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Abstract

Background

Structural variant (SV) discovery based on short reads is challenging due to their complex
signatures and tendency to occur in repeated regions. The increasing availability of long-read
technologies has greatly facilitated SV discovery, however these technologies remain too costly
to apply routinely to population-level studies. Here, we combined short-read and long-read
sequencing technologies to provide a comprehensive population-scale assessment of structural
variation in a panel of Canadian soybean cultivars.

Results

We used Oxford Nanopore sequencing data (~12X mean coverage) for 17 samples to both
benchmark SV calls made from the lllumina data and predict SVs that were subsequently
genotyped in a population of 102 samples using lllumina data. Benchmarking results show that
variants discovered using Oxford Nanopore can be accurately genotyped from the lllumina data.
We first use the genotyped SVs for population structure analysis and show that results are
comparable to those based on single-nucleotide variants. We observe that the population
frequency and distribution within the genome of SVs are constrained by the location of genes.
Gene Ontology and PFAM domain enrichment analyses also confirm previous reports that
genes harboring high-frequency SVs are enriched for functions in defense response. Finally, we
discover polymorphic transposable elements from the SVs and report evidence of the recent
activity of a Stowaway MITE.

Conclusions

Our results demonstrate that long-read and short-read sequencing technologies can be
efficiently combined to enhance SV analysis in large populations, providing a reusable

framework for their study in a wider range of samples and non-model species.
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Background

Structural variants (SVs), commonly defined as genomic variations involving at least 50
nucleotides, are a key source of sequence and functional variation in eukaryotes [1-4]. Indeed,
SVs such as deletions, insertions, duplications and inversions account for more variation in
sequence content than single-nucleotide variants (SNVs) in several species [e.g. 5-7]. In
addition to their implication in human health [8], SVs play a role in key phenotypes in crops such
as soybean (Glycine max) [9], maize (Zea mays) [10, 11], tomato (Solanum lycopersicum) [12],
wheat (Triticum aestivum) [13] and rapeseed (Brassica napus) [14]. Moreover, there is now
clear evidence for the significant role played by SVs on ecological and evolutionary processes in

various non-model species [15].

Despite their undeniable functional importance, genome-wide population-scale assessments of
SVs have lagged behind compared to SNVs due to the lack of power of short reads for SV
discovery [2]. Tools that discover SVs from short reads typically rely on one or several types of
evidence, either in the form of split reads (SV breakpoint found within an individual read),
discordant read pairs (unusual orientation or distance between reads of a pair), or read depth
(abnormally high or low coverage at a given position) [16]. Other methods rely on local or
genome-wide de novo assembly to discover SV breakpoints at base-pair resolution. These
methods can generally detect a larger number of SVs, but they tend to struggle with repetitive
SVs and on shallowly sequenced samples [17]. Unfortunately, benchmarks of tools that

discover SVs from short reads consistently document sub-optimal sensitivity and precision,
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76 issues that can only be partly relieved by combining datasets obtained with different tools [18—
77 20].
78
79 The increased availability of long-read sequencing technologies such as Oxford Nanopore and
80 PacBio in recent years has benefited the study of SVs [21]. Indeed, their increased read length
81 allows them to both cover the span of larger variants, such as long insertions and inversions,
82 and to map more confidently in the low-complexity regions where SVs tend to occur [2]. Several
83 mapping-based methods for SV discovery from long reads have already been developed [e.g.
84 22-25] and benchmarked [26], typically performing better than methods using short reads.
85 These approaches have recently been applied to provide genome-wide assessments of SVs in
86 crops such as tomato [12], rice (Oryza sativa) [27] and rapeseed [28].
87
88 Despite the greater power of long reads for SV discovery, their high cost and basecalling error
89 rates make them unlikely to replace short-read technologies in the short term. In the meantime,
90 methods that allow short-read data to use the insights gained from long reads are much needed
91 in order to scale the study of SVs from the small cohorts sequenced with long-read technologies
92 up to entire populations. In particular, using short-read data to genotype SVs discovered from
93 long reads shows great promise to allow scaling up the insights gained from long reads.
94  Although methods for genotyping SVs from short reads do exist [e.g. 29-31] and have been
95 applied to SVs discovered from long-read sequencing data [e.g. 32], these approaches have yet
96 to be widely adopted in plant genomics and best practices for their application in highly
97 repetitive genomes such as that of soybean and other non-model species are still needed.
98
99 Previous studies have addressed the question of soybean structural variation using either

100 comparative genomic hybridization [33, 34], short-read sequencing [6, 35] or pan-genome

101 approaches [32, 36]. These studies have notably found evidence for an enrichment of SVs in
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102 genes related to defense response [33, 34, 36] and a role of SVs in determining traits such as
103 seed coat pigmentation and iron uptake [32]. The use of a combined analysis of short and long
104 reads could nevertheless provide new insights into soybean SV biology by allowing the study of
105 sequence-resolved insertions efficiently and at a larger scale. Studies of transposable element
106 (TE) polymorphisms in soybean, for example, have been limited to the identification of TE

107 insertion boundaries [37], but long reads allow for the identification of full-length TE insertions
108 [38].

109

110 In this study, we use an approach that combines short-read and long-read sequencing to

111 improve prediction and genotyping of SVs in a soybean population. We first evaluate the overall
112  performance of predicting and genotyping SVs from short reads in soybean and identify best
113 practices for doing so. We next quantify the sensitivity and precision of genotyping Oxford

114 Nanopore-discovered SVs using lllumina sequencing data. Finally, we combine short-read and
115 long-read approaches to generate a comprehensive set of SVs from a panel of Canadian

116 soybean varieties and apply this dataset to analyze population structure, relate SV location and
117 frequency to potential impacts on gene function, and gain insights into soybean TE biology.

118

119 Results

120 Benchmarking of lllumina-discovered variants

121 Our first objective was to assess the performance of SV discovery and genotyping in soybean
122 based solely on short-read sequencing data. To do this, we merged SVs discovered using four
123 different tools (de novo assembly + AsmVar, Manta, smoove, and SVABA) and genotyped them
124 in 102 samples using Paragraph. The total counts of filtered calls per discovery tool, SV type,
125 and SV size class are summarized in Table 1. Genotype calls for 17 of the 102 samples were

126 compared against a truth set of SVs called from Oxford Nanopore data using Sniffles and
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127 processed through a SV refinement pipeline (Additional file 1: Table S1). Comparison between
128 Paragraph genotype calls and the ground truth was performed using the sveval R package. We
129 only considered homozygous genotype calls for these benchmarks since we are analyzing

130 inbred lines.

131

132 Results show that the genotypes of deletions and insertions could be called confidently with as
133 few as two (2) supporting reads, which was used as a minimum threshold for all subsequent
134 analyses (Figure 1). At this threshold, sensitivity ranged between 50 and 65% and precision
135 ranged from 70 to 95% for deletions, while sensitivity ranged between 30 and 40% and

136 precision ranged from 65 to 85% for insertions (Figure 1). Precision was typically higher for
137 intermediate-sized deletions (100-10,000 bp) than for either extremes, while sensitivity was
138 highest for smaller ones (50-1,000 bp). Precision was higher for larger insertions than for small
139 ones, at the expense of lower sensitivity; virtually no insertions larger than 1 kb could be called
140 from the Illlumina data (Table 1). Sensitivity increased markedly when repetitive regions were
141 ignored, with sensitivity increasing by up to 10-20% depending on the SV type and size class,
142  while precision remained roughly similar (Additional file 1: Figure S1). Results for inversions
143 showed moderate precision (in the range of 40-70%) and low sensitivity (range of 10-20%),
144  while results for duplications showed both low precision (range of 10-20%) and sensitivity (15-
145 20%) (Additional file 1: Figure S2). Poor performance was expected for inversions and

146  duplications given the high complexity of those types of SVs. Excluding repeat regions did little
147 to improve the results for duplications, but it did improve sensitivity by roughly 10% for

148 inversions (Additional file 1: Figure S3). We observed a correlation between the Oxford

149 Nanopore sequencing depth and the genotyping precision of deletions, insertions and

150 duplications for a given sample, with this effect being most important for duplications (Additional
151 file 1: Figure S4). This suggests that samples that were less deeply sequenced with long reads

152 may have failed to reveal some SVs, thus resulting in a seemingly lower precision.
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153

154 Next, we assessed whether filtering SVs based on their frequency in the population resulted in a
155 higher-quality SV set by removing putative false variants. Precision-recall curves computed for a
156 range of homozygous ALT count (see Methods for more details) thresholds indicated that a filter
157 based on a minimum of four alternate alleles observed across the population yielded a good

158 compromise between sensitivity and precision for insertions and deletions (Additional file 1:

159 Figure S5). This threshold was used to filter the set of SVs for all downstreams analyses.

160 Filtering on the homozygous ALT count did not succeed in significantly increasing the

161 genotyping performance of duplications and inversions (Additional file 1: Figure S6), so we

162 decided to drop these SVs from downstream analyses. We also investigated whether a filter

163 based on the number of distinct tools reporting a SV could be used to improve sensitivity and
164 precision (Additional file 1: Figure S7). However, the drop in sensitivity when requiring more

165 than one tool was generally too large to compensate for the increase in precision. Researchers
166 valuing precision over sensitivity could however use this filter, as the gain in precision was

167 considerable in some cases, like for large deletions.

