

1 **Local biodiversity change reflects interactions among changing abundance, evenness and**  
2 **richness**

4 Shane A. Blowes, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-  
5 Leipzig, Germany; Department of Computer Science, Martin Luther University Halle-  
6 Wittenberg, Halle (Salle), Germany. shane.blowes@idiv.de

8 Gergana N. Daskalova, School of GeoSciences, University of Edinburgh, Scotland EH9 3FF.  
9 gndaskalova@gmail.com

11 Maria Dornelas, Centre for Biological Diversity, University of St Andrews, KY16 9TH.  
12 maadd@st-andrews.ac.uk

14 Thore Engel, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig,  
15 Germany; Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle  
16 (Salle), Germany. thore.engel@idiv.de

18 Nicholas J. Gotelli, Department of Biology, University of Vermont, Burlington, VT 05405 USA.  
19 Nicholas.Gotelli@uvm.edu

21 Anne Magurran, Centre for Biological Diversity, University of St Andrews, KY16 9TH.  
22 aem1@st-andrews.ac.uk

24 Inês S. Martins, Leverhulme Centre for Anthropocene Biodiversity and Department of Biology,  
25 University of York, York YO10 5DD, UK. ines.martins@york.ac.uk

27 Brian McGill, School of Biology and Ecology and Mitchell Center for Sustainability Solutions,  
28 University of Maine; Orono, ME. mail@brianmcgill.org

30 Daniel J. McGlinn, Department of Biology, College of Charleston, Charleston, SC.  
31 danmcglinn@gmail.com

33 Alban Sagouis, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig,  
34 Germany; Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle  
35 (Salle), Germany. alban.sagouis@idiv.de

37 Hideyasu Shimadzu, Department of Mathematical Sciences, Loughborough University, LE11  
38 3TU, UK; Graduate School of Public Health, Teikyo University, Tokyo, Japan.  
39 H.Shimadzu@lboro.ac.uk

41 Sarah R. Supp, Data Analytics Program, Denison University, Granville, OH 43023 USA.  
42 supps@denison.edu

44 Jonathan M. Chase, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-  
45 Leipzig, Germany; Department of Computer Science, Martin Luther University Halle-  
46 Wittenberg, Halle (Salle), Germany. jonathan.chase@idiv.de

47

48

49 **Running title:** Characterising multicomponent diversity change

50

51

52 **Keywords:** biodiversity change, abundance, evenness, species richness, rarefaction

53

54 **Corresponding author:** Shane Blowes, German Centre for Integrative Biodiversity Research

55 (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig 04103, Germany. [shane.blowes@idiv.de](mailto:shane.blowes@idiv.de)

56 + 49 341 9733254.

57

58 **Abstract**

59 Biodiversity metrics often integrate data on the presence and abundance of multiple species. Yet  
60 our understanding of how changes to the numbers of individuals, the evenness of species'  
61 relative abundances, and the total number of species covary remains limited, both theoretically  
62 and empirically. Using individual-based rarefaction curves, we first show how expected positive  
63 relationships among changes in abundance, evenness and richness arise, and how they can break  
64 down. We then examined the interdependency between changes in abundance, evenness and  
65 richness more than 1100 assemblages sampled either through time or across space. As expected,  
66 richness changes were greatest when abundance and evenness changed in the same direction,  
67 whereas countervailing changes in abundance and evenness acted to constrain the magnitude of  
68 changes in species richness. Site-to-site variation in diversity was greater than rates of change  
69 through time. Moreover, changes in abundance, evenness, and richness were often spatially  
70 decoupled, and pairwise relationships between changes in these components were weak between  
71 sites. In contrast, changes in species richness and relative abundance were strongly correlated for  
72 assemblages sampled through time, meaning temporal changes in local biodiversity showed  
73 greater inertia and stronger relationships between the components changes when compared to  
74 site-to-site variation. Both temporal and spatial variation in local assemblage diversity were  
75 rarely attributable solely to changes in assemblage size sampling more or less of a static species  
76 abundance distribution. Instead, changing species' relative abundances often dominate local  
77 variation in diversity. Moreover, how these altered patterns of relative abundance combine with  
78 changes to total abundance strongly determine the magnitude of richness changes.  
79 Interdependencies found here suggest looking beyond changes in abundance, evenness and

80 richness as separate responses offering unique insights into diversity change can increase our  
81 understanding of biodiversity change.

82

83

84 **Introduction**

85 Measures of biodiversity and its change are frequently used to determine the magnitude,  
86 direction and pace of ecosystem modifications (Diaz et al. 2019). Descriptions of the distribution  
87 and abundance of organisms are central to basic ecological research (Krebs 1972, Andrewartha  
88 & Birch 1984), and biodiversity itself is a multifaceted concept that combines information on the  
89 distribution and abundance of multiple species. There have been numerous metrics proposed to  
90 quantify different aspects of biodiversity (e.g., Hill 1973, Gotelli and Colwell 2001, Magurran &  
91 McGill 2011, Chao and Jost 2012), most of which depend on sample effort and scale  
92 (Rosenzweig 1995, Whittaker et al. 2001, McGill 2011a, Chase & Knight 2013). This inherent  
93 complexity in the quantification of biodiversity poses significant challenges for syntheses of its  
94 temporal and spatial variation.

95

96 Here, we argue that in order to understand biodiversity change, it is critical to look beyond  
97 aggregate metrics of biodiversity. Specifically, we need to examine how changes in the key  
98 components that lead to these aggregate metrics interact and combine with each other. Currently,  
99 different components that underlie biodiversity represent important, but largely independent lines  
100 of evidence for biodiversity change. For example, one body of work on biodiversity change is  
101 focused on quantifying total abundances of all species within assemblages, such as recent work  
102 documenting declines of birds (e.g., Rosenberg et al. 2019) and insects (Wagner 2020). A related  
103 body of work focuses instead on population-level ‘winners’ and ‘losers’ within assemblages  
104 (McKinney & Lockwood 2000), species with increasing and decreasing trends in occupancy or  
105 abundance (e.g., WWF 2020). However, changes in the means of these metrics do not capture  
106 the variability and nuance in either the assemblage- and population-level abundance trends

107 across space and among taxa (e.g., van Klink et al. 2020, Daskalova et al. 2020a, Leung et al.  
108 2020). Moreover, trends in total assemblage abundance provide only one window into potentially  
109 complex changes that could be occurring in other components of biodiversity, and while changes  
110 to species' relative abundances do influence biodiversity metrics, population-level trends  
111 themselves cannot be used to calculate assemblage-level (i.e., biodiversity) metrics (e.g.,  
112 Dornelas et al. 2019). Even when quantifying similar response metrics (i.e., species richness),  
113 syntheses of biodiversity change in space due to differential land use conditions have found  
114 declines of species richness (e.g., Newbold et al. 2015, 2018), whereas analyses of time series  
115 have shown that, on average, species richness increases roughly offset decreases (Dornelas et al.  
116 2014, Blowes et al. 2019), despite often significant modifications to climate and habitat (Antão  
117 et al. 2020a, Daskalova et al. 2020b). Finally, the prediction that human activities likely impact  
118 species relative abundances more frequently than they do species occurrences (Chapin et al.  
119 2000), has not resulted in a strong focus on assemblage-level evenness in existing syntheses (but  
120 see, e.g., Crowder et al. 2010, Zhang et al. 2012, Jones & Magurran 2018). Importantly, changes  
121 in all these components, abundance, evenness and richness, contribute to variation in  
122 biodiversity. Yet little is known about how components are changing in combination within  
123 assemblages, and whether certain combinations act to constrain observed biodiversity change.  
124  
125 The biodiversity estimated from a given (local) sample depends largely on two factors (see e.g.,  
126 He and Legendre 2002, McGill 2011a). First, the total number of individuals (Fisher et al. 1943,  
127 Preston 1962), whereby fewer individuals are expected to (non-linearly) lead to fewer species in  
128 a given sample. Second, the total number of species and their relative abundances within the  
129 species pool, which we refer to as the Species Abundance Distribution (SAD; McGill et al.

130 2007). Samples will have lower species richness when the species pool has relatively few highly  
131 abundant species and many rare species (i.e., less even SADs), compared to samples from a  
132 species pool of the equivalent size with more equitable species abundances. Whenever two or  
133 more samples across space or time differ in the total number of individuals, the shape of the  
134 SAD, or both, there will be changes in most metrics of biodiversity. However, changes in  
135 abundance and the SAD are not always correlated, and, when decoupled, the magnitude and  
136 direction of change in derived biodiversity metrics could differ considerably.

137

138 Variation in the total number of individuals is a long-standing, first-order explanation of  
139 variation in richness (Fisher et al. 1943, Coleman et al. 1982, Srivastava & Lawton 1998, Gaston  
140 2000, Scheiner & Willig 2005, Storch et al. 2018). A positive relationship between numbers of  
141 individuals and species richness can be derived via multiple mechanisms (Scheiner & Willig  
142 2005), and is sometimes termed the ‘more-individuals hypothesis’ (Srivastava & Lawton 1998),  
143 or, in the context of species-area relationships, the ‘passive sampling hypothesis’ (Coleman et al.  
144 1982). Species richness has been posited to increase in places that are larger (Connor & McCoy  
145 1979) or more productive (Wright 1983), simply because of increased numbers of individuals.  
146 Likewise, some anthropogenic drivers can influence the number of individuals in assemblages  
147 (e.g., via eutrophication, exploitation, harvesting or land clearing), potentially impacting  
148 biodiversity due to changes to the total number of individuals (Newbold et al. 2015, Blowes et al.  
149 2020, Jones et al. 2020). If biodiversity varies primarily via changes in the numbers of  
150 individuals, positive relationships between altered numbers of individuals and species richness  
151 changes are expected. In such cases, however, other metrics of species diversity that control for

152 variation in numbers of individuals, such as the richness expected for a given number of  
153 individuals—known as rarefied richness—should be relatively unchanged.

154

155 Changes to the shape of the SAD can also drive biodiversity change through time or space. For  
156 example, co-occurrence and coexistence of species can be altered by changes to resource  
157 diversity (MacArthur 1965), environmental or habitat heterogeneity (Tilman 1982, Shmida &  
158 Wilson 1985), interspecific interactions (e.g., keystone predation; Paine 1974, Menge et al.  
159 2020), biological invasions (Vilà et al. 2011), and external perturbations (Hughes et al. 2007).

160 Alterations to any of these features can change biodiversity by changing species' relative  
161 abundances and the size of the species pool (via species additions or subtractions).

