

Force-induced changes of PilY1 drive surface sensing by *Pseudomonas aeruginosa*

Shanice S. Webster¹, Marion Mathelié-Guinlet², Andreia F. Verissimo³, Daniel Schultz¹, Albertus Viljoen², Calvin K. Lee^{4,5,6}, William C. Schmidt^{4,5,6}, Gerard C. L. Wong^{4,5,6}, Yves F. Dufrene², George A. O'Toole^{1,*}

¹Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA

²Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium

³Institute for Biomolecular Targeting (bioMT), Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA

⁴Department of Bioengineering, University of California Los Angeles, CA 90095

⁵Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095

⁶California NanoSystems Institute, University of California Los Angeles, CA 90095

***Corresponding author:**

George A. O'Toole

Dept. of Microbiology & Immunology

Rm 202 Remsen Building

66 College Street

Geisel School of Medicine at Dartmouth

Hanover, NH 03755

Phone: (603) 650-1248

georgeo@dartmouth.edu

40 **Abstract**

41
42 During biofilm formation, the opportunistic pathogen *Pseudomonas aeruginosa* uses its type IV
43 pili (TFP) to sense a surface, eliciting increased second messenger production and regulating
44 target pathways required to adapt to a surface lifestyle. The mechanisms whereby TFP detect
45 surface contact is still poorly understood, although mechanosensing is often invoked with little
46 data supporting this claim. Using a combination of molecular genetics and single cell analysis,
47 with biophysical, biochemical and genomics techniques we show that force-induced changes
48 mediated by the von Willebrand A (vWA) domain-containing, TFP tip-associated protein PilY1
49 are required for surface sensing. Atomic force microscopy shows that PilY1 can undergo force-
50 induced, sustained conformational changes akin to those observed for mechanosensitive
51 proteins like titin. We show that mutation of a single cysteine residue in the vWA domain results
52 in modestly lower surface adhesion forces, increased nanospring-like properties, as well as
53 reduced c-di-GMP signaling and biofilm formation. Mutating this cysteine has allowed us to
54 genetically separate TFP function in twitching from surface sensing signaling. The conservation
55 of this Cys residue in all *P. aeruginosa* PA14 strains, and its absence in the ~720 sequenced
56 strains of *P. aeruginosa* PAO1, could contribute to explaining the observed differences in
57 surface colonization strategies observed for PA14 versus PAO1.

58

59 **Importance**

60 Most bacteria live on abiotic and biotic surfaces in surface-attached communities known as
61 biofilms. Surface sensing and increased levels of the second messenger molecule c-di-GMP are
62 crucial to the transition from planktonic to biofilm growth. The mechanism(s) underlying TFP-
63 mediated surface detection that triggers this c-di-GMP signaling cascade are unclear. Here, we
64 provide a key insight into this question: we show that the eukaryotic-like, vWA domain of the TFP
65 tip-associated protein PilY1 responds to mechanical force, which in turn drives production of a

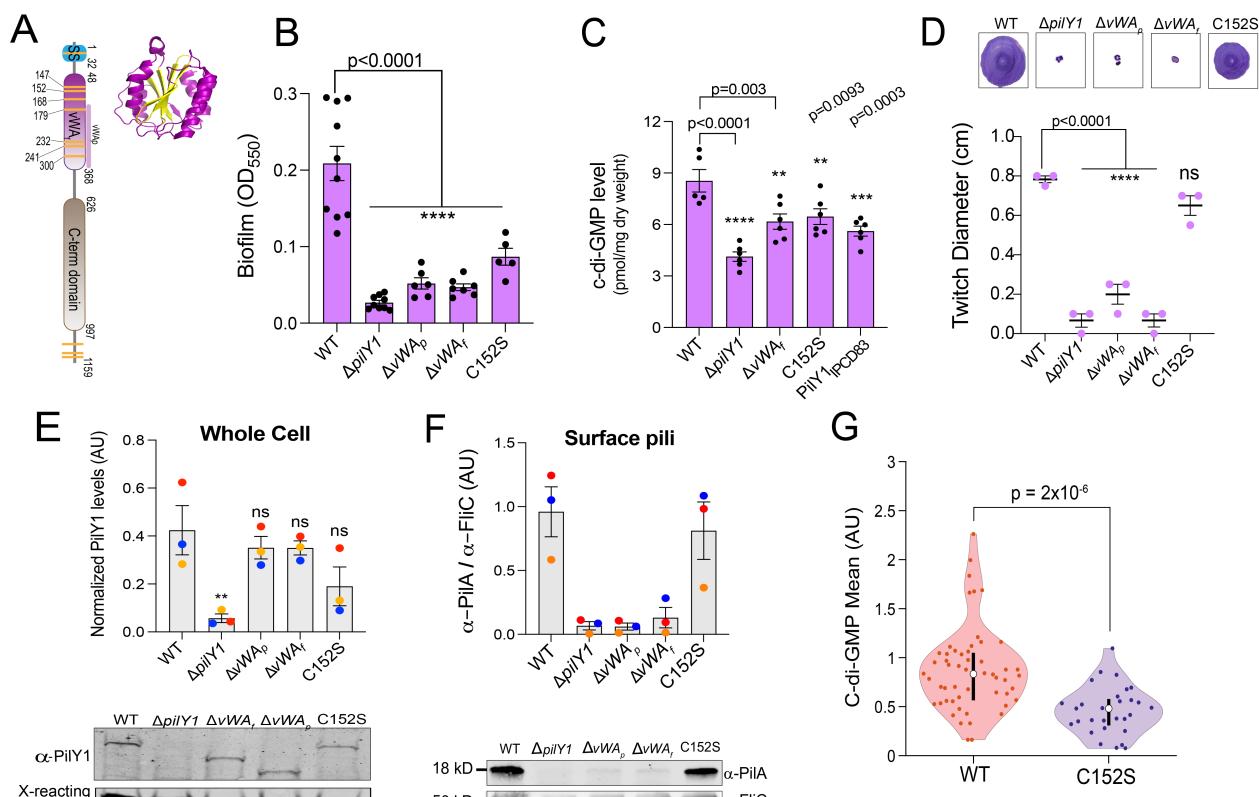
66 key second messenger needed to regulate surface behaviors. Our studies highlight a potential
67 mechanism that could account for differing surface colonization strategies.

68
69 **Introduction**
70

71 *Pseudomonas aeruginosa* is a ubiquitously distributed opportunistic pathogen that
72 encounters mechanical forces during surface sensing – a crucial first step for biofilm formation.
73 The type four pili (TFP) motility appendage is integral to surface sensing and is thought to
74 transduce a force-induced signal to the cell interior by detecting the resistance to retraction
75 when cells are surface engaged [1], activating the production of cAMP and c-di-GMP, and
76 regulating target genes that control biofilm formation [2-4]. While the importance of the TFP and
77 its tip associated protein, PilY1, in surface sensing has been proposed, direct evidence of how
78 the TFP/PilY1 sense the surface is lacking. Indeed, much of the supporting evidence of a role
79 for this appendage as a key surface sensor is deductive, or alternatively, rely on biological
80 responses or phenotypic changes that are observed during the switch from planktonic to
81 surface-attached growth. In this study, we thus take a multi-disciplinary approach to investigate
82 the mechanism whereby the TFP via the tip-associated protein, PilY1, is directly involved in
83 surface sensing.

84 PilY1 is part of the priming complex together with the minor pilins that facilitate
85 incorporation of the PilA subunits into the base of the growing pilus fiber during elongation [5, 6].
86 During polymerization, the minor pilins and PilY1 are pushed to the tip of the growing pilus.
87 PilY1 has a C-terminal domain that resembles PilC from *Neisseria gonorrhoea* and a N-terminal
88 von Willebrand A (vWA) domain (Fig. 1A) that is structurally similar to the A2 domain of the
89 human von Willebrand factor (vWF), a force sensing glycoprotein important in stopping bleeding
90 [4]. The vWA domain of PilY1 has the classical Rossmann fold – central beta sheets surrounded
91 by amphipathic alpha helices [7] – and a perfectly conserved metal ion dependent adhesion site
92 (MIDAS) containing the conserved DxSxS...T...F motif [8]. vWA domains have been reported in

