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Abstract

In the past decade, several studies have estimated the human per-generation germline
mutation rate using large pedigrees. More recently, estimates for various non-human species
have been published. However, methodological differences among studies in detecting
germline mutations and estimating mutation rates make direct comparisons difficult. Here,
we describe the many different steps involved in estimating pedigree-based mutation rates,
including sampling, sequencing, mapping, variant calling, filtering, and how to appropriately
account for false-positive and false-negative rates. For each step, we review the different
methods and parameter choices that have been used in the recent literature. Additionally, we
present the results from a “Mutationathon”, a competition organized among five research labs
to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We
report almost a two-fold variation in the final estimated rate among groups using different
post-alignment processing, calling, and filtering criteria and provide details into the sources
of variation across studies. Though the difference among estimates is not statistically
significant, this discrepancy emphasizes the need for standardized methods in mutation rate
estimations and the difficulty in comparing rates from different studies. Finally, this work
aims to provide guidelines for computational and statistical benchmarks for future studies

interested in identifying germline mutations from pedigrees.

Introduction

Germline mutations are the source of most genetic diseases and provide the raw material for
evolution. Thus, it is crucial to accurately estimate the frequency at which mutations occur in
order to better understand the course of evolutionary events. The development of high
throughput next-generation sequencing offers the opportunity to directly estimate the
germline mutation rate over a single generation, based on a whole-genome comparison of
pedigree samples (mother, father, and offspring), without requiring assumptions about
generation times or fossil calibrations (Tiley et al., 2020). Pedigree sequencing provides
multiple pieces of information in addition to an overall mutation rate. For instance, the
genomic locations, the spectrum of mutation types (e.g. transition or transversion), and the
nucleotide context of all mutations can easily be gleaned. Furthermore, pedigree sequencing

enables researchers to identify the parental origin of the mutations--that is, whether the
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63  mutation arose in the maternal or paternal germline. Finally, using pedigrees means that
64  researchers often have precise information about the age of the parents at the time of
65 reproduction, and comparing several trios (i.e. three related individuals: mother, father, and
66  offspring) at different parental ages can tell us about the effect of parental age on the total
67 number of transmitted mutations, their location, and their spectrum. Thus, there has been a
68  growing interest in applying this method to address medical and evolutionary questions.
69  The first estimate of the human germline mutation rate using pedigrees was published more
70  than ten years ago (Roach et al., 2010). Four years later, the first pedigree-based mutation
71 rate for a non-human primate, the chimpanzee, was estimated (Venn et al., 2014). Today, at
72  least 20 vertebrate species have mutation rates estimated by pedigree sequencing (Table 1),
73  with half added in the past two years. Each study differs in the number of trios, the
74  sequencing technology and depth, the ages of individuals included, and the bioinformatics
75  pipelines used to analyze the data (see Table 1 and Supplementary Table 1). Thus, reported
76  variation in mutation rates among studies might result from a combination of biological and
77  methodological factors. With an increasing number of studies being published, an
78 examination of the differences among studies and suggestions for standards that will
79  minimize differences caused by methodological discrepancies are warranted.
80
81 Table 1 — Vertebrate species with a direct estimate of the mutation rate using
82 a pedigree approach. The list of species includes ten primates, five non-primate
83 mammals, one bird, and four fish (see Supplementary Table 1 for differences in
84 study design and methodology).
Species Mutation Number | Parental age * Reference

rate per of trios

site per

generation

tux10®

Orangutan (Pongo abelii) | 1.66 1 d'+31.00 and 9: 15.00 (Besenbacher et al., 2019)
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Human (Homo sapiens) 1.17 1 (CEU) unspecified (Conrad et al., 2011)
0.97 1 (YRD unspecified (Conrad et al., 2011)
1.20 78 3:29.10 and Q: 26.50 (Kong et al., 2012)
1.20 269 unspecified (Francioli et al., 2015)
1.28 13 3+:29.80 (Rahbari et al., 2016)
1.05 719 '+ 33.40 (Wong et al., 2016)
1.29 1550 unspecified (Jénsson et al., 2017)
1.28 150 ~27.70 (Maretty et al., 2017)
1.30 516 3+ 33.40 (Turner et al., 2017)
1.10 593 3':29.10 and Q: 26.00 (Sasani et al., 2019)
1.22 1449 3:29.70 and Q:26.90 | (Kessler et al., 2020)
Chimpanzee (Pan 1.20 6 3:18.90 and 9: 15.00 | (Vennet al., 2014)
troglodytes)
1.48 1 3:24.00 and Q: 24.00 | (Tatsumoto et al., 2017)
1.26 7 3:19.30 and Q:15.90 | (Besenbacher et al., 2019)
Gorilla (Gorilla gorilla) 1.13 2 32 14.50 and Q: 20.50 | (Besenbacher et al., 2019)
Baboon (Papio anubis) 0.57 12 3+ 10.70 and Q: 10.20 | (Wu et al., 2020)
Rhesus macaque 0.58 14 3:7.80 and Q:7.10 (Wang et al., 2020)
(Macaca mulatta)
0.77 19 @' 12.40 and Q: 8.40 (Bergeron et al., 2021)
Green monkey 0.94 3 3:8.70 and Q: 4.70 (Pfeifer, 2017)
(Chlorocebus sabaeus)
Owl monkey (Aotus 0.81 14 31 6.60 and 2: 6.50 (Thomas et al., 2018)

nancymaae)
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calliptera, Aulonocara
stuartgranti and Lethrino

ps lethrinus)

Marmoset (Callithrix 0.43 1 ~2.80 (Yang et al., 2021)

Jjacchus)

Gray mouse lemur 1.52 2 d:4.55and 9: 1.45 (Campbell et al., 2021)

(Microcebus murinus)

Mouse (Mus musculus) 0.57 8 unspecified (Milholland et al., 2017)
0.39 15 ~047 (Lindsay et al., 2019)

Cattle (Bos taurus) 1.17 5 unspecified (Harland et al., 2017)

Wolf (Canis lupus) 0.45 4 3+ 4.00 and Q: 2.25 (Koch et al., 2019)

Domestic cat (Felis 0.86 11 3:4.70 and Q: 2.90 (Wang et al., 2021b)

catus)

Platypus 0.70 2 unspecified (Martin et al., 2018)

(Ornithorhynchus

anatinus)

Collared flycatcher 0.46 7 unspecified (Smeds et al., 2016)

(Ficedula albicollis)

Herring (Clupea 0.20 12 unspecified (Feng et al., 2017)

harengus)

Cichlid (Astatotilapia 0.35 9 unspecified (Malinsky et al., 2018)

85  * Depending on the study, the parental ages are reported as average paternal age (J), average

86  maternal age (), average parental age (~), or unspecified.

87

88 The key principle of the pedigree-based approach is to detect de novo mutations (DNMs)

89  present in a heterozygous state in an offspring that are absent from its parents' genomes

90  (Figure 1). A per-site per-generation mutation rate can be inferred by dividing the number of

91  DNMs by the number of sites in the genome that mutations could possibly be identified in
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92  (and accounting for the diploid length of the genome, as mutations can be transmitted by both
93  the mother and father). As mutations are rare events, detecting all the true DNMs (or having a
94  high sensitivity) while avoiding errors (or increasing precision) from a single generation
95 remains challenging. False-positive calls (sites incorrectly detected as DNMs) can be caused
96 by sequencing errors, errors introduced by read-mapping and genotyping steps, or somatic
97  mutations in the offspring. Numerous filters are thus often applied on the variant sites to
98 increase the precision of the candidate DNMs detection. However, filters that are too
99  conservative can also discard true DNMs, reducing the sensitivity by increasing the rate of
100 false-negative calls (true DNMs not detected). Therefore, a balance should be found between
101  precision and sensitivity--a goal that has led to the development of multiple different methods

102  to estimate germline mutation rates from pedigree samples.

c/c c/c

Father Mother Father ! I} Maother

Offspring Offspring E‘iG
103
104 Figure 1 — Detection of a de novo mutation (DNM) in a trio sample (mother,
105 father, and offspring). Potential candidates for DNMs are sites where
106 approximately half of the reads (indicated as grey bars) from the offspring have a
107 variant (indicated in green) that is absent from the parental reads.
108

109 In this study, we aim to define what we consider to be the state-of-the-art in pedigree-based
110  germline mutation rate estimation, to discuss the pros and cons of each methodological step,
111 and to summarize best practices that should be used when calling germline mutations. We
112  review several recently published methods that estimate germline mutation rates from
113  pedigree samples. In parallel, we set up a competition--the “Mutationathon”--among five
114 research groups to explore the effect of different methodologies on mutation rate estimates.
115  Using a common genomic dataset consisting of a pedigree of the rhesus macaque (Macaca
116 mulatta; Bergeron et al., 2021), each group estimated the number of candidate DNMs
117  (validated by PCR amplification and Sanger resequencing) and a germline mutation rate. An

118  examination of the estimated rates produced by different groups not only highlighted the
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119  choices that can be made in estimating per-generation mutation rates, but it also provided us
120  with an opportunity to characterize the impact of these choices on the systematic differences
121 in estimated rates, which in turn yielded important insights into the parameters that could

122  reduce the occurrence of false-positive calls.