162 Anthropogenic factors can also favour some species and disfavour others, potentially altering the  
163 relative abundance of species (e.g., due to selective exploitation; Blowes et al. 2020), or the size  
164 of the species pool (e.g., species with large ranges replacing those with small ranges, Newbold et  
165 al. 2018). In such cases, biodiversity change will be characterised by positive relationships  
166 between species richness change and changes in metrics sensitive to relative abundance, such as  
167 rarefied richness, evenness and diversity metrics sensitive to species' relative abundances.

168

169 The changing components of biodiversity can covary in different and informative ways. Yet, to  
170 date, there has been little exploration of this covariation in time or space, nor of the theoretical  
171 linkages. For example, whether total abundances and the evenness of species' relative  
172 abundances change in similar or decoupled ways, and how this influences biodiversity change is  
173 largely unknown. However, syntheses of relationships between different biodiversity metrics,  
174 which can reflect different combinations of component changes, have typically found

175 relationships to be weak. For example, Stirling and Wilsey (2001) showed that although strong  
176 positive correlations between species richness, diversity and evenness metrics were expected  
177 from a neutral model (Caswell 1976), there was considerable variation in the strength, and even  
178 the sign of the relationships in 323 empirical comparisons. Similarly, Soininen et al. (2012)  
179 examined temporal ( $n = 212$ ) and spatial variation ( $n = 17$ ) in aquatic datasets, and again found  
180 considerable heterogeneity in the relationship between richness and evenness. Using data from  
181 91 assemblages, McGill (2011b) concluded that most biodiversity metrics align with three axes  
182 of empirical variation (total abundance, evenness and richness); components subsequently shown  
183 to be relatively uncorrelated across space for a subset of 37 of the 91 assemblages (Chase et al.  
184 2018). Collectively, these studies suggest that static biodiversity estimates are multidimensional,  
185 and that different metrics can covary or be unrelated.

186  
187 Where ecologists have quantified changes in multiple components of local diversity, the focus  
188 has typically been on averages across assemblages, where each component is treated as a  
189 separate, independent response. For example, analyses of the local assemblages documented by  
190 the BioTIME database (Dornelas et al. 2018) show that numbers of individuals, species richness,  
191 and dominance (the complement of evenness) are highly variable among datasets, but on  
192 average, have no directional trend (Dornelas et al. 2014, Jones & Magurran 2018, Blowes et al.  
193 2019). On the other hand, analyses of the PREDICTS database (Hudson et al. 2017)  
194 documenting spatial contrasts between assemblages in more pristine habitats with those in  
195 different land use categories, show that human-altered habitats frequently have fewer species and  
196 often fewer individuals (Newbold et al. 2015, 2020). However, these results describe average

197 changes across assemblages estimated independently, whereas, as we describe in more detail  
198 below, component changes are unlikely to be completely independent.

199  
200 Here, we first overview the theoretical context for how the main components underlying local  
201 biodiversity (total abundance, evenness and species richness) can change in time or space using  
202 individual-based rarefaction curves. We focus on six simplified scenarios of change with  
203 contrasting patterns of covariation among component changes, showing that the signs of changes  
204 in total abundance and evenness strongly determine whether all components can be expected to  
205 have positive pairwise relationships. We then empirically assess the relationships between  
206 abundance, evenness and richness changes using compilations of ecological assemblage data.  
207 This includes data from 351 assemblages varying through time and 774 assemblages monitored  
208 across space. In the face of natural and anthropogenically-driven environmental variation in time  
209 and space, we ask whether changes in the components of local biodiversity show positive  
210 relationships (i.e., change in the same direction). Or, are component changes sufficiently  
211 heterogeneous that variation in biodiversity depends on which of the underlying components  
212 (numbers of individuals or the SAD) are changing, and how the different component changes  
213 combine?

214

## 215 **Quantifying the multicomponent nature of biodiversity change**

216  
217 Individual-based rarefaction curves (Hurlbert 1971, Gotelli & Colwell 2001) are well suited for  
218 visualising and characterising empirical variation in total abundance, evenness and species  
219 richness (Appendix 1; Figure 1; Cayuela et al. 2015, Chase et al. 2018, McGlinn et al. 2019).

220 We use four metrics associated with the IBR (Figure 1) to show how changes in the different  
221 components are related to each other. Plotting pairwise relationships between changes in species  
222 richness ( $\Delta S$ ) and total abundance ( $\Delta N$ ; Fig. 2a), and two metrics sensitive to changes in relative  
223 abundance ( $\Delta S_n$ , Fig. 2b; and,  $\Delta S_{PIE}$ , Fig. 2c; see Chase et al. 2018, and Appendix 1 for further  
224 details on metrics and interpretation) show whether changing components have positive  
225 relationships (i.e., the same sign) or otherwise, and how altered patterns of total and relative  
226 abundance combine in terms of changes in species richness. We next outline how expectations of  
227 positive relationships between changing components arise and break down using six simplified  
228 scenarios of change.

229

230 Altered numbers of individuals, but no change to the SAD, can underpin differences in diversity  
231 between assemblages. Changes only to the number of individuals being passively sampled from  
232 the same underlying SAD (Figure 2d) result in  $\Delta S$  and  $\Delta N$  being positively related with the same  
233 sign (Figure 2a), whereas  $\Delta S_n$  and  $\Delta S_{PIE}$  will be approximately zero (and have a weak or no  
234 relationship with  $\Delta S$ , Figure 2b, c, respectively). This has been variously referred to in the  
235 literature as a sampling effect, the rarefaction effect, the more-individuals hypothesis, and the  
236 passive sampling hypothesis (Coleman et al. 1982, Gotelli & Cowell 2001, Palmer et al. 2000,  
237 Srivastava & Lawton 1998).

238

239 The expected positive relationship between changes in richness ( $\Delta S$ ) and abundance ( $\Delta N$ )  
240 weakens when altered numbers of species are associated only with changes to relative abundance  
241 (i.e.,  $\Delta N \sim 0$ ). Changes in species richness associated with relatively rare species would be seen  
242 in a positive relationship between  $\Delta S$  and  $\Delta S_n$  (Figure 2e), whereas SAD changes due, for e.g., to

243 increased numbers of common species, increased evenness, or increases to the size of the species  
244 pool result in a positive relationship between  $\Delta S$  and  $\Delta S_{PIE}$  (Figure 2f). Even where numbers of  
245 individuals increase ( $\Delta N > 0$ ), expected gains in species richness can be constrained by decreased  
246 evenness, resulting in no changes to species richness (Figure 2g), or possibly, a negative  
247 relationship between  $\Delta S$  and  $\Delta N$ , when changes to the SAD are sufficiently strong (Figure 2h).  
248 Alternately, opposing changes to total numbers of individuals and evenness could result in a  
249 positive relationship between  $\Delta S$  and  $\Delta N$  if, for example, the effects of more individuals on  
250 species richness outweighs that of decreased evenness (Figure 2i).

251

252 A positive relationship between  $\Delta S$  and  $\Delta S_n$  (Figure 2b) can occur due to altered numbers of rare  
253 species (Figure 2e), or changes to the species pool size or the evenness of relative abundances  
254 (Figure 2f). However, changes in species richness associated only with altered numbers of  
255 individuals (Figure 2d), or changes in total abundance and evenness with opposing signs (Figure  
256 2g-i) can weaken or reverse the expectation of a positive relationship between  $\Delta S$  and  $\Delta S_n$ .

257

258 As assemblages become more or less even, numbers of species are expected to change in a  
259 similar direction (He & Legendre 2002), resulting in an expected positive relationship between  
260  $\Delta S$  and  $\Delta S_{PIE}$  (Figure 2c). However, again, the expectation of positive relationship between  
261 changes in richness ( $\Delta S$ ) and evenness ( $\Delta S_{PIE}$ ) can be weakened if richness changes are  
262 associated only with altered numbers of individuals (Figure 2d), or where only the number of  
263 rare species are changing (Figure 2e). Finally, changes in total abundance ( $\Delta N$ ) and evenness  
264 ( $\Delta S_{PIE}$ ) with opposing signs (Figure 2g-i) will tend to weaken and possibly reverse the expected  
265 positive relationship between  $\Delta S$  and  $\Delta S_{PIE}$ . Such changes could occur, for example, if altered

266 environmental conditions strongly favour some species and disfavour others, resulting in higher  
267 abundances of one or only a few dominant species.

268

269 Our rarefaction-based framework shows that the key to understanding any breakdown of the  
270 expected positive relationships between changing abundance, evenness and richness are in the  
271 signs of changes in total abundance and evenness (i.e.,  $\Delta N$  and  $\Delta S_{PIE}$ ).  $\Delta N$  is associated with the  
272 curve stretching or contracting along the x-axis, and  $\Delta S_{PIE}$  characterises changes that flex the  
273 curve up or down from the base along the y-axis (Olszewski 2004). If  $\Delta N$  and  $\Delta S_{PIE}$  have  
274 different signs, the strength of their relationships with  $\Delta S$  will be diminished, and the likelihood  
275 of patterns of assemblage change moving from the lower left and upper right quadrants  
276 (component changes with the same sign and positive relationships) towards, and possibly into,  
277 the upper left and lower right quadrants (opposing signs and negative pairwise relationships) of  
278 Figure 2a-c increases.

279

280 Overall, we expect to see positive relationships between abundance, evenness and richness  
281 changes. However, more complex interdependencies are possible, and the assumption that these  
282 components represent independent response variables (e.g., Dornelas et al. 2014, Newbold et al.  
283 2015) is questionable. To evaluate empirical relationships among component changes we use  
284 data from 587 studies and 1125 assemblages and models that allow for correlations between  
285 component changes; 299 of these studies examined changes through time, and 288 document  
286 comparisons across spatial locations. We expect to find larger changes in species richness for  
287 assemblages where total abundance and evenness move in the same direction (i.e.,  $\Delta N$  and  $\Delta S_{PIE}$   
288 have the same sign, and all pairwise relationships between changes in abundance, evenness and

richness are positive). If observed local diversity changes are dominated by altered total abundances and species richness, the strong positive relationships between  $\Delta S$  and  $\Delta N$ , but weaker relationships between  $\Delta S$  and  $\Delta S_n$ , as well as between  $\Delta S$  and  $\Delta S_{PIE}$  should emerge. Alternatively, strong relationships between either  $\Delta S$  and  $\Delta S_n$  and/or  $\Delta S$  and  $\Delta S_{PIE}$ , accompanied by a weaker relationship between  $\Delta S$  and  $\Delta N$ , would indicate that changes to the SAD are the dominant component of local assemblage change.