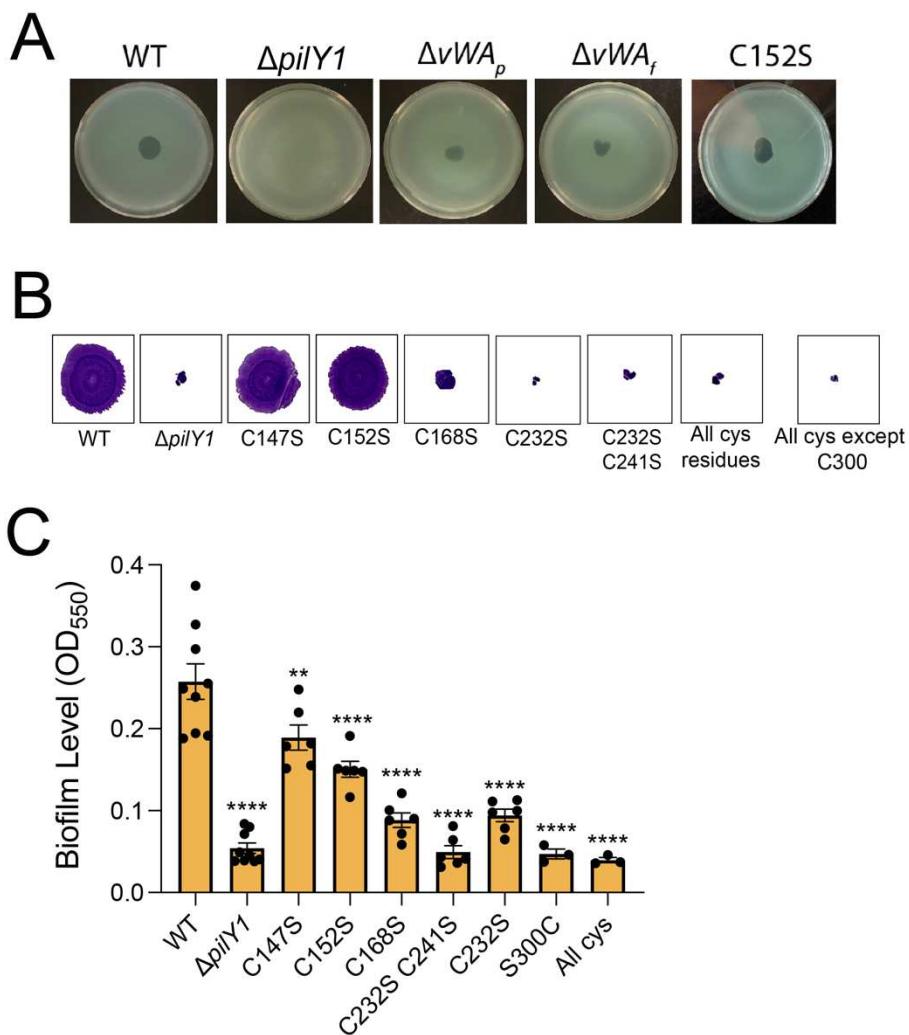
93 TFP-associated proteins from other organisms. For example, the vWA domain of the major pilin
94 in *Streptococcus agalactiae* is essential for adhesion [9] and the MIDAS motif in the vWA
95 domain of the major pilin in *Streptococcus sanguinis* has recently been shown to be important in
96 binding to eukaryotic cells [10]. Like the vWF [11], the vWA domain of *P. aeruginosa* PA14 PilY1
97 protein also has a high number of cysteine residues; seven out of the 11 cysteines in PilY1 are
98 in its vWA domain. Interestingly, during vascular damage, when exposed to high shear forces
99 due to blood flow, the vWF transitions from a globular to a stretched conformation [12, 13]. This
100 transition is thought to be mediated by a disulfide bond switch exposing specific sites that allow
101 platelets to bind [14-16]. Thus, vWF cysteine residues, depending on their redox state, are key
102 to force sensing, a property that could be hypothesized for cysteine residues in the vWA of
103 PilY1.


104 Although PilY1 is known to be important in responding to shear forces and in increasing
105 c-di-GMP levels [3, 17, 18], the precise role of its vWA domain in surface sensing and c-di-GMP
106 signaling is unclear. Our previous genetic studies show that PilY1 and the vWA domain are
107 important for surface-dependent stimulation of c-di-GMP production [3, 18]. These studies also
108 showed that while the C-terminal domain of PilY1 was dispensable for surface-dependent c-di-
109 GMP production, strains with mutations in the vWA domain failed to regulate c-di-GMP levels
110 and c-di-GMP-related behaviors [18]. Additionally, deletion of the vWA domain is shown to lock
111 PilY1 in a constitutively active signaling conformation that induces virulence independent of
112 surface attachment [4], suggesting multiple roles for the vWA domain in the surface-attached
113 biology of *P. aeruginosa*.

114 Recent cryo-electron tomography studies show the vWA domain of PilY1 to be situated at
115 the very tip of the pilus fiber [5] indicating that this domain is likely in immediate contact with the
116 surface and therefore could be directly engaged in surface sensing. Based on the similarities
117 between the human vWF and the vWA domain of PilY1, and its importance in downstream c-di-

118 GMP signaling, we hypothesized that force-induced conformational changes originating from the
119 vWA domain of PilY1 are mediated by conserved cysteine residues within this putative
120 mechanosensing domain, and together these features of PilY1 are critical for surface sensing.
121 We explore these hypotheses here.

122
123 **Results**

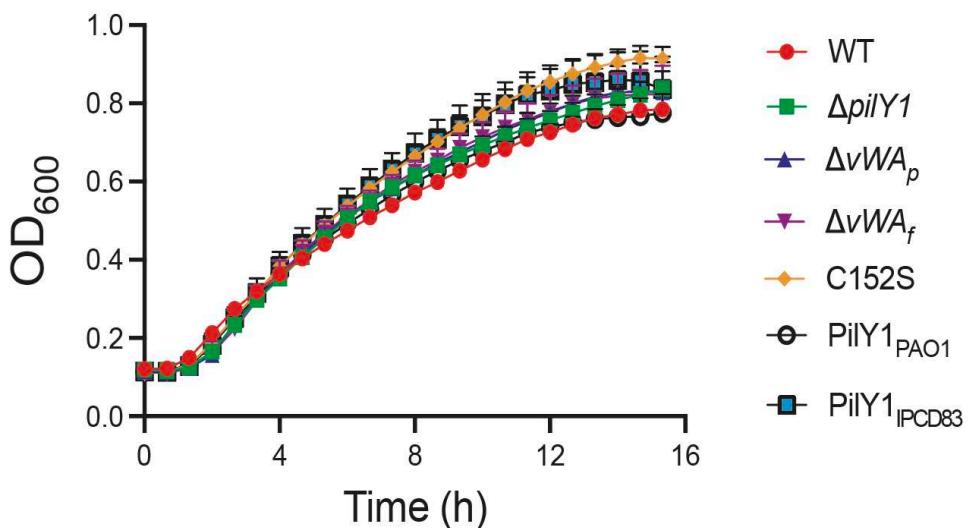

124 **The von Willebrand A (vWA) domain of PilY1 regulates c-di-GMP levels and biofilm
125 formation.** To address the role of the vWA domain of PilY1 in surface sensing and c-di-GMP
126 signaling, we made chromosomal deletions that removed a part (ΔvWA_p) or the full (ΔvWA_f , **Fig.**
127 **1A**) vWA domain, then performed static biofilm assays and measured global levels of c-di-GMP
128 (**Fig. 1B and C**). Our bulk assays show that both the ΔvWA_p and ΔvWA_f variants resulted in a
129 significant decrease in biofilm formation and reduction in global c-di-GMP levels (as seen for the
130 ΔvWA_f variant) as compared to WT. These vWA variants also resulted in no twitching motility
131 (**Fig. 1D**). To confirm these twitch phenotypes, another more sensitive assay was used based
132 on the lysis of the host cells *P. aeruginosa* PA14 by the lytic DMS3_{vir} phage, which specifically
133 targets the TFP and also requires retraction of surface-expressed pili for infection [19]. Strains
134 carrying the ΔvWA_p and ΔvWA_f variants showed partial zones of clearing in a phage plaquing
135 assays (**Fig. S1A**), indicating that these strains retained some TFP function. To further ensure
136 that the decrease in biofilm formation and reduced c-di-GMP levels were not due to protein
137 instability, we examined steady state levels of the vWA variants in whole cell extracts. Both the
138 ΔvWA_p and ΔvWA_f PilY1 variants were stable and showed a non-significant reduction in whole
139 cell levels as compared to WT (**Fig. 1E**). However, little surface pili could be detected in the
140 strains expressing the ΔvWA_p and ΔvWA_f variants (**Fig. 1F**), which likely explains the lack of full
141 pilus function observed in the twitch assays (**Fig. 1D**). The presence of plaques (**Fig. S1A**),
142 however, indicates that there are some surface pili, a finding consistent with our Western blots
143 (**Fig. 1F**).

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

Figure 1. The von Willebrand A (vWA) domain and Cys152 residue of PilY1 are important for regulating c-di-GMP levels and biofilm formation. **A.** Schematic showing domain organization of the PilY1 protein. The signal sequence (SS – blue, amino acids 1-32), vWA domain (pink, amino acids 48-368) and C-terminal domain (brown, amino acids 626-997) are highlighted. vWA_p (amino acids S168-S365) denotes a portion of the vWA domain that is deleted in a mutant analyzed in the subsequent panels. Yellow stripes represent the cysteines residues present in the protein. The vWA domain contains seven of the 11 cysteine residues present in the full length PilY1 protein with the SS and the C-terminal region having one and three cysteine residues, respectively. Inset: Ribbon diagram showing the vWF A2 domain (PDB 3GXB). The domain shows a classical Rossmann fold [7], comprised of central β -sheets (yellow) surrounded by α -helices (purple). **B.** Biofilm formation measured at OD₅₅₀ for WT, the Δ pilY1 deletion mutant, the vWA variants, and the Cys152S mutant in a static 96 well biofilm assay performed in M8 medium salts plus supplements (see Materials and Methods) and incubated at 37 °C for 24 h. vWA_p (amino acids 178-365, see panel A) and vWA_f indicate a partial and full deletion (amino acids 48-368) of the vWA domain, respectively. Data are from at least five biological replicates each with eight technical replicates. **C.** Quantification of global c-di-GMP levels by mass spectrometry for WT and the indicated mutants shown in picomole per milligram dry weight. Cells were grown on 0.5% agar plates prepared with M8 medium salts plus supplements, then scraped from the plates after incubation for 37 °C for 14-16 h. Data are from six biological replicates each with two technical replicates. **D.** Twitch diameter (cm) for WT and the indicated mutants measured after inoculating LB plates from overnight cultures, then incubating the plates for 24 h at 37 °C plus an additional day at room temperature. Representative images of twitch zones are shown above the graph. Data are from three biological replicates. **E.** Quantification of normalized PilY1 protein levels in whole cell (in arbitrary units (AU)) for WT and the indicated mutants. Cells were sub-cultured from an overnight culture and grown to mid-log phase in M8 medium salts plus supplements and normalized to the same OD₆₀₀ value. Protein levels in whole cell extracts are normalized to a cross-reacting band at ~60 kDa, which is used as an additional loading control. The Cys152S mutant shows a modest but not significant reduction in level in whole cell extracts. A representative Western blot image for PilY1 and the cross-reacting band are shown below the graph. **F.** Quantification of normalized surface pili levels. PilA (~18 kDa) protein levels are used as a surrogate for surface pili levels, which are normalized to levels of the flagellar protein, FliC (~50 kDa). A representative Western blot is shown below the graph. All Western blot data are from three biological replicates in three independent experiments. Dots with the same color represent the same biological replicate; different colors indicate different biological replicates. p values: p \leq * 0.05, ns, not significant. All error bars in Figure 1 are

