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Abstract

Background

Structural variant (SV) discovery based on short reads is challenging due to their complex 

signatures and tendency to occur in repeated regions. The increasing availability of long-read 

technologies has greatly facilitated SV discovery, however these technologies remain too costly 

to apply routinely to population-level studies. Here, we combined short-read and long-read 

sequencing technologies to provide a comprehensive population-scale assessment of structural 

variation in a panel of Canadian soybean cultivars.

Results

We used Oxford Nanopore sequencing data (~12X mean coverage) for 17 samples to both 

benchmark SV calls made from the Illumina data and predict SVs that were subsequently 

genotyped in a population of 102 samples using Illumina data. Benchmarking results show that 

variants discovered using Oxford Nanopore can be accurately genotyped from the Illumina data.

We first use the genotyped SVs for population structure analysis and show that results are 

comparable to those based on single-nucleotide variants. We observe that the population 

frequency and distribution within the genome of SVs are constrained by the location of genes. 

Gene Ontology and PFAM domain enrichment analyses also confirm previous reports that 

genes harboring high-frequency SVs are enriched for functions in defense response. Finally, we

discover polymorphic transposable elements from the SVs and report evidence of the recent 

activity of a Stowaway MITE. 

Conclusions

Our results demonstrate that long-read and short-read sequencing technologies can be 

efficiently combined to enhance SV analysis in large populations, providing a reusable 

framework for their study in a wider range of samples and non-model species.
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Background

Structural variants (SVs), commonly defined as genomic variations involving at least 50 

nucleotides, are a key source of sequence and functional variation in eukaryotes [1–4]. Indeed, 

SVs such as deletions, insertions, duplications and inversions account for more variation in 

sequence content than single-nucleotide variants (SNVs) in several species [e.g. 5–7]. In 

addition to their implication in human health [8], SVs play a role in key phenotypes in crops such

as soybean (Glycine max) [9], maize (Zea mays) [10, 11], tomato (Solanum lycopersicum) [12], 

wheat (Triticum aestivum) [13] and rapeseed (Brassica napus) [14]. Moreover, there is now 

clear evidence for the significant role played by SVs on ecological and evolutionary processes in

various non-model species [15].

Despite their undeniable functional importance, genome-wide population-scale assessments of 

SVs have lagged behind compared to SNVs due to the lack of power of short reads for SV 

discovery [2]. Tools that discover SVs from short reads typically rely on one or several types of 

evidence, either in the form of split reads (SV breakpoint found within an individual read), 

discordant read pairs (unusual orientation or distance between reads of a pair), or read depth 

(abnormally high or low coverage at a given position) [16]. Other methods rely on local or 

genome-wide de novo assembly to discover SV breakpoints at base-pair resolution. These 

methods can generally detect a larger number of SVs, but they tend to struggle with repetitive 

SVs and on shallowly sequenced samples [17]. Unfortunately, benchmarks of tools that 

discover SVs from short reads consistently document sub-optimal sensitivity and precision, 
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issues that can only be partly relieved by combining datasets obtained with different tools [18–

20].

The increased availability of long-read sequencing technologies such as Oxford Nanopore and 

PacBio in recent years has benefited the study of SVs [21]. Indeed, their increased read length 

allows them to both cover the span of larger variants, such as long insertions and inversions, 

and to map more confidently in the low-complexity regions where SVs tend to occur [2]. Several 

mapping-based methods for SV discovery from long reads have already been developed [e.g. 

22–25] and benchmarked [26], typically performing better than methods using short reads. 

These approaches have recently been applied to provide genome-wide assessments of SVs in 

crops such as tomato [12], rice (Oryza sativa) [27] and rapeseed [28].

Despite the greater power of long reads for SV discovery, their high cost and basecalling error 

rates make them unlikely to replace short-read technologies in the short term. In the meantime, 

methods that allow short-read data to use the insights gained from long reads are much needed

in order to scale the study of SVs from the small cohorts sequenced with long-read technologies

up to entire populations. In particular, using short-read data to genotype SVs discovered from 

long reads shows great promise to allow scaling up the insights gained from long reads. 

Although methods for genotyping SVs from short reads do exist [e.g. 29–31] and have been 

applied to SVs discovered from long-read sequencing data [e.g. 32], these approaches have yet

to be widely adopted in plant genomics and best practices for their application in highly 

repetitive genomes such as that of soybean and other non-model species are still needed.

Previous studies have addressed the question of soybean structural variation using either 

comparative genomic hybridization [33, 34], short-read sequencing [6, 35] or pan-genome 

approaches [32, 36]. These studies have notably found evidence for an enrichment of SVs in 
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genes related to defense response [33, 34, 36] and a role of SVs in determining traits such as 

seed coat pigmentation and iron uptake [32]. The use of a combined analysis of short and long 

reads could nevertheless provide new insights into soybean SV biology by allowing the study of 

sequence-resolved insertions efficiently and at a larger scale. Studies of transposable element 

(TE) polymorphisms in soybean, for example, have been limited to the identification of TE 

insertion boundaries [37], but long reads allow for the identification of full-length TE insertions 

[38].

In this study, we use an approach that combines short-read and long-read sequencing to 

improve prediction and genotyping of SVs in a soybean population. We first evaluate the overall 

performance of predicting and genotyping SVs from short reads in soybean and identify best 

practices for doing so. We next quantify the sensitivity and precision of genotyping Oxford 

Nanopore-discovered SVs using Illumina sequencing data. Finally, we combine short-read and 

long-read approaches to generate a comprehensive set of SVs from a panel of Canadian 

soybean varieties and apply this dataset to analyze population structure, relate SV location and 

frequency to potential impacts on gene function, and gain insights into soybean TE biology.

Results

Benchmarking of Illumina-discovered variants

Our first objective was to assess the performance of SV discovery and genotyping in soybean 

based solely on short-read sequencing data. To do this, we merged SVs discovered using four 

different tools (de novo assembly + AsmVar, Manta, smoove, and SvABA) and genotyped them 

in 102 samples using Paragraph. The total counts of filtered calls per discovery tool, SV type, 

and SV size class are summarized in Table 1. Genotype calls for 17 of the 102 samples were 

compared against a truth set of SVs called from Oxford Nanopore data using Sniffles and 
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processed through a SV refinement pipeline (Additional file 1: Table S1). Comparison between 

Paragraph genotype calls and the ground truth was performed using the sveval R package. We 

only considered homozygous genotype calls for these benchmarks since we are analyzing 

inbred lines.

Results show that the genotypes of deletions and insertions could be called confidently with as 

few as two (2) supporting reads, which was used as a minimum threshold for all subsequent 

analyses (Figure 1). At this threshold, sensitivity ranged between 50 and 65% and precision 

ranged from 70 to 95% for deletions, while sensitivity ranged between 30 and 40% and 

precision ranged from 65 to 85% for insertions (Figure 1). Precision was typically higher for 

intermediate-sized deletions (100-10,000 bp) than for either extremes, while sensitivity was 

highest for smaller ones (50-1,000 bp). Precision was higher for larger insertions than for small 

ones, at the expense of lower sensitivity; virtually no insertions larger than 1 kb could be called 

from the Illumina data (Table 1). Sensitivity increased markedly when repetitive regions were 

ignored, with sensitivity increasing by up to 10-20% depending on the SV type and size class, 

while precision remained roughly similar (Additional file 1: Figure S1). Results for inversions 

showed moderate precision (in the range of 40-70%) and low sensitivity (range of 10-20%), 

while results for duplications showed both low precision (range of 10-20%) and sensitivity (15-

20%) (Additional file 1: Figure S2). Poor performance was expected for inversions and 

duplications given the high complexity of those types of SVs. Excluding repeat regions did little 

to improve the results for duplications, but it did improve sensitivity by roughly 10% for 

inversions (Additional file 1: Figure S3). We observed a correlation between the Oxford 

Nanopore sequencing depth and the genotyping precision of deletions, insertions and 

duplications for a given sample, with this effect being most important for duplications (Additional 

file 1: Figure S4). This suggests that samples that were less deeply sequenced with long reads 

may have failed to reveal some SVs, thus resulting in a seemingly lower precision.
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Next, we assessed whether filtering SVs based on their frequency in the population resulted in a

higher-quality SV set by removing putative false variants. Precision-recall curves computed for a

range of homozygous ALT count (see Methods for more details) thresholds indicated that a filter

based on a minimum of four alternate alleles observed across the population yielded a good 

compromise between sensitivity and precision for insertions and deletions (Additional file 1: 

Figure S5). This threshold was used to filter the set of SVs for all downstreams analyses. 