295

## 296 **Methods**

### 297 *Overview*

298 We took a comparative approach to examine relationships between changes in total abundance,  
299 evenness and species richness. Specifically, we sought data documenting assemblages varying  
300 either through time or space, in one of either predominantly naturally-varying or perturbed  
301 environments. The saturating, asymptotic nature of the IBR means that many common functions  
302 used in ecology, such as the Michaelis-Menten or the type-II functional response offer multiple  
303 parameterisations for inferences regarding different parts of the curve (see Bolker 2008 for  
304 examples of different parameterisations). However, for consistency with the conceptual  
305 framework introduced above, and because ecologists are more familiar with direct examinations  
306 of diversity measures, we estimated four metrics: total numbers of individuals ( $N$ ), the expected  
307 number of species for  $n$  individuals ( $S_n$ ), the numbers equivalent conversion of the Probability of  
308 Interspecific Encounter ( $S_{PIE}$ , which hereafter, we refer to as evenness due to its sensitivity to the  
309 relative abundance of species), and total species richness ( $S$ ). The number of individuals,  $n$ , used  
310 in the calculation of rarefied richness ( $S_n$ ) was the minimum abundance observed for a given  
311 comparison (i.e., within a time series or for a particular spatial comparison); observations where

312  $n < 5$  were discarded before analysis. We took this approach to rarefaction rather than first  
313 extrapolating to two times the observed number of individuals (as advocated, e.g., by Chao et al.  
314 2014) for consistency with the conceptual framework, and to simplify the interpretation of  
315 relationships between changes in abundance, evenness and richness.

316  
317 To estimate changes in the different metrics that account for the expected correlations between  
318 them, we fit multivariate multilevel models. Similar to the way multilevel (also called  
319 hierarchical or mixed-effects) models fit to a single (univariate) response allow varying (random)  
320 intercepts and slopes to be correlated, this approach estimates changes in all components whilst  
321 allowing for correlations between them.

322  
323 *Temporal comparisons: natural environmental variation*  
324 To quantify temporal change among natural assemblages at the local scale, we used the  
325 BioTIME database (Dornelas et al. 2018), which documents over 45 thousand species in time  
326 series with an average duration of 13 years. Taxonomic groups in our analysis came from  
327 surveys in marine, freshwater and terrestrial ecosystems, and included plants (and other  
328 producers), invertebrates, fish, amphibians, reptiles, birds, and mammals, as well as several  
329 surveys that collected data from multiple taxa. Here, we only used time series that had numerical  
330 abundance data available (i.e., studies that recorded counts of the number of individuals for each  
331 species in an assemblage), and our analysis included 288 studies. Locations sampled in the  
332 BioTIME database document places with varying degrees of anthropogenic environmental  
333 change, but do not include manipulated assemblages or before-after-control-impact studies  
334 (Dornelas et al. 2018). Accordingly, we contrast the environmental variation sampled by

335 BioTIME with assemblage time series that experienced documented perturbations (see *Temporal*  
336 *comparisons: experimental or natural perturbations*).

337

338 To quantify changes at the local scale within BioTIME, studies with large extents were broken  
339 up into smaller cell-level time series while still maintaining the integrity of individual studies  
340 (i.e., different studies were not combined, even when samples were collected in the same grid  
341 cell). We used sample-based rarefaction (Gotelli & Colwell 2001) to standardise the number of  
342 samples per year for each time series (see Blowes et al. 2019 for details). For the calculation of  
343 rarefied richness ( $S_n$ ), the minimum total number of individuals was determined for each time  
344 series, and set as the target  $n$  for which expected richness was calculated; cell-level time series  
345 where  $n < 5$  were discarded. This process resulted in 42,604 cell-level time series from the 288  
346 studies, and we focus on the study-level estimates of change in our results and discussion.

347

348 *Temporal comparisons: experimental or natural perturbations*

349 To complement the environmental variation sampled by the BioTIME database, we searched for  
350 time series data with either experimental or natural perturbations from the U.S. LTER network  
351 (including terrestrial, freshwater and marine systems of multiple taxa) using the Data Portal of  
352 the Environmental Data Initiative (<https://portal.edirepository.org/nis/home.jsp>). Following data  
353 standardisation (i.e., minimum of five individuals per sample, and standardisation of sample  
354 effort through time), our analysis included 11 studies (see supplementary material) and temporal  
355 change was estimated in 63 study-treatment combinations. Natural and experimental treatments  
356 included changes due to warming, eutrophication, fire, grazing, restoration, severe storms or

357 other disturbances, and kelp removal. Taxonomic groups included algae, plants, invertebrates,  
358 fish, birds, and mammals.

359

360 *Spatial comparisons: natural environmental variation*

361 To examine spatial patterns of biodiversity change across relatively natural environmental  
362 contexts (and without obvious human impacts), we combined two existing compilations of data.  
363 The CESTES database (Jeliazkov et al. 2019) contains assemblage data from studies that  
364 sampled species at multiple sites (it also includes information on traits and environment that we  
365 do not use here), and a compilation of datasets with two or more local assemblages containing  
366 species abundance data (McGill 2011b). From CESTES, we excluded studies with explicit  
367 human impacts identified as an environmental feature, and our analysis included 19 studies that  
368 sampled terrestrial, freshwater and marine assemblages from a number of taxonomic groups  
369 (birds, plants, insects, macroinvertebrates, fishes and mammals). Similarly, studies documenting  
370 disturbances and other perturbations were removed from the McGill (2011b) compilation,  
371 resulting in 32 studies being retained. From the combined 51 studies, those with many sites were  
372 randomly subsampled down to ten sites so that they did not dominate the results. Within each  
373 study, an arbitrary site was assigned as the ‘reference’ site, and change was quantified between  
374 every site and the reference within studies; our analysis included a total of 356 spatial  
375 comparisons.

376

377 *Spatial comparisons: anthropogenic perturbations*

378 To quantify spatial differences in biodiversity due to anthropogenic land use, we used the  
379 PREDICTS database, which is a collation of studies comparing reference to impacted sites

380 (Hudson et al. 2017). Here we used the 2016 release of the database (downloaded from  
381 <https://data.nhm.ac.uk/> on 10<sup>th</sup> July 2020). We limited our analyses to studies with abundance  
382 data for individuals, and those with known land use categories (primary vegetation, mature  
383 secondary vegetation, intermediate secondary vegetation, plantation forest, cropland, pasture,  
384 and urban); studies where land use was not recorded were omitted. This resulted in 237  
385 combinations of source ID and study (some sources had multiple studies, denoted SS in the  
386 database), and 418 estimates of change relative to the reference land use category, primary  
387 vegetation.

388

389 *Statistical models*

390 Similar models were fit to each data source. For the *Temporal comparisons: natural*  
391 *environmental variation* data, total abundance ( $N$ ) was fit with a model that assumed a lognormal  
392 distribution and identity link function, and Poisson distributions with log link functions were fit  
393 to  $S_n$ ,  $S_{PIE}$  and  $S$ ; Poisson distributions were chosen for  $S_n$  and  $S_{PIE}$  values rounded to integers  
394 based on visual assessments that showed lognormal models fit to raw  $S_n$  and  $S_{PIE}$  values greatly  
395 underpredicted the density of ones in the data. For the *Temporal comparisons: experimental or*  
396 *natural perturbations* data,  $S$  was no longer an integer value after standardising sampling effort,  
397 and all metrics were fit with models that assumed lognormal distributions and identity link  
398 functions. Both spatial data sets were fit with models that assumed lognormal distributions and  
399 identity link functions for total abundance ( $N$ ), rarefied richness ( $S_n$ ) and evenness ( $S_{PIE}$ ), and a  
400 Possion distribution and log-link function for species richness ( $S$ ).

401

402 The *Temporal comparisons: natural environmental variation* models included non-varying  
403 intercepts and slopes for year, and varying intercepts and slopes for studies and cells for all  
404 responses. To allow for correlations between changes in the different responses, varying study-  
405 and cell-level parameters for all responses were drawn from a single multivariate normal  
406 distribution for each level (i.e., one for studies, one for cells; see supplement for equations). The  
407 models fit to the *Temporal comparisons: experimental or natural perturbations* data similarly  
408 included non-varying intercepts and slopes for year, and had varying intercepts for study, site  
409 and block fitted separately for each response. For these data, correlations between changes in the  
410 different responses were modelled by drawing varying intercepts and slopes for each  
411 combination of treatment and study for all responses from a single multivariate normal  
412 distribution (see supplement for equations).

413

414 The models fit to the *Spatial comparisons: natural environmental variation* data included non-  
415 varying intercepts for data source (i.e., CESTES and McGill). Correlations between the different  
416 responses were modelled by assuming varying intercepts and slopes (representing the reference  
417 site and departures for all other sites from the reference, respectively) for each study and  
418 response came from a single multivariate normal distribution; over-dispersion in the richness  
419 response was modelled using an observation-level varying intercept (see supplement for  
420 equations). Models fit to the *Spatial comparisons: anthropogenic perturbations* data included  
421 non-varying intercepts and slopes (representing the reference [primary vegetation] category and  
422 departures from the reference for each land use category, respectively), and varying intercepts  
423 for sites and blocks were modelled separately for each response. Correlations between changes in  
424 the different responses were modelled by assuming that varying intercepts and slopes (as per the

425 non-varying intercepts and slopes) for each combination of source and study and each response  
426 came from a single multivariate normal distribution (see supplement for equations).

427  
428 All statistical models were fit using the Hamiltonian Monte Carlo (HMC) sampler Stan  
429 (Carpenter et al. 2017), and coded using the ‘brms’ package (Burkner 2017). Details of all model  
430 specifications, and the iterations and warmup periods are provided in the supplement, as are the  
431 priors (which were weakly regularising). Visual inspection of the HMC chains and model  
432 diagnostics ( $Rhat < 1.05$ ) showed good mixing of chains and convergence, and model adequacy  
433 assessed visually using posterior predictive checks showed that the models were able to make  
434 predictions similar to the empirical data (see Supplement Figures S1-4). Code for all analyses is  
435 available at <https://github.com/sablowes/MulticomponentBioChange>, and will be archived  
436 following publication.

437  
438 **Results**  
439 Temporal changes in perturbed environments had the highest percentage of assemblages with at  
440 least one component trend ( $\Delta N$ ,  $\Delta S_n$ ,  $\Delta S_{PIE}$ , or  $\Delta S$ ) that differed from zero (44%), followed by  
441 spatial comparisons across land use categories (29%), temporal changes (21%) and spatial  
442 comparisons in naturally varying environments (12%). Component changes that differed from  
443 zero showed broadly similar patterns across datasets, with one exception: trends differing from  
444 zero for multiple components were less common for spatial comparisons between assemblages in  
445 naturally varying environments (Figure 3).