174 standard error of the mean (SEM) and statistical significance was determined by one-way ANOVA and a Dunnett's
175 post-hoc test, p-values: $p \leq \text{****} 0.0001$, $p \leq \text{***} 0.001$, $p \leq \text{**} 0.01$, ns, not significant. **G.** Violin plots showing the
176 mean c-di-GMP of the WT strain and a strain expressing the vWA-Cys152S PilY1 variant during early biofilm
177 formation. c-di-GMP level was quantified from GFP intensity determined on a cell-by-cell basis in a microfluidic
178 chamber carrying the P_{cdtA} -GFP construct, which is a reporter of c-di-GMP levels. NOTE: The WT data shown here
179 was first reported in a previous publication [20]; each strain analyses is done independently, in the same system and
180 medium, with the same microscope at identical settings and processed as reported [20]. Given that each analysis is
181 independent but performed identically, we can compare data from previous studies. Each data point represents one
182 tracked cell through an entire division cycle. Statistical significance was determined using the Kruskal-Wallis test, p
183 $= 2 \times 10^{-6}$.

Figure S1. Partial functionality of vWA variants and phenotypic analysis of other cysteine vWA mutants. A. Plaques assay with phage DMS3_{vir} versus the WT and the indicated mutants as hosts. Zones of clearing shown for WT and the strain expressing the vWA-Cys152S mutant protein are similar, which indicates a similar degree of TFP function. The $\Delta p i l Y 1$ mutant serves as the negative control. **B.** Representative images of twitch zones stained with crystal violet shown for WT, the $\Delta p i l Y 1$ or strains expressing PilY1 variants with point mutations in the Cys residues in the vWA domain following incubation at 37 °C for 24 h plus one additional day at room temperature. Twitching serves as a measure of TFP function. **C.** Biofilm level measured at OD₅₅₀ for WT and the mutants shown in panel B using the 96 well static biofilm assay after 24 hrs at 37 °C, as described in the Materials and Methods.


227 **The Cys152 residue of the vWA domain is important for promoting biofilm formation and**
228 **regulating c-di-GMP levels.** Multimerization and conformational changes required for function
229 in blood clotting by the human vWF are mediated by cysteine residues [15, 16, 21]. Shear
230 forces due to blood flow during vascular damage have been shown to induce disulfide bond
231 cleavage, which results in the protein adopting a new, stretched conformation [21, 22]. Inspired
232 by these studies and the high number of cysteines in the vWA domain of PilY1 (**Fig. 1A**), we
233 hypothesized that one or more cysteines in the vWA domain of PilY1 might be important for
234 mediating conformational changes in PilY1 and/or the pilus fiber that could in turn impact
235 surface sensing and downstream c-di-GMP signaling. To test this hypothesis, we performed
236 targeted mutagenesis of the cysteine residues in the vWA domain of PilY1 with the aim of
237 identifying one or more of these residues that impact biofilm formation but still retain TFP
238 function as assessed by twitching assays. In all cases, the mutations were introduced into the
239 chromosomal copy of the *pilY1* gene, thus the mutants were expressed under the native *pilY1*
240 promoter and in their native chromosomal context. Of the seven individual and combination
241 cysteine residues mutated, five resulted in decreased biofilm formation but no twitching motility
242 (**Fig. S1B and S1C**). However, two residues, when mutated (vWA-C147S and vWA-Cys152S)
243 displayed decreased biofilm formation but retained twitching motility (**Fig. 1B, D** and **Fig. S1B**).
244 Because the vWA-Cys152S mutation yielded the stronger biofilm phenotype, we focused on this
245 mutant for all subsequent analyses.

246 We next measured c-di-GMP levels globally and on a cell-by-cell basis for the strain
247 expressing the vWA-Cys152S variant. Compared to WT, the vWA-Cys152S mutant showed
248 significantly reduced levels of c-di-GMP based on bulk measurements of cell extracts and on a
249 single-cell basis (**Fig. 1C** and **Fig. 1G**, respectively). Note: the WT data shown in the single cell
250 data (**Fig. 1G**) was first reported in a previous publication [20]. Analyses of WT and vWA-
251 Cys152S were done independently, in the same system and medium, analyzed with the same

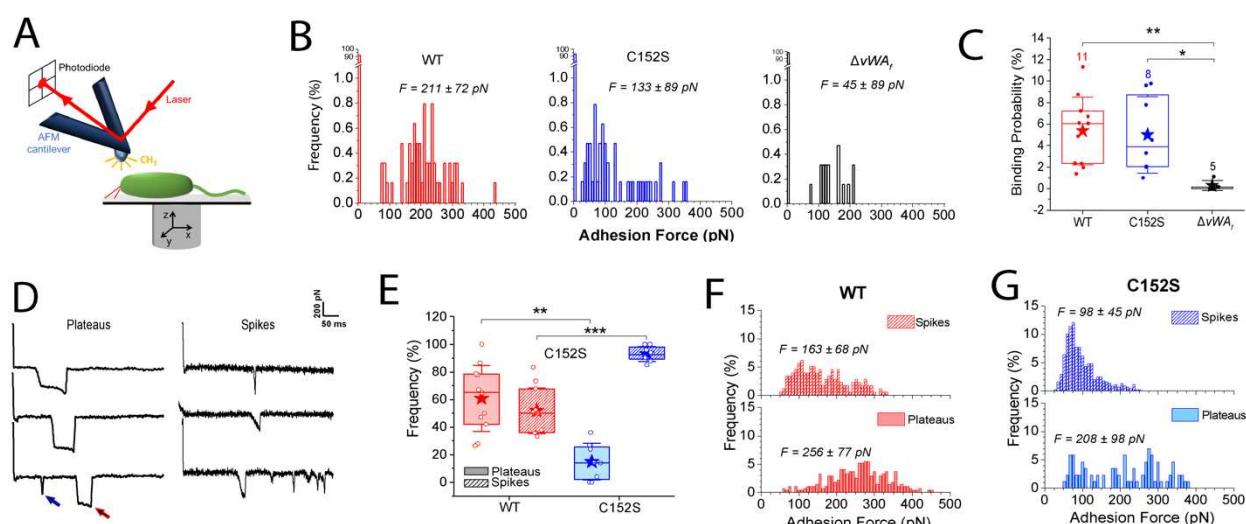
252 microscope at identical settings and processed as reported [20]. Given that each investigation is
253 independent but performed identically, it allows us to compare data from this previous report.

254 Given the similar levels of twitching motility for the strain carrying the vWA-Cys152S
255 mutant and the WT, we predicted that this point mutation would yield a stable PilY1 protein.
256 Western blot studies of whole cells showed that the vWA-Cys152S variant is stable and shows
257 a modest but non-significant reduction in protein levels as compared to WT PilY1 (Fig. 1E).
258 Additionally, surface pili levels for the strain expressing the vWA-Cys152S mutant protein are
259 comparable to WT (Fig. 1F). These results are consistent with the vWA-Cys152S mutant
260 showing similar levels of twitching motility (Fig. 1D) and plaque formation (Fig. S1A) compared
261 to WT. Of note, none of the observed phenotypes are due to differences in growth rates as the
262 vWA-Cys152S strain along with all vWA mutants used in this study have the same growth
263 kinetics as WT (Fig. S2).

264

265

266 **Figure S2. Growth curves for WT and the strains expressing the PilY1 variants.** Growth assays were performed
267 in M8 minimal salts medium supplemented with casamino acids, glucose and magnesium sulfate. This medium was
268 also used for all macroscopic biofilm assays, c-di-GMP measurements, plaquing assays and AFM studies. The data
269 are from three biological replicates each with two technical replicates. There is no significant difference among the
270 growth kinetics of each strain. Error bars show SEM and statistical significance was determined at each time point
271 using one-way analysis of variance (ANOVA) using multiple comparisons test.

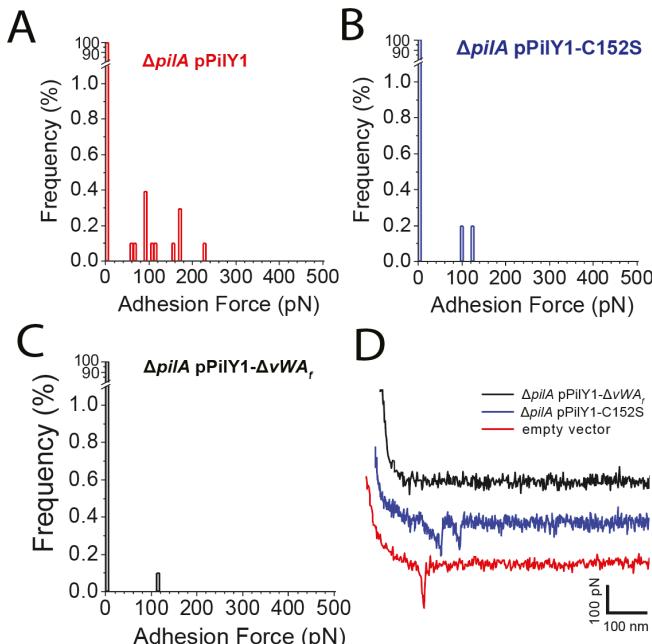

272 **The vWA-Cys152S variant of PilY1 is associated with lower surface adhesion**