168

169 As a consequence of their different approaches to SV discovery, and consistently with the drop
170 in sensitivity observed when requiring multiple calling tools to consider a variant (Additional file
171  1: Figure S7), the various tools used showed different profiles in terms of the number of variants
172  of different sizes and types discovered (Additional file 1: Figure S8). The performance of the

173 different tools used for calling SVs is shown for a single representative sample in figures S9 and
174 S10 (Additional file 1). Manta was the most important contributor of unique true positive SV calls
175 for both deletions and insertions, followed by AsmVar. There is an obvious decrease in the false
176  positive rate when combining evidence from several calling tools. However, individual tools still
177 made significant contributions that justified their inclusion, with the exception of SYABA

178 insertions which contributed few true positive SVs compared to the number of false positives
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(Additional file 1: Figure S10). SVABA insertions were still used for downstream analyses, but
could be excluded for applications where the need for precision outweighs the need for

sensitivity.

Re-genotyping Oxford Nanopore-discovered variants

In addition to using the SVs discovered from the Oxford Nanopore data as a truth set for
benchmarking SV discovery, we also assessed whether these could be accurately genotyped
using lllumina data. For that purpose, we merged the calls made from the Oxford Nanopore
data of all 17 samples using SVmerge. These were used as input to Paragraph and re-
genotyped using lllumina data from the same 17 samples. The genotypes were compared to the
SV calls made by Sniffles directly from the Oxford Nanopore data results using the sveval

package as was done for the Illlumina SVs.

As was the case for lllumina SVs, two (2) lllumina reads were sufficient to confidently call SVs in
most samples (Figure 2). At this threshold, sensitivity ranged from 55 to 65% and precision
ranged between 80 and 95% for deletions, while sensitivity ranged from 50 to 60% and
precision ranged between 60 and 80% for smaller insertions (Figure 2). For deletions, sensitivity
and precision were fairly consistent across size classes. For insertions, however, precision
varied immensely from 20% to ~80% for 1-10 kb insertions and from essentially 0 to 60% for
insertions larger than 10 kb. Further analysis showed that there was a correlation between the
precision of insertion genotyping in these size classes and the N50 of Oxford Nanopore reads of
a given sample (Additional file 1: Figure S11). Therefore, it is likely that the poor precision
observed for some samples is the result of limitations of the truth dataset rather than true
genotyping errors. Indeed, larger insertions could not be validated in low-N50 samples because
the small length of the reads prevented their discovery in those samples. Yet, those large

insertions could still be genotyped using the lllumina data provided that they were discovered in
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205 other samples with higher N50. As was the case for variants discovered from the Illlumina data,
206 sensitivity was higher when we excluded repeat regions, with sensitivity reaching 80% in some
207 cases (Additional file 1: Figure S12).

208

209 Duplications discovered by Sniffles showed low sensitivity and precision with both being in the
210 20-40% range (Additional file 1: Figure S13a). Inversions, however, could be accurately

211 genotyped from the lllumina data, with a precision typically greater than 70%, but their

212  sensitivity was low at about 10-20% (Additional file 1. Figure S13b). Concentrating on non-

213 repeat regions moderately improved the results for duplications (Additional file 1: Figure 14a)
214 but did so to a larger extent for inversions, with sensitivity reaching over 20% and precision

215 being generally over 80% (Additional file 1: Figure S14b).

216

217 Population-scale genotyping of the joint Oxford Nanopore-lllumina SV dataset

218 In order to produce a population-scale SV dataset that could be used for downstream analyses,
219 we merged the SVs discovered from the lllumina and Oxford Nanopore data using SVmerge
220 and genotyped them with Paragraph using the lllumina data of the 102 samples. Benchmarking
221 results for deletions and insertions expectedly showed a precision that was in-between that of
222  the previous two benchmarks (lllumina SVs and Oxford Nanopore SVs), both when considering
223 all regions (Additional file 1: Figure S15) and non-repeat regions only (Additional file 1: Figure
224 S16).

225

226  The dataset was further filtered using knowledge gained from the previous benchmarks.

227 Namely, we filtered out genotype calls with fewer than two (2) supporting reads and removed
228  SVs with fewer than four (4) alternate alleles observed among homozygous genotype calls

229 (homozygous ALT count). Inversions and duplications were also removed for downstream

230 analyses due to their poor performance in the benchmarks.
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231

232  The distribution of deletion and insertion calls within the reference genome is illustrated in

233  Figure 3c. There is a visible tendency for SVs to be more frequent in gene-rich euchromatic
234  regions (Figure 3a) where predicted SNVs are also more densely distributed (Figure 3b),

235 although this may be due only to a higher discovery power in euchromatic regions. The

236 presence of SV hotspots on chromosomes 3, 6, 7, 16 and 18 (Figure 3c) is consistent with

237 results previously obtained using comparative genomic hybridization by McHale et al. [34] and
238 by a pan-genome approach [36].

239

240 Population structure

241 To assess the quality of our population-scale SV dataset, we verified whether population

242  structure inferred from SVs yielded similar results to that inferred from SNVs, which are more
243 commonly used for population structure inference. For this purpose, we assigned all individuals
244  to one of five (5) populations using fastStructure with SNV data first, and then performed

245  principal component analysis (PCA) on both SNV and SV data using PLINK.

246

247 The PCAs did not cluster the samples belonging to different populations into starkly distinct
248 groups because the panel under study does not display a strong structure to begin with. Still,
249 both the SV (Additional file 1: Figure S17a) and the SNV PCA (Additional file 1: Figure S17b)
250 roughly grouped individuals according to their assigned population. Moreover, the PCA made
251 from the SV genotype calls was at least as good at clustering together the samples belonging to
252 the same population as the PCA made using SNVs was. Overall, these results constitute a
253  proof of concept that the population-scale SV dataset is the reflection of a biological reality and
254 not an artifact.

255

256 Potential impact on genes

10
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257 SVs can have a large impact on gene integrity or expression. Therefore, we annotated the SVs
258 in our dataset according to the genic features they overlapped. SVs occurred disproportionately
259 less within coding sequences than would be expected based on the proportion of the genome
260 covered by these features, both when considering the whole genome and when restricting the
261 analysis to non-repeat regions (Additional file 1: Table S2). A slight underrepresentation of SVs
262 was also observed within non-coding genic sequences, although this pattern was much clearer
263 when concentrating on non-repeat regions. Both analyses also revealed a clear pattern of

264 overrepresentation of SVs within regions 5 kb upstream of genes. The proportion of SVs

265 overlapping intergenic regions appeared to be less than expected when the analysis was

266 performed on the whole genome, but this is most likely due to the fact that intergenic regions
267 tend to be more repetitive and thus more difficult to probe. Indeed, when restricting the analysis
268 to non-repeat regions, the proportion of SVs falling within intergenic regions was higher than
269 their proportion within the reference genome, suggesting enrichment of SVs. We also compared
270 the observed proportions of SVs overlapping various genic features to what would be expected
271 by random chance using a randomization test that shuffled the positions of SVs within 100-kb
272  bins and computed the resulting overlaps. The 100-kb bins were used to locally restrict the SVs
273  position to take into account the repeat heterogeneity of the genome. This test confirmed the
274 underrepresentation of SVs within coding sequences and their overrepresentation within

275 intergenic sequences and regions 5 kb upstream of genes (Figure 4a). The pattern for non-

276 coding genic sequences, however, diverged from other lines of evidence by suggesting slight
277 overrepresentation of deletions. Insertions, on the other hand, appeared to be underrepresented
278  within non-coding genic sequences, similar to the results shown in Table S2 (Additional file 1).
279

280 The distributions of insertion and deletion frequencies depending on the features overlapped are
281 shown in Figure 4b. Statistical testing of the pairwise differences in mean SV frequencies

282 depending on the genic features overlapped clearly showed that deletions overlapping coding

11
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283 sequences were less frequent (the frequency being lower by roughly 0.05) than those occurring
284 elsewhere in the genome (Additional file 1: Table S3). For insertions, the only significant

285 differences indicated a higher frequency (by roughly 0.02) in intergenic regions than in non-

286 coding genic sequences or sequences 5 kb upstream of genes. A difference of similar

287 magnitude was also observed between mean insertion frequency within intergenic regions and
288 coding sequences, but the difference was marginally non-significant.