446

447 Temporal changes were typically smaller in magnitude (Figure 4a-f) and exhibited generally  
448 stronger relationships across assemblages (Figure 5a, b) compared to spatial changes (Figure 4g-  
449 l, Figure 5c, d). Within assemblages, changes of abundance and richness ( $\Delta N$ ,  $\Delta S$ , Figure 4a, d,  
450 g, j), changes in rarefied richness and species richness ( $\Delta S_n$  and  $\Delta S$ , Figure 4b, e, h, k) and  
451 evenness and richness changes ( $\Delta S_{PIE}$  and  $\Delta S$ , Figure 4c, f, i, l) typically had the same sign,  
452 though there were exceptions to this general pattern. For assemblages where  $\Delta N$  and  $\Delta S_{PIE}$  had  
453 the same sign (though not necessarily differing from zero), the magnitude of richness changes  
454 was typically larger (Figure 4). In contrast, if  $\Delta N$  and  $\Delta S_{PIE}$  had opposing signs, richness changes  
455 were often of a smaller magnitude (Figure 4). This tendency for countervailing changes in  
456 abundance and evenness to reduce the magnitude of richness changes was most apparent for  
457 spatial changes associated with different land use categories (Figure 4j-l), and among these  
458 assemblages having opposing abundance and evenness changes, there was a high proportion that  
459 were growing in size ( $\Delta N > 0$ ) but with declining species richness ( $\Delta S < 0$ ; Figure 4j).

460

461 Temporal changes in naturally varying assemblages were roughly centred on zero for all metrics  
462 (Figure 4a-c). Across assemblages, altered numbers of individuals and species richness changes  
463 had a moderately positive relationship (Figure 5a), weakened by assemblages that had opposing  
464 abundance and evenness relationships (Figure 4a). In contrast, relationships between changes in  
465 species richness and rarefied richness, and between richness changes and evenness changes were  
466 strong (Figure 5a). Assemblages in perturbed environments had slightly positive temporal trends  
467 on average in all components (Figure 4d-f). Across assemblages,  $\Delta S$  and  $\Delta N$  (Figure 4d, 5b) and  
468  $\Delta S$  and  $\Delta S_{PIE}$  (Figure 4f, 5b) had relatively weak positive relationships, whereas  $\Delta S$  and  $\Delta S_n$   
469 (Figure 4e, 5b) showed a strong positive relationship.

470

471 Spatial comparisons in naturally varying environments exhibited highly heterogeneous patterns  
472 of change centred around zero for all metrics (Figure 4g-i), and decoupled component changes  
473 meant that relationships between them were generally absent or weak across assemblages (Figure  
474 5c). Spatial comparisons between assemblages in primary vegetation versus those in different  
475 land use categories were also highly heterogeneous, though there were typically fewer  
476 individuals, less even assemblages and fewer species relative to primary vegetation (Figure 4j-l).  
477 Across assemblages, land use change was typically associated with relatively weak positive  
478 relationships between changes in the components of local diversity (Figure 5d).

479

## 480 **Discussion**

481 Our conceptual framework showed how the expectation for positive relationships between  
482 changes in abundance, evenness and richness arises, and that the signs of changes in abundance  
483 and evenness hold the key to this expectation breaking down. Our empirical analyses generally  
484 found support for positive relationships between abundance, richness and evenness, and within  
485 assemblages, changes in multiple components were common. However, component changes  
486 were also frequently highly heterogeneous within assemblages, and countervailing changes in  
487 total abundance and evenness often constrained the magnitude of changes in species richness.

488

489 Relationships between changes in abundance, evenness, and richness were most heterogeneous  
490 for spatial comparisons, and sufficiently decoupled that no strong relationships emerged across  
491 assemblages. In contrast to the frequent decoupling of component changes for spatial  
492 comparisons, strong positive correlations between temporal changes in species richness ( $\Delta S$ ) and  
493 changes in metrics associated with altered SADs ( $\Delta S_n$ ,  $\Delta S_{PIE}$ ) emerged across assemblages. This

494 strong relationship between changes in species richness and altered SADs runs counter to the  
495 common expectation that changes in the numbers of individuals underpin diversity gradients  
496 (e.g., Gaston 2000, Scheiner & Willig 2005), and shows that variation in relative abundances can  
497 dominate local variation in biodiversity.

498

499 *Variation in assemblage size does not dominate local diversity change*

500 Overall, only ~2% of assemblages in this study (22 of 1125) had changes consistent with a  
501 strong ‘more-individuals’ effect on changes in species richness (i.e.,  $\Delta N$  &  $\Delta S$  having the same  
502 sign, and being the only changes different from zero). Despite many tests, empirical evidence for  
503 the more-individuals hypothesis (Srivastava & Lawton 1998) remains equivocal (Storch et al  
504 2018, Vagle & McCain 2020). While both (species-level) population variability and variation  
505 associated with sampling (Vagle & McCain 2020) likely contribute to the weak response of  
506 species richness to variation in the total number of individuals, our results are broadly consistent  
507 with previous syntheses showing that broad-scale spatial variation in richness was rarely driven  
508 simply by variation in the numbers of individuals (Currie et al. 2004, Storch et al 2018). Our  
509 results indicate that local assemblages changing in size are not simply passively sampling more  
510 or less from a static SAD. Instead, we show that local biodiversity change can be strongly  
511 influenced by changes to species’ relative abundances. Changes to species’ relative abundances  
512 can be occurring at multiple scales (Hillebrand et al. 2008, Blowes et al. 2020), and can reflect  
513 altered local environmental conditions (e.g., altered resource or habitat diversity, eutrophication,  
514 local harvest or exploitation), or changes at broader scales that alter the species pool.

515

516 Our general result that changes in the total abundance of an assemblage through time or space  
517 are often decoupled from changes in metrics of biodiversity such as species richness also  
518 cautions against making “apples to oranges” comparisons in the context of quantifying  
519 biodiversity change. For example, some estimates of change are based on either population-level  
520 abundance (e.g., Living Planet Index, WWF 2020), or assemblage-level abundance (e.g., insect  
521 declines, Wagner 2000, van Klink et al. 2020), whereas other change estimates are based on  
522 patterns of the number or identity of species present (e.g., Dornelas et al. 2014, Newbold et al.  
523 2015). Our results show that assuming abundance and richness changes are strongly correlated  
524 will often be an oversimplification. Moreover, the importance of variation in relative abundances  
525 for local biodiversity change means that biodiversity trends may often depend on whether altered  
526 relative abundances influence the metrics used (see e.g., Antão et al. 2020b).

527

#### 528 *Patterns of temporal versus spatial biodiversity change*

529 Differences between patterns of temporal versus spatial change emerged from our analyses.  
530 Moreover, these differences were generally greater than those found between naturally-varying  
531 and perturbed assemblages, for either the temporal or spatial comparisons. In general, the  
532 magnitude of changes of all components across space were larger than rates of change through  
533 time. Multiple factors likely contributed to the larger effect sizes found for spatial changes. For  
534 example, patterns of autocorrelation likely differ between the dimensions, with temporal data  
535 more likely to resample individuals than the spatial comparisons, limiting the magnitude of  
536 changes possible. Likewise, the units of change differ between temporal (where change was  
537 standardised to an annual rate [change per year]) and spatial comparisons (change between  
538 discrete sites). It is also possible that any given site-to-site comparison encompassed a greater

539 range of environmental variation. However, it is important to note that at the local scale on which  
540 we have focussed, direct comparisons between the effect sizes are difficult.

541  
542 Pairwise relationships between changes in abundance, evenness and richness were typically  
543 weaker in space compared to time. Decoupling was greatest, and pairwise relationships weakest,  
544 for spatial comparisons between sites with relatively natural environmental variation. These  
545 highly variable component changes to environmental variation emphasise the need for a  
546 holistic approach to quantifying community changes (Avolio et al. 2021). Our conceptual  
547 framework showed that the signs of changes in abundance and evenness can strongly constrain  
548 the magnitude of richness changes, a pattern generally supported by our empirical analyses. In  
549 particular, we found that the signs of abundance and evenness changes often determined the  
550 magnitude of richness losses associated with land use modification (Newbold et al. 2015, 2020).

551 Assemblages with the greatest declines in abundance and evenness had the greatest richness  
552 declines. In contrast, when changes in abundance and evenness were in opposite directions,  
553 richness changes were tempered. Indeed, countervailing abundance and evenness changes were  
554 frequently associated with components other than species richness (i.e.,  $\Delta N$ ,  $\Delta S_n$ , and/or  $\Delta S_{PIE}$ )  
555 having a trend that differed from zero across all data sources (Supplementary Table 1). This  
556 shows that even for apparently decoupled component changes, interdependencies between  
557 biodiversity components remain important to overall biodiversity change.

558  
559 In contrast to assemblage changes between sites, there was strong coupling between species  
560 richness and SAD changes through time. In particular, the strength of the relationship between  
561  $\Delta S_n$  and  $\Delta S$  resulted in estimates of change being similar for most assemblage time series in

562 relatively natural environments (Figure 4b). In some cases, this occurred despite countervailing  
563 changes in total abundance and evenness (Figure 4a, b). For assemblages where abundance and  
564 evenness changed in the same direction, similar estimates of  $\Delta S_n$  and  $\Delta S$  indicate that abundance  
565 changes were occurring along a relatively flat region of the individual-based rarefaction curve.  
566 This shows that changes to the total number of individuals need not strongly influence species  
567 richness, even where signs are the same and they have a positive relationship. Instead, richness  
568 changes were more strongly associated with altered relative abundances, which has important  
569 implications for examining causes and/or consequences of biodiversity change (Hillebrand et al.  
570 2008, Crowder et al. 2010). These cases highlight that even where the expected positive  
571 relationships between abundance, evenness and richness are found, we can more fully understand  
572 assemblage changes when all component changes are examined simultaneously.

573

574 While both approaches, time series and spatial comparisons (or space-for-time substitutions),  
575 have contributed to our understanding of biodiversity change, the relative merits of each for our  
576 understanding of ecological dynamics has not been discussed much (Adler et al. 2020). The  
577 largely decoupled component changes found here for spatial comparisons suggest that too much  
578 focus on average changes across assemblages, such as those in total abundance or in species  
579 richness, risks masking highly heterogeneous changes occurring within assemblages in multiple  
580 components. Moreover, decoupled, heterogeneous component changes complicate using spatial  
581 comparisons to infer temporal changes. Our finding of smaller effect sizes for time series  
582 indicates greater inertia for assemblage changes occurring through time, compared to site-to-site  
583 variation. More generally, the strong role of changes to the SAD for variation in local  
584 biodiversity suggests that examining drivers of altered patterns of relative abundance across

585 scales (e.g., are local environmental changes affecting evenness or are changes occurring at  
586 broader spatial scales impacting the size of species pool) are an important direction for future  
587 empirical work.