Filtering on the homozygous ALT count did not succeed in significantly increasing the 

genotyping performance of duplications and inversions (Additional file 1: Figure S6), so we 

decided to drop these SVs from downstream analyses. We also investigated whether a filter 

based on the number of distinct tools reporting a SV could be used to improve sensitivity and 

precision (Additional file 1: Figure S7). However, the drop in sensitivity when requiring more 

than one tool was generally too large to compensate for the increase in precision. Researchers 

valuing precision over sensitivity could however use this filter, as the gain in precision was 

considerable in some cases, like for large deletions.

As a consequence of their different approaches to SV discovery, and consistently with the drop 

in sensitivity observed when requiring multiple calling tools to consider a variant (Additional file 

1: Figure S7), the various tools used showed different profiles in terms of the number of variants

of different sizes and types discovered (Additional file 1: Figure S8). The performance of the 

different tools used for calling SVs is shown for a single representative sample in figures S9 and

S10 (Additional file 1). Manta was the most important contributor of unique true positive SV calls

for both deletions and insertions, followed by AsmVar. There is an obvious decrease in the false

positive rate when combining evidence from several calling tools. However, individual tools still 

made significant contributions that justified their inclusion, with the exception of SvABA 

insertions which contributed few true positive SVs compared to the number of false positives 
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(Additional file 1: Figure S10). SvABA insertions were still used for downstream analyses, but 

could be excluded for applications where the need for precision outweighs the need for 

sensitivity.

Re-genotyping Oxford Nanopore-discovered variants

In addition to using the SVs discovered from the Oxford Nanopore data as a truth set for 

benchmarking SV discovery, we also assessed whether these could be accurately genotyped 

using Illumina data. For that purpose, we merged the calls made from the Oxford Nanopore 

data of all 17 samples using SVmerge. These were used as input to Paragraph and re-

genotyped using Illumina data from the same 17 samples. The genotypes were compared to the

SV calls made by Sniffles directly from the Oxford Nanopore data results using the sveval 

package as was done for the Illumina SVs.

As was the case for Illumina SVs, two (2) Illumina reads were sufficient to confidently call SVs in

most samples (Figure 2). At this threshold, sensitivity ranged from 55 to 65% and precision 

ranged between 80 and 95% for deletions, while sensitivity ranged from 50 to 60% and 

precision ranged between 60 and 80% for smaller insertions (Figure 2). For deletions, sensitivity

and precision were fairly consistent across size classes. For insertions, however, precision 

varied immensely from 20% to ~80% for 1-10 kb insertions and from essentially 0 to 60% for 

insertions larger than 10 kb. Further analysis showed that there was a correlation between the 

precision of insertion genotyping in these size classes and the N50 of Oxford Nanopore reads of

a given sample (Additional file 1: Figure S11). Therefore, it is likely that the poor precision 

observed for some samples is the result of limitations of the truth dataset rather than true 

genotyping errors. Indeed, larger insertions could not be validated in low-N50 samples because 

the small length of the reads prevented their discovery in those samples. Yet, those large 

insertions could still be genotyped using the Illumina data provided that they were discovered in 
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other samples with higher N50. As was the case for variants discovered from the Illumina data, 

sensitivity was higher when we excluded repeat regions, with sensitivity reaching 80% in some 

cases (Additional file 1: Figure S12).

Duplications discovered by Sniffles showed low sensitivity and precision with both being in the 

20-40% range  (Additional file 1: Figure S13a). Inversions, however, could be accurately 

genotyped from the Illumina data, with a precision typically greater than 70%, but their 

sensitivity was low at about 10-20% (Additional file 1: Figure S13b). Concentrating on non-

repeat regions moderately improved the results for duplications (Additional file 1: Figure 14a) 

but did so to a larger extent for inversions, with sensitivity reaching over 20% and precision 

being generally over 80% (Additional file 1: Figure S14b).

Population-scale genotyping of the joint Oxford Nanopore-Illumina SV dataset

In order to produce a population-scale SV dataset that could be used for downstream analyses, 

we merged the SVs discovered from the Illumina and Oxford Nanopore data using SVmerge 

and genotyped them with Paragraph using the Illumina data of the 102 samples. Benchmarking 

results for deletions and insertions expectedly showed a precision that was in-between that of 

the previous two benchmarks (Illumina SVs and Oxford Nanopore SVs), both when considering 

all regions (Additional file 1: Figure S15) and non-repeat regions only (Additional file 1: Figure 

S16).

The dataset was further filtered using knowledge gained from the previous benchmarks. 

Namely, we filtered out genotype calls with fewer than two (2) supporting reads and removed 

SVs with fewer than four (4) alternate alleles observed among homozygous genotype calls 

(homozygous ALT count). Inversions and duplications were also removed for downstream 

analyses due to their poor performance in the benchmarks.
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The distribution of deletion and insertion calls within the reference genome is illustrated in 

Figure 3c. There is a visible tendency for SVs to be more frequent in gene-rich euchromatic 

regions (Figure 3a) where predicted SNVs are also more densely distributed (Figure 3b), 

although this may be due only to a higher discovery power in euchromatic regions. The 

presence of SV hotspots on chromosomes 3, 6, 7, 16 and 18 (Figure 3c) is consistent with 

results previously obtained using comparative genomic hybridization by McHale et al. [34] and 

by a pan-genome approach [36].

Population structure

To assess the quality of our population-scale SV dataset, we verified whether population 

structure inferred from SVs yielded similar results to that inferred from SNVs, which are more 

commonly used for population structure inference. For this purpose, we assigned all individuals 

to one of five (5) populations using fastStructure with SNV data first, and then performed 

principal component analysis (PCA) on both SNV and SV data using PLINK.

The PCAs did not cluster the samples belonging to different populations into starkly distinct 

groups because the panel under study does not display a strong structure to begin with. Still, 

both the SV (Additional file 1: Figure S17a) and the SNV PCA (Additional file 1: Figure S17b) 

roughly grouped individuals according to their assigned population. Moreover, the PCA made 

from the SV genotype calls was at least as good at clustering together the samples belonging to

the same population as the PCA made using SNVs was. Overall, these results constitute a 

proof of concept that the population-scale SV dataset is the reflection of a biological reality and 

not an artifact.