289

290 Finally, we conducted an enrichment analysis to check for over- and underrepresentation of
291 gene ontology (GO) Biological Process terms and PFAM protein domains in genes whose

292 coding sequence is impacted by SVs that are frequent (= 0.5) in the population. Genes

293 impacted by high-frequency SVs were highly enriched for functions involved in defense

294 response, and somewhat less so for functions involved in the regulation of various pathways
295 (Additional file 1: Table S4; Additional file 2). Underrepresented GO Biological Process terms
296 were almost all related to various metabolic or biosynthetic processes (Additional file 1: Table
297 Sb5; Additional file 3). As was observed for GO Biological Process terms, the PFAM domain

298 enrichment analysis showed that genes impacted by high-frequency SVs are overwhelmingly
299 enriched in domains involved in defense response, such as NB-ARC, TIR and Leucine rich

300 repeat domains (Additional file 1: Table S6; Additional file 4). No PFAM domains were observed
301 to be underrepresented (Additional file 5).

302

303 Transposable elements

304 Many SVs, especially larger ones, result from the mobilization of TEs [12, 39]. With this in mind,
305 we checked whether we could gain insights into soybean TE biology from our SV dataset. To do
306 so, we first queried the sequences of all insertions and deletions larger than 100 bp in our

307 dataset against a database of soybean TEs. Insertions and deletions that matched a TE with

308 high confidence were annotated with the corresponding TE type.

12
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309

310 Atotal of 2,586 deletions and 2,391 insertions were annotated as TEs by this approach (Table
311 2; Figure 3d,e; Additional file 6). These represent 8.4% and 9.1% of all deletions and insertions,
312 respectively, and 14.9% and 17.4% of those larger than 100 nucleotides. The proportion of

313 polymorphic TEs of different classes found within our dataset is consistent with their prevalence
314 in the reference genome, except for DNA TEs which represent a much smaller proportion of the
315 polymorphic elements compared to their prevalence in the genome. The number of polymorphic
316 elements per LTR-retrotransposon family (Figure 5a) and per DNA TE type (Figure 5b) were
317 largely consistent with results previously reported for non-reference soybean TEs [37] except for
318 DNA TEs of the CACTA superfamily for which we found almost no polymorphic instances.

319

320 We identified terminal inverted repeat (TIR) and target site duplication (TSD) sequences from
321 local assemblies of the TE sequences for 40 different polymorphic SVs collectively representing
322 17 entries in the SoyTEdb database. The polymorphic TEs for which we could identify TIR and
323 TSD sequences were essentially miniature inverted-repeat transposable elements (MITES)

324 ranging in size from 198 to 681 bp (longer sequences were too challenging to assemble

325 properly). From these data, we computed the proportion of matching nucleotides between the
326 two inverted repeats and averaged the values over the all samples bearing the TE insertion for
327 agiven SV (Figure 5c). A high proportion of matching nucleotides can indicate the potential for
328 active transposition because intact transposons should have identical or nearly identical TIRs.
329  While the proportion of matching nucleotides was under 0.8 in most cases, three polymorphic
330 TEs matching the Tcl-Mariner superfamily and annotated as Stowaway MITEs presented a
331 proportion of matching nucleotides > 0.9 (Additional file 7).

332

333 We generated multiple alignments of the local assemblies at all sites where at least one sample

334 had recognizable TIR and TSD sequences. A visual analysis of these multiple alignments

13
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335 revealed that for all but one SV, the sequences that did not bear the insertion presented a single
336 occurrence of the TSD sequence. This observation is consistent with a scenario where the TE
337 never inserted into the sequence, instead of having excised from it. The one exception to this
338 observation is that of a 480-bp insertion of a Stowaway MITE at position 2,257,090 of

339 chromosome GmO04. In this case, a visual analysis of the multiple alignment revealed that three
340 different alleles are segregating in the population at the insertion site: (1) the reference allele (no
341 insertion at the target position), (2) a 480-bp insertion that corresponds to the TE insertion, and
342 (3) a 6-bp insertion of nucleotides TACGAG (Additional file 1: Figure S18; Additional file 8).

343 Interestingly, this insertion is by far the one for which the percent similarity between the two TIR
344 sequences was highest among the ones studied, at 96.3%. We hypothesized that the 6-bp

345 insertion resulted from the excision of the TE, with the TA nucleotides being remnants of the
346 classical Tcl-Mariner TSD and the other nucleotides having been added during DNA repair

347 following excision. If this is the case, then the haplotypes surrounding the insertion site should
348 Dbe very similar between the individuals with the TE insertion and those with the 6-bp insertion.
349 Using a combination of SV calls made by Paragraph and indel calls made by Platypus, we

350 assigned 71 individuals as homozygous for the reference allele, 9 individuals as homozygous
351 for the TE insertion allele and 14 individuals as homozygous for the 6-bp insertion allele. We
352 computed the alternate allele frequencies within each of these three groups for 156 SNVs

353 located in a 39-kb linkage disequilibrium block surrounding the insertion site (Figure 5d). The
354 results clearly show high genetic similarity between individuals bearing the TE insertion and

355 those bearing the 6-bp insertion, consistent with the latter being derived from excision of the TE
356 insertion. In fact, only three (3) SNVs showed contrasting allele frequencies (difference in allele
357 frequencies > 0.5) between these two groups (Figure 5d), whereas 129 alleles were contrasted
358 between the reference allele haplotype and the TE insertion allele haplotype. This suggests that
359 the excision of the TE is a relatively recent event and that this TE may still be active in soybean.

360
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361 Interestingly, one of the polymorphic Copia insertions found in our dataset matches an insertion
362 in the Glyma.20G090000 gene (also known as the PhyA2 gene corresponding to the E4

363 maturity locus) known to impact time to maturity in soybean [40]. In our dataset, this TE

364 insertion had a frequency of 0.207, with 20 samples genotyped as homozygous for the

365 alternative allele and a single one genotyped as heterozygous.

366

367 Discussion

368 The rapid development of long-read sequencing platforms such as PacBio and Oxford

369 Nanopore in recent years has greatly enhanced the potential for studying structural variation.
370 Although studies using long reads to survey structural variation in crops have started to emerge
371 [e.g. 12, 27, 28], they did not explicitly address the question of using short reads to scale up SV
372 analysis from the small cohorts sequenced using long reads to larger populations, as has been
373 done in humans [e.g. 41, 42]. This question is of interest because long-read sequencing

374 remains too expensive at the moment to apply at large scale and because large amounts of
375 already-existing short-read sequencing data could be leveraged in that way. Scaling up the

376 study of SVs is a necessary prerequisite to getting a clear understanding of genome evolution
377 and function, and applying this knowledge to real-world problems [1, 15]. In this study, we

378 demonstrate that a relatively small cohort of 17 samples sequenced to ~12X coverage with

379 Oxford Nanopore can be combined with lllumina data to drive the study of SVs in a population
380 of 102 Canadian soybean lines and gain insights into SV biology.

381

382 The SVs discovered from short-read sequencing data are typically limited to variants located in
383 non-repeated regions and relatively small insertions (< 200 bp). These results have been shown
384 repeatedly by benchmarking studies [18, 20] and reflect an inherent limitation of short reads to

385 span large repeats and effectively assemble into long insertions. Here, we still used Illlumina
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386 reads for SV discovery to survey the whole population and thus detect less frequent variants
387 that may not have been found within the 17 samples sequenced with Oxford Nanopore data.
388 However, despite following recommended practices for SV analysis such as combining different
389 SV calling tools and integrating the results with a dedicated SV genotyper, estimated sensitivity
390 for insertions remained low at ~40% for those in the range 50-100 bp and ~30% for those in the
391 range 100-1,000 bp. The improved sensitivity obtained when focusing on non-repeated regions
392 (up to ~60% for insertions in the range 50-100 bp) shows that a large part of the problem indeed
393 comes from repeated regions. However, entirely removing these regions from analyses is an
394 unsatisfactory solution as polymorphisms in these regions may still be relevant to a particular
395 study question.