588

589 *Conclusions*

590 We found strong correlations between changes in the SAD and species richness changes through  
591 time, whereas relationships between abundance and richness changes for both temporal and  
592 spatial diversity change were generally weak. Our findings confirm that altered species relative  
593 abundances, and/or changes to the size of the species pool, often strongly influence local  
594 diversity change (Chapin et al. 2010), even where human impacts are less direct. However, our  
595 results also reinforce cautions against examining changes to any one component of biodiversity  
596 change in isolation (e.g., Wilsey et al. 2005, Chase et al. 2018, Avolio et al. 2021).

597

598 To be most useful, variation in the different components of biodiversity need to be coherently  
599 conceptualised. Individual-based rarefaction curves and associated metrics provide an intuitive  
600 and illustrative characterisation of relationships among changing components of local  
601 biodiversity. Whilst ecologists are increasingly looking beyond species richness to quantify  
602 biodiversity change (e.g., Dornelas et al. 2014, Hillebrand et al. 2018), different components of  
603 biodiversity and its change within assemblages are most often analysed independently, and with  
604 metrics lacking conceptual unification. Our results emphasise that changes to the most frequently  
605 quantified aspects of biodiversity, including changes to the numbers of individuals, and the  
606 relative abundance and total numbers of species are highly interdependent. Examining how  
607 within-assemblage component changes covary with potential drivers could reveal insights

608 masked by independent aggregate estimates of change and provide new information for  
609 understanding biodiversity change in the Anthropocene.

610

611 **Open research statement:** All data used in the manuscript are already in the public domain. The  
612 BioTIME database is accessible through the BioTIME website (<http://biotime.st-andrews.ac.uk>)  
613 and a Zenodo repository (<https://zenodo.org/record/1095627>). Perturbed time series were  
614 compiled using the data portal of the Environmental Data Initiative  
(<https://portal.edirepository.org/nis/home.jsp>); code for compilation and standardisation available  
615 at <https://github.com/chase-lab/BioTIMEEx>. PREDICTS is available at  
616 <https://www.predicts.org.uk/>. McGill SAD data were previously archived at:  
617 <https://doi.org/10.6084/m9.figshare.6945704>. CESTES database is available at  
618 <https://doi.org/10.25829/1div.286-21-2695>. Code for all analyses is available at  
619 <https://github.com/sablowes/MulticomponentBioChange>, which will be archived when accepted.  
620

621

## 622 **References**

623 Antão, L.H., Bates, A.E., Blowes, S.A., Waldock, C., Supp, S.R., Magurran, A.E., Dornelas, M.,  
624 Schipper, A.M., 2020a. Temperature-related biodiversity change across temperate marine and  
625 terrestrial systems. *Nature Ecology & Evolution* 4, 927–933.

626 Antão, L.H., Pöyry, J., Leinonen, R., Roslin, T., 2020b. Contrasting latitudinal patterns in  
627 diversity and stability in a high-latitude species-rich moth community. *Global Ecology and*  
628 *Biogeography* 29, 896–907.

629 Avolio, M.L., Komatsu, K.J., Collins, S.L., Grman, E., Koerner, S.E., Tredennick, A.T., Wilcox,  
630 K.R., Baer, S., Boughton, E.H., Britton, A.J., 2021. Determinants of community  
631 compositional change are equally affected by global change. *Ecology Letters* 24, 1892–1904.

632 Blowes, S.A., Chase, J.M., Di Franco, A., Frid, O., Gotelli, N.J., Guidetti, P., Knight, T.M., May,  
633 F., McGlinn, D.J., Micheli, F., 2020. Mediterranean marine protected areas have higher  
634 biodiversity via increased evenness, not abundance. *Journal of Applied Ecology* 57, 578–589.

635 Blowes, S.A., Supp, S.R., Antão, L.H., Bates, A., Bruelheide, H., Chase, J.M., Moyes, F.,  
636 Magurran, A., McGill, B., Myers-Smith, I.H., Winter, M., Bjorkman, A.D., Bowler, D.E.,  
637 Byrnes, J.E., Gonzalez, A., Hines, J., Isbell, F., Jones, H.P., Navarro, L.M., Thompson, P.L.,  
638 Vellend, M., Waldock, C., Dornelas, M., 2019. The geography of biodiversity change in  
639 marine and terrestrial assemblages. *Science* 366, 339–345.

640 Bolker, B.M., 2008. Ecological models and data in R. Princeton University Press.

641 Bürkner, P.-C., 2017. brms: An R package for Bayesian multilevel models using Stan. *Journal of*  
642 *Statistical Software* 80, 1–28.

643 Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,  
644 M., Guo, J., Li, P., Riddell, A., 2017. Stan: A probabilistic programming language. *Journal of*  
645 *Statistical Software* 76.

646 Caswell, H., 1976. Community structure: a neutral model analysis. *Ecological monographs* 46,  
647 327–354.

648 Cayuela, L., Gotelli, N.J., Colwell, R.K., 2015. Ecological and biogeographic null hypotheses for  
649 comparing rarefaction curves. *Ecological Monographs* 85, 437–455.

650 Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., Ellison, A.M., n.d.  
651 Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in  
652 species diversity studies. *Ecology* 84, 45–67.

653 Chao, A., Jost, L., 2012. Coverage-based rarefaction and extrapolation: standardizing samples by  
654 completeness rather than size. *Ecology* 93, 2533–2547.

655 Chase, J.M., Knight, T.M., 2013. Scale-dependent effect sizes of ecological drivers on  
656 biodiversity: why standardised sampling is not enough. *Ecol Lett* 16, 17–26.

657 Chase, J.M., McGill, B.J., McGlinn, D.J., May, F., Blowes, S.A., Xiao, X., Knight, T.M.,

658 Purschke, O., Gotelli, N.J., 2018. Embracing scale-dependence to achieve a deeper

659 understanding of biodiversity and its change across communities. *Ecol Lett* 21, 1737–1751.

660 Chase, J.M., McGill, B.J., Thompson, P.L., Antão, L.H., Bates, A.E., Blowes, S.A., Dornelas,

661 M., Gonzalez, A., Magurran, A.E., Supp, S.R., Winter, M., Bjorkman, A.D., Bruelheide, H.,

662 Byrnes, J.E., Sarmento Cabral, J., Elahi, R., Gomez, C., Guzman, H.M., Isbell, F., Myers-

663 Smith, I.H., Jones, H.P., Hines, J., Vellend, M., Waldock, C., O'Connor, M., 2019. Species

664 richness change across spatial scales. *Oikos* 1–13.

665 Coleman, B.D., Mares, M.A., Willig, M.R., Hsieh, Y.-H. 1982. Randomness, area, and species

666 richness. *Ecology* 63: 1121-1133.

667 Connor, E.F., McCoy, E.D., 1979. The statistics and biology of the species-area relationship. *The*

668 *American Naturalist* 113, 791–833.

669 Crowder, D.W., Northfield, T.D., Strand, M.R., Snyder, W.E., 2010. Organic agriculture

670 promotes evenness and natural pest control. *Nature* 466, 109–112.

671 Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guégan, J.-F., Hawkins, B.A., Kaufman,

672 D.M., Kerr, J.T., Oberdorff, T., O'Brien, E., 2004. Predictions and tests of climate-based

673 hypotheses of broad-scale variation in taxonomic richness. *Ecology letters* 7, 1121–1134.

674 Daskalova, G.N., Myers-Smith, I.H., Godlee, J.L., 2020a. Rare and common vertebrates span a

675 wide spectrum of population trends. *Nature Communications* 4394.

676 Daskalova, G.N., Myers-Smith, I.H., Bjorkman, A.D., Blowes, S.A., Supp, S.R., Magurran,

677 A.E., Dornelas, M., 2020b. Landscape-scale forest loss as a catalyst of population and

678 biodiversity change. *Science* 368, 1341–1347.

679 Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Agard, J., Arneth, A., Balvanera, P., Brauman,  
680 K.A., Butchart, S.H., Chan, K.M., 2019. Pervasive human-driven decline of life on Earth  
681 points to the need for transformative change. *Science* 366.

682 Dornelas, M., Antao, L.H., Moyes, F., Bates, A.E., Magurran, A.E., Adam, D., Akhmetzhanova,  
683 A.A., Appeltans, W., Arcos, J.M., Arnold, H., 2018. BioTIME: A database of biodiversity  
684 time series for the Anthropocene. *Glob Ecol Biogeogr* 27, 760–786.

685 Dornelas, M., Gotelli, N.J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., Magurran, A.E.,  
686 2014. Assemblage time series reveal biodiversity change but not systematic loss. *Science* 344,  
687 296–299.

688 Dornelas, M., Gotelli, N.J., Shimadzu, H., Moyes, F., Magurran, A.E., McGill, B.J., 2019. A  
689 balance of winners and losers in the Anthropocene. *Ecol Lett* 22, 847–854.

690 Fisher, R.A., Corbet, A.S., Williams, C.B., 1943. The relation between the number of species  
691 and the number of individuals in a random sample of an animal population. *The Journal of  
692 Animal Ecology* 42–58.

693 Gaston, K.J., 2000. Global patterns in biodiversity. *Nature* 405, 220–227.

694 Gotelli, N.J., Colwell, R.K., 2001. Quantifying biodiversity: procedures and pitfalls in the  
695 measurement and comparison of species richness. *Ecol Lett* 4, 379–391.

696 He, F., Legendre, P., 2002. Species diversity patterns derived from species-area models. *Ecology*  
697 83, 1185–1198.

698 Hill, M.O., 1973. Diversity and evenness: a unifying notation and its consequences. *Ecology* 54,  
699 427–432.

700 Hillebrand, H., Bennett, D.M., Cadotte, M.W., 2008. Consequences of dominance: a review of  
701 evenness effects on local and regional ecosystem processes. *Ecology* 89, 1510–1520.

702 Hillebrand, H., Blasius, B., Borer, E.T., Chase, J.M., Downing, J.A., Eriksson, B.K., Filstrup,  
703 C.T., Harpole, W.S., Hodapp, D., Larsen, S., 2018. Biodiversity change is uncoupled from  
704 species richness trends: Consequences for conservation and monitoring. *Journal of Applied  
705 Ecology* 55, 169–184.