Potential impact on genes
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SVs can have a large impact on gene integrity or expression. Therefore, we annotated the SVs 

in our dataset according to the genic features they overlapped. SVs occurred disproportionately 

less within coding sequences than would be expected based on the proportion of the genome 

covered by these features, both when considering the whole genome and when restricting the 

analysis to non-repeat regions (Additional file 1: Table S2). A slight underrepresentation of SVs 

was also observed within non-coding genic sequences, although this pattern was much clearer 

when concentrating on non-repeat regions. Both analyses also revealed a clear pattern of 

overrepresentation of SVs within regions 5 kb upstream of genes. The proportion of SVs 

overlapping intergenic regions appeared to be less than expected when the analysis was 

performed on the whole genome, but this is most likely due to the fact that intergenic regions 

tend to be more repetitive and thus more difficult to probe. Indeed, when restricting the analysis 

to non-repeat regions, the proportion of SVs falling within intergenic regions was higher than 

their proportion within the reference genome, suggesting enrichment of SVs. We also compared

the observed proportions of SVs overlapping various genic features to what would be expected 

by random chance using a randomization test that shuffled the positions of SVs within 100-kb 

bins and computed the resulting overlaps. The 100-kb bins were used to locally restrict the SVs 

position to take into account the repeat heterogeneity of the genome. This test confirmed the 

underrepresentation of SVs within coding sequences and their overrepresentation within 

intergenic sequences and regions 5 kb upstream of genes (Figure 4a). The pattern for non-

coding genic sequences, however, diverged from other lines of evidence by suggesting slight 

overrepresentation of deletions. Insertions, on the other hand, appeared to be underrepresented

within non-coding genic sequences, similar to the results shown in Table S2 (Additional file 1). 

The distributions of insertion and deletion frequencies depending on the features overlapped are

shown in Figure 4b. Statistical testing of the pairwise differences in mean SV frequencies 

depending on the genic features overlapped clearly showed that deletions overlapping coding 
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sequences were less frequent (the frequency being lower by roughly 0.05) than those occurring 

elsewhere in the genome (Additional file 1: Table S3). For insertions, the only significant 

differences indicated a higher frequency (by roughly 0.02) in intergenic regions than in non-

coding genic sequences or sequences 5 kb upstream of genes. A difference of similar 

magnitude was also observed between mean insertion frequency within intergenic regions and 

coding sequences, but the difference was marginally non-significant.

Finally, we conducted an enrichment analysis to check for over- and underrepresentation of 

gene ontology (GO) Biological Process terms and PFAM protein domains in genes whose 

coding sequence is impacted by SVs that are frequent (≥ 0.5) in the population. Genes 

impacted by high-frequency SVs were highly enriched for functions involved in defense 

response, and somewhat less so for functions involved in the regulation of various pathways 

(Additional file 1: Table S4; Additional file 2). Underrepresented GO Biological Process terms 

were almost all related to various metabolic or biosynthetic processes (Additional file 1: Table 

S5; Additional file 3). As was observed for GO Biological Process terms, the PFAM domain 

enrichment analysis showed that genes impacted by high-frequency SVs are overwhelmingly 

enriched in domains involved in defense response, such as NB-ARC, TIR and Leucine rich 

repeat domains (Additional file 1: Table S6; Additional file 4). No PFAM domains were observed

to be underrepresented (Additional file 5).

Transposable elements

Many SVs, especially larger ones, result from the mobilization of TEs [12, 39]. With this in mind, 

we checked whether we could gain insights into soybean TE biology from our SV dataset. To do

so, we first queried the sequences of all insertions and deletions larger than 100 bp in our 

dataset against a database of soybean TEs. Insertions and deletions that matched a TE with 

high confidence were annotated with the corresponding TE type. 
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A total of 2,586 deletions and 2,391 insertions were annotated as TEs by this approach (Table 

2; Figure 3d,e; Additional file 6). These represent 8.4% and 9.1% of all deletions and insertions, 

respectively, and 14.9% and 17.4% of those larger than 100 nucleotides. The proportion of 

polymorphic TEs of different classes found within our dataset is consistent with their prevalence 

in the reference genome, except for DNA TEs which represent a much smaller proportion of the 

polymorphic elements compared to their prevalence in the genome. The number of polymorphic

elements per LTR-retrotransposon family (Figure 5a) and per DNA TE type (Figure 5b) were 

largely consistent with results previously reported for non-reference soybean TEs [37] except for

DNA TEs of the CACTA superfamily for which we found almost no polymorphic instances.

We identified terminal inverted repeat (TIR) and target site duplication (TSD) sequences from 

local assemblies of the TE sequences for 40 different polymorphic SVs collectively representing 

17 entries in the SoyTEdb database. The polymorphic TEs for which we could identify TIR and 

TSD sequences were essentially miniature inverted-repeat transposable elements (MITEs) 

ranging in size from 198 to 681 bp (longer sequences were too challenging to assemble 

properly). From these data, we computed the proportion of matching nucleotides between the 

two inverted repeats and averaged the values over the all samples bearing the TE insertion for 

a given SV (Figure 5c). A high proportion of matching nucleotides can indicate the potential for 

active transposition because intact transposons should have identical or nearly identical TIRs. 

While the proportion of matching nucleotides was under 0.8 in most cases, three polymorphic 

TEs matching the Tc1-Mariner superfamily and annotated as Stowaway MITEs presented a 

proportion of matching nucleotides > 0.9 (Additional file 7).

We generated multiple alignments of the local assemblies at all sites where at least one sample 

had recognizable TIR and TSD sequences. A visual analysis of these multiple alignments 
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revealed that for all but one SV, the sequences that did not bear the insertion presented a single

occurrence of the TSD sequence. This observation is consistent with a scenario where the TE 

never inserted into the sequence, instead of having excised from it. The one exception to this 

observation is that of a 480-bp insertion of a Stowaway MITE at position 2,257,090 of 

chromosome Gm04. In this case, a visual analysis of the multiple alignment revealed that three 

different alleles are segregating in the population at the insertion site: (1) the reference allele (no

insertion at the target position), (2) a 480-bp insertion that corresponds to the TE insertion, and 

(3) a 6-bp insertion of nucleotides TACGAG (Additional file 1: Figure S18; Additional file 8). 

Interestingly, this insertion is by far the one for which the percent similarity between the two TIR 

sequences was highest among the ones studied, at 96.3%. We hypothesized that the 6-bp 

insertion resulted from the excision of the TE, with the TA nucleotides being remnants of the 

classical Tc1-Mariner TSD and the other nucleotides having been added during DNA repair 

following excision. If this is the case, then the haplotypes surrounding the insertion site should 

be very similar between the individuals with the TE insertion and those with the 6-bp insertion. 

Using a combination of SV calls made by Paragraph and indel calls made by Platypus, we 

assigned 71 individuals as homozygous for the reference allele, 9 individuals as homozygous 

for the TE insertion allele and 14 individuals as homozygous for the 6-bp insertion allele. We 

computed the alternate allele frequencies within each of these three groups for 156 SNVs 

located in a 39-kb linkage disequilibrium block surrounding the insertion site (Figure 5d). The 

results clearly show high genetic similarity between individuals bearing the TE insertion and 

those bearing the 6-bp insertion, consistent with the latter being derived from excision of the TE 

insertion. In fact, only three (3) SNVs showed contrasting allele frequencies (difference in allele 

frequencies > 0.5) between these two groups (Figure 5d), whereas 129 alleles were contrasted 

between the reference allele haplotype and the TE insertion allele haplotype. This suggests that

the excision of the TE is a relatively recent event and that this TE may still be active in soybean.
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Interestingly, one of the polymorphic Copia insertions found in our dataset matches an insertion 

in the Glyma.20G090000 gene (also known as the PhyA2 gene corresponding to the E4 

maturity locus) known to impact time to maturity in soybean [40]. In our dataset, this TE 

insertion had a frequency of 0.207, with 20 samples genotyped as homozygous for the 

alternative allele and a single one genotyped as heterozygous.

Discussion

The rapid development of long-read sequencing platforms such as PacBio and Oxford 

Nanopore in recent years has greatly enhanced the potential for studying structural variation. 

