age (Jónsson et al., 804 

2018). Therefore, it is of interest to distinguish between these two types of mutation, 805 

especially for biomedical research. A possible way to discard those mutations would be to 806 

compare somatic and germline cells from the same individual. However, extracting DNA 807 

directly from sperm and eggs can be challenging, especially for non-human species, limiting 808 

the application of this strategy. Another area for additional future work is to look at de novo 809 

structural variants. As they are even rarer than SNPs, it is hard to detect them over a single 810 

generation. Yet, with the growing number of trios and generations considered in recent 811 

studies, it would be of interest to quantify and describe those DNMs as well (e.g. Belyeu et 812 

al., 2021; Thomas et al., 2021). The development of accurate long-read sequencing 813 

technologies also offers opportunities for better detection of DNMs and de novo structural 814 

variants. Finally, most studies on non-human species only explore the autosomal 815 

chromosomes, largely because important filters such as allelic balance cannot be used on the 816 

sex chromosomes in both sexes. However, given the consistent differences observed between 817 

species in the rate of evolution on autosomes and sex chromosomes (e.g. Wilson Sayres and 818 

Makova, 2011), it would be very interesting to look more closely at the per-generation 819 

mutation rate on sex chromosomes. 820 

Material and methods 821 

Mutationathon sequences. The pedigree used for the Mutationathon was previously 822 

sequenced as part of a larger project on the mutation rate of rhesus macaques (BioProject: 823 

PRJNA588178; Bergeron et al., 2021). Nine lanes were used in this analysis (three lanes for 824 

the father and two lanes for the other individuals) and are publically available on NCBI:  825 

 CL100066413_L01 (SRA run SRR10426295), mother M 826 

 CL100089164_L01 (SRA run SRR10426294), mother M 827 

 CL100078308_L01 (SRA run SRR10426275), father Noot 828 
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 CL100078335_L01 (SRA run SRR10426264), father Noot 829 

 CL100078335_L02 (SRA run SRR10426253), father Noot 830 

 CL100066412_L02 (SRA run SRR10426291), offspring Heineken 831 

 CL100095002_L02 (SRA run SRR10426290), offspring Heineken 832 

 CL100066408_L01 (SRA run SRR10426256), next generation offspring Hoegaarde 833 

 CL100094917_L01 (SRA run SRR10426255), next generation offspring Hoegaarde 834 

A trimming step was done on all sequences to remove the adaptors (allowing a mismatch of 835 

two bases), the low-quality reads (with more than 5% of N bases or a base quality score < 10 836 

in more than 20% of the read), and the reads smaller than 60 bases after the quality control. 837 

Trimming was done using SOAPnuke version 1.5.6 (Chen et al., 2017), with the following 838 

command:  839 

> SOAPnuke filter -f AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA -r 840 

AAGTCGGATCGTAGCCATGTCGTTCTGTGAGCCAAGGAGTTG -1 sequence_read_1 -2 841 

sequence_read_2 -G -Q 2 -l 10 -q 0.2 -E 60 -5 0 -M 2 -o sequence_clean -C sequence_read_1_clean -842 

D sequence_read_2_clean 843 

Each group implemented its pipeline to estimate a rate (details are provided in Supplementary 844 

Table 4).  845 

Data analysis. The comparison of each individual filter was done using LB pipeline, 846 

changing one filter at a time and recalculating the number of candidates DNMs detected, the 847 

potential false-positive candidates with the manual curation method, the callable genome, the 848 

FNR on the allelic balance filter and site filters, and the mutation rate per site per generation. 849 

The comparison of the site filters was also done on the SNPs found by LB pipeline.  850 

PCR experiment and Sanger resequencing. We designed multiple sets of primers for the 851 

43 candidate sites on NCBI primer blast tool (Ye et al., 2012: 852 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/). In some cases, sequencing primers were 853 

adjusted to avoid sequencing failure due to poly-AAA or TTT runs. PCRs were carried out in 854 

25μL volumes [2.5 units Dream Taq DNA Polymerase (Thermo Scientific), 1X Dream Taq 855 

Green Buffer, 0.2mM dNTPs, 2–3mM MgCl2, 2.5- 44 ng DNA template, filled to 25μL with 856 

double-distilled (ddH2O) water]. Thermocycling was performed in a BIORAD PTC-100 857 

thermocycler. The cycle program comprised of an initial denaturation at 95°C for 2min, 858 

followed by 35 cycles of 15sec at 95°C, 15sec at 52°C- 55°C, and 30sec at 72°C. Cycling 859 
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was terminated with a 5min extension at 72°C. PCR products were purified using 860 

commercially available spin columns (Invitek) or PureIT ExoZap PCR Clean-up (Ampliqon). 861 

Sanger sequencing was conducted at Eurofins Genomics, Europe using the primers of the 862 

amplification procedure using both forward and reverse primers. In Supplementary Figure 1, 863 

the chromatograms with the best base quality value are provided. Supplementary Table 7 864 

provides details about the primers and accession number of the sequences on GenBank. 865 

 866 

Data and code availability 867 

All the sequences used for the Mutationathon were previously generated and released in 868 

NCBI (Bergeron et al., 2021). The sequences used were for the mother M (BioSample 869 

SAMN13230631), lanes CL100066413_L01 (SRA run SRR10426295) and 870 

CL100089164_L01 (SRA run SRR10426294); for the father Noot (BioSample 871 

SAMN13230623): lanes CL100078308_L01 (SRA run SRR10426275), CL100078335_L01 872 

(SRA run SRR10426264) and CL100078335_L02 (SRA run SRR10426253); for the 873 

offspring Heineken (BioSample SAMN13230633): lanes CL100066412_L02 (SRA run 874 

SRR10426291) and CL100095002_L02 (SRA run SRR10426290); and for the second 875 

generation offspring Hoegaarde (BioSample SAMN13230649): lanes CL100066408_L01 876 

(SRA run SRR10426256) and CL100094917_L01 (SRA run SRR10426255). The Sanger 877 

sequences generated during the PCR validation, were deposited on GenBank under the 878 

accession number MZ661796 - MZ662076. 879 

The scripts used by the participants of the Mutationathon are publically available: 880 

 CV: https://github.com/PfeiferLab/mutationathon; 881 

 RW: https://github.com/Wang-RJ/mutationathon; 882 

 TT: Wilfert, A. B., Turner, T. N., Murali, S. C., Hsieh, P., Sulovari, A., Wang, T., ... & 883 

Eichler, E. E. 2021. Recent ultra-rare inherited variants implicate new autism 884 

candidate risk genes. Nature Genetics, 53(8):1125-1134. doi: 10.1038/s41588-021-885 

00899-8; 886 

 LB: https://github.com/lucieabergeron/germline_mutation_rate;  887 

 SB: https://github.com/besenbacher/GreatApeMutationRate2018 888 

 889 
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