706 Hudson, L.N., Newbold, T., Contu, S., Hill, S.L., Lysenko, I., De Palma, A., Phillips, H.R.,  
707 Alhusseini, T.I., Bedford, F.E., Bennett, D.J., 2017. The database of the Predicts (Projecting  
708 responses of ecological diversity in changing terrestrial systems) project. *Ecology and  
709 Evolution* 7, 145–188.

710 Hughes, A.R., Byrnes, J.E., Kimbro, D.L., Stachowicz, J.J., 2007. Reciprocal relationships and  
711 potential feedbacks between biodiversity and disturbance. *Ecology letters* 10, 849–864.

712 Hurlbert, S.H., 1971. The nonconcept of species diversity: a critique and alternative parameters.  
713 *Ecology* 52, 577–586.

714 Jeliazkov, A., Mijatovic, D., Chantepie, S., Andrew, N., Arlettaz, R., Barbaro, L., Barsoum, N.,  
715 Bartonova, A., Belskaya, E., Bonada, N., 2020. A global database for metacommunity  
716 ecology, integrating species, traits, environment and space. *Scientific data* 7, 1–15.

717 Jones, F.A., Magurran, A.E., 2018. Dominance structure of assemblages is regulated over a  
718 period of rapid environmental change. *Biology letters* 14, 20180187.

719 Jones, F.A., Dornelas, M., Magurran, A.E., 2020. Recent increases in assemblage rarity are  
720 linked to increasing local immigration. *Royal Society open science* 7, 192045.

721 Jost, L., 2006. Entropy and diversity. *Oikos* 113, 363–375.

722 Jost, L., 2007. Partitioning diversity into independent alpha and beta components. *Ecology* 88,  
723 2427–2439.

724 Leung, B., Hargreaves, A.L., Greenberg, D.A., McGill, B., Dornelas, M., Freeman, R., 2020.

725 Clustered versus catastrophic global vertebrate declines. *Nature* 588, 267–271.

726 MacArthur, R.H., 1965. Patterns of species diversity. *Biological reviews* 40, 510–533.

727 Magurran, A.E., McGill, B.J., 2011. *Biological diversity: frontiers in measurement and*  
728 *assessment*. Oxford University Press.

729 May, F., Gerstner, K., McGinn, D.J., Xiao, X., Chase, J.M., 2018. *mobsim: An R package for*  
730 *the simulation and measurement of biodiversity across spatial scales*. *Methods in Ecology and*  
731 *Evolution* 9, 1401–1408.

732 McGill, B.J., 2011a. Linking biodiversity patterns by autocorrelated random sampling. *Am J Bot*  
733 98, 481–502.

734 McGill, B.J., 2011b. Species abundance distributions, in: *Biological Diversity: Frontiers In*  
735 *Measurement & Assessment* (Eds Magurran, A. & McGill, B.). Oxford University Press, pp.  
736 105–122.

737 McGill, B.J., Etienne, R.S., Gray, J.S., Alonso, D., Anderson, M.J., Benecha, H.K., Dornelas,  
738 M., Enquist, B.J., Green, J.L., He, F., Hurlbert, A.H., Magurran, A.E., Marquet, P.A., Maurer,  
739 B.A., Ostling, A., Soykan, C.U., Ugland, K.I., White, E.P., 2007. Species abundance  
740 distributions: moving beyond single prediction theories to integration within an ecological  
741 framework. *Ecol Lett* 10, 995–1015.

742 McGinn, D.J., Xiao, X., May, F., Gotelli, N.J., Engel, T., Blowes, S.A., Knight, T.M., Purschke,  
743 O., Chase, J.M., McGill, B.J., 2019. *Measurement of Biodiversity (MoB): A method to*  
744 *separate the scale-dependent effects of species abundance distribution, density, and*  
745 *aggregation on diversity change*. *Methods in Ecology and Evolution* 10, 258–269.

746 McKinney, M.L., Lockwood, J.L., 1999. Biotic homogenization: a few winners replacing many

747 losers in the next mass extinction. *Trends in ecology & evolution* 14, 450–453.

748 Menge, B.A., Berlow, E.L., Blanchette, C.A., Navarrete, S.A., Yamada, S.B., 1994. The

749 keystone species concept: variation in interaction strength in a rocky intertidal habitat.

750 *Ecological monographs* 64, 249–286.

751 Newbold, T., Hudson, L.N., Contu, S., Hill, S.L., Beck, J., Liu, Y., Meyer, C., Phillips, H.R.,

752 Scharlemann, J.P., Purvis, A., 2018. Widespread winners and narrow-ranged losers: Land use

753 homogenizes biodiversity in local assemblages worldwide. *PLoS biology* 16, e2006841.

754 Newbold, T., Hudson, L.N., Hill, S.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett,

755 D.J., Choimes, A., Collen, B., 2015. Global effects of land use on local terrestrial biodiversity.

756 *Nature* 520, 45–50.

757 Newbold, T., Oppenheimer, P., Etard, A., Williams, J.J., 2020. Tropical and Mediterranean

758 biodiversity is disproportionately sensitive to land-use and climate change. *Nature Ecology &*

759 *Evolution* 4, 1630–1638.

760 Olszewski, T.D., 2004. A unified mathematical framework for the measurement of richness and

761 evenness within and among multiple communities. *Oikos* 104, 377–387.

762 Paine, R.T., 1974. Intertidal community structure. *Oecologia* 15, 93–120.

763 Palmer, M.W., Clark, D.B., Clark, D.A., 2000. Is the number of tree species in small tropical

764 forest plots nonrandom? *Community Ecology* 1, 95–101.

765 Preston, F.W., 1962. The canonical distribution of commonness and rarity: Part I. *Ecology* 43,

766 185–215.

767 Rosenberg, K.V., Dokter, A.M., Blancher, P.J., Sauer, J.R., Smith, A.C., Smith, P.A., Stanton,  
768 J.C., Panjabi, A., Helft, L., Parr, M., 2019. Decline of the North American avifauna. *Science*  
769 366, 120–124.

770 Rosenzweig, M.L., 1995. Species diversity in space and time. Cambridge University Press.

771 Scheiner, S.M., Willig, M.R., 2005. Developing unified theories in ecology as exemplified with  
772 diversity gradients. *The American Naturalist* 166, 458–469.

773 Shmida, A.V.I., Wilson, M.V., 1985. Biological determinants of species diversity. *Journal of*  
774 *biogeography* 1–20.

775 Soininen, J., Passy, S., Hillebrand, H., 2012. The relationship between species richness and  
776 evenness: a meta-analysis of studies across aquatic ecosystems. *Oecologia* 169, 803–809.

777 Srivastava, D.S., Lawton, J.H., 1998. Why more productive sites have more species: an  
778 experimental test of theory using tree-hole communities. *The American Naturalist* 152, 510–  
779 529.

780 Stirling, G., Wilsey, B., 2001. Empirical relationships between species richness, evenness, and  
781 proportional diversity. *The American Naturalist* 158, 286–299.

782 Storch, D., Bohdalková, E., Okie, J., 2018. The more-individuals hypothesis revisited: the role of  
783 community abundance in species richness regulation and the productivity–diversity  
784 relationship. *Ecol Lett* 21, 920–937.

785 Tilman, D., 1982. Resource competition and community structure. Princeton University Press.

786 Vagle, G.L., McCain, C.M., n.d. Natural population variability may be masking the more-  
787 individuals hypothesis. *Ecology* 101, e03035.

788 Van Klink, R., Bowler, D.E., Gongalsky, K.B., Swengel, A.B., Gentile, A., Chase, J.M., 2020.

789 Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances.

790 Science 368, 417–420.

791 Vilà, M., Espinar, J.L., Hejda, M., Hulme, P.E., Jarošík, V., Maron, J.L., Pergl, J., Schaffner, U.,

792 Sun, Y., Pyšek, P., 2011. Ecological impacts of invasive alien plants: a meta-analysis of their

793 effects on species, communities and ecosystems. Ecology letters 14, 702–708.

794 Wagner, D.L., 2020. Insect declines in the Anthropocene. Annual review of entomology 65,

795 457–480.

796 Whittaker, R.J., Willis, K.J., Field, R., 2001. Scale and species richness: towards a general,

797 hierarchical theory of species diversity. Journal of biogeography 28, 453–470.

798 Wright, D.H., 1983. Species-energy theory: an extension of species-area theory. Oikos 496–506.

799 WWF, 2020. Living Planet Report 2020-Bending the curve of biodiversity loss. World Wildlife

800 Fund, Gland, Switzerland.

801 Zhang, Y., Chen, H.Y., Reich, P.B., 2012. Forest productivity increases with evenness, species

802 richness and trait variation: a global meta-analysis. Journal of ecology 100, 742–749.

803

804

805

806 **Figure 1:** Individual-based rarefaction (IBR) curves for samples from two hypothetical  
807 assemblages. We characterise diversity change using four components of the IBR curve: altered  
808 numbers of individuals ( $\Delta N$ ), changes in species richness ( $\Delta S$ ), and two metrics that capture  
809 changes to the SAD – changes in rarefied richness ( $\Delta S_n$ ) and changes in the numbers equivalent  
810 conversion of the Probability of Interspecific Encounter ( $\Delta S_{PIE}$ ). Note, we show  $\Delta S_{PIE}$  on the  
811 figure to illustrate changes of the PIE with the IBR, but use the numbers equivalent  
812 transformation ( $\Delta S_{PIE}$ ) in all analyses.