396

397 To compensate for limitations in SV discovery from short reads, we assessed whether Illlumina
398 reads could be used to genotype SVs discovered from Oxford Nanopore data on a smaller

399 cohort of 17 samples. The greatest added value of this approach arguably comes from the

400 possibility to accurately genotype large (> 1 kb) insertions with > 70% sensitivity. This is an

401 encouraging result because it shows that such insertions can be successfully genotyped using
402 lllumina data even though they could not be discovered from this same data. This is because
403 long reads provide the full contiguous sequence of insertions, which the Illumina reads can then
404 map to. Combined with a novel pipeline for refining the breakpoints and sequence content of
405 SVs discovered from Oxford Nanopore sequencing data prior to genotyping, this approach

406 should enable the study of SVs in large populations for which short-read data is already

407 available. The main limitation to using this approach actually comes from the long-read data
408 itself. In this study, some of the samples appeared to have low genotyping precision for larger
409 insertions, but this was most likely due to these insertions not being discovered in samples with
410 lower read N50 and thus appearing as false positive genotype calls. Similarly, the sequencing

411 depth of the Oxford Nanopore data used here was not sufficient to provide a solid reference
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412 dataset for benchmarking duplications. Indeed, one limitation of our study is that Oxford

413 Nanopore reads alone do not provide a perfect ground truth for benchmarking, especially for
414 SVs under 100 bp [2], but this was the best truth set we had access to in the absence of a gold
415 standard SV dataset for soybean.

416

417  Follow-up analysis on our population-scale SV dataset confirmed that this dataset reproduced
418 previously described population structure patterns, an validation approach commonly used in
419 other population-scale SV studies [e.g. 43, 44]. We indeed found that a PCA using SVs

420 summarized the population structure just as well as a PCA using SNVs, which indicates that the
421 SV genotype calls on the 102-sample population are accurate. Perhaps more importantly, the
422 SV dataset produced here met our expectations regarding the genome-wide distribution of SVs
423 and their location relative to predicted gene models. The location of SV hotspots found here is
424  consistent with previously reported results [34, 36]. Moreover, GO term and PFAM domain

425 enrichment analyses confirmed previous observations that SV-enriched genes were involved in
426 plant defense response [33, 34, 36]. Several lines of evidence in our results also suggest a

427 strong functional constraint on the location of SVs in the soybean genome. Notably, SVs were
428 strongly depleted within coding sequences compared to what would be randomly expected, and
429 insertions were depleted within non-coding genic sequences. There was also a clear tendency
430 for enrichment of SVs in regions upstream of genes, but whether this is simply due to lower

431 functional constraints or a role of SVs in regulating gene expression remains to be investigated.
432 Functional constraints on the frequency of SVs could also be observed from our data, as

433 deletions impacting coding sequences were less frequent than those occurring elsewhere in the
434 genome and insertions were enriched within intergenic regions, which are arguably less

435 functionally important. Based on these results, we suggest that many of the deletions located
436  within coding sequences may have a deleterious impact and could therefore become targets for

437  breeding.
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438

439 The large insertions and higher power of SV discovery within repetitive regions that was

440 afforded by the Oxford Nanopore sequencing data gave us an opportunity to study soybean TE
441  biology more deeply than previous reports. The numbers of TEs associated with various

442  superfamilies was largely consistent with results previously reported by Tian et al. [37], except
443 for DNA TEs of the CACTA superfamily which were a lot less common in our data. We observed
444  the same pattern of general concordance with previously reported results except for CACTA
445 elements when comparing our data to that of Istanto [45]. The reason why we found almost no
446 polymorphic CACTA elements compared to these studies is unclear, but we hypothesize that it
447 may be due to our more stringent requirements for TE annotation. Indeed, we required the

448 length of the queried SVs to be close to that of their matching counterpart in the database. Many
449 of the SVs in our dataset indeed matched CACTA elements following the BLASTN query, but
450 almost all of them failed to pass the filter. Our annotation results are probably conservative for
451 other types of TEs as well because the database we used is likely incomplete, as it is based on
452 the analysis of a single reference genome.

453

454  Our data also allowed us to generate original findings related to DNA TEs in soybean, which
455 have received relatively little attention from past studies. We report results that suggest that

456 most DNA TE insertion polymorphisms in soybean result from past insertion of TEs rather than
457 from excision of existing TEs. The relatively low proportion of polymorphic DNA TEs compared
458 to their prevalence in the genome also suggests that these elements are overall fairly inactive in
459 soybean. However, we did document one case in which recent excision of a Stowaway MITE
460 from its insertion site appears to have occurred, such that three alleles (the reference allele

461 without the insertion, the TE insertion, and the allele resulting from the excision of the TE) are
462 present within the population. This element represents a prime candidate to study the potential

463  activity of DNA TE transposons in soybean.
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464

465 Conclusions

466 In conclusion, our study shows that Oxford Nanopore and lllumina sequencing data can be

467 efficiently combined to study structural variation in soybean. In particular, large insertions that
468 cannot be discovered from short-read data alone could be genotyped using short-read data and
469 thus allow the insights gained from long-read sequencing to scale up to a larger population. This
470 approach, combined with a novel pipeline for refining the SVs discovered using Oxford

471 Nanopore data, should extend easily to other species and allow the wealth of already-existing
472 lllumina data to be leveraged for SV analysis. In addition to confirming previous results

473 regarding the chromosomal distribution of SVs in soybean and their association with genes

474 involved in defense response, we also report novel insights into functional constraints to the

475 occurence of SVs and into soybean TE biology. Moreover, the SV catalog described here is

476 freely available and can be used as a resource for SV genotyping by the soybean research

477 community. These results as well as the framework developed to optimize the study of structural
478 variation at population scale should help to better integrate these variants in genomic studies of
479 crops and other non-model species.

480

481 Methods

482 lllumina sequencing and read processing

483 Sample selection and acquisition of lllumina sequencing data has been described in previous
484  work [6]. Briefly, 102 Canadian soybean cultivars and breeding lines were selected to

485 encompass the full range of genetic variation found among Canadian short-season germplasm
486 and sequenced on the lllumina HiSeq 2500 platform. Paired-end reads ranging in size from 100
487 to 125 nucleotides were obtained depending on the sample. This sequencing data is available

488 on the NCBI Sequence Read Archive (SRA) through BioProject accession number
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489 PRJINA356132 [46].

490

491 All reads were adapter- and quality-trimmed using bbduk from the BBtools suite v. 38.25 [47].
492 We aligned reads using bwa mem v. 0.7.17-r1188 [48] with default parameters. Paired-end
493 alignment mode was used except for reads that were left unpaired following adapter and quality
494  trimming, which were aligned in single-end mode. We used a reference genome consisting of
495 assembly version 4 of the Williams82 reference cultivar [49] concatenated with reference

496 mitochondrion and chloroplast sequences retrieved from SoyBase [50]. Reads aligned using
497 paired-end and single-end mode were then merged, sorted and indexed using samtools v. 1.8
498 [51] and read groups were added using bamaddrg [52]. The sorted and indexed BAM files were
499 used as input for all downstream analyses requiring mapped reads.

500

501 Structural variation discovery from short reads

502 We called SVs on all 102 samples using four different tools: AsmVar [53], Manta [54], SYABA
503 [55], and LUMPY-based [56] smoove [57]. We selected this combination of tools based on the
504 complementarity of their SV detection approaches, widespread use within the community, and
505 performance reported in published benchmarks [20].