123
124  Results

125 Comparison of methods

126  The overall pipeline from high throughput next-generation sequencing data to an estimated

127  mutation rate is similar across all studies listed in Table 1. It includes five steps (Figure 2):

128 1. sampling and whole-genome sequencing of at least one trio or extended pedigrees that also

129  include a third-generation (useful for validation of putative DNMs in the offspring),
130 2. alignment of reads to a reference genome and post-processing of alignments,
131 3. variant-calling to infer genotypes or genotype likelihoods for all individuals,

132 4. detection of DNMs via filtering of candidates (including an assessment of the false

133  discovery rate), and finally

134 5. the estimation of a per-generation mutation rate accounting for the length of the accessible

135  genome (including an assessment of the false-negative rate).

Alignment and

Detecting de Mutation rate

post-alignment B} Variant calling

. estimation
processing

novo mutations

- Sample size - Alignment - Software - Site filters - Callable
-Sample type - Post-alignment - Parameters - Filters on genome
_ Libraries processing candidate - Assessing
DNMs false-negatives
- Sequencing .
-Assessing false-
positives
136
137 Figure 2 — Flow of the main steps to call de novo mutations (DNMs) from
138 pedigree samples. Each step lists the various choices in study design and
139 methodology that might impact mutation rate estimates.
140
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141 Step 1 - Sampling and sequencing

142  Sample size. Pedigree-based study designs can vary significantly, from those that include
143  only one trio (e.g., Besenbacher et al., 2019) to those that include thousands of trios (e.g.,
144  Halldorsson et al., 2019). The first study to estimate a pedigree-based human mutation rate
145  used only two trios and estimated a mutation rate of 1.1 x 10 per site per generation (Roach
146 et al., 2010), which is within the overall variation reported across studies with larger sample
147  sizes (Table 1). Larger sample sizes reduce uncertainty in the average mutation rate for a
148  species and offer more statistical power for the exploration of various parameters such as the
149  parental age effect, the contribution of each parent to the total number of DNMs, the presence
150  of mosaicism and shared mutations when including siblings, or the distribution of mutations
151 across genomes. Moreover, multiple generation pedigrees, also referred to as extended trios,
152  can be used to validate true DNMs and adjust quality filters by studying transmission to a
153  third generation. Therefore, whenever possible, multiple trios should be analyzed and more
154  than one generation should be included. Finally, the age of the parents at the time of
155  reproduction is required for estimating the per-year mutation rate from the per-generation
156  rates directly measured in the trios. In some studies, the age of the parents at conception is
157  not available, and instead, the mean age of reproduction is used for the estimation of the per-
158  year mutation rate. While useful, this approximation can lead to biased results if the age of
159  the parents at conception was much older or much younger compared to the mean age in the
160  population. Thus, when possible, the information on the age of each parent at the time of
161  conception should be collected as it is essential for the interpretation of results and to help

162  understand parental age effects on mutation rate.

163  Sample type. The most commonly used sample types are somatic tissues such as whole
164  blood, muscle, or liver, which generally produce a high quantity of DNA with long fragment
165  sizes and allow for high-coverage sequencing. The duration and temperature of storage can
166  affect the quality of the extracted DNA and increase the rate of sequencing errors. Thus, to
167 minimize DNA damage during storage, DNA is typically kept in TE (tris-EDTA) buffer.
168  Moreover, it is advised to store DNA at -80°C for long-term storage (months to years) and in
169  liquid nitrogen at -164°C for decades (Baust, 2008; Straube and Juen, 2013). Other materials
170  such as buccal swabs or fur can be considered, but they can be technically challenging. For
171 instance, as part of a recent study on rhesus macaques (Bergeron et al., 2021), DNA was

172  extracted from hair samples and sequenced at 95X coverage, yet, due to the fragmentation,
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173  only 38% of the reads were mappable to the reference genome. After variant calling, the
174  average depth of usable reads was 6X, with only 10% of sites covered by more than 10 reads.
175  To reduce the number of false-positive calls caused by somatic mutations, it is best to avoid
176  tissues with an accumulation of such mutations, such as skin. In this regard, blood is often the
177  preferred tissue: as many different tissues contribute cells to the blood, the hope is that a
178  somatic mutation in any one of them will not be mistaken for a DNM. However, in rare cases,
179  mainly in older individuals, clonal hematopoiesis can lead to high frequency somatic
180  mutations in the blood. Sequencing more than one type of tissue, when feasible, should be
181  considered in order to reduce the potential for mistaking somatic mutations as candidate

182  DNMs.

183  Libraries. After DNA extraction, genomic library preparation is another step that can
184  introduce sequencing errors. Most studies have used Illumina sequencing platforms, yet, even
185 for a single technology, there are different library preparation protocols available. PCR
186  amplification is commonly used to increase the quantity of DNA, but this can generate
187  artifacts caused by the introduction of sequence errors (PCR errors) or by the over-
188  amplification of some reads (PCR bias) (Acinas et al., 2005). Thus, for samples yielding a
189  sufficient amount of DNA, PCR-free libraries that do not involve amplification prior to
190 cluster generation are preferable. Moreover, as different library preparation methods can
191 result in different amplification biases (Ross et al., 2013; Wingett, 2017), utilizing different

192  types of library preparations may be advisable to reduce the sources of error.

193  Sequencing. All Illumina sequencing platforms use similar sequencing chemistry
194  (sequencing-by-synthesis) and mainly differ in running speed and throughput. Another
195  equivalent technology, used in two studies (Bergeron et al., 2021; Roach et al., 2010), is
196  BGISEQ-500, combining DNA nanoball nanoarrays with polymerase-based stepwise
197  sequencing (Mak et al., 2017) and showing similar performances to Illumina on data quality
198  (Chen et al., 2019; Patch et al., 2018). Another study used 10x Genomics linked reads, which
199  can help phase maternal and paternal mutations (Campbell et al., 2021). However, it remains
200  unclear if alternative library preparation and sequencing platforms introduce additional biases
201  compared to standard Illumina protocols. Most pedigree-based studies of germline mutations
202  have sequenced each individual to a depth between 30X and 50X (Besenbacher et al., 2019;
203 Campbell et al., 2021; Jénsson et al., 2017; Kessler et al., 2020; Malinsky et al., 2018;
204  Milholland et al., 2017; Sasani et al., 2019; Smeds et al., 2016; Thomas et al., 2018; Turner et
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205 al., 2017; Wang et al., 2020; Wu et al., 2020), three studies sequenced at a higher depth of ~
206 80X (Bergeron et al., 2021; Maretty et al., 2017) and 150X (Tatsumoto et al., 2017), while
207  six studies sequenced at a depth lower than 25X on average (Harland et al., 2017; Koch et al.,
208 2019; Lindsay et al., 2019; Martin et al., 2018; Pfeifer, 2017; Rahbari et al., 2016). A
209 minimum coverage of 15X has been advised to call single nucleotide polymorphisms (SNPs)
210  accurately (Fumagalli et al., 2013). Yet, this depth might not be sufficient to call germline
211 mutations, since it might be hard to distinguish genuine germline mutations from somatic
212  mutations that are present in a substantial fraction of cells. Furthermore, with low coverage
213  the probability of calling a parent homozygous for the reference allele, when they are actually
214  heterozygous, becomes non-negligible at the genome-wide level. For example, the binomial
215  probability of not observing a read with one of the alleles in a heterozygote with 15X
216  coverage is 0.5 = 3.05 x 10”°, which will happen by chance around 30 times in a genome
217  with 1 million heterozygous positions. Likewise, based on the binomial distribution, the
218  probability that a somatic mutation present in 10% of cells is seen in more than 30% of reads
219 15 0.0113 with 20X coverage but falls to 0.0004 with 35X coverage. Thus, it is advised to aim

220  for a minimum of 35X as a rule of thumb.
221  Step 2 - Alignment and post-alignment processing