273 **forces and altered force-induced behaviors.** In light of the key role of the vWA domain in
274 biofilm formation and c-di-GMP regulation, we next sought to investigate the different surface
275 adhesion behaviors of *P. aeruginosa* strains expressing WT PilY1, or the PilY1 variants with the
276 ΔvWA_f or the vWA-Cys152S mutations. To this end, we used atomic force microscopy (AFM), a
277 powerful multifunctional technique that has been instrumental in deciphering the adhesion and
278 nanomechanical properties of bacterial pili, at the single-cell and single-molecule levels [23-25].
279 More specifically, we recorded the force experienced by a hydrophobic AFM tip when probed
280 against the TFP of surface engaged bacterial cells as a function of the tip-sample surface
281 distance (**Fig. 2A**). From the resulting force-distance curves, binding probability and adhesion
282 forces were determined on multiple living cells. As illustrated in the representative force
283 histograms (**Fig. 2B**), the vWA-Cys152S mutant showed a lower adhesion force than WT cells
284 ($F = 133 \pm 89$ pN and 211 ± 72 pN respectively, $p < 0.001$), indicating that the Cys152S mutation
285 impacts the interaction strength. However, both WT and vWA-Cys152S PilY1 cells showed a
286 similar binding probability to the hydrophobic AFM tip (**Fig. 2C**), a result that is consistent with
287 both strains having similar levels of surface pili (**Fig. 1G**). Cells with the full deletion of the vWA
288 domain (ΔvWA_f) showed an ~0% binding probability (**Fig. 2C**) to the hydrophobic tip and a low
289 adhesion force (~45 pN, **Fig. 2B**), likely due to a low number of surface pili (**Fig. 1F**). These
290 data suggest that the observed force curves are dependent on the TFP-associated PilY1.

291 For cells expressing the WT PilY1 and the vWA-Cys152S variant, which both showed
292 adhesion to the hydrophobic AFM tip, two distinct adhesive behaviors were observed, plateaus
293 (red arrow) and spikes (blue arrow; **Fig. 2D**). Plateaus are defined as adhesive events with a
294 “step” behavior, that is, a constant sustained force over a defined length of time, while spikes
295 are defined as sharp adhesive events with a single minimum and are reflective of a nanospring
296 behavior [25]. Plateaus and spikes are not mutually exclusive in their appearance and

297 frequency. Cells expressing WT PilY1 or the vWA-Cys152S variant showed plateaus and
 298 spikes, however, the frequency of these behaviors differed significantly between the strains
 299 (**Fig. 2E**). Cells expressing the WT PilY1 had a similar proportion of plateaus (~61%) and spikes
 300 (~52%; the sum can be >100% because some force curves can have both features). In contrast,
 301 cells expressing the vWA-Cys152S mutant of PilY1 showed a significantly lower frequency of
 302 plateaus (~15% compared to ~61% for the WT) and a much higher frequency of spikes (~93%
 303 compared to ~52% for the WT; **Fig. 2E**). These data indicate that a single point mutation in the
 304 PilY1 vWA domain can have a marked impact on the cell's mechanical behavior.

305 Finally, the magnitude of the adhesive signatures for both spikes and plateaus were higher
 306 for cells with WT PilY1 than those cells expressing the vWA-Cys152S variant (**Fig. 2F** and **G**),
 307 consistent with the observation that cells expressing WT PilY1 can sustain globally higher
 308 adhesive forces than the cells expressing the vWA-Cys152S mutant (**Fig. 2B**). Interestingly, for
 309 both strains the observed plateau forces are higher than those observed for the spikes, which,
 310 along with the higher frequency of plateaus observed in WT PilY1, also explains the higher forces
 311 sustained by the WT cells.

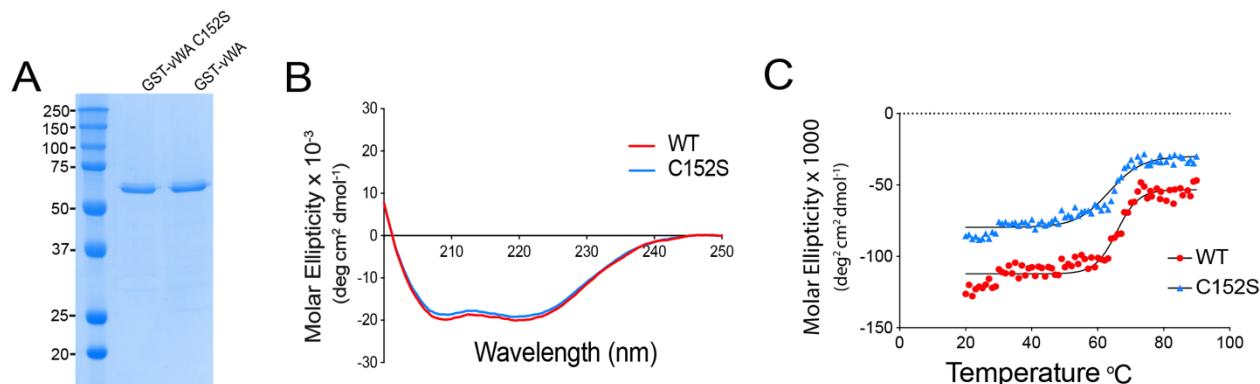


312 **Figure 2. Strains expressing the PilY1-Cys152S mutation display less adhesion force and altered mechanical**
 313 **behaviors compared to strains expressing the WT PilY1.** A. Scheme of the AFM setup showing that piliated *P.*
 314 *aeruginosa* is probed with a hydrophobic AFM tip at the free end of the AFM cantilever. Adhesive interactions
 315 occurring between the pilus/cell body and the AFM tip cause a deflection of the cantilever, directly proportional to
 316 force, which is recorded by a laser beam focused at the AFM tip's free end and reflected back to a photodiode. B.

317 Adhesion force histograms between the hydrophobic AFM tip and a representative WT strain, or strains expressing
318 the Cys152S or ΔvWA_f variants of PilY1. For WT: 211 ± 72 pN (n = 55 adhesive curves); for the vWA-Cys152S:
319 133 ± 89 pN (n = 47) and for the ΔvWA_f : 45 ± 89 pN (n = 16). **C.** Box plots comparing the binding probability of
320 cells expressing the WT PilY1 or of strains expressing the Cys152S or ΔvWA_f variants of PilY1 are shown. The
321 number of probed cells is indicated. Stars are the mean values, lines the medians, boxes the 25-75 % quartiles and
322 whiskers the standard deviation (SD). Student t-test: * $p \leq 0.05$, ** $p \leq 0.01$. **D.** Representative retraction force
323 profiles exhibited by the WT or Cys152S mutant cells sorted based on their shape. Plateaus are defined as adhesive
324 events with a “step” behaviour, i.e., a constant sustained force over a defined length of time while spikes are defined
325 as sharp adhesive events with a single minimum. A single retraction profile can feature several plateaus (red arrow),
326 spikes (blue arrow) and even both signatures can occur as marked by the arrows. **E.** Box plots comparing the
327 occurrence of plateaus (shaded) or spikes (striped) signatures for the WT and Cys152S mutant cells. The number of
328 probed cells is as described in panel C. For the WT, plateaus = 60.8 ± 24.0 % and spikes = 51.9 ± 16.6 %, n = 11,
329 and for Cys152S, plateaus = 14.9 ± 13.3 % and spikes = 93.1 ± 5.4 %, n = 8. Stars are the mean values, lines the
330 medians, boxes the 25-75% quartiles and whiskers the SD. Student t-test: ** $p \leq 0.01$, *** $p \leq 0.001$. **F** and **G**.
331 Distribution of the adhesion forces exhibited by either the plateaus or the spikes for the WT (**F**) or the strain carrying
332 the Cys152S mutant of PilY1 (**G**). The mean values are provided along with the histograms. All data were obtained
333 by recording force-distance curves in medium containing M8 salts with an applied force of 250 pN and a pulling
334 speed of $5 \mu\text{m/s}$ at room temperature.
335

336 Our data above indicate that the observed adhesive forces as well as the plateau and
337 spike signatures observed for strains expressing WT PilY1 protein versus the vWA-Cys152S
338 mutant protein were dependent PilY1 and its vWA domain. We next asked where these force
339 profiles were dependent of the TFP. Because PilY1 is cell-surface-associated and can be
340 secreted to the cell-surface independent of the TFP machinery [3], we expressed plasmid-borne
341 WT PilY1 and the vWA-Cys152S mutant protein in a $\Delta pilA$ background, lacking the full pilus
342 fiber, and performed AFM experiments. Both strains expressing the WT PilY1 protein and the
343 vWA-Cys152S mutant protein showed little adhesion to the hydrophobic tip (binding probability
344 < 1%; **Fig. S3A-C**). The scarce adhesive events recorded for the strains expressing these
345 proteins in the $\Delta pilA$ background were significantly lower than those exhibited when the pilus
346 was present, and plateau signatures were never observed (**Fig. S3D**). Instead, typical receptor-
347 ligand signatures were recorded, resembling a spike signature, but with very short rupture
348 length consistent with the length of the protein that is stretched while the AFM tip retracts away
349 from the bacterium (**Fig. S3D**). Together, the genetic and AFM data support the hypothesis that
350 the adhesive forces measured, as well as the plateaus and spikes signatures exhibited by the

351 strains expressing the WT PilY1 protein and the vWA-Cys152S mutant protein, are due to both
352 PilY1 plus the pilus fiber.
353