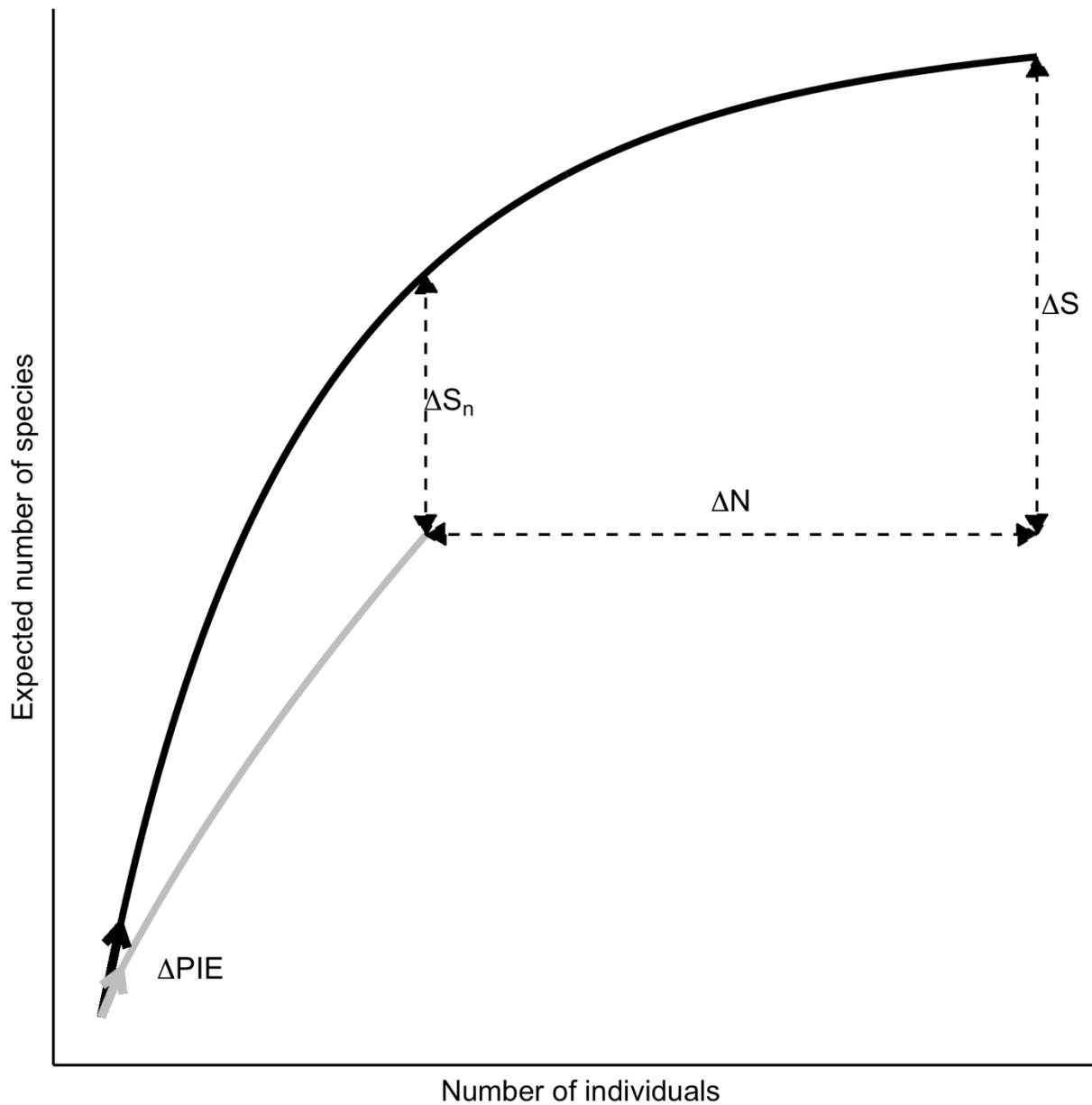
813

814 **Figure 2:** Relationships between component changes and potential pathways of local assemblage  
815 diversity change. Different combinations of change in total abundance, evenness and richness  
816 can be visualised using three pairwise relationships between metrics associated with the  
817 individual-based rarefaction curve: (a) changes in species richness as a function of changes to the  
818 number of individuals, (b) changes in species richness as a function of changes to rarefied  
819 richness, and (c) changes in species richness as a function of changes in evenness. Dashed  
820 diagonal line is  $x = y$ . Six simplified pathways of change illustrated with rarefaction curves:  
821 starting from a reference assemblage (depicted with grey rarefaction curves), diversity change  
822 due to (c) more individuals only, (b) more rare species, or (d) changes to the species abundance  
823 distribution (e.g., increased species pool size or increased evenness) result in positive  
824 relationships between combinations of  $\Delta N$ ,  $\Delta S_n$ ,  $\Delta S_{PIE}$ , and  $\Delta S$ . However, if the signs of  $\Delta N$  and  
825  $\Delta S_{PIE}$  differ, their relationships with  $\Delta S$  weaken and species richness can (d) remain static, (e)  
826 decrease or (f) increase. Assemblages and rarefaction curves were created using the mobsim  
827 package (May et al. 2018).

828

829 **Figure 3:** Summary of assemblage diversity components with a high probability of change (90%  
830 credible interval did not overlap zero) for (a) temporal changes in naturally varying  
831 environments, (b) temporal changes in perturbed environments, (c) spatial changes relative to an  
832 arbitrary reference, (d) spatial changes relative to primary vegetation. Assemblages with no  
833 component changes different from zero are reported as insets for clarity. Metric abbreviations:  
834 total number of individuals ( $N$ ), expected number of species for  $n$  individuals ( $S_n$ ), numbers  
835 equivalent transformation of the Probability of Interspecific Encounter ( $S_{PIE}$ ), and total species  
836 richness ( $S$ ). Number following each bar is the count of assemblages for that category.

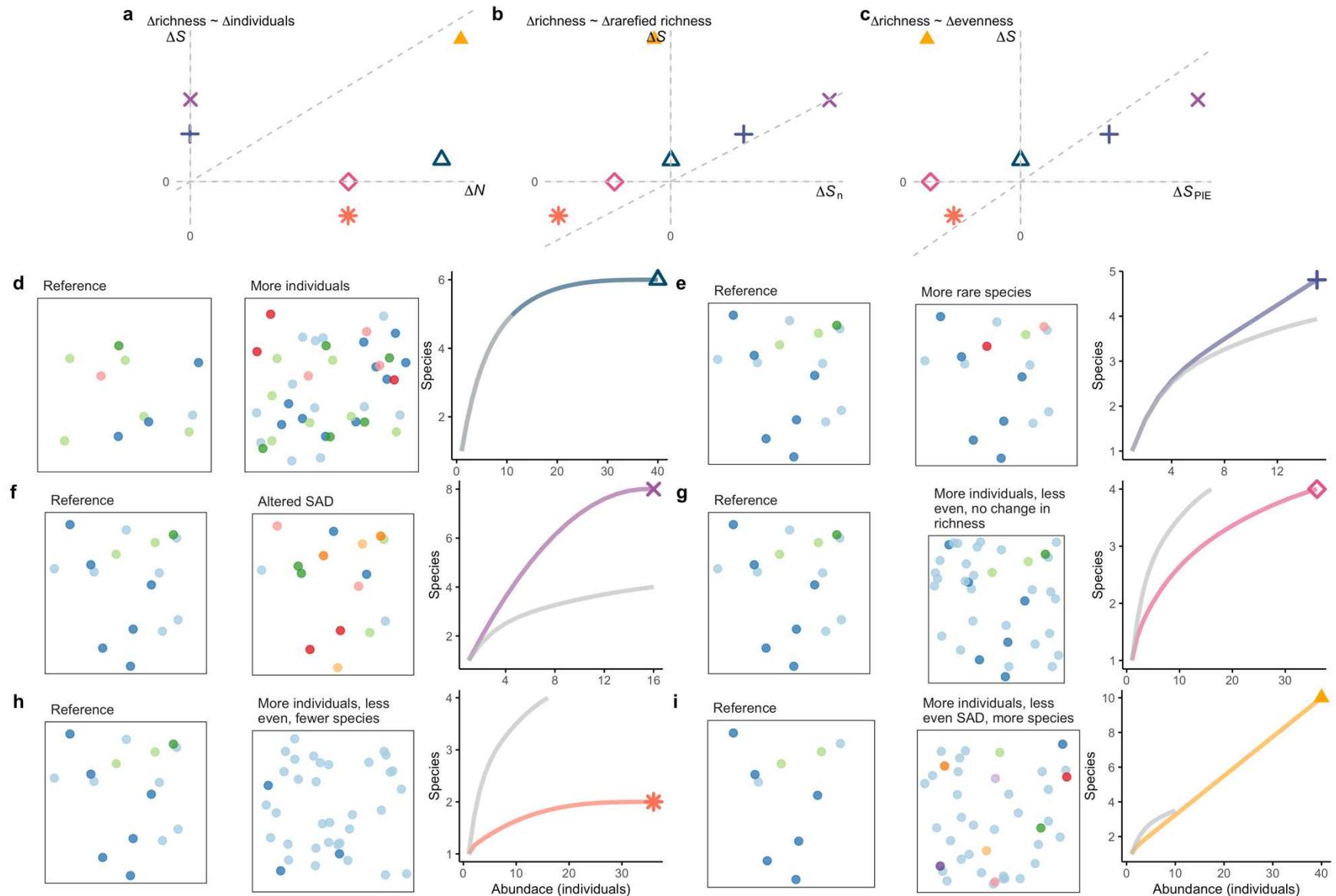
837


838 **Figure 4:** Relationships between four components of local diversity change. Change in species  
839 richness as a function of changes in the numbers of individuals (left column), rarefied richness  
840 (middle column), and evenness (right column) for (a-c) study-level estimates of temporal  
841 changes in naturally varying environments; (d-f) estimates of temporal change for combinations  
842 of study and treatment in perturbed environments; (g-i) estimates of spatial changes within  
843 studies from an arbitrary reference site along natural environmental gradients; and, (j-l) estimates  
844 of spatial change within studies between primary vegetation and different land use categories.  
845 Coloured concentration ellipses show 10% increments (5 – 95%) of the posterior distributions.  
846 Dotted grey lines are  $x = y = 0$ , and  $x = y$  for visual reference. See Supplementary Figure 5 for  
847 remaining pairwise relationships. NB: Scale of x- and y-axes vary between panels; one estimate  
848 with  $\Delta\log(N) = -1.79$ ,  $\Delta\log(S) = -3.77$ ,  $\Delta\log(S_n) = -3.23$ ,  $\Delta\log(S_{PIE}) = -3.21$ , removed from (j-l)  
849 for clarity.