222  Alignment. To find DNMs, we must first find where in the genome each of the short
223  sequencing reads comes from. The Burrows-Wheeler Aligner (BWA; Li and Durbin, 2009) is
224  an algorithm developed to map short reads (50-250 bp) to a reference genome and has been
225 used in the majority of studies on direct mutation rate estimation (Bergeron et al., 2021;
226  Besenbacher et al., 2019; Harland et al., 2017; Jonsson et al., 2017; Kessler et al., 2020; Koch
227  etal., 2019; Malinsky et al., 2018; Maretty et al., 2017; Milholland et al., 2017; Pfeifer, 2017;
228  Sasani et al., 2019; Smeds et al., 2016; Tatsumoto et al., 2017; Thomas et al., 2018; Turner et
229 al., 2017; Wang et al.,, 2021b, 2020; Wu et al., 2020). In particular, the BWA-MEM
230  algorithm is fast, accurate, and can be implemented with an insert size option to improve the
231  matching of paired reads. Several aspects of the study organism and study design can have
232  detrimental effects on read mapping. Some studies reported a trimming step to remove
233  adapter sequences and poor-quality reads--those with a high proportion of unknown (“N”)
234  bases or low quality-score bases (Bergeron et al., 2021; Maretty et al., 2017; Tatsumoto et al.,
235 2017; Wu et al., 2020). However, trimming might not be necessary as some mapping

236  software will soft-clip (or mask) the adaptors, while low-quality reads can be removed during

10


https://doi.org/10.1101/2021.08.30.458162
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.30.458162; this version posted August 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

237  the variant calling step. The quality of the reference genome can play an important role in
238  obtaining a large proportion of reads with high mapping scores. In the case of a poor or non-
239  existent reference genome, using the reference genome of a phylogenetically related species
240 is an option, but this could make the downstream analysis more complex (Prasad et al.,
241 2021). Moreover, BWA was designed to map low-divergence sequences, so that using a
242  related species, or even a closely related individual in the same species when heterozygosity
243 s high, could impact the mapping. Finally, low-complexity regions and repetitive sequences
244  such as dinucleotide tandem repeats can be problematic for read-mapping. Standards have
245  been proposed for human genome analysis and can be followed for germline mutation rate

246  calling in species with comparable heterozygosity (for details, see Regier et al., 2018).

247  Post-alignment processing. To correct for possible misalignment of sequencing reads to the
248  reference genome, post-alignment quality control is necessary. This step often includes base-
249  quality score recalibration (BQSR), removing of duplicate reads, and realignment around
250 indels. BQSR corrects for any bias in the base quality score assigned by the sequencer by
251  utilizing information from a set of known variants for the studied species. When such a
252  dataset is not available, as in many non-human species, the Best Practices of the Genome
253  Analysis ToolKit (GATK) software from the Broad Institute advises to proceed first with
254  variant calling in all available samples and subsequently using the best quality variants to
255  recalibrate the base quality scores (GATK team, 2021). If multiple generations are available,
256  high-quality variants fully transmitted across generations can be used for BQSR (Wu et al.,
257  2020). However, some studies have ignored this step due to the circularity of this method and
258  its computational expense, as variants will be called twice (Bergeron et al., 2021; Thomas et
259  al., 2018; Wang et al., 2020). A comparative study presented a difference of less than 0.1 %
260 between the total variant sites called with and without recalibration (Li, 2014), and this
261  difference was even lower for high-coverage (40X) sequencing (Tian et al., 2016); however,
262  this step is still advised to increase the quality of variant calling (Li, 2020). Duplicates,
263  identical reads due to amplification (PCR duplicates) or sequencing clusters (optical
264  duplicates), can increase false-positive calls and erroneously inflate sequencing coverage.
265  Therefore, duplicates should be marked or removed even for sequences from PCR-free
266  libraries. Reads terminating with indels are more likely to be misaligned; thus, depending on
267  the variant caller used, realignment around indels may be advised to correct for this artifact.
268  Specifically, realignment around indels is required when calling variants with non-haplotype-

269 aware callers (such as GATK’s UnifiedGenotyper), but is not necessary with haplotype-

11
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270 aware variant callers (such as GATK HaplotypeCaller (Poplin et al., 2018), Platypus
271 (Rimmer et al., 2014), or FreeBayes (Garrison and Marth, 2012)). From GATK release 3.6
272  onward, the realigned reads around indels can be outputted during the variant calling step.
273  Alternatively, BWA alignments can be used to construct a variation-aware graph with
274  GraphTyper (Eggertsson et al., 2017), including known polymorphisms and newly genotyped
275  variants. Thereby, reads are re-aligned to the graph, reducing reference bias and improving
276  read alignment near indels (Eggertsson et al., 2017) and structural variants (Eggertsson et al.,
277  2019). Finally, other quality controls can be applied after mapping, such as removing reads
278  mapping to multiple locations, as they could map with a good mapping quality in two or
279  more locations and be ignored by further quality filters. However, the overall impact of many
280  of these filters, such as BQSR and realignment around indels, on the final set of DNMs has
281  not yet been studied.

282  Step 3 - Variant calling

283  Software. Different algorithms have been shown to perform similarly well in calling
284  nucleotide variants (Li, 2014). GATK (Auwera and O’Connor, 2020) is widely used among
285  studies that call germline DNMs (Bergeron et al., 2021; Besenbacher et al., 2019; Campbell
286 et al, 2021; Feng et al., 2017; Harland et al., 2017; Jonsson et al., 2017; Koch et al., 2019;
287  Malinsky et al., 2018; Maretty et al., 2017; Milholland et al., 2017; Pfeifer, 2017; Sasani et
288 al., 2019; Smeds et al., 2016; Tatsumoto et al., 2017; Thomas et al., 2018; Turner et al., 2017;
289  Wang et al., 2021b, 2020; Wong et al., 2016; Wu et al., 2020). Other commonly used variant
290  callers are GraphTyper (Eggertsson et al., 2017; e.g., utilized by Beyter et al., 2021;
291 Halldorsson et al., 2019; Jénsson et al., 2021, 2018) and FreeBayes (Garrison and Marth,
292  2012; e.g., utilized by Turner et al., 2017). Using more than one variant caller can increase

293  confidence in the SNP set but can become computationally expensive (Turner et al., 2017).

294  Parameters. Even within the same variant caller, different methods can be used (see
295  Supplementary Table 1). For instance, in GATK v3, three strategies are available: 1. per-
296  sample variant calling, 2. batch calling, in which samples are analyzed separately and
297  concatenated for downstream analysis, and 3. joint calling, in which variants are called
298  simultaneously across all samples (with the UnifiedGenotyper command). In GATK v4, the
299  new recommendation is to first call variants for each sample separately (HaplotypeCaller in
300 ERC mode), and then combine all the samples (GenomicsDBImport) to jointly genotype
301  them (GenotypeGVCFs)--thus, the initial identification of variant sites is separable from the
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302  assignment of genotypes to each individual. UnifiedGenotyper and HaplotypeCaller should
303 have a similar ability to detect SNPs, but differences in variant sets have been observed
304  (Lescai et al., 2014). Moreover, the GATK HaplotypeCaller ERC mode has two options: the
305 BP_RESOLUTION option provides records for every single site in the genome, even non-
306  variant sites, while the GVCF option groups the non-variant sites into a block of record. This
307  variant-calling step is computationally expensive, especially if variants are called in BP-
308 RESOLUTION mode, but it can be useful to determine the part of the genome in which there
309 s full power to detect mutations. It is still unclear which strategy should be prioritized; thus,
310 it is advised to report the method used and any additional options that have been
311 implemented. The default settings of GATK applied during variant calling should also be
312  kept in mind. For instance, the heterozygosity prior is by default at 0.001, which could have
313 an impact when analyzing species with much higher or much lower heterozygosity, though

314  the effect of this prior has not been evaluated in the context of mutation rate studies.
315  Step 4 - Detecting de novo mutations

316  Site filters. GATK’s Best Practices (Auwera and O’Connor, 2020) advise a Variant Quality
317  Score Recalibration (VQSR) step to ensure that genotypes are correctly called. However, this
318  tool is not suitable for DNMs as it would remove many rare variants; instead, hard-filtering
319  should be applied. GATK provides some general recommendations for these filters, warning
320  that these should be a starting point and filters may need to be adjusted depending on the
321  callset or the species studied (GATK team, 2020). The currently advised hard filter criteria
322  for germline short variant discovery are: QD < 2.0; MQ < 40.0; FS > 60.0; SOR > 3.0;
323 MOQRankSum < -12.5; ReadPosRankSum < -8.0. These parameters take into account the
324  quality of a call at a given site (QD), the mapping quality (MQ), the strand bias (FS and
325 SOR), the mapping quality bias between reference and alternative allele (MQRankSum), the
326  position bias within reads (ReadPosRankSum); see Supplementary Table 2 for details on each
327  filter). Although some studies followed these best practices (Jonsson et al., 2017; Wu et al.,
328  2020), others implemented only a subset of filters (e.g., three studies reported the GATK
329 filters without SOR > 3.0 (Koch et al., 2019; Thomas et al., 2018; Wang et al., 2020) and
330 Besenbacher et al. (2019) kept only four parameters -- FS, ReadPosRankSum,
331  BaseQualityRankSum, and MQRankSum -- as they are calculated based on statistical tests
332 following a known distribution) or readjusted the filtering thresholds based on previous