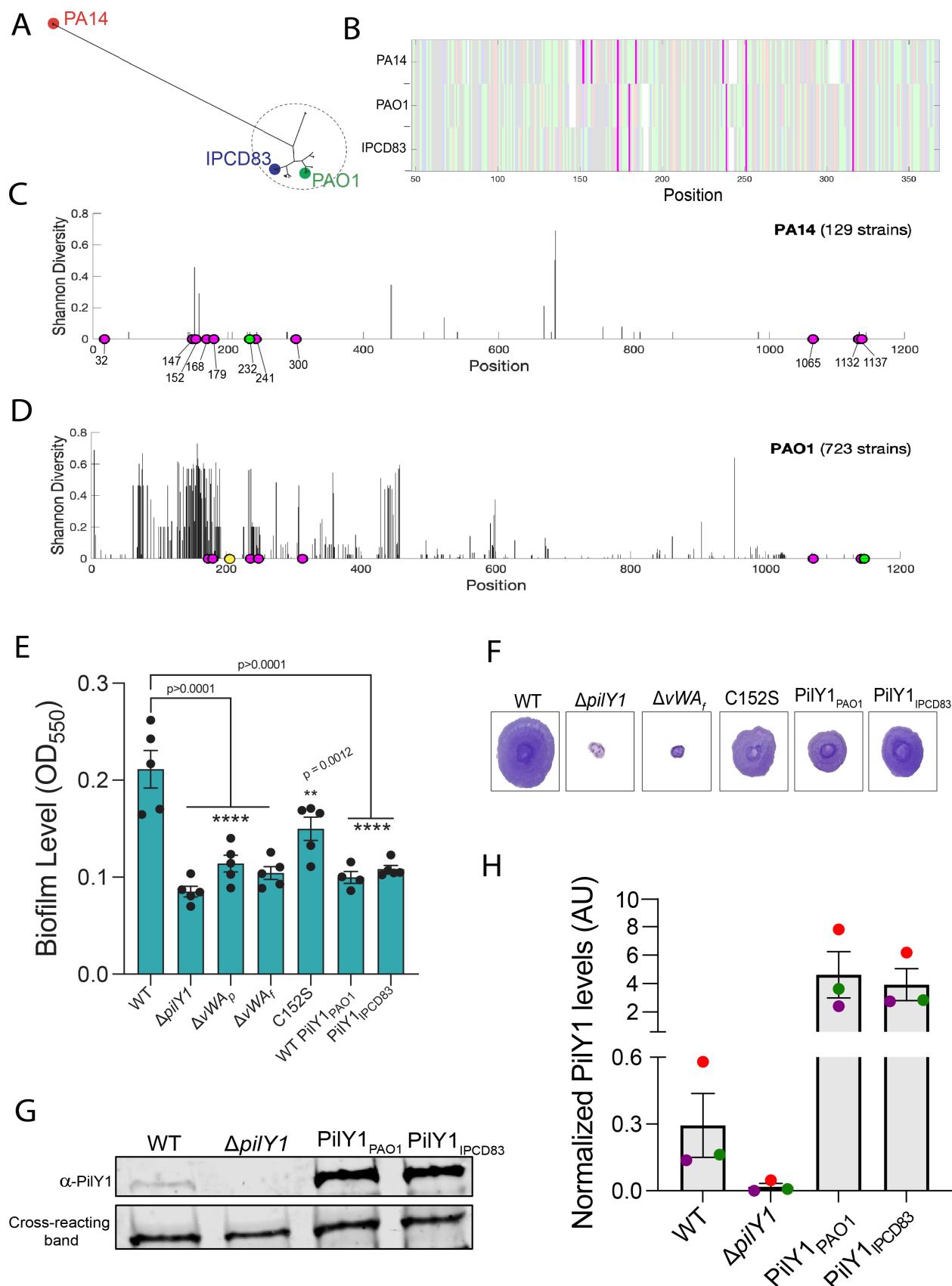
354
355 **Figure S3. The pilus fiber is required for adhesion to a surface. A-C.** Adhesion force histograms obtained by
356 recording force-distance curves between the hydrophobic cantilever tip and representative $\Delta pilA$ /pPilY1 (**A**),
357 $\Delta pilA$ /pPilY1-Cys152S (**B**) and $\Delta pilA$ /pPilY1- ΔvWA (**C**) cell. **D.** Representative retraction force profiles shown for
358 the same strains.
359

360 **The vWA-Cys152S mutation has a negligible impact on the solution conformation of the**
361 **vWA domain.** Given our findings of the significant difference in mechanical behaviors observed
362 for the strains expressing the WT PilY1 protein and the vWA-Cys152S mutant protein when these
363 strains are engaged with a surface and thus under mechanical tension, we next determined
364 whether this single cysteine mutation affected the conformation of purified, isolated vWA domain
365 of PilY1 in solution. We focused on the vWA domain because despite attempts with several
366 different expression systems, we were unable to purify stable, full-length PilY1 or the N-terminal
367 domain of this protein. We cloned WT vWA and vWA-C152S domains (aa 30-369) as glutathione-
368 S-transferase (GST) fusion proteins to enhance stability and facilitate purification. A GST domain
369 and a HRV-3C protease cleavage site were added to the N-terminus of vWA and the resulting

370 fusion proteins were overexpressed in *E. coli* cells and purified to homogeneity (**Fig. 3A**). The
371 HRV-3C protease cleavage site was confirmed by sequencing. Unfortunately, repeated attempts
372 to efficiently cleave the GST domain from the vWA proteins with protease HRV 3C were
373 unsuccessful, perhaps due to steric occlusion of the protease binding site in the purified proteins.
374 Thus, the studies below were done using GST-vWA fusion proteins.

375 We performed far-UV circular dichroism (CD) spectroscopy to determine the secondary
376 structure of the WT and mutant fusion proteins and to assess the thermal stability of WT-vWA
377 and the vWA-Cys152S variants (**Fig. 3B** and **3C**). Far-UV CD spectra of the GST-WT-vWA and
378 GST-vWA-Cys152S fusion proteins were monitored at wavelength scans between 195 and 250
379 nm. Both WT and mutant spectra showed the presence of two distinct negative peaks centered
380 at 208 and 222 nm, typical of α -helical proteins (**Fig. 3B**). Overall, the dichroic spectra for GST-
381 WT-vWA and GST-vWA-Cys152S were similar. Measuring CD as a function of temperature can
382 be used to determine the effects of mutations on protein stability. Analysis of the ellipticity curves
383 in the range of 20 to 90 °C showed the melting temperatures of GST-WT-vWA and GST-vWA-
384 C152S fusion variant to be similar (65.8 versus 63.5 °C; **Fig. 3C**), suggesting that the C152S
385 mutation did not perturb the secondary structure of the domain in solution (i.e., in the absence of
386 mechanical force).

387 **Figure 3. vWA-C152S mutation does not substantially alter conformation of the vWA domain.** A. Coomassie
388 Blue-stained SDS-PAGE of ~ 1 μ g of purified wild-type GST-vWA and GST-vWA-C152S fusion proteins
389 expressed from a pGEX plasmid backbone and purified from *E. coli* BL21-DE3 cells as detailed in the Materials and


390 Methods. The molecular weight markers are indicated. **B.** Far-UV Circular dichroism (CD) spectra shown in molar
391 ellipticity for the WT GST-vWA (red line) and GST-vWA-C152S mutant (blue line) between 195 and 250 nm at 20
392 °C. **C.** Curves of ellipticity at 208 nm wavelength as a function of temperature for WT and mutant fusion proteins.
393 Spectra were recorded for each sample from 20 to 90 °C in 1 °C increments. Curves were fitted to a Boltzmann
394 sigmoidal equation and the V_{50} value was determined (65.8 versus 63.5 °C for GST-WT-vWA and GST-vWA-
395 C152S fusion variant, respectively).
396

397 **Genomic analyses reveal that PAO1 strains lack the vWA-C147 and vWA-Cys152 cysteine
398 residues that are present in PA14 strains, with associated functional consequences.**

399 Given our findings that cells expressing the vWA-Cys152S mutation impact surface sensing, c-
400 di-GMP levels and biofilm formation (**Fig. 1B-C, Fig. S1B**) in *P. aeruginosa* PA14, we analyzed
401 whether the Cys152 residue was conserved across *P. aeruginosa* strains. We leveraged PilY1
402 sequences from the international *P. aeruginosa* consortium database (IPCD), a repository for
403 thousands of *P. aeruginosa* isolates from a diverse range of environments [26]. We analyzed
404 the phylogenetic relationship of PilY1 amino acid sequences from a total of 852 *P. aeruginosa*
405 genomes and found two distinct clades, PA14 (red dot) and PAO1 (dashed circle; **Fig. 4A**),
406 largely consistent with a previous report by Levesque and colleagues [26]. The PilY1 sequence
407 from the strain, IPCD83 (blue dot), falls within the PAO1 clade. Alignment of the amino acid
408 sequences of the vWA domain of PilY1 from the PA14, PAO1 and the IPCD83 strains show that
409 five of the seven cysteines (magenta) in the vWA domain of PA14 are highly conserved in
410 PAO1 and IPCD83, although the spacing of the residues varies in some cases (**Fig. 4B**). All
411 three domains consist of positive, negative, polar and hydrophobic amino acids shown in red,
412 blue, green and grey, respectively. Of note is the high abundance of polar residues in the vWA
413 domains of all three strains.


414 To examine the amino acid diversity of the PilY1 sequences in the PA14 and PAO1
415 clades, we computed Shannon diversity index as a measure of sequence diversity (**Fig. 4C** and
416 **4D**). We aligned PilY1 sequences within the PA14 (**Fig. 4C**) and PAO1 (**Fig. 4D**) clades and
417 calculated Shannon diversity at each amino acid position.