506

507 AsmVar calls SVs by comparing de novo genome assemblies to a reference genome. Prior to
508 assembly, we merged reads that were still paired after trimming using FLASH v. 1.2.11 [58].
509 The rationale behind this was that the short size of the inserts in our sequencing data allowed
510 several of the read pairs to be merged into longer sequences. Reads were grouped into three
511 libraries (single-end reads from bbduk, single-end reads merged by FLASH, and paired-end
512 reads left unmerged by FLASH) and assembled with SOAPdenovo?2 v. 2.04 [59] using the

513 sparse_pregraph and contig commands, and a k-mer size of 49. Contigs were not further

514 assembled into scaffolds because we aimed to only call SVs whose sequence was entirely
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515 resolved. The resulting contigs were aligned to the reference genome using LAST v. 1047 [60]
516 by first calling the lastal command with options -D1000 -QO0 -e20 -j4 and then the last-split

517 command with options -m 0.01 -s30. Variants were called on the LAST alignments using

518 ASV_VariantDetector from the AsmVar tool suite (version of 2015-04-16) with default

519 parameters. The pipeline was run on each sample independently and results were subsequently
520 concatenated to obtain a single AsmVar VCF file. Variants with a FILTER tag other than “.” were
521 filtered out from the resulting call set.

522

523 We ran manta v. 1.6.0 with default parameters in 10 batches of 10 or 11 randomly grouped

524 samples because it did not scale well to the whole population. We used the candidate SVs (and
525 not the genotype calls themselves) identified by each run for further processing and filtered

526 them by removing unresolved breakends (SVTYPE=BND). The filtered variants were then

527 converted from symbolic alleles (i.e. DEL, DUP, INS) to sequence-explicit ALT alleles using

528 bayesTyperTools convertAllele v. 1.5 [31] and combined into a single VCF file using bcftools
529 merge (version 1.10.2-105) [51].

530

531 We ran SVABA v. 1.1.3 separately on all samples using the command svaba run with options --
532 germline -1 -L 6. SVABA produces two different variant sets: one for indels, which are already
533 coded as sequence-explicit, and another for SVs which are coded as paired breakends. We
534 therefore classified SVs into defined types (DEL, DUP, INV) based on breakpoint orientation
535 and converted them to sequence-specific ALT alleles using an in-house R script. The resulting
536 sequence-explicit variants were merged using bcftools merge.

537

538 We ran smoove v. 0.2.4 on all samples using a series of commands. First, smoove call was run
539 separately on each sample using default parameters. The variants identified were then merged

540 into a single VCF file using smoove merge, smoove genotype with options -x -d, and smoove
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541 paste. Symbolic alleles (<DEL>, <DUP> and <INV> alleles) were converted to explicit sequence
542 representation using bayesTyperTools convertAllele.

543

544 A series of common filters were applied to the SV output of all four tools before using them for
545 downstream analyses. Specifically, we removed variants spanning less than 50 bp or more than
546 500 kb, those located on unanchored scaffolds or organellar genomes, or any variant that was
547 not classified as either a deletion, insertion, duplication or inversion. We also converted

548 multiallelic variants into biallelic records and standardized the representation of all alleles using
549  bcftools norm.

550

551 Oxford Nanopore sequencing

552 We selected 17 samples for Oxford Nanopore sequencing among those sequenced by Illlumina.
553 Sixteen (16) of them were randomly selected among a subset of 56 lines belonging to a core set
554 of Canadian soybean germplasm, while the remaining sample (CAD1052/OAC Embro) had

555 been selected and sequenced before the others based on its higher lllumina sequencing depth.
556  Although sample selection did not explicitly maximize the number of potential SVs assessed, we
557 did verify that the resulting set covered the range of variation found in Canadian soybean

558 germplasm based on an existing phylogenetic tree [6].

559

560 Our sample preparation and sequencing protocols evolved throughout the project as we gained
561 experience with Oxford Nanopore sequencing. Therefore, we outline our latest methods here,
562 but more details regarding the procedures used for each sample can be found in Table S7

563 (Additional file 1). Accessions selected for sequencing were germinated in Jiffy peat pellets (Jiffy
564  Group, Zwijndrecht, Netherlands) on the benchtop. Young trifoliate leaves were collected

565 between two and three weeks after germination, flash frozen in liquid nitrogen upon harvest and

566 stored at -80 °C until DNA extraction. Single trifoliate leaves weighing between 20 and 60 mg
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567 were used for each extraction. Liquid nitrogen-frozen leaves were pulverized on a Qiagen

568 TissuelLyser instrument (Qiagen, Hilden, Germany) with metal beads for four cycles of 30 s

569 each at 30 Hz. The resulting powder was immediately transferred to a CTAB buffer (2% CTAB,
570 0.1 M Tris-HCI pH 8, 0.02 M EDTA pH 8, 1.4 M NacCl, 1% (m/v) PVP) and incubated at 60°C in
571 a water bath for 45 min. The lysate recovered after centrifugation at 3500 rcf for 10 minutes was
572 then subjected to an RNase A treatment for another 45 min at 60°C, followed by the addition of
573 an equal volume of 24:1 chloroform:isoamyl alcohol to the sample and stirring to an emulsion.
574 Following centrifugation at 3500 rcf for 15 minutes, the supernatant was recovered and mixed
575 with a 0.7 volume of cold isopropanol. This mix was stored at -80°C for 20 minutes and

576 centrifuged at 3500 rcf for 30 min, after which the liquid was removed. Tubes were rinsed twice
577 with cold 70% ethanol, with a centrifugation step after each addition of ethanol. After the last
578 rinsing, tubes were left to dry for 3 minutes after which pellets were resuspended in 100 pl

579 elution buffer (Tris-HCI 0.01 M and EDTA 0.001 M, pH 8) at 37°C for an hour, and then stored at
580 4°C until use.

581

582 Samples were size-selected using the Short Read Eliminator kit of Circulomics (Circulomics,
583 Baltimore, MD, USA) following the manufacturer’s instructions. The size-selected DNA

584 resuspended in the SRE kit's EB buffer was then purified using SparQ magnetic beads and

585 resuspended in ddH,O. Typically, between 500 ng and 1 pg of this DNA was used for Oxford
586 Nanopore library preparation using the SQK-LSK109 genomic DNA ligation kit (Oxford

587 Nanopore Technologies, Oxford, UK). The library was prepared according to the manufacturer’s
588 instructions except for the following details: 1) DNA fragmentation was not performed prior to
589 library preparation, 2) 80% ethanol was used instead of 70% ethanol, 3) the bead elution time
590 following DNA repair and end-prep was increased from 2 min to 10 min, 4) the bead elution time
591 following adapter ligation and clean-up was increased from 10 to 15 minutes and carried out in a

592 water bath set to 37°C. Typically, between 150 ng and 400 ng of the prepared library quantified
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593 using a Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) were used as input to
594 a FLO-MIN106D flowcell (R9 chemistry) and run on a MinlON for 48 to 72 hours using default
595 voltage settings. While most accessions were sequenced on a single flow cell, three accessions
596 for which the initial yield was low (< 9 Gb) were sequenced a second time (using DNA from a
597 different plant) to provide sufficient data for downstream analyses. More details regarding the
598 Oxford Nanopore sequencing of the samples can be found in Table S8 (Additional file 1).

599

600 Structural variation discovery from Oxford Nanopore data

601 Raw FAST5 sequencing files were basecalled on a GPU using Oxford Nanopore Technologies’
602 guppy basecaller v. 4.0.11 with parameters --flowcell FLO-MIN106 --kit SQK-LSK109.

603 Basecalled FASTQ files obtained from a single flow cell were concatenated into a single file
604 which was used for downstream analyses. Adapters were trimmed using Porechop v. 0.2.4 [61]
605  with the option --discard_middle. Adapter-trimmed reads were aligned using NGMLR v. 0.2.7
606 [24] with the option -x ont. The resulting alignments were sorted and indexed using samtools.
607

608 At this stage, we merged the BAM files of samples that were sequenced on two different

609 flowcells and called SVs using Sniffles v. 1.0.11 [24]. We ran Sniffles with parameters --

610 min_support 3 (minimum number of reads supporting a variant = 3, default = 10), --

611 min_seq_size 1000 (minimum read segment length for consideration = 1000, default = 2000)
612 and --min_homo_af 0.7 (minimum alternate allele frequency to be considered homozygous =
613 0.7, default 0.8). We chose relaxed parameters compared to the defaults because our samples
614 are inbred cultivars and heterozygosity should therefore be nearly non-existent.