333  results (e.g., Koch et al. (2019) changed the ReadPosRankSum threshold from -8 to 15 while
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334  Bergeron et al. (2021) changed the site filters by first using the advised parameters and then
335 adjusting them to reduce the apparent false-positive calls). Several of the earlier studies
336 implemented a different suite of site filters altogether (Pfeifer, 2017; Smeds et al., 2016;
337  Tatsumoto et al., 2017). Given this plethora of choices, we suggest that reporting filter details
338  should be common practice to improve the comparability of mutation rate estimates. Another
339  site filter is the Phred-scaled probability that a certain site is polymorphic in one or more
340 individuals (QUAL), which has been used in some studies (Harland et al., 2017; Pfeifer,
341 2017; Wu et al., 2020).

342  Filters of candidate DNMs. From pedigrees, germline mutations are detected as “Mendelian
343  violations” where at least one of the alleles observed in the offspring is absent from both of
344  its parents. Most mutation rate studies restrict Mendelian violations to sites where both
345 parents are homozygous for the reference allele (HomRef; 0/0) and the offspring is
346  heterozygous (Het; 0/1 or 1/0) (Bergeron et al., 2021; Besenbacher et al., 2019; Jonsson et al.,
347  2017; Koch et al., 2019; Pfeifer, 2017; Smeds et al., 2016; Thomas et al., 2018; Wang et al.,
348  2020; Wu et al., 2020). Other combinations of genotypes could also be caused by germline
349  mutations such as parents homozygous for the alternative allele (HomAlt; 1/1) with
350  heterozygous offspring (0/1 or 1/0), or one parent HomRef (0/0) and the other HomAlt (1/1)
351 with an offspring either HomRef (0/0) or HomAlt (1/1). These sites are usually filtered out
352 and assumed to represent a small portion of the genome to avoid the added uncertainty
353 associated with these genotypes (Wang et al., 2021a). However, before excluding these sites,
354  researchers should note that their expected frequency increases with the level of
355  heterozygosity of the species studied and the phylogenetic distance to the reference genome
356  used for mapping. For a phylogenetic distance to the reference genome of 2%, ~1 in 50 true
357 DNMs is expected to occur in a background where both parents are homozygous for the
358 alternative allele (1/1). After selecting the final set of Mendelian violations, several filters are
359  applied to ensure the genotypes of each individual are of high quality and to reduce false-
360  positive calls. The individual filters and thresholds used vary substantially between studies
361  (see Supplementary Table 3), but generally include a depth filter (i.e., the number of reads for
362  each individual at a particular site), a genotype quality filter (i.e., the Phred-scaled confidence
363  of the assigned genotype), as well as a filter on the allelic depth (i.e., the number of reads

364  supporting the alternative allele and the reference allele).
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365  Sites with low read depth (DP) are prone to exhibit Mendelian violations due to sequencing
366 and genotyping errors, while positions with particularly high depth could indicate a
367  misalignment of reads in low complexity or paralogous regions. As each study analyzed
368  pedigrees sequenced at various depths, different cutoffs were chosen for this filter, some
369  more permissive than others. Some studies only set a minimum DP of approximately 10 reads
370 (e.g., Jonsson et al., 2017; Pfeifer, 2017; Sasani et al., 2019), while other higher coverage
371  studies were able to set more conservative minimum and maximum thresholds, varying from
372  a minimum of 10 to 20 to a maximum of 60 to 150 (e.g., Maretty et al., 2017: DP < 10 and
373  DP > 150; Thomas et al., 2018: DP < 20 and DP > 60; Wang et al., 2020: DP < 20 and DP >
374  60). Another approach is to use a relative depth threshold for each individual (e.g.,
375  depthingiviaua £ 30, with ¢ being the standard deviation around the average depth (Tatsumoto
376 et al., 2017), or a maximum threshold of 2 x depthingiviauar (Besenbacher et al., 2019)) or,
377  when all individuals were sequenced at a similar depth, an relative depth per trio (e.g., a DP
378  filter of 0.5 x depthyi, and 2 x depthyi, (Bergeron et al., 2021)). Alternatively, Rahbari et al.
379  (2016) and Wu et al. (2020) tested if the depth at each site followed a Poisson distribution
380  under the null hypothesis that lambda was depthj,giviaua, and filtered away sites where at least

381  one individual of the trio had a p-value higher than 2 x 10,

382  To correct for genotyping errors, two parameters from the output variant-calling file can be
383  used: the Phred-scaled likelihood of the genotype (PL) and the genotype quality (GQ). The
384  most likely genotype has a PL of 0, while the least likely genotype has the highest PL value.
385  GQ is the difference between the PLond most tikely @nd PLigt most likely, With @ maximum reported
386  of 99. Applied GQ thresholds vary between 20 (Jonsson et al., 2017; Sasani et al., 2019) and
387 70 (Wang et al., 2021b, 2020). Instead of using GQ, some studies used the difference
388  between PLong most tikely @nd PLigt most tikely, Which is not limited to a maximum of 99, and
389  applied more conservative criteria for the offspring heterozygous genotype than for the
390 homozygous parents (Maretty et al., 2017: homozygous PLyng most tikely = PList most likely < 80,
391 heterozygous PLond most tikely = PLi1st most likely < 250; Tatsumoto et al., 2017: homozygous PLng

392  nostlikely - PList most tikely < 100, heterozygous PLand most tikely = PL1st most tikety < 200).

393  Variants can also be filtered using allelic depth: the number of reads supporting the reference
394  allele and the alternative allele. To ensure the homozygosity of the parents, some studies filter
395 away sites where alternative alleles are present in the parents' reads. AD refers to the number

396  of reads supporting the alternative allele, with previously utilized thresholds include AD > 0
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397  (Besenbacher et al., 2019; Harland et al., 2017; Koch et al., 2019; Pfeifer, 2017; Sasani et al.,
398  2019; Smeds et al., 2016; Wang et al., 2021b), AD > 1 (Jénsson et al., 2017; Wang et al.,
399  2020), or AD > 4 (Maretty et al., 2017). Even more conservative, one study used a lowQ
400 AD2 > 1, i.e. the number of alternative alleles in the low-quality reads (not used for variant

401 calling) should not exceed 1 (Besenbacher et al., 2019).

402  Allelic depth is also used to calculate the allelic balance (AB): the proportion of reads
403  supporting the alternative allele relative to the total depth at this position. In the case of a
404 DNM, the offspring should have approximately 50% of its reads supporting each allele.
405  Purely somatic mutations are expected to cause only a small fraction of reads to carry an
406  alternate allele, though this fraction can be different for mutations occurring early in the
407  zygote stage of the offspring and leading to germline mosaicism. A previous large-scale
408 analysis of human pedigrees recovered a bi-modal allelic balance distribution of Mendelian
409  violations in the offspring before applying an AB filter, with a peak around 50% interpreted
410 as DNMs, and another peak around 20% likely corresponding to somatic mutations
411 (Besenbacher et al., 2015), mismapping errors, or sample contamination (Karczewski et al.,
412  2019). Thus, careful filtering on AB is required to avoid false positives. Thresholds used for
413  the AB filter vary between a minimum of 20% (Pfeifer, 2017) to 40% (Thomas et al., 2018),
414  and a maximum, when applied, of 60% (Thomas et al., 2018) to 75% (J6nsson et al., 2017).
415 Instead of a hard cutoff, one study used a binomial test on the allelic balance under the null
416  hypothesis of a 0.5 frequency, removing positions with a p-value lower than 0.05 (Wu et al.,

417  2020).