850

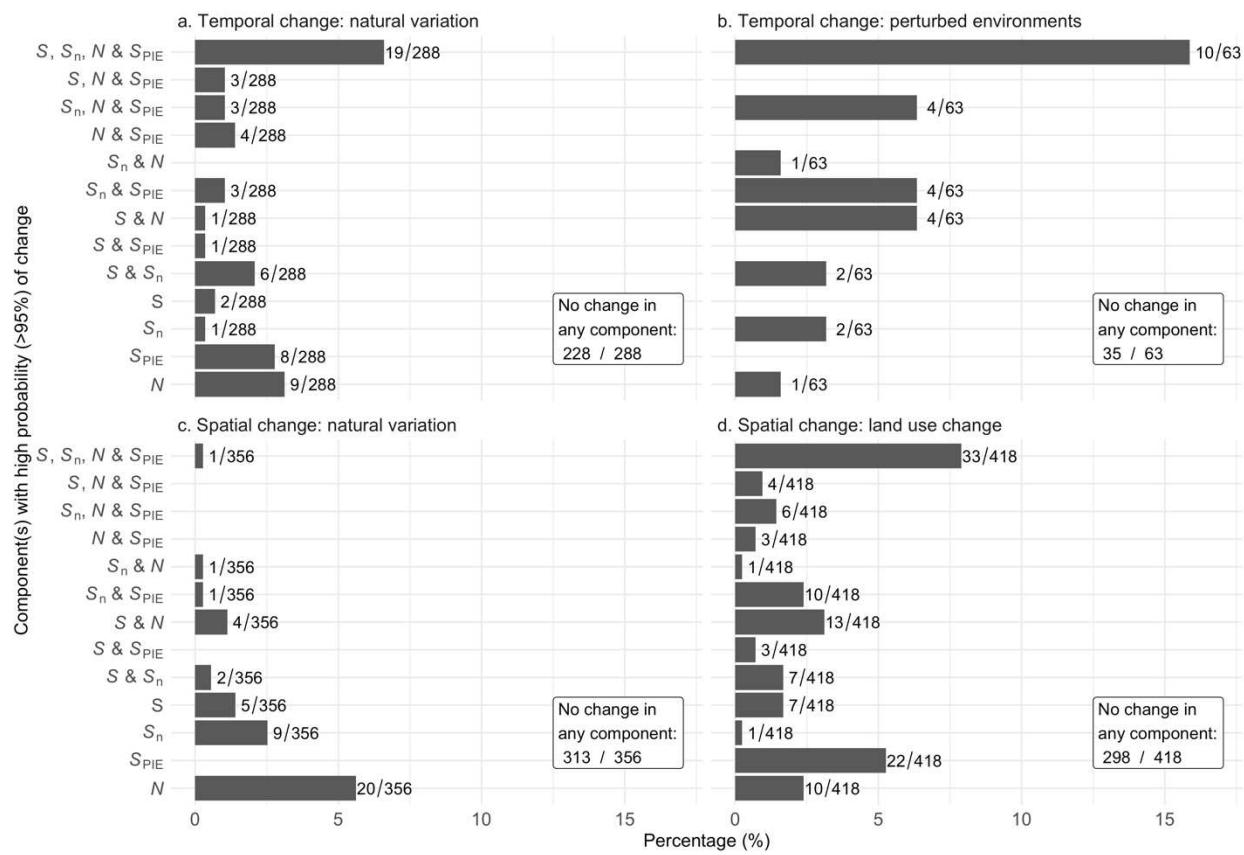
851 **Figure 5:** Component correlations among studies within each data source. Density plots for the  
852 posterior distribution of pairwise correlations between component changes for (a) temporal  
853 comparison in naturally varying environments, (b) temporal comparisons in perturbed  
854 environments, (c) spatial comparisons along natural gradients, and (d) spatial comparisons  
855 between different land use categories. NB: correlations estimated separately for sites and land  
856 use categories relative to the references were combined here for clarity on (c) and (d).

857


858 **Figure 1**



859

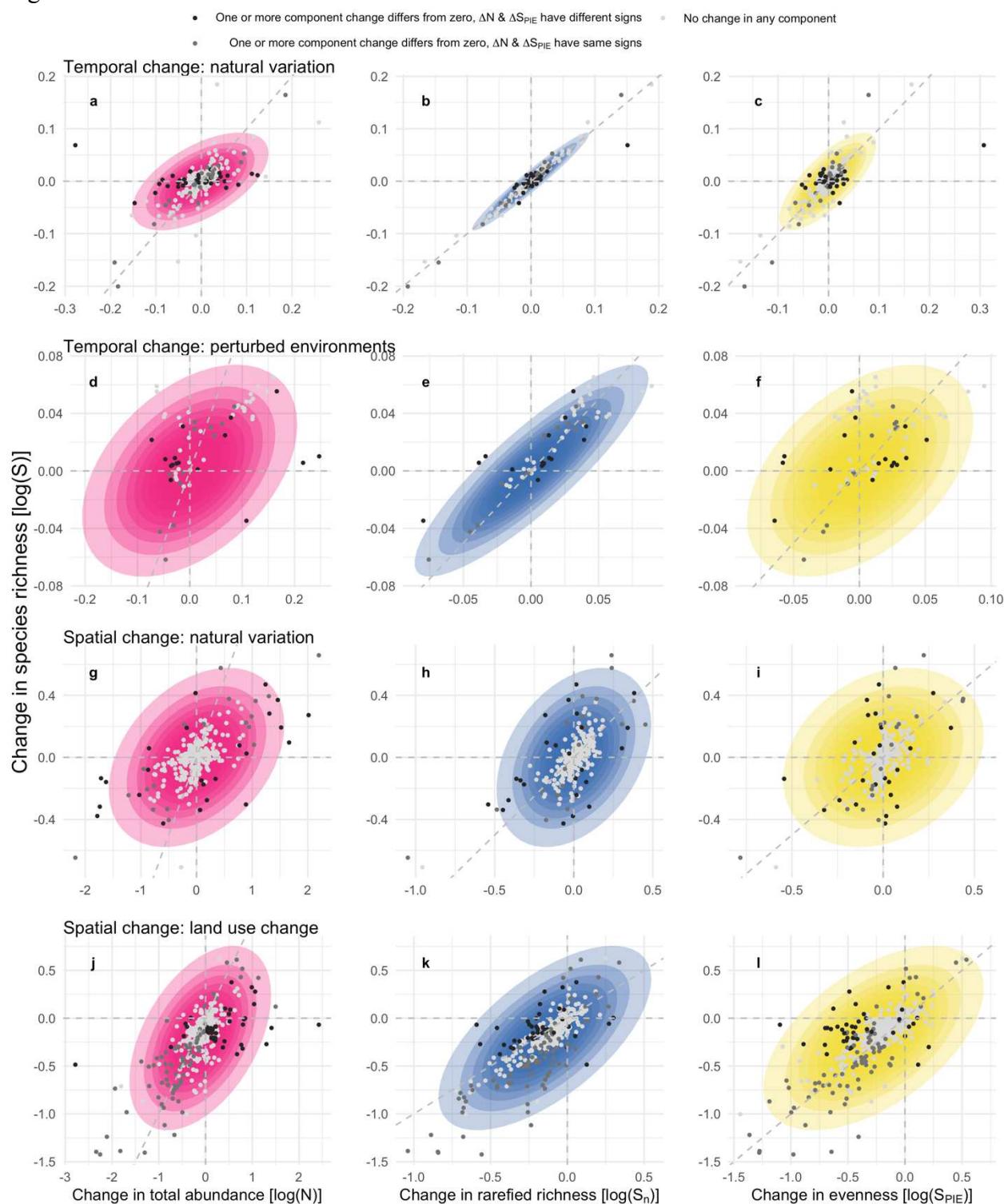

860

861 **Figure 2**

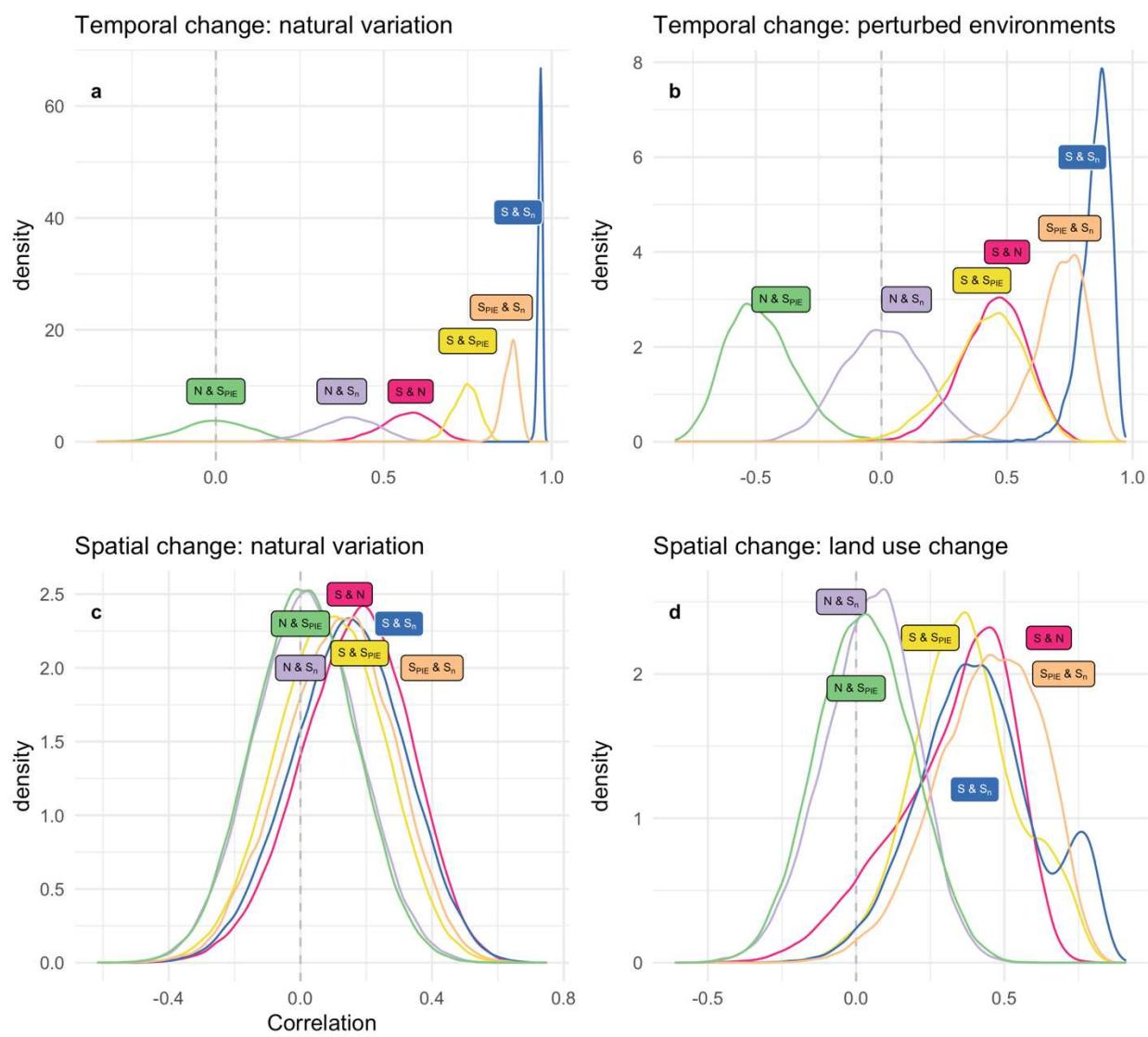


863 **Figure 3**

864




865


866

867

868 Figure 4



870 **Figure 5**  
871  
872



873