615

616 We applied a series of filters to the SVs in order to remove any spurious calls that could affect
617 downstream analyses. Any variants called on organellar genomes or unanchored scaffolds were

618 filtered out, along with any variants smaller than 50 nucleotides or larger than 500 kb. We only
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619 retained deletions, insertions, inversions and duplications for further analyses, discarding

620 unresolved breakpoints (SVTYPE=BND) as well as other complex types such as DEL/INV,

621 DUP/INS, INVDUP and INV/INVDUP. We removed variants called as heterozygous since

622 heterozygous genotype calls are very likely to be spurious in these inbred lines. In order to

623 avoid calling artificial variants in ambiguous regions of the genome (stretches of “N” due to

624 imperfectly assembled regions of the reference genome), we also removed deletions that

625 overlapped any “N” in the reference as well as any insertion located less than 20 nucleotides
626 away from any “N” in the reference.

627

628 The location of SVs as well as the insertion sequences reported by Sniffles are necessarily

629 imperfect as they are based on error-prone Oxford Nanopore reads (on average 8-10% error
630 rate based on the percent identity of our alignments). We therefore assembled a pipeline to

631 refine the breakpoint location and the sequence content of the deletions and insertions found by
632 Sniffles. Duplications and inversions were not considered for SV refinement because the

633 inherent complexity of these variants made it difficult to accurately assemble them from our

634 data. We briefly describe the pipeline here, but more details can be found in Additional file 1
635 (Supplemental Methods, Table S9 and Figures S19 to S21). Our breakpoint refinement pipeline
636 starts by locally assembling all reads that were mapped by NGMLR to positions + 200 bp from
637 the location of the SV using wtdbg2 v. 2.5 [62]. The same reads are then aligned to the

638 assembled sequence using minimap2 v. 2.17-r974 [63] to polish the assembly sequence using
639 the consensus module of wtdbg2. The resulting polished assembly is subsequently aligned to
640 the local region of the reference genome using AGE (commit 6fa60999,

641 github.com/abyzovlab/AGE) [64]. The coordinates of the SV and insertion sequence content are
642 then optionally updated from the information provided by the AGE alignment. When the

643 alignment did not suggest suitable replacement coordinates or insertion content for a given SV,

644 we simply used its representation as initially defined by Sniffles for downstream analyses

25


https://doi.org/10.1101/2021.08.26.457816
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457816; this version posted August 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

645 instead. Following breakpoint refinement, the representation of the alleles was standardized
646 using bcftools norm.

647

648 Structural variant genotyping and benchmarking

649 We genotyped SVs on all 102 lllumina samples using Paragraph v. 2.4a [29] in three different
650 batches. The first batch used only variants discovered from the lllumina data as input and was
651 used to assess the performance of SV discovery from lllumina data alone. The second batch
652 used only variants discovered from Oxford Nanopore data and was similarly used to assess the
653 performance of genotyping those variants with lllumina data. The third and last genotyping

654 batch used a merged dataset comprising both variants discovered using Illlumina and Oxford
655 Nanopore data, and was used for the population-scale analyses on population structure,

656 location of variants relative to gene models, and polymorphic TEs. Despite the superior

657 performance of long-read data for SV discovery, we decided to also include variants discovered
658 from the lllumina data in the final SV set as they encompassed all samples.

659

660 For genotyping SVs discovered from lllumina data, the VCF files of all discovery tools (AsmVar,
661 Manta, SVABA, smoove) were merged together using SVmerge (commit 6al8fa3d2,

662 github.com/nhansen/SVanalyzer) [65] with parameters -maxdist 15 -reldist 0.2 -relsizediff 0.1 -
663 relshift 0.1. Parameters were chosen in order to merge slightly differing representations of

664 alleles that were putatively identical from a biological point of view while preserving true allele
665 diversity at a given position.

666

667 SVs discovered from Oxford Nanopore data were also merged across samples using SVmerge
668 with the same parameters as described above. However, for Oxford Nanopore variants, we

669 modified SVmerge’s default behavior which selects an allele randomly from a given SV cluster.

670 Instead, we forced the random selection to be made among the alleles that had been refined by
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671 the SV refinement pipeline, if any, to favor those alleles whose representation was hopefully
672 closer to biological reality.

673

674 For the last batch combining Illumina and Oxford Nanopore variants, the two datasets described
675 above were merged using SVmerge. The default behaviour of SVmerge was again overridden
676 by systematically sampling among the alleles found by lllumina whenever a SV cluster

677 contained alleles found by both lllumina and Oxford Nanopore. Despite the greater power of
678 Oxford Nanopore data in discovering SVs, our reasoning was that if a variant was discovered by
679 both sequencing technologies, then the Illumina data was likely more precise given its higher
680 basecalling accuracy.

681

682 The methods used for genotyping were identical for all three batches. We prepared the VCF
683 files for input to Paragraph by removing variants located less than 1 kb away from chromosome
684 ends and padding the allele representations as required by Paragraph. We genotyped the 102
685 lllumina samples aligned by bwa mem following the recommendations outlined by Paragraph for
686 population-scale genotyping, i.e. the variants were genotyped independently for each sample
687  with multigrmpy, setting the -M option to 20 times the average sequencing depth for the sample.
688

689 We compared the genotyping results of the three batches against the Oxford Nanopore SV set
690 in order to assess genotyping sensitivity and precision. For this analysis, the set of variants

691 called from the Oxford Nanopore data by Sniffles and subsequently refined was considered to
692 be the ground truth. Structural variation calls made from Oxford Nanopore data may also be

693 erroneous, especially for smaller variants [2], so this approach of treating Oxford Nanopore

694 dataset as the ground truth is necessarily imperfect but nevertheless provides a good

695 comparison basis for our purposes.

696
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697 We compared the SV genotype calls to the ground truth set using the R package sveval v. 2.0.0
698 [30]. For each of the 17 samples for which Oxford Nanopore data was available, we compared
699 the genotype calls made by Paragraph to the SVs identified in the Oxford Nanopore data for
700 that sample. SVs genotyped as homozygous for the alternate allele by Paragraph and present
701 in the Nanopore set were considered true positives, while SVs genotyped as homozygous for
702 the alternate allele by Paragraph but absent from the Nanopore set were considered false

703 positives. Note that, for benchmarking purposes, we essentially ignored heterozygous genotype
704 calls made by Paragraph since the truth set only contained homozygous calls as expected for
705 inbred lines. Sensitivity was defined as the ratio of the number of true positive calls to the total
706 number of SVs in the truth set, and precision as the ratio of the number of true positive calls to
707 the sum of true and false positive calls. We computed sample-wise precision-recall curves for
708 various SV size classes and SV types by using a range of read count thresholds (number of
709 reads required to support a genotype call) to filter the Paragraph genotype calls. We required
710 sveval to explicitly compare insertion sequences by setting ins.seq.comp = TRUE, but we

711 otherwise used default settings. We extended sveval’s functionality by also assessing

712 duplications under the same overlap conditions as the package already provides for deletions
713 and inversions. Benchmarks were performed both on the complete set of SVs and on a subset
714 of SVs located in non-repeat regions. A SV was defined as belonging to a repetitive region if it
715 had a 20% or higher overlap to regions in the repeat annotation for the Williams82 assembly
716 version 4 retrieved from Phytozome [66].

717

718 For the SVs discovered by Illlumina, we computed additional precision-recall curves by filtering
719 the SVs in the dataset genotyped by Paragraph based on two different metrics of SV quality: (1)
720 the number of times the alternate allele is observed in homozygous genotype calls across the
721 whole population (referred to hereafter as the homozygous ALT count) and (2) the number of

722  calling tools (out of a maximum of four) that originally reported the SV. The more stringent
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723 homozygous ALT count was used instead of alternate allele frequency as a measure of the

724  frequency of the SV in the population since true SVs are expected to be homozygous for the
725 alternate allele in these inbred lines. Note that both of these quality measures (homozygous
726  ALT count and the number of tools supporting an SV) effectively filter SV records and not

727 individual genotype calls. The objective of these analyses was to see whether filtering on SV
728 frequency or calling-tool support for variants could result in a higher quality dataset.