418 As shown in Figure 4C, there is very little amino acid sequence diversity over the entire
419 PilY1 sequence among the 129 isolates with PA14 versions of PilY1. Interestingly, all strains in
420 the PA14 clade except one contain the 11 cysteines (magenta circles) found in the PA14
421 reference strain (**Fig. 4C**). Furthermore, each isolate had all seven cysteines in the vWA domain
422 while there was one strain missing vWA-C232 residue (green circle; a residue we found critical
423 for TFP-mediated twitching motility, **Fig. S1B**). In contrast to the PA14 clade, strains within the
424 PAO1 clade showed low diversity at the C-terminal domain (amino acid 626-997) and high
425 amino acid diversity in the vWA domain (amino acid 48-368; **Fig. 4D**). Additionally, of the 723
426 variants of the PilY1 sequences from the PAO1 clade analyzed, only eight cysteines were highly
427 conserved compared to the 11 highly conserved cysteines for the PA14 strains. The vWA
428 domain of the PAO1 clade contains five of the seven conserved cysteines found in the PA14
429 clade. Interestingly, vWA-147 and vWA-Cys152 residues are not present in any of the PAO1
430 strains, including the IPCD83 isolate. Recall, that we showed that both vWA-C147 and vWA-
431 Cys152 residues are important in c-di-GMP signaling, and mutations in these residues resulted
432 in strains with decreased biofilm formation but retaining twitching motility (**Fig. 1B** and **Fig.**
433 **S1B**).

435 **Figure 4. Comparative genomic analyses reveal sequence and functional differences between PA14 and PAO1**
436 **alleles of PilY1.** **A.** Phylogenetic tree of PilY1 amino acid sequences obtained from the IPCD database of *P.*
437 *aeruginosa* genomes [26] showing two distinct clades of PilY1 sequences corresponding to strains from the previously
438 determined *P. aeruginosa* PA14 and PAO1 clades. The strain labeled IPCD83 is an isolate within the PAO1 clade. **B.**
439 Alignment of the vWA domain (48 to 368) of PilY1 proteins found in PA14, PAO1 and IPCD83 strains, with cysteines
440 highlighted in magenta. Positive, negative, polar and hydrophobic amino acids are depicted in red, blue, green and
441 grey, respectively. **C.** Shannon diversity index along the PilY1 amino acid sequence for the 129 PilY1 proteins
442 belonging to the PA14 clade. Fully conserved cysteines are highlighted in magenta. One strain is missing the cysteine
443 depicted in green. **D.** Shannon diversity index along the PilY1 amino acid sequence for the 723 versions of PilY1
444 proteins belonging to the PAO1 clade. Fully conserved cysteines are highlighted in magenta. One strain is missing the
445 cysteine depicted in green, and one strain has an extra cysteine depicted in yellow. **E.** Biofilm formation measured at
446 OD₅₅₀ in a static 96 well assay for the indicated strains. Hybrid *P. aeruginosa* PA14 strains carry the PilY1 protein
447 from PAO1 (PilY1_{PAO1}) or the PilY1 protein from IPCD83 strain (PilY1_{IPCD83}) replacing the coding region for the *P.*
448 *aeruginosa* PA14 PilY1 protein. In all cases, the mutant PilY1 variants are expressed from the native locus of *P.*
449 *aeruginosa* PA14. Error bars are SEM and statistical significance shown was determined by one-way ANOVA and a
450 Dunnett's post-hoc test. p values: p ≤ **** 0.0001, p ≤ *** 0.001, p ≤ ** 0.01, ns, not significant. **F.** Representative
451 images of twitch zones shown for the indicated strains. **G.** Representative Western blot image for steady state PilY1
452 protein levels in whole cells WT PilY1, ΔpilY1, PilY1 from PAO1 (PilY1_{PAO1}) and PilY1 variant from strain IPCD83
453 (PilY1_{IPCD83}). **H.** Quantification of normalized PilY1 protein levels from whole cells for strains shown in G. Protein
454 level is normalized to a cross-reacting band at ~60 kDa. Data are from three biological replicates in three independent
455 experiments. Dots with the same color represent the same biological replicate; different colors indicate different
456 biological replicates.
457

458 Given the biofilm phenotype of the strain expressing the vWA-Cys152 variant of PilY1
459 (**Fig. 1B** and **Fig. S1B**) and the role of PilY1 in early biofilm formation and c-di-GMP signaling,
460 we expected that loss of the vWA-Cys152 residue in strains from the PAO1 clade, including
461 IPCD83, should result in similar phenotypes. To test this hypothesis, we cloned the *pilY1* gene
462 from the IPCD83 isolate (PilY1_{IPCD83}) or the WT PAO1 strain (WT PilY1_{PAO1}) into the native locus
463 of the reference PA14 strain and performed static biofilm assays. Like the vWA-Cys152S
464 mutation, both PAO1 variants expressed in the PA14 strain resulted in significantly decreased
465 levels of biofilm formation as compared to WT (**Fig. 4E**). Quantification of c-di-GMP levels for
466 PilY1_{IPCD83} showed a significant decrease in c-di-GMP level (**Fig. 1C**). Additionally, both the
467 PilY1_{PAO1} and PilY1_{IPCD83} variants still supported twitching motility at a level that is similar to the
468 vWA-Cys152S mutant protein (**Fig. 4F**). The PilY1_{PAO1} and PilY1_{IPCD83} variants showed levels of
469 PilY1 expression that exceed the WT (**Fig. 4G** and **Fig. 4H**), indicating that the observed
470 phenotypes were not due low-level expression of these variants.
471

472
473 **Figure 5. Proposed model for force-induced mechanical force drive transition from planktonic to**
474 **irreversible attachment.** Planktonic bacteria interact with the surface and increase cAMP levels and
475 surface pili levels. The proposed PilY1-PilO interaction can in turn drive the documented PilO-SadC
476 signal transduction cascade which stimulates c-di-GMP signaling and increased biofilm formation.

477

478

479 **Discussion**

480

481 Our data show that force-induced changes mediated by one or more cysteine residues
482 in the vWA domain of the TFP tip-associated protein, PilY1, are required for surface sensing
483 and downstream c-di-GMP signaling and biofilm formation. The concept of mechanical force
484 inducing protein conformational changes, that these changes are modulated by disulfide bonds
485 and that such changes in conformation are required for function is well studied in the eukaryotic
486 proteins, titin and vWF. Titin undergoes cycles of folding and refolding that allows it to function
487 as a molecular spring during cycles of muscle relaxation and contraction, respectively [27, 28].
488 When force is applied, the immunoglobulin (Ig) domains of titin unfold and extend [29]. Similarly,
489 increased shear forces due to blood flow cause the vWF to transition from a globular to a
490 stretched conformation [30]; this stretched conformation allows the vWF to bind to platelets and
491 form a clot at sites of vascular damage [31]. Furthermore, the folding and refolding events
492 observed for titin and vWF are mediated by disulfide bonds [32, 33]. For titin, oxidation of the
493 disulfide bond greatly increases both its speed and magnitude of folding [34] while the redox
494 state of the disulfide bond in the A2 domain of the vWF determines exposure of platelet binding

495 sites [21]. Additionally, disulfides bonds in FimH, the adhesin on the type-I pilus in *E. coli* [35],
496 are essential for adhesion under high flow environments [36].

497 The vWA domain of PilY1 in *P. aeruginosa* PA14 has seven cysteine residues. Our
498 genetic analyses show that two of these residues, vWA-Cys152 and to a lesser extent vWA-
499 Cys147, are critical for PilY1-dependent surface signaling and biofilm formation. Our AFM
500 studies support the conclusion that strains expressing the vWA-Cys152S mutant results in cells
501 that are still capable of surface attachment at the same frequency as the WT, and furthermore,
502 this mutation does not destabilize the PilY1 protein. Using AFM, we show that the WT cells
503 display spike signatures, which are typical of nanospring behaviors [25]. That is, T4P/PilY1 can
504 display elastic properties upon the application of force, but once the force is removed, the pilus
505 rapidly returns to its original conformation. Based on previous work [25] and our data here,
506 these force profiles appear to require both TFP and PilY1. Such nanospring properties are also
507 observed for SpaC, a vWA domain-containing protein that is a key pilus-associated adhesin of
508 *Lactobacillus rhamnosus* GG [23]. Under high mechanical forces, SpaC is shown to behave like
509 a spring. This spring-like behavior is thought to allow the bacterium to withstand higher forces
510 under shear stress when the pilus is stretched, and presumably allow the pilus to engage the
511 surface under strain without snapping [23].

512 The WT *P. aeruginosa* PA14 strain also shows plateau signatures. One interpretation of
513 these plateau signatures is that they reflect the pilus being bound to the surface at multiple
514 points followed by successive desorption of the pilus [37]. Alternatively, plateaus signatures may
515 be indicative of sustained protein conformational changes. In either case the plateaus observed
516 for WT cells produce high adhesive force signatures, thus likely helping to promote surface
517 engagement.

518 We found that mutating the Cys152 residue of the vWA domain of PilY results in a
519 reduction in biofilm formation and lower levels of c-di-GMP production. A strain expressing this
520 mutant variant also shows significant changes in mechanical properties (detailed below) when

521 the cell is subjected to force. That these changes in mechanical behavior are dependent on
522 applying a force is in line with our CD and melting curve data which, show no differences in the
523 overall global and secondary structures for WT and the Cys152Ser variant when in solution (i.e.,
524 in the absence of an applied force).

525 The findings from our AFM analysis of the WT and vWA-Cys152Ser allele of PilY1 raise
526 some interesting implications. The ~50-50% distribution of plateaus and spikes observed in
527 cells with WT PilY1 could suggest a built-in property that allows for inherent heterogeneity in
528 surface adaptation. That is, transient changes in PilY1 conformation (the spike signatures) may
529 not be sufficient to drive signaling; only sustained conformational changes (i.e., plateaus) can do
530 so. Our observation that the vWA-Cys152S mutant variant of PilY1 is skewed ~90:10 towards
531 spike signatures (i.e., transient conformational changes), and that this strain is defective for c-di-
532 GMP signalling, supports this conclusion. Thus, not every interaction between a cell and the
533 surface to which it might attach is “productive”, a conclusion consistent with several reports
534 showing the heterogenous nature of *P. aeruginosa* populations transitioning to a biofilm lifestyle
535 [20, 38-40]. Furthermore, we could predict then that a PilY1 mutant that favors the plateau
536 conformation should promote c-di-GMP signaling and be a hyper-biofilm former. We have
537 performed extensive genetic screens looking for PilY1 mutants with such phenotypes with no
538 success to-date. Thus, an alternative explanation is that the ability of TFP/PilY1 to transition
539 *between* conformations is key to the ability to signal properly, and that locking the protein in one
540 conformation, or another, results in aberrant signaling.