418  Additional filters can be used, for instance, to remove candidate DNMs present in individuals
419  other than the focal offspring, including siblings (Pfeifer, 2017; Smeds et al., 2016), only
420  unrelated individuals in the same dataset (Bergeron et al., 2021; Besenbacher et al., 2019;
421 Campbell et al., 2021; Thomas et al., 2018; Wu et al., 2020) or polymorphism datasets of the
422  same species (Pfeifer, 2017; Smeds et al., 2016; Wu et al., 2020). This filter is based on the
423  idea that the chance of getting a DNM at a position already being polymorphic is very low
424  unless there is very high heterozygosity, thus guarding against the possibility that a
425  heterozygous site was missed in the parents. Filters can also be applied to the distance
426  between mutations, again assuming that the probability of having two mutations close to each
427  other is low. For instance, in some studies, candidate DNMs were removed if four or more

428  candidates were located in a 200 base-pairs window (Koch et al., 2019), or two candidates

16


https://doi.org/10.1101/2021.08.30.458162
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.30.458162; this version posted August 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

429  were less than 10 base-pairs (Tatsumoto et al., 2017) or 100 base-pairs apart (Wu et al., 2020)
430 from each other. However, the underlying assumptions for these filters are not always
431  fulfilled. Indeed, recurrent mutations can occur, especially at CpG locations (Acuna-Hidalgo
432  etal., 2016; Ségurel et al., 2014), and there is evidence of nonrandom clustering of mutations
433  (Brandler et al., 2016; Turner et al., 2016). Finally, some studies removed DNM candidates
434  located in the locus control region (LCR; Sasani et al., 2019) or repetitive regions of the

435  genome (Pfeifer, 2017) which are prone to mismapping.

436  Assessing false-positives. After choosing each filter according to the dataset, a total number
437  of candidate DNMs per offspring is found. Yet, as stringent as the filters can be, there are still
438  chances for false positives (FPs) to be introduced in the final set of DNMs. Even though there

439  is no perfect method to correct the false-positive calls, this issue should be addressed.

440  One of the most straightforward methods to validate DNMs is by PCR amplification followed
441 by resequencing such as Sanger sequencing, to ensure the genotype of each individual of the
442  trio (Bergeron et al., 2021; Koch et al., 2019; Maretty et al., 2017; Tatsumoto et al., 2017;
443  Wu et al., 2020). However, this PCR amplification and resequencing method can be
444  challenging. In addition to the cost, designing primers for the region of the candidate DNMs
445  can be difficult, especially for candidates located in repeat regions. Furthermore, most Sanger
446  resequencing is aimed at validating the heterozygous state of the offspring, not the
447  homozygous state of the parents. If all candidate DNMs are successfully validated, the false
448  positives can be removed from the set of candidate DNMs. However, it is often the case that
449  we cannot check every candidate DNM. In these cases, it is common to estimate the false
450  discovery rate (FDR) from a subset of candidates that can be checked. The FDR can be

451 estimated as:

PCRfqiled
452 FDR = fatle ,
PCRyqiidatedt PCRyrqiled

453  with PCRy,jigaed being the number of candidate DNMs successfully amplified and passing the
454  resequencing validation and PCRyeq being the number of candidate DNMs successfully
455  amplified but failing the resequencing validation. We can then adjust the total number (nb) of

456  DNMs in the entire dataset by using the following relationship:

457 nbcandidate DNMs corrected = nbcandidate DNMs X (1 - FDR)’
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458  where nb.gndidate pNMs correctea 1 the updated number of DNMs in the dataset. Of note,
459  some studies refer to a false positive rate instead of the FDR (eg. Bergeron et al., 2021;
460 Jonsson et al., 2017; Wang et al., 2020), yet, it also refers to the ratio of false-positive calls on

461  the total number of candidates (i.e. true positives and false positives).

462 A second method to check candidate DNMs is manual curation, using visualization software
463  such as the Integrative Genome Viewer (IGV; Robinson et al., 2011). By comparing the read
464  mappings of the parents and their offspring at candidate DNMs, false-positive calls can be
465  detected. Estimates of the false discovery rate using this approach have varied widely
466  depending on the study design, from 91% (Pfeifer, 2017) at low coverage to 35% (Smeds et
467  al., 2016) at medium coverage to 11% at high coverage (Bergeron et al., 2021). Further work
468  1is needed to ensure that manual curation is consistent when applied by different researchers

469  working in different systems.

470 A third method to estimate the false discovery rate, based on deviations from the expected
471 50% transmission rate of DNMs to the next generation, can be used if an extended pedigree is
472  available. With this method, Wu et al. (2020) estimated a false discovery rate of 18%.
473  However, such a deviation from 50% can arise from the expected variance of a binomial
474  distribution, especially if the number of mutations is small. Moreover, clusters of mutations
475  could increase this variance if linked mutations are passed on together to the next generation,
476  especially if the number of trios is small. When this method is used, transmission should be
477  clearly defined as it can be when the grandchild has been genotyped as heterozygote with the
478  mutant allele, or alternatively when at least a few reads contain the mutant allele. Jénsson et
479 al. (2017) used multiple individuals and haplotype sharing to assess the consistent

480  segregation of DNM allele in the next generation.

481 A fourth method of estimating the false discovery rate takes advantage of monozygotic twins.
482  Germline mutations transmitted from parents to monozygotic twins are expected to be present
483  in both twins, as they are derived from the same zygote. Jonsson et al. (2017) exploited the
484  discordance between candidate DNMs in monozygotic twins to derive the false discovery rate
485  (3%). This estimate is an upper bound because discordance between monozygotic twins is a
486  combination of post-zygotic mutations and false-positive calls. However, the authors
487  analyzed a unique dataset of 91 human trios with monozygotic twins -- data that will be hard

488  to obtain in most species.
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489  Step S — Mutation rate estimation

490 To calculate a per-site per-generation mutation rate, the total number of candidate DNMs
491  (corrected for false positives), should be divided by the number of sites in the genome with
492  full detection power. The denominator takes into account the callable genome (CG) - sites
493  where mutations could have been detected, and the false-negative rate (FNR) - the rate at
494  which actual DNMs have been missed by the pipeline that has been applied to this point.
495  Assuming that the rate of mutation is similar in the remaining part of the genome, the

496  mutation rate per-site per-generation y of a diploid species can be estimated as:

497 U= nbcandidate pNMs X(1—FDR)
2 XCG X(1-FNR)

498  Callable genome. Different methods have been used to estimate the CG, the number of sites
499  where a DNM would have been detected if it was there (Supplementary Table 1). Many
500 studies used the strict individual filters applied during the detection of candidate DNMs,
501 including all sites where the parents were homozygotes for the reference allele and each
502  individual met the DP, GQ, and any other filters. However, the set of filters and input files
503 used to infer CG differ between studies (Supplementary Table 1) and, consequently,
504  estimates vary widely from CG representing 45% (Tatsumoto et al., 2017) to 91.5%
505 (Malinsky et al., 2018) of the total genome. For instance, some studies used GATK’s
506  CallableLoci tool (Van der Auwera et al., 2013) that estimates the number of sites that pass
507  the DP filters from the read alignment (.bam) files (e.g., Wu et al., 2020) while another study
508 (Wang et al., 2020) used the variant calling files (.vcf) from the samtools mpileup caller (Li
509 et al., 2009). From GATK 4 onward, CallableLoci is no longer supported, yet, with the
510 BP_RESOLUTION mode, every single site of the genome has a depth and genotype quality
511 value that can be used to estimate the callable sites (used in e.g., Bergeron et al., 2021;
512  Pfeifer, 2017). Moreover, some studies restrict the CG to the orthologous genome in order to
5183  match for base composition when making comparisons across species (e.g., Wu et al., 2020).
514  Due to these differences, it is important to report which methodology and filters are used to

515  estimate CG.

516  Assessing false-negatives. On the number of sites considered callable, additional corrections
517  for the FNR can be included. Indeed, even if the CG represents the sites that pass most of the

518 individual filters, some filters can simply not be applied to non-polymorphic sites. The
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519 methods and results differ between studies, with an estimated FNR from O (Smeds et al.,

520 2016; Tatsumoto et al., 2017) to 44% (Thomas et al., 2018).

521  One way to estimate a FNR is to introduce random DNMs to the sequencing reads and run
522  the entire pipeline (steps 2-4) to calculate its efficiency in finding these simulated DNMs
523  (e.g., Feng et al., 2017; Jonsson et al., 2017; Pfeifer, 2017; Wu et al., 2020). The false-

524  negative rate can then be estimated as:

ENR = de Novoyissed

de NOVOsimulated

525  This method corrects for errors during alignment, post-alignment processing, calling, and
526  filtering as the reads are passed into the pipeline a second time. However, it can be
527  computationally intensive as variant calling needs to be run multiple times and is a resource

528 and time-intensive step.