Although studies using long reads to survey structural variation in crops have started to emerge 

[e.g. 12, 27, 28], they did not explicitly address the question of using short reads to scale up SV 

analysis from the small cohorts sequenced using long reads to larger populations, as has been 

done in humans [e.g. 41, 42]. This question is of interest because long-read sequencing 

remains too expensive at the moment to apply at large scale and because large amounts of 

already-existing short-read sequencing data could be leveraged in that way. Scaling up the 

study of SVs is a necessary prerequisite to getting a clear understanding of genome evolution 

and function, and applying this knowledge to real-world problems [1, 15]. In this study, we 

demonstrate that a relatively small cohort of 17 samples sequenced to ~12X coverage with 

Oxford Nanopore can be combined with Illumina data to drive the study of SVs in a population 

of 102 Canadian soybean lines and gain insights into SV biology.

The SVs discovered from short-read sequencing data are typically limited to variants located in 

non-repeated regions and relatively small insertions (< 200 bp). These results have been shown

repeatedly by benchmarking studies [18, 20] and reflect an inherent limitation of short reads to 

span large repeats and effectively assemble into long insertions. Here, we still used Illumina 
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reads for SV discovery to survey the whole population and thus detect less frequent variants 

that may not have been found within the 17 samples sequenced with Oxford Nanopore data. 

However, despite following recommended practices for SV analysis such as combining different 

SV calling tools and integrating the results with a dedicated SV genotyper, estimated sensitivity 

for insertions remained low at ~40% for those in the range 50-100 bp and ~30% for those in the 

range 100-1,000 bp. The improved sensitivity obtained when focusing on non-repeated regions 

(up to ~60% for insertions in the range 50-100 bp) shows that a large part of the problem indeed

comes from repeated regions. However, entirely removing these regions from analyses is an 

unsatisfactory solution as polymorphisms in these regions may still be relevant to a particular 

study question.

To compensate for limitations in SV discovery from short reads, we assessed whether Illumina 

reads could be used to genotype SVs discovered from Oxford Nanopore data on a smaller 

cohort of 17 samples. The greatest added value of this approach arguably comes from the 

possibility to accurately genotype large (> 1 kb) insertions with > 70% sensitivity. This is an 

encouraging result because it shows that such insertions can be successfully genotyped using 

Illumina data even though they could not be discovered from this same data. This is because 

long reads provide the full contiguous sequence of insertions, which the Illumina reads can then 

map to. Combined with a novel pipeline for refining the breakpoints and sequence content of 

SVs discovered from Oxford Nanopore sequencing data prior to genotyping, this approach 

should enable the study of SVs in large populations for which short-read data is already 

available. The main limitation to using this approach actually comes from the long-read data 

itself. In this study, some of the samples appeared to have low genotyping precision for larger 

insertions, but this was most likely due to these insertions not being discovered in samples with 

lower read N50 and thus appearing as false positive genotype calls. Similarly, the sequencing 

depth of the Oxford Nanopore data used here was not sufficient to provide a solid reference 
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dataset for benchmarking duplications. Indeed, one limitation of our study is that Oxford 

Nanopore reads alone do not provide a perfect ground truth for benchmarking, especially for 

SVs under 100 bp [2], but this was the best truth set we had access to in the absence of a gold 

standard SV dataset for soybean.

Follow-up analysis on our population-scale SV dataset confirmed that this dataset reproduced 

previously described population structure patterns, an validation approach commonly used in 

other population-scale SV studies [e.g. 43, 44]. We indeed found that a PCA using SVs 

summarized the population structure just as well as a PCA using SNVs, which indicates that the

SV genotype calls on the 102-sample population are accurate. Perhaps more importantly, the 

SV dataset produced here met our expectations regarding the genome-wide distribution of SVs 

and their location relative to predicted gene models. The location of SV hotspots found here is 

consistent with previously reported results [34, 36]. Moreover, GO term and PFAM domain 

enrichment analyses confirmed previous observations that SV-enriched genes were involved in 

plant defense response [33, 34, 36]. Several lines of evidence in our results also suggest a 

strong functional constraint on the location of SVs in the soybean genome. Notably, SVs were 

strongly depleted within coding sequences compared to what would be randomly expected, and 

insertions were depleted within non-coding genic sequences. There was also a clear tendency 

for enrichment of SVs in regions upstream of genes, but whether this is simply due to lower 

functional constraints or a role of SVs in regulating gene expression remains to be investigated. 

Functional constraints on the frequency of SVs could also be observed from our data, as 

deletions impacting coding sequences were less frequent than those occurring elsewhere in the 

genome and insertions were enriched within intergenic regions, which are arguably less 

functionally important. Based on these results, we suggest that many of the deletions located 

within coding sequences may have a deleterious impact and could therefore become targets for 

breeding.
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The large insertions and higher power of SV discovery within repetitive regions that was 

afforded by the Oxford Nanopore sequencing data gave us an opportunity to study soybean TE 

biology more deeply than previous reports. The numbers of TEs associated with various 

superfamilies was largely consistent with results previously reported by Tian et al. [37], except 

for DNA TEs of the CACTA superfamily which were a lot less common in our data. We observed

the same pattern of general concordance with previously reported results except for CACTA 

elements when comparing our data to that of Istanto [45]. The reason why we found almost no 

polymorphic CACTA elements compared to these studies is unclear, but we hypothesize that it 

may be due to our more stringent requirements for TE annotation. Indeed, we required the 

length of the queried SVs to be close to that of their matching counterpart in the database. Many

of the SVs in our dataset indeed matched CACTA elements following the BLASTN query, but 

almost all of them failed to pass the filter. Our annotation results are probably conservative for 

other types of TEs as well because the database we used is likely incomplete, as it is based on 

the analysis of a single reference genome.

Our data also allowed us to generate original findings related to DNA TEs in soybean, which 

have received relatively little attention from past studies. We report results that suggest that 

most DNA TE insertion polymorphisms in soybean result from past insertion of TEs rather than 

from excision of existing TEs. The relatively low proportion of polymorphic DNA TEs compared 

to their prevalence in the genome also suggests that these elements are overall fairly inactive in

soybean. However, we did document one case in which recent excision of a Stowaway MITE 

from its insertion site appears to have occurred, such that three alleles (the reference allele 

without the insertion, the TE insertion, and the allele resulting from the excision of the TE) are 

present within the population. This element represents a prime candidate to study the potential 

activity of DNA TE transposons in soybean.
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Conclusions

In conclusion, our study shows that Oxford Nanopore and Illumina sequencing data can be 

efficiently combined to study structural variation in soybean. In particular, large insertions that 

cannot be discovered from short-read data alone could be genotyped using short-read data and 

thus allow the insights gained from long-read sequencing to scale up to a larger population. This

approach, combined with a novel pipeline for refining the SVs discovered using Oxford 

Nanopore data, should extend easily to other species and allow the wealth of already-existing 

Illumina data to be leveraged for SV analysis. In addition to confirming previous results 

regarding the chromosomal distribution of SVs in soybean and their association with genes 

involved in defense response, we also report novel insights into functional constraints to the 

occurence of SVs and into soybean TE biology. Moreover, the SV catalog described here is 

freely available and can be used as a resource for SV genotyping by the soybean research 

community. These results as well as the framework developed to optimize the study of structural

variation at population scale should help to better integrate these variants in genomic studies of 

crops and other non-model species.

Methods

Illumina sequencing and read processing

Sample selection and acquisition of Illumina sequencing data has been described in previous 

work [6]. Briefly, 102 Canadian soybean cultivars and breeding lines were selected to 

encompass the full range of genetic variation found among Canadian short-season germplasm 

and sequenced on the Illumina HiSeq 2500 platform. Paired-end reads ranging in size from 100 

to 125 nucleotides were obtained depending on the sample. This sequencing data is available 

on the NCBI Sequence Read Archive (SRA) through BioProject accession number 
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PRJNA356132 [46].

All reads were adapter- and quality-trimmed using bbduk from the BBtools suite v. 38.25 [47]. 