541 The critical role for vWA-Cys152 in c-di-GMP signaling and biofilm formation is
542 supported by our genomic analysis, which highlight differences in the PilY1 protein among PA14
543 and PAO1 strains. The vWA domain of PilY1 from the PA14 and PAO1 strains are very
544 different, with PilY1 proteins from the PAO1 clade (PAO1 and IPCD83) lacking the conserved
545 vWA-Cys152 and vWA-Cys147 residues. *P. aeruginosa* PA14 strains engineered to carry the
546 PAO1 or IPCD83 alleles of PilY1, which lack the conserved vWA-Cys152 and vWA-Cys147

547 residues, result in a hybrid strain that behaves very much like the *P. aeruginosa* PA14 strain
548 carrying the vWA-Cys152S mutant protein. Thus, our genetic analysis confirmed that the
549 observed sequence differences have functional consequences. The distinct PilY1 proteins of *P.*
550 *aeruginosa* PA14 and PAO1 may also contribute to explaining the differences in the surface
551 commitment strategies observed for these strains, as reported previously [3, 39].

552 Our AFM data show that force curve plateaus can be maintained for up to 50 ms; it is
553 important to note that this value may be an underestimation because desorption of the pilus
554 from the AFM tip may result in the force curve returning to baseline. With this important caveat
555 in mind and considering that the *P. aeruginosa* TFP has a known retraction rate of ~0.5 μ m
556 s^{-1} [41], then the distance that the TFP is retracted during this 50 ms window (the time span
557 plateaus are maintained) is ~0.025 μ m. This is quite a short distance (TFP can exceed two
558 microns) and corresponds to the pilus being (almost) fully retracted, with the priming complex
559 (i.e., the minor pilins) and the vWA domain of PilY1 docked into the pore of the secretin [5].
560 Furthermore, if we postulate that TFP/PilY1-mediated signaling is a consequence of mechanical
561 force, for the TFP/PilY1 to remain under force and thus potentially capable of propagating a
562 signaling event via a conformational change, we hypothesize that at least one other pilus would
563 need to be bound to the surface to pull in opposition to the fully retracted pilus described above.
564 That is, PilY1-mediated signaling would require multiple pili to decorate the cell surface – this
565 model has a key corollary in that TFP must be robustly expressed for signaling to occur.
566 Interestingly, previous studies [42-45] and work from our team [3] shows that the level of TFP is
567 low in planktonic cells. Furthermore, our team showed that increased cAMP levels via the Pil-
568 Chp system [3], which is key for pilus production, might require several cellular generations and
569 multiple transient surface interactions to occur [39]. Thus, our previous observations of a role of
570 multigeneration cAMP signaling via TFP may be *necessary* to produce multiple TFP; multiple
571 TFP, in turn, are *required* for subsequent c-di-GMP signaling.

572 Based on the data presented here and previous studies from our team and others [3, 20,
573 39], we propose the following model of the early events initiating biofilm formation by *P.*
574 *aeruginosa* PA14 (**Fig. 5**). When the TFP of *P. aeruginosa* PA14 initially engage the surface,
575 we propose that the Pil-Chp signaling cascade promotes cAMP production, which in turn
576 enhances transcription and subsequent production of TFP over the low levels of these
577 appendages produced by planktonically-grown bacteria [3]. Currently, we do not have a strong
578 mechanistic understanding of the linkage(s) among TFP, the Pil-Chp system and cAMP
579 production. However, once more pili are deployed to the surface, this event provides the
580 necessary condition for multiple surface-engaged TFP working in opposition to generate
581 mechanical tension. This mechanical tension in turn can drive the sustained, PilY1-Cys152-
582 dependent conformational changes we have observed for WT cells. That is, the conformational
583 change in vWA domain of PilY1 is maintained only during the application of force when the
584 TFP pull against a solid surface and thereby generate tension (with the cells presumably not
585 moving). We propose that when multiple TFP are engaging the surface, the change in
586 TFP/PilY1 conformation can be sustained as the pilus retracts and PilY1 is docked in the PilQ
587 pore; here PilY1 can interact with PilO, as has been reported for the homologous system in
588 *Myxococcus xanthus* [5]. Based on our recent study [20], the proposed PilY1-PilO interaction
589 can in turn drive the documented PilO-SadC signal transduction cascade [20], which stimulates
590 c-di-GMP signaling and increased biofilm formation. It is also important to note that a recent
591 pull-down analysis indicate that there is one molecule of PilY1 per pilus in *M. xanthus* [5], thus it
592 is unlikely that intermolecular disulfides are being formed with other PilY1 proteins. Additionally,
593 cryo-electron tomography shows the C-terminal domain of PilY1 to be in direct contact with the
594 minor pilins while the vWA domain is at the apex of the pilus fiber [5], suggesting that
595 intermolecular disulfide bond formation between PilY1 and any of the minor pilins is also
596 unlikely. Consistent with this conclusion, our purification of the vWA domain and Western
597 analysis of cell-surface PilY1 shows no evidence of PilY1 forming intermolecular multimers.

598 Finally, our studies were able to successfully separate the role of TFP in motility from its
599 role in signaling. Work from our team and others [2, 3, 18, 20, 46] have implicated TFP in
600 surface sensing via the surface-dependent stimulation of the second messengers cAMP and c-
601 di-GMP, however, in these studies the mutants used also disrupted TFP-mediated twitching
602 motility. Here, the Cys152S allele of PilY1 results in a clear loss of c-di-GMP signaling but
603 strains carrying this mutation display robust twitching motility. Together with our previous
604 studies showing a role of the TFP alignment complex component PilO in c-di-GMP production
605 [20], we believe it is quite clear that TFP are not only a key appendage for adhesion and surface
606 motility, but also a central player in surface-specific signal transduction.

607

608 **Materials and Methods**

609 **Bacterial strains, plasmids, media and growth conditions.** All bacterial strains used in this
610 study are listed in the supplementary material in Table S1. *P. aeruginosa* PA14, *E. coli* S17-λ-pir
611 were routinely grown in 5 mL lysogeny broth (LB) medium or struck on 1.5% LB agar plates with
612 appropriate antibiotics, if necessary. Overnight cultures were grown in LB at 220 rpm on a roller
613 drum. *Saccharomyces cerevisiae* InvSc1 (Thermo Fisher) used for cloning was maintained on
614 yeast peptone dextrose (YPD - 1% Bacto yeast extract, 2% Bacto peptone, and 2% dextrose)
615 with 2% agar. Synthetic defined medium without uracil (Sunrise Science Products) was used to
616 select for yeast with construct. All chromosomal point mutation were constructed using the
617 pMQ30 shuttle vector while pMQ72 multi-copy plasmid was used for ectopic expression. All
618 plasmids and oligonucleotides used in this study are listed in Table S2 and Table S3
619 respectively.

620

621 **Construction of deletion mutant strains.** All chromosomal in-frame gene deletions were
622 constructed using the pMQ30 shuttle vector carrying the flanking regions of the gene via
623 homologous recombination using the yeast machinery [47] or by Gibson cloning as previously

624 described in [48] . For yeast cloning, *S. cerevisiae* was grown overnight at 30 °C in YPD.
625 Synthetic defined medium without uracil (Sunrise Science Products) was used to select for
626 yeast colonies with the plasmid construct. Plasmids were extracted from yeast using the 'smash
627 and grab' method and transformed by electroporation into *E. coli* S17 cells and grown on LB
628 plates with 10 µg/ml gentamycin at 30 °C overnight [2]. Colony polymerase chain reaction
629 (PCR) amplification and sequencing was used to confirm plasmid construction. Plasmids were
630 introduced in *P. aeruginosa* by conjugation and merodiploids were selected on 25 µg/ml
631 gentamycin and 20 µg/ml nalidixic acid after which cells were counter-selected on LB with 10%
632 sucrose-containing medium with no added salt [3]. Deletions were confirmed by colony PCR
633 amplification and sequencing with primers flanking the gene. All sequencing was done at the
634 Molecular Biology Core at the Geisel School of Medicine at Dartmouth.

635
636 **Construction of chromosomal point mutations.** Point mutations in the *pilY1* gene were made
637 using a modified *in vitro* site-directed mutagenesis protocol [49]. Forward and reverse
638 complementary primers consisting of the nucleotide codon sequence encoding for the mutation
639 of interest were used to separately amplify the pMQ30 (for chromosomal mutations) or pMQ72
640 (ectopic expression) parental plasmids with the gene of interest using high fidelity Phusion
641 polymerase (NEB). After four cycles of amplification, the products of these reactions were
642 combined and amplified for an additional 18 cycles with additional Phusion polymerase added.
643 The parental plasmid was digested for 4 h using Dpn1 endonuclease (NEB) at 37 °C. Following
644 digestion, the PCR product was transformed into *E. coli* S17 competent cells and selected on
645 LB with 10 µg/ml gentamycin. Plasmid containing the desired point mutation was isolated and
646 confirmed by sequencing. Introduction of mutations on the chromosome was done by
647 conjugation and counter-selection as described above. All chromosomal mutations were verified
648 by PCR amplification and sequencing.