529  Another way to estimate the FNR is to use the number of callable sites that will be filtered
530 away by filters different from those taken into account in the CG estimation, such as site or
531 allelic balance filters (Bergeron et al., 2021; Besenbacher et al., 2019; Thomas et al., 2018).
532  As some site filters are inferred during variant calling based on statistical tests following
533  known null distributions, it is possible to estimate the proportion of callable sites filtered
534  away by these site filters (Bergeron et al., 2021; Besenbacher et al., 2015). Moreover, some
535 true DNMs could have an allelic balance outside the allelic balance filter chosen due to
536  sequencing variability or mosaicism. This bias can be estimated by the heterozygous sites in
537  the offspring (that are not DNMs) presenting an allelic balance outside the allelic balance
538 filter, assuming that this bias occurs at the same rate at DNMs and heterozygous sites in the
539  offspring (i.e. one parent is homozygous for the reference allele, one parent is homozygous
540  for the alternative allele, and the offspring heterozygous). Therefore, FNR can be inferred as

541  the proportion of true heterozygous sites outside the AB filter as:

True heterozygous Sitesoutside AB

542 FNR =

True heterozygous sites

543  Finally, the denominator can be estimated based on a probability to detect a DNM at a site,
544  given various parameters at that site. Thus, there is no clear distinction between CG and FNR,
545  as the latter is part of the CG estimation. Specifically, Besenbacher et al. (2019) used

546  inherited variants to estimate the probability that a DNM at a given site would pass all filters
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547  conditional on the depth of each individual. They then summed these probabilities to

548  calculate the number of callable sites in the genome.

549

550 Mutationathon: two-fold variation in estimated rates from the same trio

551 To understand the effect of various methods on mutation rate estimates from a single dataset,
552  a three-generation pedigree of rhesus macaque (Macaca mulatta) was analyzed by
553  researchers from five groups: Lucie Bergeron (LB), Sgren Besenbacher (SB), Cyril Versoza
554  (CV), Tychele Turner (TT), and Richard Wang (RW). The macaque pedigree consisted of
555  Noot (father), M (mother), Heineken (daughter), and Hoegaarde (Heineken’s daughter)
556  (Figure 3a). Each individual was sequenced with BGISEQ-500 at an average coverage
557  between 40X (Noot) and 70X (all other individuals). The raw data were trimmed using
558 SOAPnuke (Chen et. al, 2017) to remove adaptors, low-quality reads, and N-reads (see
559  Material and Methods for more information). Trimmed reads were shared with all
560  participants, who applied their respective pipelines to identify DNMs in Heineken and to

561  estimate a per-site per-generation germline mutation rate.

562  Each group of investigators implemented their own set of filters (Supplementary Table 4) and
563  detected between 18 (CV) and 32 (SB) candidate DNMs. After PCR amplification and
564  Sanger sequencing validation of the DNM candidates from all research groups (43 distinct
565  sites), we validated 33 positions as true positive DNMs, six were determined to be false-
566  positive calls, and four did not successfully amplify (Figure 3b and Supplementary Table 5).
567  No group found all true positive DNMs. Of the 33 true positive DNMs, only 7 were detected
568 by all research groups (Figure 3c). Fourteen additional true positive mutations were detected
569 by at least four groups; 6 detected by all except CV, 4 by all except RW, 2 by all except LB,
570 1 by all except SB, and 1 by all except TT. Of the 12 remaining true positive mutations, 5
571  were detected by three groups, 1 by two groups, and 6 by a single group. The candidate
572  DNMs found by a single group are more likely to be false positives as the six false-positive
573  candidates revealed by the PCR experiment were all candidates detected by a single pipeline.
574  The transmission rate to the next generation varied between 52% (with SB pipeline: 15 true
575  positive DNMs transmitted on 29 true positive candidates) and 67% (with RW pipeline: 14
576  true positive DNMs transmitted on 21 true positive candidates). The transmission rate of all

577  true positive DNMs (33) was 67% with 21 DNMs transmitted to the next generation; this rate
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578 is not significantly different from the expected 50% inheritance (binomial test p-value =

579  0.08).

580
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598 Figure 3 — Candidate DNMs from the Mutationathon. a. The pedigree of three
599 generations of rhesus macaques was sequenced and shared with five groups of
600 researchers. Sequencing coverage is indicated for each individual. b. The five

601 groups (LB: Lucie Bergeron, SB: Sgren Besenbacher, CV: Cyril Versoza, TT:
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602 Tychele Turner, RW: Richard Wang) detected a total of 43 candidate DNMs in
603 Heineken. The PCR amplification and Sanger sequencing validation showed that
604 33 of those candidates were true positive DNMs, six were false-positive calls, and
605 four did not successfully amplify. c. Venn diagram of the mutations found by
606 each research group. In bold are the candidates shared by at least four different
607 groups. Between brackets are the candidates that were not validated by the PCR
608 experiment either because they did not successfully amplify (in black) or because
609 the sequencing revealed false-positive calls (in red). See Material and Methods
610 for details on the experiment and Supplementary Figure 1 for the results of the
611 PCR experiment.

612

613 In addition to identifying DNMs, each group was tasked with estimating the per-site per
614  generation rate of mutation. The final estimated rate depends on the size of the callable
615 genome (CG) considered by each group, as well as corrections for false positives and false
616  negatives. Even with the variation in the number of candidate DNMs from each group
617  (Figure 4a), different values for these additional parameters could still have resulted in
618  equivalent rate estimates between different groups. However, differences in methodology led
619  to almost a two-fold variation in the estimated rates, greater than the variation in the number
620 of DNMs. TT estimated the lowest rate of 0.46 x 10 mutations per-site per generation
621  (Figure 4b). This estimate was based on autosomes and the X chromosome (where two
622  candidates were found), and the CG represented almost the full genome size. Using the full
623  genome size in the denominator is commonly used in human studies, for which most of the
624  genome is callable due to the high-quality reference genome, while stricter corrections are
625  usually applied in non-human studies. CV, RW, SB, and LB found similar rates, with 25%
626  differences between the lowest and the highest rate and large overlap of the confidence
627 intervals (Figure 4c). RW estimated the highest rate with 0.85 x 10® mutations per-site per
628  generation, from a relatively small set of candidates (22), yet the denominator was also small
629  as CG represented about 50% of the autosomal genome. SB and LB estimated a similar value
630 of CG, representing approximately 80% of the autosomal genome; however, there was a
631  difference in rates due to the smaller number of candidates found by LB (28) compared to SB

632 (32).
633
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639 Figure 4 — Estimated germline mutation rates from the Mutationathon. a.
640 Number of candidates DNMs found by each group (TT found 2 candidates on a
641 sex chromosome). b. Estimation of the denominator (i.e. the callable genome
642 corrected by the FNR) by each group. c. Estimated mutation rate per-site per
643 generation, the error bars correspond to the confidence intervals for binomial
644 probabilities (calculated using the R package 'binconf).

645  The different individual filters applied by each group explain some of the differences in the
646  candidate DNMs (Table 2 and Supplementary Table 4). For instance, many groups filtered
647  away candidate sites where the parents were heterozygotes, as they could be more prone to
648  false-positive calls. TT's pipeline was the only one to find a candidate mutation at a site
649  where the father was heterozygous C/G, the mother was homozygous for the reference allele

650  G/G, and the offspring was heterozygous A/G. These genotypes were validated by the PCR
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651  experiment, indicating that a true germline mutation has arisen at a heterozygous site in a
652  parental genome. Each method varied in power to detect the true DNMs (sensitivity), and in
653  the proportion of validated true candidates on the overall candidates found (precision). For
654 instance, RW used especially conservative filters on the allelic balance for both the offspring
655 (AB) and the number of alternative alleles allowed in the parents (AD). It resulted in a lower
656  sensitivity, only 22 candidates were found, but a high precision as no candidates were
657  determined to be false-positive calls. Similarly to RW, some groups were conservative on the
658  AB filter, while other groups were more conservative on the GQ filter (SB and LB) or DP
659 filter (LB, CV, RW). For instance, SB used a relaxed filter on DP, with a minimum threshold
660 of 10X, but a relatively conservative threshold on AB and GQ criteria. TT did not use strict
661 filters for any parameter, however, the precision was increased by the required overlap

662 among multiple variant callers.

663

664 Table 2 — Individual filters used by the different groups to detect DNMs in
665 Heineken (difference in the other steps of the pipeline in Supplementary Table
666 4).