We aligned reads using bwa mem v. 0.7.17-r1188 [48] with default parameters. Paired-end 

alignment mode was used except for reads that were left unpaired following adapter and quality 

trimming, which were aligned in single-end mode. We used a reference genome consisting of 

assembly version 4 of the Williams82 reference cultivar [49] concatenated with reference 

mitochondrion and chloroplast sequences retrieved from SoyBase [50]. Reads aligned using 

paired-end and single-end mode were then merged, sorted and indexed using samtools v. 1.8 

[51] and read groups were added using bamaddrg [52]. The sorted and indexed BAM files were 

used as input for all downstream analyses requiring mapped reads.

Structural variation discovery from short reads

We called SVs on all 102 samples using four different tools: AsmVar [53], Manta [54], SvABA 

[55], and LUMPY-based [56] smoove [57]. We selected this combination of tools based on the 

complementarity of their SV detection approaches, widespread use within the community, and 

performance reported in published benchmarks [20].

AsmVar calls SVs by comparing de novo genome assemblies to a reference genome. Prior to 

assembly, we merged reads that were still paired after trimming using FLASH v. 1.2.11 [58]. 

The rationale behind this was that the short size of the inserts in our sequencing data allowed 

several of the read pairs to be merged into longer sequences. Reads were grouped into three 

libraries (single-end reads from bbduk, single-end reads merged by FLASH, and paired-end 

reads left unmerged by FLASH) and assembled with SOAPdenovo2 v. 2.04 [59] using the 

sparse_pregraph and contig commands, and a k-mer size of 49. Contigs were not further 

assembled into scaffolds because we aimed to only call SVs whose sequence was entirely 
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resolved. The resulting contigs were aligned to the reference genome using LAST v. 1047 [60] 

by first calling the lastal command with options -D1000 -Q0 -e20 -j4 and then the last-split 

command with options -m 0.01 -s30. Variants were called on the LAST alignments using 

ASV_VariantDetector from the AsmVar tool suite (version of 2015-04-16) with default 

parameters. The pipeline was run on each sample independently and results were subsequently

concatenated to obtain a single AsmVar VCF file. Variants with a FILTER tag other than “.” were

filtered out from the resulting call set.

We ran manta v. 1.6.0 with default parameters in 10 batches of 10 or 11 randomly grouped 

samples because it did not scale well to the whole population. We used the candidate SVs (and 

not the genotype calls themselves) identified by each run for further processing and filtered 

them by removing unresolved breakends (SVTYPE=BND). The filtered variants were then 

converted from symbolic alleles (i.e. DEL, DUP, INS) to sequence-explicit ALT alleles using 

bayesTyperTools convertAllele v. 1.5 [31] and combined into a single VCF file using bcftools 

merge (version 1.10.2-105) [51].

We ran SvABA v. 1.1.3 separately on all samples using the command svaba run with options --

germline -I -L 6. SvABA produces two different variant sets: one for indels, which are already 

coded as sequence-explicit, and another for SVs which are coded as paired breakends. We 

therefore classified SVs into defined types (DEL, DUP, INV) based on breakpoint orientation 

and converted them to sequence-specific ALT alleles using an in-house R script. The resulting 

sequence-explicit variants were merged using bcftools merge.

We ran smoove v. 0.2.4 on all samples using a series of commands. First, smoove call was run 

separately on each sample using default parameters. The variants identified were then merged 

into a single VCF file using smoove merge, smoove genotype with options -x -d, and smoove 
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paste. Symbolic alleles (<DEL>, <DUP> and <INV> alleles) were converted to explicit sequence

representation using bayesTyperTools convertAllele.

A series of common filters were applied to the SV output of all four tools before using them for 

downstream analyses. Specifically, we removed variants spanning less than 50 bp or more than

500 kb, those located on unanchored scaffolds or organellar genomes, or any variant that was 

not classified as either a deletion, insertion, duplication or inversion. We also converted 

multiallelic variants into biallelic records and standardized the representation of all alleles using 

bcftools norm.

Oxford Nanopore sequencing

We selected 17 samples for Oxford Nanopore sequencing among those sequenced by Illumina. 

Sixteen (16) of them were randomly selected among a subset of 56 lines belonging to a core set

of Canadian soybean germplasm, while the remaining sample (CAD1052/OAC Embro) had 

been selected and sequenced before the others based on its higher Illumina sequencing depth. 

Although sample selection did not explicitly maximize the number of potential SVs assessed, we

did verify that the resulting set covered the range of variation found in Canadian soybean 

germplasm based on an existing phylogenetic tree [6].

Our sample preparation and sequencing protocols evolved throughout the project as we gained 

experience with Oxford Nanopore sequencing. Therefore, we outline our latest methods here, 

but more details regarding the procedures used for each sample can be found in Table S7 

(Additional file 1). Accessions selected for sequencing were germinated in Jiffy peat pellets (Jiffy

Group, Zwijndrecht, Netherlands) on the benchtop. Young trifoliate leaves were collected 

between two and three weeks after germination, flash frozen in liquid nitrogen upon harvest and

stored at -80 °C until DNA extraction. Single trifoliate leaves weighing between 20 and 60 mg 
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were used for each extraction. Liquid nitrogen-frozen leaves were pulverized on a Qiagen 

TissueLyser instrument (Qiagen, Hilden, Germany) with metal beads for four cycles of 30 s 

each at 30 Hz. The resulting powder was immediately transferred to a CTAB buffer (2% CTAB, 

0.1 M Tris-HCl pH 8, 0.02 M EDTA pH 8, 1.4 M NaCl, 1% (m/v) PVP) and incubated at 60°C in 

a water bath for 45 min. The lysate recovered after centrifugation at 3500 rcf for 10 minutes was

then subjected to an RNase A treatment for another 45 min at 60°C, followed by the addition of 

an equal volume of 24:1 chloroform:isoamyl alcohol to the sample and stirring to an emulsion. 

Following centrifugation at 3500 rcf for 15 minutes, the supernatant was recovered and mixed 

with a 0.7 volume of cold isopropanol. This mix was stored at -80°C for 20 minutes and 

centrifuged at 3500 rcf for 30 min, after which the liquid was removed. Tubes were rinsed twice 

with cold 70% ethanol, with a centrifugation step after each addition of ethanol. After the last 

rinsing, tubes were left to dry for 3 minutes after which pellets were resuspended in 100 µl 

elution buffer (Tris-HCl 0.01 M and EDTA 0.001 M, pH 8) at 37°C for an hour, and then stored at

4°C until use.

Samples were size-selected using the Short Read Eliminator kit of Circulomics (Circulomics, 

Baltimore, MD, USA) following the manufacturer’s instructions. The size-selected DNA 

resuspended in the SRE kit’s EB buffer was then purified using SparQ magnetic beads and 

resuspended in ddH2O. Typically, between 500 ng and 1 µg of this DNA was used for Oxford 

Nanopore library preparation using the SQK-LSK109 genomic DNA ligation kit (Oxford 

Nanopore Technologies, Oxford, UK). The library was prepared according to the manufacturer’s

instructions except for the following details: 1) DNA fragmentation was not performed prior to 

library preparation, 2) 80% ethanol was used instead of 70% ethanol, 3) the bead elution time 

following DNA repair and end-prep was increased from 2 min to 10 min, 4) the bead elution time

following adapter ligation and clean-up was increased from 10 to 15 minutes and carried out in a

water bath set to 37°C. Typically, between 150 ng and 400 ng of the prepared library quantified 
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using a Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) were used as input to 

a FLO-MIN106D flowcell (R9 chemistry) and run on a MinION for 48 to 72 hours using default 

voltage settings. While most accessions were sequenced on a single flow cell, three accessions

for which the initial yield was low (< 9 Gb) were sequenced a second time (using DNA from a 

different plant) to provide sufficient data for downstream analyses. More details regarding the 

Oxford Nanopore sequencing of the samples can be found in Table S8 (Additional file 1).