729

730 Population structure

731 We used the set of merged Illlumina and Oxford Nanopore SVs genotyped by Paragraph to

732 evaluate whether SV calls could replicate population structure analyses made from SNV calls.
733 We applied methods similar to Torkamaneh et al. [6] in order to compute population structure for
734 the 102-sample population. We called SNVs using Platypus v. 0.8.1.1 [67] with parameters --
735 minMapQual=20 --minBaseQual=20 --maxVariants=10 --filterReadsWithUnmappedMates=0 --
736 filterReadsWithDistantMates=0 --filterReadPairsWithSmallinserts=0. We filtered Platypus calls
737 to keep only biallelic SNVs located on any of the 20 reference chromosomes. We only retained
738 SNVs with a minor allele frequency = 0.05, proportion of missing sites < 0.4, and heterozygosity
739 rate <0.1. The resulting 1.27 M SNVs were converted to PLINK BED format [68] and used as
740 input to fastStructure v. 1.0 [69] using k = 5 as determined by Torkamaneh et al. [6]. A PCA was
741  computed on those SNVs using PLINK v1.90b5.3 with default parameters. A PCA was also

742 computed on the population-scale dataset of Illumina/Oxford Nanopore SVs genotyped with
743 Paragraph. For this analysis, we filtered SV genotype calls by setting those with less than two
744  supporting reads to missing. We also removed duplications, inversions, as well as records with
745 a homozygous ALT count < 4 or a proportion of missing sites > 0.4.

746

747 Potential impact on genes

748 We annotated deletions and insertions based on their overlap with various gene features. We
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749 retrieved the positions of the gene models for Williams82 assembly 4 from Phytozome [66] and
750 determined for each SV whether it overlapped any of the following genic features: coding

751 sequences, non-coding genic sequences, and regions 5 kb upstream of genes. These

752  categories were mutually exclusive, such that an SV overlapping both coding and non-coding
753 sequences was only labeled as “coding sequences”. Similarly, an SV was only labeled as “5 kb
754  upstream” if it did not overlap any genic sequences. The SVs that overlapped none of the

755 features described above were labeled as “intergenic”.

756

757  We first used these annotations to assess whether SVs were over- or underrepresented within
758 particular genic features by comparing the observed proportions of deletions and insertions
759 overlapping each feature to what would be expected by chance. We used three different

760 measures of random expectation of the proportion of SVs overlapping genic features. The first
761 measure was a naive comparison to the proportion of the genome corresponding to each genic
762 feature. This comparison is however biased because repetitive regions (which are largely non-
763  genic) are less effectively queried for SVs than non-repetitive genic regions. Therefore, we also
764  replicated the analysis by excluding repeated regions, which provided a second measure of
765 random expectation. Finally, we performed a randomization test by estimating the distribution
766  over the proportions of SVs that would be expected to overlap each genic feature by random
767 chance. This was done by shuffling the start positions of SVs within the 100-kb genome-tiling
768 bins in which they are located 5,000 times and annotating them with the genic features

769 overlapped. We used 100-kb bins tiled along the whole genome instead of shuffling the

770 positions genome-wide to take into consideration the heterogeneity of the genome while

771 allowing SVs to be repositioned in a gene-agnostic manner.

772

773 We also used the genic feature annotations to study differences in mean alternate allele

774  frequencies of SVs depending on the features they overlapped. We averaged the frequencies of

30


https://doi.org/10.1101/2021.08.26.457816
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457816; this version posted August 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

775 insertions and deletions overlapping each of the four genic features and computed the

776 difference between the mean SV frequencies for each of the six possible pairwise combinations
777 of features. SVs with a frequency of 1 in the population were excluded from this analysis

778 because they might be due to errors in the reference assembly. Statistical significance was
779 assessed using a randomization test by shuffling the genic feature annotations 10,000 times to
780 get a distribution of mean SV frequency differences between feature groups under a random
781 scenario. We computed one-sided p-values by comparing the observed values to the random
782 distributions thus generated, using a significance threshold of a = 0.05/ 6 = 0.0083 to

783 compensate for multiple testing.

784

785 Finally, we carried out enrichment analyses of GO [70] Biological Process terms and PFAM
786 domains [71] to assess whether high-frequency gene-impacting SVs were associated with

787 particular biological functions. We identified insertions and deletions with an alternate allele
788 frequency = 0.5 and < 1 among those overlapping coding sequences and found 546 genes

789 overlapped by such SVs. These genes constituted our gene set of interest for the enrichment
790 analyses. We used the GOstats Bioconductor package v. 2.56.0 [72] along with GO and PFAM
791 annotations for Williams82 assembly version 4 retrieved from Soybase on April 20 2021 to test
792 this gene set for over- and underrepresentation of particular GO Biological Process terms or
793 PFAM protein domains. We only tested GO terms and PFAM domains that were represented by
794 atleast 20 and 10 genes, respectively. For the GO terms, we used the conditional test as

795 implemented in GOstats and the GO.db annotation package v. 3.12.1 [73]. We applied a

796 Bonferroni correction to the p-values of both the GO and PFAM enrichment tests by multiplying
797 the p-values by the number of terms/domains tested.

798

799 Transposable elements
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800 We annotated TEs in the SVs discovered using the SoyTEdb database [74] downloaded from
801 SoyBase [50]. We queried the deleted or inserted sequences of all deletions and insertions =
802 100 bp against SoyTEdb using blastn v. 2.11.0+ [75] with default parameters. Any queried

803 sequence that aligned to a TE in the database with at least 80% of the query length and 80% of
804 the length of the TE sequence was considered a match and annotated accordingly with the

805 classification of the best-matching TE. All alignments that matched these criteria had an

806 extremely small E-value (< 10®°) and therefore no additional filtering on this was needed.

807

808 The annotated SVs were then used to determine both the proportion of polymorphic TEs

809 belonging to each category and the physical location of polymorphic TEs in the genome. We
810 also computed the proportions of TEs = 100 bp in each category within the reference repeat

811 annotation from Phytozome and compared those to the estimated proportions in the SV dataset.
812 The estimated number of polymorphic TEs within various LTR-retrotransposon families and

813 DNA TE types were also compared to the number of non-reference TEs found by Tian et al. [37]
814 to check whether our results were consistent with previous reports.

815

816 Soybean DNA TEs have received little attention compared to retrotransposons, which are more
817 prevalent and polymorphic in this species [37, e.g. 76]. DNA TEs that have TIR typically

818 transpose using a “cut and paste” mechanism. This mechanism generates a TSD upon insertion
819 into the genome, and leaves this TSD as well as possible additional nucleotides upon excision
820 due to DNA repair [77]. In order to study the dynamics of polymorphic DNA TEs within our

821 population, we devised a pipeline based on local assembly and multiple sequence alignment of
822 the DNA TE insertions. Briefly, the pipeline locally assembles Oxford Nanopore reads

823 surrounding the sites of polymorphic DNA TEs for all samples using wtdbg2 and aligns these
824 assemblies to each other using MAFFT v. 7.475 [78] before identifying TIR and TSD sequences

825 with Generic Repeat Finder v. 1.0 [79]. For more details on the pipeline, see Supplemental
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Methods (Additional file 1). Our goal with this pipeline was to determine whether the
insertion/deletion polymorphisms at various sites were due to novel TE insertion, TE excision, or
a combination of both phenomena. We applied this pipeline to SVs that were annotated as TIR
DNA TEs and whose matching sequence in the SoyTEdb database was matched by at least
three SVs. We limited ourselves to TE sequences that were matched by at least three SV
events under the assumption that TEs present in multiple copies were more likely to have been
recently active. For insertions that had both TIR and TSD sequences unambiguously identified,
we computed the proportion of matching nucleotides in the alignment of the two terminal
repeats and averaged the values across all local assemblies bearing the insertion in order to get

a single value for that SV.

Software used

Unless otherwise stated, all statistical analyses and data manipulation were conducted in R
version 3.5.0 or 4.0.3 [80] and Bioconductor version 3.08 or 3.12 [81]. Analyses made use of
Bioconductor packages Biostrings v. 2.58.0 [82], GenomicRanges v. 1.42.0 [83], Rsamtools v.
2.6.0 [84], rtracklayer v. 1.50.0 [85] and VariantAnnotation v. 1.36.0 [86]. All scripts used for the

analyses described in this paper are available on GitHub [87].