Research | Candidates | DP filter GQ AD AB filter | Additional

group DNMs filter filter filters
Cv 18 0.5 x dping - | 40 0 0.25-0.75
2 X dpind
RW 22 20 - 80 20 0 0.35 Alternative allele

on both strands

TT 27 Minimum 20 0 0.25 Overlap 3
10 X different variant
callers
LB 28 0.5 % dping - | 60 none 0.3-0.7 Manual curation
2 X dping (6 candidates
removed)
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SB 32 Minimum 55 0 0.3 Alternative allele
10 X - in both strands.
Maximum lowQ AD2 > 1
1.75 x dping

667

668  We explored the effect of the individual filter on the number of candidate DNMs, the number
669  of false-positive calls (FP), the callable genome (CG), the false-negative rate (FNR), and the
670 final estimated mutation rate per-site per generation (u). We used the LB pipeline (see
671  individual filters in Table 2 and other methods in Supplementary Table 4) and changed one
672  filter at a time using various criteria used by the Mutationathon participants and in the
673 literature (Figure 5 and Supplementary Table 6). The GQ filter had the largest impact on the
674  number of mutations and the final estimated mutation rate. The number of candidate DNMs
675  found with GQ < 20 was three times higher than the one obtained with the most conservative
676 GQ filter (GQgom < 100 and GQge < 200), and the difference was still two-fold after
677  correcting for FP calls. The callable genome (CG) also decreased with GQ < 80, leading to an
678  estimated rate 39% lower when GQ < 80 (u = 0.56 x 10™) compared to when GQ < 20 (u =
679  0.91 x 10™®). This filter also seems to be the most efficient at reducing the number of FP calls,
680 estimated here with the manual curation method, as more than 90% of the candidates DNMs
681  were false positives with no GQ filter while we found no false positives with conservative
682  GQ filters (GQ < 80 and GQgom < 100 and GQpe < 200). Another important filter was the
683 allelic balance on the heterozygous offspring, resulting in a two-fold difference in the number
684  of candidate DNMs detected, and 1.5-fold difference after the correction for FP calls. Yet, the
685  estimated FNR was almost five times higher when using a conservative AB filter (AB < 0.4
686 and AB > 0.6; FNR = 15.8%) compared to the least conservative AB filter (AB < 0.2; FNR =
687  3.5%). This led to a mutation rate estimate 28% lower with the conservative AB filter (AB <
688 0.4 and AB > 0.6; u = 0.69 x 10 and AB < 0.2; u = 0.83 x 10”*). The DP filter also impacted
689  the estimated rate but to a lesser extent with only a 6% difference between the estimated
690  mutation rate with DP < 10 (u = 0.67 x 10"8) and the most conservative DP filter (DP < 0.5 x
691 depthingiviquas and DP > 2 x depthingividuai; 1 = 0.63 X 10'8). Finally, the AD filter did not show
692  alarge impact on the mutation rate, with less than 2% difference between no filter on AD (u

693  =0.63 x 10™) and the conservative AD > 0 (u = 0.62 x 10™®).
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695 Figure 5 — The impact of individual filters on the estimated rate of a trio of
696 rhesus macaques. The default filters used by LB pipeline were: DP < 0.5 x depth
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700  These results show that some of the differences in estimated rates between the five research
701 groups may be attributed to the individual filters. Yet, earlier steps in the different
702  bioinformatic pipelines could also lead to differences in candidate DNMs and estimated rates.
703  For instance, the site filters were different between some of the groups (see Supplementary
704  Table 4). Testing different combinations of site filters on the shared trio of rhesus macaques
705  affected the set of SNPs detected, which could lead to variation in candidate DNMs detected.
706  For instance, on the 12,634,956 variants found by LB pipeline, 473,142 SNPs were removed
707  when using GATK advised filters (QD < 2.0; MQ < 40.0; FS > 60.0; SOR > 3.0;
708  MQRankSum < -12.5; ReadPosRankSum < -8.0), while the stringent filters used by LB
709  pipeline (QD < 2.0, FS > 20.0, MQ < 40.0, MQRankSum < - 2.0, MQRankSum > 4.0,
710  ReadPosRankSum < - 3.0, ReadPosRankSum > 3.0 and SOR > 3.0) removed 1,124,005
711 SNPs. Despite this difference in the number of SNPs, using the LB pipeline to detect
712  candidate DNMs on the three callset (no filters, GATK advised filter or stringent filters), led
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713  to the same final number of candidate DNMs due to the stringent individual filters applied in
714 the following steps of the pipeline. Other steps, such as mapping and variant calling, could
715  also lead to some of the differences between the five groups. For instance, the six candidates
716  identified as false positives by the Sanger sequencing were filtered away in the LB pipeline.
717  Four of the false-positive candidates were not detected because all individuals were
718  genotyped as homozygous for the reference allele, one position was filtered out by the
719  mapping quality site filter (MQ < 40), one position had DP = 0. Thus, differences in the

720  mapping of the reads and variant callers explain some of the discrepancies between pipelines.

721 Overall, these results show that for the same dataset, differences in estimated mutation rates
722  caused by methodological discrepancies are non-negligible. Therefore, such differences
723  should be considered when comparing mutation rates between different species when they are
724  estimated by different pipelines. Some of the differences in estimated rates between groups
725  can be attributed to the different individual filters applied for the detection of candidate
726  DNMs. Most notably, varying the GQ and AB filters leads to large variations in estimated
727  rates. Some of the difference is also introduced in earlier steps when mapping reads and
728  calling variants. Moreover, the estimated callable genome is different between the five
729  groups; in addition to changing the denominator of the mutation rate calculation, this
730  difference could reflect the ability of individual methods to query mutation in different
731  genomic regions. Some variation might therefore be explained by true mutation rate
732  heterogeneity between genomic regions (such as low or high complex regions). Our results
733  also suggest that despite the different methods and filters, the estimated rates are comparable
734  when both the numerator (number of candidates and false positives) and the denominator
735 (CG and false-negative rate) are carefully corrected. For instance, CV, SB, LB, and RW
736  estimated similar rates, but SB and RW used a probabilistic method to calculate the CG,
737  while LB used strict filters (DP and GQ) on a base-pair resolution variant calling file (vcf)
738  and corrected for FNR using the site filters and the allelic balance filter and CV used a

739  similar method to estimate CG, yet, did not apply a correction for FNR.

740
741 Best practices

742  When estimating germline mutation rates from pedigree samples, there is no standardized set

743  of methods. Different studies use different software versions and filtering thresholds, which
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744  can impact the estimated rate and can complicate the comparison of rates between or within
745  species across studies (in addition to the biological variation introduced by the age of the
746  parents used in each study; Table 1). Here, we provide guidelines for each step in DNM
747  calling and rate estimation. However, we note that sample quality, reference genomes, and
748  other technical factors differ across studies and thus require study- or species-specific
749  thresholds. Therefore, it is advised to report the methodology used in a standardized way.
750  Table 3 proposes a checklist of parameters that should be reported in studies of germline

751 mutation rates.

752
753 Table 3 — Information that should ideally be reported when presenting
754 results on DNMs. See Supplementary Table 4 for an example of this table filled
755 out for the five pipelines used to analyze the trio of rhesus macaques.

Step of the analysis Information to report

1 — Sampling Type of sample (tissue, etc.)

and sequencing Storage duration, buffer, temperature

Type of library preparation

Average sequencing coverage

Sequencing technology and read lengths

2 — Alignment and Trimming of adaptors and low-quality reads

post-alignment processing Reference assembly version

Autosomes only or whole genome?

Mapping software and version

Duplicate removal software and version

Base quality score recalibration (yes/no)

If yes, which type of data used as known variants
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Realignments around indels?

Other filters?

3 — Variant calling Software and version

Mode: joint genotyping? Gvcf blocks? Gvcf in base-

pair resolution?

4 — Detecting Site filters on vcf files and justification

de novo mutations Individual filters, threshold, and remaining candidates

after each filter

False discovery rate estimation method: PCR
validation? Manual curation? Transmission rate

deviation?

5 — Mutation rate estimation | Callable genome estimation method: File used? Filters

taken into account?

False-negative rate estimation method: simulation?

Filters? Probability?

756

757  Moreover, some benchmarks could be helpful to ease the comparison between studies such

758 as:

759 e the transition-to-transversion ratio (ti/tv),

760 e the spectrum of mutations (see Supplementary Figure 2 for an example from the
761 Mutationathon),

762 e percentage of mutations in CpG locations,

763 e base composition (percentage of A/T or C/G),

764 e nucleotide heterozygosity in unrelated individuals,

765 e if population data are available, the number of DNMs that are in known SNPs of the
766 population,
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767 e the contribution of each sex to the total number of mutation bias when phasing of
768 mutations is possible,

769 e transmission rate to the next generation when extended trios are available,

770 e the average age of the parents at the time of reproduction, if known

771 e distribution of the allelic balance of true heterozygotes, candidate DNMs after all
772 filters except the allelic balance, and the final set of candidate DNMs.