Structural variation discovery from Oxford Nanopore data

Raw FAST5 sequencing files were basecalled on a GPU using Oxford Nanopore Technologies’ 

guppy basecaller v. 4.0.11 with parameters --flowcell FLO-MIN106 --kit SQK-LSK109. 

Basecalled FASTQ files obtained from a single flow cell were concatenated into a single file 

which was used for downstream analyses. Adapters were trimmed using Porechop v. 0.2.4 [61] 

with the option --discard_middle. Adapter-trimmed reads were aligned using NGMLR v. 0.2.7 

[24] with the option -x ont. The resulting alignments were sorted and indexed using samtools.

At this stage, we merged the BAM files of samples that were sequenced on two different 

flowcells and called SVs using Sniffles v. 1.0.11 [24]. We ran Sniffles with parameters --

min_support 3 (minimum number of reads supporting a variant = 3, default = 10), --

min_seq_size 1000 (minimum read segment length for consideration = 1000, default = 2000) 

and --min_homo_af 0.7 (minimum alternate allele frequency to be considered homozygous = 

0.7, default 0.8). We chose relaxed parameters compared to the defaults because our samples 

are inbred cultivars and heterozygosity should therefore be nearly non-existent.

We applied a series of filters to the SVs in order to remove any spurious calls that could affect 

downstream analyses. Any variants called on organellar genomes or unanchored scaffolds were

filtered out, along with any variants smaller than 50 nucleotides or larger than 500 kb. We only 
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retained deletions, insertions, inversions and duplications for further analyses, discarding 

unresolved breakpoints (SVTYPE=BND) as well as other complex types such as DEL/INV, 

DUP/INS, INVDUP and INV/INVDUP. We removed variants called as heterozygous since 

heterozygous genotype calls are very likely to be spurious in these inbred lines. In order to 

avoid calling artificial variants in ambiguous regions of the genome (stretches of “N” due to 

imperfectly assembled regions of the reference genome), we also removed deletions that 

overlapped any “N” in the reference as well as any insertion located less than 20 nucleotides 

away from any “N” in the reference.

The location of SVs as well as the insertion sequences reported by Sniffles are necessarily 

imperfect as they are based on error-prone Oxford Nanopore reads (on average 8-10% error 

rate based on the percent identity of our alignments). We therefore assembled a pipeline to 

refine the breakpoint location and the sequence content of the deletions and insertions found by

Sniffles. Duplications and inversions were not considered for SV refinement because the 

inherent complexity of these variants made it difficult to accurately assemble them from our 

data. We briefly describe the pipeline here, but more details can be found in Additional file 1 

(Supplemental Methods, Table S9 and Figures S19 to S21). Our breakpoint refinement pipeline 

starts by locally assembling all reads that were mapped by NGMLR to positions ± 200 bp from 

the location of the SV using wtdbg2 v. 2.5 [62]. The same reads are then aligned to the 

assembled sequence using minimap2 v. 2.17-r974 [63] to polish the assembly sequence using 

the consensus module of wtdbg2. The resulting polished assembly is subsequently aligned to 

the local region of the reference genome using AGE (commit 6fa60999, 

github.com/abyzovlab/AGE) [64]. The coordinates of the SV and insertion sequence content are

then optionally updated from the information provided by the AGE alignment. When the 

alignment did not suggest suitable replacement coordinates or insertion content for a given SV, 

we simply used its representation as initially defined by Sniffles for downstream analyses 
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instead. Following breakpoint refinement, the representation of the alleles was standardized 

using bcftools norm.

Structural variant genotyping and benchmarking

We genotyped SVs on all 102 Illumina samples using Paragraph v. 2.4a [29] in three different 

batches. The first batch used only variants discovered from the Illumina data as input and was 

used to assess the performance of SV discovery from Illumina data alone. The second batch 

used only variants discovered from Oxford Nanopore data and was similarly used to assess the 

performance of genotyping those variants with Illumina data. The third and last genotyping 

batch used a merged dataset comprising both variants discovered using Illumina and Oxford 

Nanopore data, and was used for the population-scale analyses on population structure, 

location of variants relative to gene models, and polymorphic TEs. Despite the superior 

performance of long-read data for SV discovery, we decided to also include variants discovered 

from the Illumina data in the final SV set as they encompassed all samples.

For genotyping SVs discovered from Illumina data, the VCF files of all discovery tools (AsmVar, 

Manta, SvABA, smoove) were merged together using SVmerge (commit 6a18fa3d2, 

github.com/nhansen/SVanalyzer) [65] with parameters -maxdist 15 -reldist 0.2 -relsizediff 0.1 -

relshift 0.1. Parameters were chosen in order to merge slightly differing representations of 

alleles that were putatively identical from a biological point of view while preserving true allele 

diversity at a given position.

SVs discovered from Oxford Nanopore data were also merged across samples using SVmerge 

with the same parameters as described above. However, for Oxford Nanopore variants, we 

modified SVmerge’s default behavior which selects an allele randomly from a given SV cluster. 

Instead, we forced the random selection to be made among the alleles that had been refined by 
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the SV refinement pipeline, if any, to favor those alleles whose representation was hopefully 

closer to biological reality.

For the last batch combining Illumina and Oxford Nanopore variants, the two datasets described

above were merged using SVmerge. The default behaviour of SVmerge was again overridden 

by systematically sampling among the alleles found by Illumina whenever a SV cluster 

contained alleles found by both Illumina and Oxford Nanopore. Despite the greater power of 

Oxford Nanopore data in discovering SVs, our reasoning was that if a variant was discovered by

both sequencing technologies, then the Illumina data was likely more precise given its higher 

basecalling accuracy.

The methods used for genotyping were identical for all three batches. We prepared the VCF 

files for input to Paragraph by removing variants located less than 1 kb away from chromosome 

ends and padding the allele representations as required by Paragraph. We genotyped the 102 

Illumina samples aligned by bwa mem following the recommendations outlined by Paragraph for

population-scale genotyping, i.e. the variants were genotyped independently for each sample 

with multigrmpy, setting the -M option to 20 times the average sequencing depth for the sample.

We compared the genotyping results of the three batches against the Oxford Nanopore SV set 

in order to assess genotyping sensitivity and precision. For this analysis, the set of variants 

called from the Oxford Nanopore data by Sniffles and subsequently refined was considered to 

be the ground truth. Structural variation calls made from Oxford Nanopore data may also be 

erroneous, especially for smaller variants [2], so this approach of treating Oxford Nanopore 

dataset as the ground truth is necessarily imperfect but nevertheless provides a good 

comparison basis for our purposes.

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.457816doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.26.457816
http://creativecommons.org/licenses/by/4.0/


We compared the SV genotype calls to the ground truth set using the R package sveval v. 2.0.0

[30]. For each of the 17 samples for which Oxford Nanopore data was available, we compared 

the genotype calls made by Paragraph to the SVs identified in the Oxford Nanopore data for 

that sample. SVs genotyped as homozygous for the alternate allele by Paragraph and present 

in the Nanopore set were considered true positives, while SVs genotyped as homozygous for 

the alternate allele by Paragraph but absent from the Nanopore set were considered false 

positives. Note that, for benchmarking purposes, we essentially ignored heterozygous genotype 

calls made by Paragraph since the truth set only contained homozygous calls as expected for 

inbred lines. Sensitivity was defined as the ratio of the number of true positive calls to the total 

number of SVs in the truth set, and precision as the ratio of the number of true positive calls to 

the sum of true and false positive calls. We computed sample-wise precision-recall curves for 

various SV size classes and SV types by using a range of read count thresholds (number of 

reads required to support a genotype call) to filter the Paragraph genotype calls. We required 

sveval to explicitly compare insertion sequences by setting ins.seq.comp = TRUE, but we 

otherwise used default settings. We extended sveval’s functionality by also assessing 

duplications under the same overlap conditions as the package already provides for deletions 

and inversions. Benchmarks were performed both on the complete set of SVs and on a subset 

of SVs located in non-repeat regions. A SV was defined as belonging to a repetitive region if it 

had a 20% or higher overlap to regions in the repeat annotation for the Williams82 assembly 

version 4 retrieved from Phytozome [66]. 