Additional files

Additional file 1: Supplemental methods, supplemental tables S1 to S9 and supplemental

figures S1 to S21 (PDF 12 MB)

Additional file 2: Statistics of the conditional hypergeometric test for the overrepresentation of
GO Biological Process terms using the GOstats R package. P-values are Bonferroni-corrected

p-values. (CSV 141 KB)
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851

852  Additional file 3: Statistics of the conditional hypergeometric test for the underrepresentation of
853 GO Biological Process terms using the GOstats R package. P-values are Bonferroni-corrected
854 p-values. (CSV 265 KB)

855

856 Additional file 4: Statistics of the hypergeometric test for the overrepresentation of PFAM

857 domains using the GOstats R package. P-values are Bonferroni-corrected p-values. (CSV 18
858 KB)

859

860 Additional file 5: Statistics of the hypergeometric test for the underrepresentation of PFAM

861 domains using the GOstats R package. P-values are Bonferroni-corrected p-values. (CSV 95
862 KB)

863

864  Additional file 6: SVs identified as polymorphic transposable elements among the dataset of
865 combined lllumina/Oxford Nanopore variants genotyped with Paragraph. Positions of the SVs
866 and metadata about their best blastn match in the SoyTEdb database are described. (CSV 598
867 KB)

868

869  Additional file 7: Proportion of matching nucleotides in TIR of SVs for which intact TSD

870 sequences and matching TIR were identified with GenericRepeatFinder (CSV 2.4 KB).

871

872  Additional file 8: Multiple alignment of the Williams82 assembly version 4 reference sequence
873 and local de novo assemblies of 7 samples at the site of a 480-bp Stowaway MITE insertion
874 (GmO04:2,257,090). Samples OAC Petrel and Roland bear the 480-bp insertion, while Alta bears
875 the 6-bp TACGAG insertion; other samples match the reference sequence. Asterisks mark the

876 locations of the TSD sequences in samples OAC Petrel and Roland. (TXT 6.2 KB)
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877
g7s Abbreviations

879 GO: gene ontology; MITE: miniature inverted-repeat transposable element; PCA: principal
880 component analysis; SRA: sequence read archive; SV: structural variant; SNV: single-

881 nucleotide variant; TE: transposable element; TIR: terminal inverted repeat; TSD: target site
882 duplication

883
ss4 Declarations

885

886 Ethics approval and consent to participate
887 Not applicable.

888

889 Consent for publication

890 Not applicable.

891

892 Availability of data and materials
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896 accession number PRINA751911 [88].

897

898 The SoyTEdb database is available on SoyBase [89].
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901

902 The non-reference transposable elements found by Tian et al. (2012) can be downloaded from
903 the supplementary data to their paper [37].

904

905 The reference genome sequence and annotation of soybean cultivar Williams82, assembly

906 version 4, are available on Phytozome [92].

907

908 VCF files generated during this study and results of the permutation test for the analysis of the
909 proportion of SVs overlapping various genic features are available on the figshare repository
910 [93].
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o51 Tables

952 Table 1: Number of SVs called from the lllumina data per calling tool, SV type and size class.

[50bp — 100bp| [100bp — 1kb[ [1kb — 10kb] > 10kb*

Calling program DELP INS® DUPY INV® DEL INS DUP INV DEL INS DUP INV DEL DUP INV

asmvar 11018 3575 0O 0 14877 2243 0 0 5748 1 0 0 4681 0 0
manta 9664 3358 453 0 12378 1815 3114 0 11463 0 4448 O 7325 5034 0
smoove 4168 0 22 45 6489 0 1208 149 4687 0 981 33 1794 975 47
svaba 7288 2284 673 21 6907 215 16081 292 2969 0 1548 190 512 458 223
merged® 17199 5023 656 61 22980 3165 9810 296 13007 1 4316 135 10640 4696 178

@ Insertions > 10kb are not shown because none were called
b DEL: deletions,

¢ INS: insertions

d DUP: duplications

¢ INV: inversions

f merged: the dataset merged using SVmerge

954 Table 2: Number and span of polymorphic and reference transposable elements of different

955 types.
REF*(%) DEL®(%) INS*(%)
TE type N4 Mb® N kbf N kb
Copia LTR retrotransposons 91241 (35.1) 170 (43.0) 1154 (44.6) 5594 (43.8) 1303 (54.5) 6692 (63.1)
Gypsy LTR retrotransposons 71390 (27.5) 139 (35.2) 949 (36.7) 5745 (45) 718 (30) 2949 (27.8)
Non-LTR retrotransposons 8078 (3.1) 10 (2.5) 144 (5.6) 449 (3.5) 99 (4.1) 307 (2.9)
DNA TE 89300 (34.3) 76 (19.2) 330 (13.1) 989 (7.7) 271 (11.3) 654 (6.2)

a REF: transposable elements > 100 bp in the reference genome

b DEL: deletions relative to the reference that are annotated as TEs

¢ INS: insertions relative to the reference that are annotated as TEs

d N: Number of reference elements, deletions or insertions matching given TE type
€ Mb: Total length of reference elements of a given type, in Mb

f kb: Total length of polymorphic elements matching given TE type, in kb

957

958

959

960

961

962
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964 Figure 1: Genotyping sensitivity and precision of (A) deletions and (B) insertions discovered
965 from the lllumina data. Each line and color represents one of 17 samples. The different plots
966 correspond to different SV lengths. The points correspond to different filtering thresholds on the
967 minimum number of lllumina reads required to support a genotype call. The asterisks indicate a

968 minimum number of supporting reads of 2; points to the left of these for a given line represent
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969 increasingly stringent filtering threshold values (i.e. a greater number of reads supporting a
970 genotype call).

971
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973 Figure 2: Genotyping sensitivity and precision of (A) deletions and (B) insertions discovered

974 from the Oxford Nanopore data. Each line and color represents one of 17 samples. The different

41


https://doi.org/10.1101/2021.08.26.457816
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.26.457816; this version posted August 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

975 plots correspond to different SV lengths. The points correspond to different filtering thresholds
976  on the minimum number of lllumina reads required to support a genotype call. The asterisks
977 indicate a minimum number of supporting reads of 2; points to the left of these for a given line
978 represent increasingly stringent filtering threshold values (i.e. a greater number of reads

979 supporting a genotype call).
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983 Figure 3: Circos plot of the distribution of various features within 3-Mb bins along the reference
984 assembly version 4 of Williams82. (A) Gene density (B) Density of SNVs called by Platypus (C)
985 Number of deletions (blue) and insertions (red) discovered within each bin. The bins with the
986 10% highest SV density (insertions and deletions considered together) are highlighted in gray.
987 (D) Number of reference (blue) and polymorphic (red) LTR Copia and LTR Gypsy elements

988 (summed together). (E) Number of reference (blue) and polymorphic (red) DNA transposable
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989 elements. The gray highlights in tracks D and E show the bins with the 10% highest
990 polymorphic/reference ratios.
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Figure 4. Analysis of the overlap of SVs with gene models. (A) Distributions of the proportions
of deletions and insertions overlapping various genic features as generated by a randomization
test (5,000 iterations). Observed proportions for each SV type and genic feature are indicated
by a vertical dotted line. One-sided p-values are < 2 x 10* for all comparisons except for
deletions overlapping genes, for which the p-value is 4 x 10*. (B) Distribution of the allele
frequencies of deletions and insertions depending on the genic features they overlap. Note the
logarithmic scale on the y-axis. cds: SVs overlapping coding sequences; gene: SVs overlapping
non-coding genic sequences; upstreambkb: SVs overlapping regions 5 kb upstream of genes,

but not any genic sequences; intergenic: SVs that do not overlap any of the other features.
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1014 Figure 5: Analysis of the polymorphic TEs found in this study. Comparison of the number of

1015 polymorphic TEs per (A) LTR family and (B) DNA TE type found in Tian et al. [37] and in this
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study. Differences in y- and x-scales are partly explained by the fact that counts for Tian et al.
are summed over occurrences in all samples whereas our data counts each SV only once. Note
that all scales are logarithmic. (C) Proportion of matching nucleotides between the two terminal
repeats for TE sequences corresponding to 40 different SVs grouped by DNA TE superfamily
and by the identifier of the TE sequence they matched in the SoyTEdb database. (D) Alternate
allele frequencies of 156 SNVs located in a ~39-kb linkage disequilibrium block between
positions Gm04:2,220,398 and Gm04:2,259,326. Frequencies were computed for three different
groups of samples depending on their genotype at the TE insertion site (Gm04:2,257,090).
absent: absence of the TE insertion, which corresponds to the reference allele (71 samples);
present: presence of the 480-bp Stowaway MITE (9 samples); excised: presence of a 6-bp
insertion at the insertion site, putatively left by excision of the TE insertion (14 samples). The
locations of three SNVs whose frequency in the “present” and “excised” groups diverge are

shown with dotted vertical lines.
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