773

774  Conclusion and perspectives

775  Different filters can lead to differences in estimated rates, which emphasizes the difficulty in
776  comparing pedigree-based germline mutation rates estimated from different studies. The
777  variation observed could be partially due to the biology and life-history traits of species, but
778  some of the variations will also be caused by methodological differences. Here, we provided
779  some best practices that can be used when estimating germline mutation rates from pedigree
780  samples. However, it is hard to provide hard cutoffs of filters that apply to every situation,
781  and we advise choosing appropriate filters depending on the data available. We have also
782  raised some points that should be addressed in individual studies, such as estimation of the
783  false discovery rate, false-negative rate, and the callable genome size. Nevertheless, more
784  exploration should be done to understand the best strategy for the different steps required in
785  every study of the mutation rates. Without a clear consensus on approaches for estimating the
786  germline mutation rate, it seems that the best strategy will be to carefully report all methods
787  and parameters used. The trio of rhesus macaque used in this analysis is publically available,
788  along with the validated candidate DNMs, and could serve as a resource for testing new
789  strategies. On a more positive note, it 1s important to point out that two recent, independent
790  studies of the per-generation mutation rate in rhesus macaque reported rates that were within
791 5% of each other for individuals of the same age (Bergeron et al., 2021; Wang et al., 2020).
792  We hope that careful studies using a variety of methods will be able to similarly arrive at

793  accurate estimates of important biological parameters.

794  With the growing number of studies on pedigree-based estimation of germline mutation rate,
795  some directions that have been neglected could be explored. For instance, even when the
796  sample size is large, most studies use samples originating from small geographic regions; it

797  would be of great interest to further explore potential variation in mutation rates across
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798  diverse populations (e.g. Kessler et al., 2020). Most studies are conducted on genomic DNA
799  collected from somatic tissues. As a result, if samples come from only a single trio, one
800 cannot distinguish early postzygotic mutations occurring in the offspring from germline
801  mutations in the parents. While mutations occurring early enough in offspring development
802  will be passed on to the next generation--and should therefore still be considered de novo
803  mutations--they will behave differently from mutations arising in the parental generation. For
804 instance, we will not expect an increase of these mutations with parental age (Jonsson et al.,
805  2018). Therefore, it is of interest to distinguish between these two types of mutation,
806  especially for biomedical research. A possible way to discard those mutations would be to
807  compare somatic and germline cells from the same individual. However, extracting DNA
808  directly from sperm and eggs can be challenging, especially for non-human species, limiting
809 the application of this strategy. Another area for additional future work is to look at de novo
810  structural variants. As they are even rarer than SNPs, it is hard to detect them over a single
811  generation. Yet, with the growing number of trios and generations considered in recent
812  studies, it would be of interest to quantify and describe those DNMs as well (e.g. Belyeu et
813 al., 2021; Thomas et al., 2021). The development of accurate long-read sequencing
814  technologies also offers opportunities for better detection of DNMs and de novo structural
815  variants. Finally, most studies on non-human species only explore the autosomal
816  chromosomes, largely because important filters such as allelic balance cannot be used on the
817  sex chromosomes in both sexes. However, given the consistent differences observed between
818  species in the rate of evolution on autosomes and sex chromosomes (e.g. Wilson Sayres and
819  Makova, 2011), it would be very interesting to look more closely at the per-generation

820  mutation rate on sex chromosomes.

821  Material and methods

822  Mutationathon sequences. The pedigree used for the Mutationathon was previously
823  sequenced as part of a larger project on the mutation rate of rhesus macaques (BioProject:
824  PRINAS588178; Bergeron et al., 2021). Nine lanes were used in this analysis (three lanes for
825  the father and two lanes for the other individuals) and are publically available on NCBI:

826 e CL100066413_LO0O1 (SRA run SRR10426295), mother M
827 e (CL100089164_LO01 (SRA run SRR10426294), mother M
828 e CL100078308_LO01 (SRA run SRR10426275), father Noot
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829 e CL100078335_LO01 (SRA run SRR10426264), father Noot

830 e CL100078335_L02 (SRA run SRR10426253), father Noot

831 e CL100066412_L02 (SRA run SRR10426291), offspring Heineken

832 e CL100095002_L02 (SRA run SRR10426290), offspring Heineken

833 e CL100066408_LO01 (SRA run SRR10426256), next generation offspring Hoegaarde
834 e CL100094917_LO1 (SRA run SRR10426255), next generation offspring Hoegaarde

835 A trimming step was done on all sequences to remove the adaptors (allowing a mismatch of
836  two bases), the low-quality reads (with more than 5% of N bases or a base quality score < 10
837  in more than 20% of the read), and the reads smaller than 60 bases after the quality control.
838  Trimming was done using SOAPnuke version 1.5.6 (Chen et al., 2017), with the following

839 command:

840 > SOAPnuke filter -f AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA -r
841 AAGTCGGATCGTAGCCATGTCGTTCTGTGAGCCAAGGAGTIG -1 sequence_read_1 -2
842  sequence_read 2 -G-Q2-110-q0.2-E60-50-M 2 -0 sequence_clean -C sequence_read_1_clean -

843 D sequence_read_2_clean

844  Each group implemented its pipeline to estimate a rate (details are provided in Supplementary

845  Table 4).

846  Data analysis. The comparison of each individual filter was done using LB pipeline,
847  changing one filter at a time and recalculating the number of candidates DNMs detected, the
848  potential false-positive candidates with the manual curation method, the callable genome, the
849  FNR on the allelic balance filter and site filters, and the mutation rate per site per generation.

850  The comparison of the site filters was also done on the SNPs found by LB pipeline.

851  PCR experiment and Sanger resequencing. We designed multiple sets of primers for the
852 43 candidate sites on NCBI primer blast tool (Ye et al, 2012:
853  https://www.ncbi.nlm.nih.gov/tools/primer-blast/). In some cases, sequencing primers were
854  adjusted to avoid sequencing failure due to poly-AAA or TTT runs. PCRs were carried out in
855  25uL volumes [2.5 units Dream Taq DNA Polymerase (Thermo Scientific), 1X Dream Taq
856  Green Buffer, 0.2mM dNTPs, 2-3mM MgCl2, 2.5- 44 ng DNA template, filled to 25uL. with
857  double-distilled (ddH20) water]. Thermocycling was performed in a BIORAD PTC-100
858  thermocycler. The cycle program comprised of an initial denaturation at 95°C for 2min,

859  followed by 35 cycles of 15sec at 95°C, 15sec at 52°C- 55°C, and 30sec at 72°C. Cycling
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860 was terminated with a Smin extension at 72°C. PCR products were purified using
861  commercially available spin columns (Invitek) or PureIT ExoZap PCR Clean-up (Ampliqon).
862  Sanger sequencing was conducted at Eurofins Genomics, Europe using the primers of the
863  amplification procedure using both forward and reverse primers. In Supplementary Figure 1,
864  the chromatograms with the best base quality value are provided. Supplementary Table 7
865  provides details about the primers and accession number of the sequences on GenBank.

866
867 Data and code availability

868  All the sequences used for the Mutationathon were previously generated and released in
869 NCBI (Bergeron et al., 2021). The sequences used were for the mother M (BioSample
870 SAMNI13230631), lanes CL100066413_L01 (SRA run SRR10426295) and
871 CL100089164_L1.01 (SRA run SRR10426294); for the father Noot (BioSample
872  SAMNI13230623): lanes CL100078308_L01 (SRA run SRR10426275), CL100078335_L01
873 (SRA run SRR10426264) and CL100078335_L02 (SRA run SRR10426253); for the
874  offspring Heineken (BioSample SAMN13230633): lanes CL100066412_1.02 (SRA run
875 SRR10426291) and CL100095002_1.02 (SRA run SRR10426290); and for the second
876  generation offspring Hoegaarde (BioSample SAMNI13230649): lanes CL100066408_1.01
877  (SRA run SRR10426256) and CL100094917_LO0O1 (SRA run SRR10426255). The Sanger
878  sequences generated during the PCR validation, were deposited on GenBank under the

879 accession number MZ661796 - MZ662076.

880  The scripts used by the participants of the Mutationathon are publically available:

881 e CV: hitps://github.com/PfeiferLab/mutationathon;

882 e RW: https://github.com/Wang-RJ/mutationathon;

883 e TT: Wilfert, A. B., Turner, T. N., Murali, S. C., Hsieh, P., Sulovari, A., Wang, T., ... &
884 Eichler, E. E. 2021. Recent ultra-rare inherited variants implicate new autism
885 candidate risk genes. Nature Genetics, 53(8):1125-1134. doi: 10.1038/s41588-021-
886 00899-8;

887 e [B: https://github.com/lucieabergeron/germline_mutation_rate;

888 e SB: https://github.com/besenbacher/GreatApeMutationRate2018

889
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