For the SVs discovered by Illumina, we computed additional precision-recall curves by filtering 

the SVs in the dataset genotyped by Paragraph based on two different metrics of SV quality: (1)

the number of times the alternate allele is observed in homozygous genotype calls across the 

whole population (referred to hereafter as the homozygous ALT count) and (2) the number of 

calling tools (out of a maximum of four) that originally reported the SV. The more stringent 
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homozygous ALT count was used instead of alternate allele frequency as a measure of the 

frequency of the SV in the population since true SVs are expected to be homozygous for the 

alternate allele in these inbred lines. Note that both of these quality measures (homozygous 

ALT count and the number of tools supporting an SV) effectively filter SV records and not 

individual genotype calls. The objective of these analyses was to see whether filtering on SV 

frequency or calling-tool support for variants could result in a higher quality dataset.

Population structure

We used the set of merged Illumina and Oxford Nanopore SVs genotyped by Paragraph to 

evaluate whether SV calls could replicate population structure analyses made from SNV calls. 

We applied methods similar to Torkamaneh et al. [6] in order to compute population structure for

the 102-sample population. We called SNVs using Platypus v. 0.8.1.1 [67] with parameters --

minMapQual=20 --minBaseQual=20 --maxVariants=10 --filterReadsWithUnmappedMates=0 --

filterReadsWithDistantMates=0 --filterReadPairsWithSmallInserts=0. We filtered Platypus calls 

to keep only biallelic SNVs located on any of the 20 reference chromosomes. We only retained 

SNVs with a minor allele frequency ≥ 0.05, proportion of missing sites ≤ 0.4, and heterozygosity 

rate ≤ 0.1. The resulting 1.27 M SNVs were converted to PLINK BED format [68] and used as 

input to fastStructure v. 1.0 [69] using k = 5 as determined by Torkamaneh et al. [6]. A PCA was

computed on those SNVs using PLINK v1.90b5.3 with default parameters. A PCA was also 

computed on the population-scale dataset of Illumina/Oxford Nanopore SVs genotyped with 

Paragraph. For this analysis, we filtered SV genotype calls by setting those with less than two 

supporting reads to missing. We also removed duplications, inversions, as well as records with 

a homozygous ALT count < 4 or a proportion of missing sites ≥ 0.4.

Potential impact on genes

We annotated deletions and insertions based on their overlap with various gene features. We 
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retrieved the positions of the gene models for Williams82 assembly 4 from Phytozome [66] and 

determined for each SV whether it overlapped any of the following genic features: coding 

sequences, non-coding genic sequences, and regions 5 kb upstream of genes. These 

categories were mutually exclusive, such that an SV overlapping both coding and non-coding 

sequences was only labeled as “coding sequences”. Similarly, an SV was only labeled as “5 kb 

upstream” if it did not overlap any genic sequences. The SVs that overlapped none of the 

features described above were labeled as “intergenic”. 

We first used these annotations to assess whether SVs were over- or underrepresented within 

particular genic features by comparing the observed proportions of deletions and insertions 

overlapping each feature to what would be expected by chance. We used three different 

measures of random expectation of the proportion of SVs overlapping genic features. The first 

measure was a naive comparison to the proportion of the genome corresponding to each genic 

feature. This comparison is however biased because repetitive regions (which are largely non-

genic) are less effectively queried for SVs than non-repetitive genic regions. Therefore, we also 

replicated the analysis by excluding repeated regions, which provided a second measure of 

random expectation. Finally, we performed a randomization test by estimating the distribution 

over the proportions of SVs that would be expected to overlap each genic feature by random 

chance. This was done by shuffling the start positions of SVs within the 100-kb genome-tiling 

bins in which they are located 5,000 times and annotating them with the genic features 

overlapped. We used 100-kb bins tiled along the whole genome instead of shuffling the 

positions genome-wide to take into consideration the heterogeneity of the genome while 

allowing SVs to be repositioned in a gene-agnostic manner.

We also used the genic feature annotations to study differences in mean alternate allele 

frequencies of SVs depending on the features they overlapped. We averaged the frequencies of
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insertions and deletions overlapping each of the four genic features and computed the 

difference between the mean SV frequencies for each of the six possible pairwise combinations 

of features. SVs with a frequency of 1 in the population were excluded from this analysis 

because they might be due to errors in the reference assembly. Statistical significance was 

assessed using a randomization test by shuffling the genic feature annotations 10,000 times to 

get a distribution of mean SV frequency differences between feature groups under a random 

scenario. We computed one-sided p-values by comparing the observed values to the random 

distributions thus generated, using a significance threshold of α = 0.05 / 6 = 0.0083 to 

compensate for multiple testing.

Finally, we carried out enrichment analyses of GO [70] Biological Process terms and PFAM 

domains [71] to assess whether high-frequency gene-impacting SVs were associated with 

particular biological functions. We identified insertions and deletions with an alternate allele 

frequency ≥ 0.5 and < 1 among those overlapping coding sequences and found 546 genes 

overlapped by such SVs. These genes constituted our gene set of interest for the enrichment 

analyses. We used the GOstats Bioconductor package v. 2.56.0 [72] along with GO and PFAM 

annotations for Williams82 assembly version 4 retrieved from Soybase on April 20 2021 to test 

this gene set for over- and underrepresentation of particular GO Biological Process terms or 

PFAM protein domains. We only tested GO terms and PFAM domains that were represented by

at least 20 and 10 genes, respectively. For the GO terms, we used the conditional test as 

implemented in GOstats and the GO.db annotation package v. 3.12.1 [73]. We applied a 

Bonferroni correction to the p-values of both the GO and PFAM enrichment tests by multiplying 

the p-values by the number of terms/domains tested.

Transposable elements
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We annotated TEs in the SVs discovered using the SoyTEdb database [74] downloaded from 

SoyBase [50]. We queried the deleted or inserted sequences of all deletions and insertions ≥ 

100 bp against SoyTEdb using blastn v. 2.11.0+ [75] with default parameters. Any queried 

sequence that aligned to a TE in the database with at least 80% of the query length and 80% of 

the length of the TE sequence was considered a match and annotated accordingly with the 

classification of the best-matching TE. All alignments that matched these criteria had an 

extremely small E-value (< 10-80) and therefore no additional filtering on this was needed. 

The annotated SVs were then used to determine both the proportion of polymorphic TEs 

belonging to each category and the physical location of polymorphic TEs in the genome. We 

also computed the proportions of TEs ≥ 100 bp in each category within the reference repeat 

annotation from Phytozome and compared those to the estimated proportions in the SV dataset.

The estimated number of polymorphic TEs within various LTR-retrotransposon families and 

DNA TE types were also compared to the number of non-reference TEs found by Tian et al. [37]

to check whether our results were consistent with previous reports.

Soybean DNA TEs have received little attention compared to retrotransposons, which are more 

prevalent and polymorphic in this species [37, e.g. 76]. DNA TEs that have TIR typically 

transpose using a “cut and paste” mechanism. This mechanism generates a TSD upon insertion

into the genome, and leaves this TSD as well as possible additional nucleotides upon excision 

due to DNA repair [77]. In order to study the dynamics of polymorphic DNA TEs within our 

population, we devised a pipeline based on local assembly and multiple sequence alignment of 

the DNA TE insertions. Briefly, the pipeline locally assembles Oxford Nanopore reads 

surrounding the sites of polymorphic DNA TEs for all samples using wtdbg2 and aligns these 

assemblies to each other using MAFFT v. 7.475 [78] before identifying TIR and TSD sequences

with Generic Repeat Finder v. 1.0 [79]. For more details on the pipeline, see Supplemental 
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Methods (Additional file 1). Our goal with this pipeline was to determine whether the 

insertion/deletion polymorphisms at various sites were due to novel TE insertion, TE excision, or

a combination of both phenomena. We applied this pipeline to SVs that were annotated as TIR 

DNA TEs and whose matching sequence in the SoyTEdb database was matched by at least 

three SVs. We limited ourselves to TE sequences that were matched by at least three SV 

events under the assumption that TEs present in multiple copies were more likely to have been 

recently active. For insertions that had both TIR and TSD sequences unambiguously identified, 

we computed the proportion of matching nucleotides in the alignment of the two terminal 

repeats and averaged the values across all local assemblies bearing the insertion in order to get

a single value for that SV.

Software used

Unless otherwise stated, all statistical analyses and data manipulation were conducted in R 

version 3.5.0 or 4.0.3 [80] and Bioconductor version 3.08 or 3.12 [81]. Analyses made use of 

Bioconductor packages Biostrings v. 2.58.0 [82], GenomicRanges v. 1.42.0 [83], Rsamtools v. 

2.6.0 [84], rtracklayer v. 1.50.0 [85] and VariantAnnotation v. 1.36.0 [86]. All scripts used for the 

analyses described in this paper are available on GitHub [87].

Additional files

Additional file 1: Supplemental methods, supplemental tables S1 to S9 and supplemental 

figures S1 to S21 (PDF 12 MB)

Additional file 2: Statistics of the conditional hypergeometric test for the overrepresentation of 

GO Biological Process terms using the GOstats R package. P-values are Bonferroni-corrected 

p-values. (CSV 141 KB)
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Additional file 3: Statistics of the conditional hypergeometric test for the underrepresentation of 

GO Biological Process terms using the GOstats R package. P-values are Bonferroni-corrected 

p-values. (CSV 265 KB)

Additional file 4: Statistics of the hypergeometric test for the overrepresentation of PFAM 

domains using the GOstats R package. P-values are Bonferroni-corrected p-values. (CSV 18 

KB)

Additional file 5: Statistics of the hypergeometric test for the underrepresentation of PFAM 

domains using the GOstats R package. P-values are Bonferroni-corrected p-values. (CSV 95 

KB)

Additional file 6: SVs identified as polymorphic transposable elements among the dataset of 

combined Illumina/Oxford Nanopore variants genotyped with Paragraph. Positions of the SVs 

and metadata about their best blastn match in the SoyTEdb database are described. (CSV 598 

KB)

Additional file 7: Proportion of matching nucleotides in TIR of SVs for which intact TSD 

sequences and matching TIR were identified with GenericRepeatFinder (CSV 2.4 KB).

Additional file 8: Multiple alignment of the Williams82 assembly version 4 reference sequence 

and local de novo assemblies of 7 samples at the site of a 480-bp Stowaway MITE insertion 

(Gm04:2,257,090). Samples OAC Petrel and Roland bear the 480-bp insertion, while Alta bears

the 6-bp TACGAG insertion; other samples match the reference sequence. Asterisks mark the 

locations of the TSD sequences in samples OAC Petrel and Roland. (TXT 6.2 KB)
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Abbreviations

GO: gene ontology; MITE: miniature inverted-repeat transposable element; PCA: principal 

component analysis; SRA: sequence read archive; SV: structural variant; SNV: single-

nucleotide variant; TE: transposable element; TIR: terminal inverted repeat; TSD: target site 

duplication
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Tables

Table 1: Number of SVs called from the Illumina data per calling tool, SV type and size class.

Table 2: Number and span of polymorphic and reference transposable elements of different 

types.
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Figures

Figure 1: Genotyping sensitivity and precision of (A) deletions and (B) insertions discovered 

from the Illumina data. Each line and color represents one of 17 samples. The different plots 

correspond to different SV lengths. The points correspond to different filtering thresholds on the 

minimum number of Illumina reads required to support a genotype call. The asterisks indicate a 

minimum number of supporting reads of 2; points to the left of these for a given line represent 
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increasingly stringent filtering threshold values (i.e. a greater number of reads supporting a 

genotype call).
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Figure 2: Genotyping sensitivity and precision of (A) deletions and (B) insertions discovered 

from the Oxford Nanopore data. Each line and color represents one of 17 samples. The different
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plots correspond to different SV lengths. The points correspond to different filtering thresholds 

on the minimum number of Illumina reads required to support a genotype call. The asterisks 

indicate a minimum number of supporting reads of 2; points to the left of these for a given line 

represent increasingly stringent filtering threshold values (i.e. a greater number of reads 

supporting a genotype call).
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Figure 3: Circos plot of the distribution of various features within 3-Mb bins along the reference 

assembly version 4 of Williams82. (A) Gene density (B) Density of SNVs called by Platypus (C) 

Number of deletions (blue) and insertions (red) discovered within each bin. The bins with the 

10% highest SV density (insertions and deletions considered together) are highlighted in gray. 

(D) Number of reference (blue) and polymorphic (red) LTR Copia and LTR Gypsy elements 

(summed together). (E) Number of reference (blue) and polymorphic (red) DNA transposable 
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elements. The gray highlights in tracks D and E show the bins with the 10% highest 

polymorphic/reference ratios.
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Figure 4: Analysis of the overlap of SVs with gene models. (A) Distributions of the proportions 

of deletions and insertions overlapping various genic features as generated by a randomization 

test (5,000 iterations). Observed proportions for each SV type and genic feature are indicated 

by a vertical dotted line. One-sided p-values are < 2 x 10-4 for all comparisons except for 

deletions overlapping genes, for which the p-value is 4 x 10-4. (B) Distribution of the allele 

frequencies of deletions and insertions depending on the genic features they overlap. Note the 

logarithmic scale on the y-axis. cds: SVs overlapping coding sequences; gene: SVs overlapping

non-coding genic sequences; upstream5kb: SVs overlapping regions 5 kb upstream of genes, 

but not any genic sequences; intergenic: SVs that do not overlap any of the other features.
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Figure 5: Analysis of the polymorphic TEs found in this study. Comparison of the number of 

polymorphic TEs per (A) LTR family and (B) DNA TE type found in Tian et al. [37] and in this 
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study. Differences in y- and x-scales are partly explained by the fact that counts for Tian et al. 

are summed over occurrences in all samples whereas our data counts each SV only once. Note

that all scales are logarithmic. (C) Proportion of matching nucleotides between the two terminal 

repeats for TE sequences corresponding to 40 different SVs grouped by DNA TE superfamily 

and by the identifier of the TE sequence they matched in the SoyTEdb database. (D) Alternate 

allele frequencies of 156 SNVs located in a ~39-kb linkage disequilibrium block between 

positions Gm04:2,220,398 and Gm04:2,259,326. Frequencies were computed for three different

groups of samples depending on their genotype at the TE insertion site (Gm04:2,257,090). 

absent: absence of the TE insertion, which corresponds to the reference allele (71 samples); 

present: presence of the 480-bp Stowaway MITE (9 samples); excised: presence of a 6-bp 

insertion at the insertion site, putatively left by excision of the TE insertion (14 samples). The 

locations of three SNVs whose frequency in the “present” and “excised” groups diverge are 

shown with dotted vertical lines.
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