649

650 **Biofilm assay.** Overnight cultures (1.5 μ l) were inoculated in U-bottom 96 well plates (Costar)
651 containing 100 μ l M8 salts minimal medium (Na_2HPO_4 , KH_2PO_4 NaCl) supplemented with
652 glucose (0.2% v/v), casamino acids (0.5% v/v) and MgSO_4 (1 mM), subsequently referred to as
653 M8 medium. Biofilm assay plates were then stained with 100 μ l of 0.1% crystal violet in water
654 for 20 mins at room temperature and destained for 20 mins with 125 μ l de-staining solution
655 (40% glacial acetic, 40% methanol and 20% H_2O v/v). Absorbance was read at OD_{550} and
656 destaining solution was included as the blank. Biofilm assays were done similar to published
657 work by the O'Toole group [50, 51].

658

659 **In vivo c-di-GMP quantification.** Nucleotides were extracted from *P. aeruginosa* cells scraped
660 from 0.52% agar with M8 medium after incubation for 37°C for 14 h. Cells were removed from
661 plates by gently scraping with a cover slip to avoid scraping the agar, and then immediately
662 placed on ice. Cell pellets were re-suspended in 250 μ l nucleotide extraction buffer
663 (methanol/acetonitrile/d H_2O 40:40:20 + 0.1 N formic acid) and incubated at -20°C for 1 h.
664 Following nucleotide extraction, cells were spun for 5 mins at 4°C, 200 μ l of supernatant was
665 removed and then added to 8 μ l of 15% NH_4HCO_3 stop solution. Nucleotides were dried in a
666 speed vacuum and resuspended in 200 μ l HPLC grade water (JT Baker) and placed in screw
667 cap vials (Agilent Technologies). Quantification of c-di-GMP levels was done by liquid
668 chromatography-mass spectrometry (LC-MS/MS) by Lijun Chen at the Mass Spectrometry
669 Facility at Michigan State University. All samples were normalized to dry weight and expressed
670 as $\frac{\text{pmol}}{\text{mg dry weight}}$.

671
672 **Macroscopic twitch assay.** One percent LB agar plates were stab inoculated using toothpicks
673 dipped in overnight cultures to the bottom of the plate. Plates were incubated at 37°C for 24 h
674 and an additional day at room temperature. The agar was subsequently removed from the petri

675 plate and the twitch zones stained with crystal violet to visualize, and the diameter of the twitch
676 zones measured.

677
678 **Plaquing assay.** One percent agar plates (60 x15 mm) with M8 medium were prepared and
679 cooled to room temperature. Fifty microliters of *P. aeruginosa* overnight culture were added to 1
680 mL of 0.5% warm top agar made with M8 medium and gently mixed. The mixture was quickly
681 poured onto 1% agar plates made with M8 salts. Plates were swirled to ensure even spreading
682 of top agar. Once cooled, 2 μ l of phage DMS3_{vir} strain were spotted to the center of the plate,
683 allowed to dry and subsequently incubated at 37 °C overnight.

684
685 **Cell surface pili.** WT, Δ pi/Y1, vWA variants and vWA-Cys152S cells were streaked in a grid-
686 like pattern on 10% agar plates with M8 SALTS/supplements and incubated at 37 °C overnight.
687 Four plates per strain were struck for each biological replicate to ensure adequate number of pili
688 could be recovered. The following day cells were scraped off the plate using a cover slip and put
689 in a 2 mL tube and vortexed vigorously for 2 mins with 1 mL of phosphate buffer saline (PBS –
690 Corning). Cells suspensions were subsequently spun at 16, 000 x g for 5 mins in a table-top
691 centrifuge and the supernatant removed and transferred to a clean tube and spun again. This
692 step was repeated until no pelleted cells were recovered. Proteins were precipitated with 20%
693 trichloroacetic acid (TCA – VWR) on ice overnight at 4° C. Precipitated proteins were collected
694 by centrifuging at 16 000 x g for 25 mins at 4° C. The supernatant was discarded and the tubes
695 re-centrifuged for 3 mins to get rid of any remaining supernatant. Pellets were washed twice
696 with 1 mL acetone (VWR) and subsequently air dried to remove residual acetone. Pellets were
697 resuspended in 100 ml 1x sample buffer (BioRad) with b-mercaptoethanol and boiled for 5 mins
698 and then briefly spun before being ran on a 12% SDS-PAGE gel, and the samples probed for
699 PilA and FliC by Western blot analysis. FliC served as the loading control and was used for
700 normalization of PilA protein levels. Samples were also resolved on a 7.5% SDS-PAGE gel and

701 probed for PilY1 using a-PilY1 antibody generously provided by Matt Wolfgang. Western blot
702 analysis was performed as described below.

703

704 **Western Blot analysis for PilY1 protein levels in whole cell lysate.** All strains were grown
705 overnight in LB at 37 °C. For whole cell lysate (WCL) preps, overnight cultures were diluted
706 1:100 in 5 mL M8 SALTS/supplements minimal medium and sub-cultured for ~3 h at 37 °C.
707 Samples were resolved on a 7.5% Tris-HCl precast SDS-PAGE gel (Bio-Rad) and blotted onto
708 0.45 µm pore size nitrocellulose membrane (Bio-Rad) using the 1.5 mm pre-programmed
709 method on a Trans-Blot Turbo Transfer System (Bio-Rad). The membrane was incubated in
710 blocking buffer (LI-COR Blocking Buffer in TBS) for 1 h at room temperature and incubated for 1
711 h or overnight at 4 °C in polyclonal a-PilY1 antibody (1:5000 dilution) in BSA TBST_{0.1%} buffer.
712 Following incubation with primary antibody, the membrane was washed in TBST_{0.1%} for 5 mins
713 x3 and incubated for 1 h with goat anti-rabbit in TBST_{0.1%} (1:10,000 dilution) secondary antibody
714 (LI-COR IRDye® 800CW Goat a-rabbit). Incubation with secondary antibody and all subsequent
715 steps were performed in the dark. After incubation with the secondary antibody, the membrane
716 was washed in TBST_{0.1%} for 5 mins x2 and then once in TBS. The membrane was imaged using
717 the LI-COR Odyssey CLx imager at BioMT Core at the Geisel School of Medicine at Dartmouth.
718 PilY1 protein levels were quantified relative to the cross-reacting band at ~60 kD using the LI-
719 COR Image Studio Lite software by drawing a rectangle of the same size around each band and
720 using the following background settings: average, border width of 3, segment = all.

721
722 **Protein quantification.** Total protein levels in whole cell lysate was quantified using the Bio-
723 Rad protein assay Dye Reagent as per the manufacturer's instructions as outlined by Bradford
724 [52].

725
726 **AFM force spectroscopy (AFM).** Overnight cultures used in AFM experiments were diluted 200-
727 fold in M8 salts and seeded on hydrophobic non-treated polystyrene petri dishes (Corning) and

728 left for 10 minutes to adhere [25]. Dishes were then washed gently but thoroughly with M8 salts
729 medium to remove most non-adhered bacteria and used for AFM experiments in the same
730 medium. AFM experiments were performed at room temperature using a NanoWizard® 4
731 NanoScience AFM (JPK Instruments). Gold cantilevers (PNP-TR probes – Pyrex Nitride Probe
732 with Triangular Cantilevers – from NanoWorld) were treated for 16 h with a 1 mM 1-dodecanethiol
733 solution in ethanol to render them hydrophobic, then rinsed with ethanol and kept in milliQ water
734 until AFM experiments were ready to be performed. Prior any measurements, the cantilever's
735 spring constant was empirically determined by the thermal noise method [53]. The AFM force
736 volume mode was used to record force-distance curve in a pixel-by-pixel manner (force mapping)
737 on $6 \times 6 \mu\text{m}^2$ areas (32 × 32 pixels, i.e. 1024 curves) with a bacterium at the center, previously
738 localized by an optical microscope coupled to the AFM. For the ΔpilA strains overexpressing WT
739 PilY1 or PilY1-Cys152S and lacking the pilus fiber, the area was decreased to $1 \mu\text{m}^2$ around the
740 bacterium's poles. The following settings were used: an applied force of 250 pN, a constant
741 approach/retract speed of 5 $\mu\text{m/s}$ and a z-range of 1.5 μm .

742

743 **AFM data analysis.** Data were analyzed with the data processing software from JPK
744 Instruments (Berlin, Germany). In a first approach, all force distance curves exhibiting an
745 adhesive event were selected, as opposed to the non-adhesive curves which were discarded,
746 thus allowing an estimation of the binding probability. In a second approach, adhesive curves
747 were sorted depending on their signature (plateaus vs spikes) and the maximum adhesion
748 sustained by each adhesive peak was determined. The frequency of plateaus was assessed by
749 dividing the number of curves showing plateaus plus curves showing both plateaus and spikes
750 by the total number of adhesive curves. A similar approach was used to calculate the percent of
751 spikes. The formulas to calculate the percent plateaus (P_{plateaus}) or the percent spikes (P_{spikes})
752 are shown below:

753 (1) $P_{\text{plateaus}} = (N_{\text{curves showing only plateaus}} + N_{\text{curves showing plateaus and spikes}}) / (N_{\text{curves showing only plateaus}} +$
754 $N_{\text{curves showing plateaus and spikes}} + N_{\text{curves showing only spikes}})$

755 (2) $P_{\text{spikes}} = (N_{\text{curves showing only spikes}} + N_{\text{curves showing plateaus and spikes}}) / (N_{\text{curves showing only plateaus}} + N_{\text{curves}}$
756 $\text{showing plateaus and spikes}} + N_{\text{curves showing only spikes}})$

757 Statistical analyses were performed with Origin.

758

759 **Analysis of IPCD database: generation of phylogenetic tree, alignment and calculation of**
760 **Shannon Diversity.** We performed nucleotide BLAST searches on a local version of the IPCD
761 database of *P. aeruginosa* genomes to identify variants of the PilY1 protein. Using the
762 nucleotide sequences of PilY1 from PA14, PAO1 and IPCD-83 (GenBank: MCMY00000000),
763 we were able to identify 852 strains with versions of the full protein. We used custom MATLAB
764 scripts to perform an alignment of the amino acid sequences of all 852 versions of PilY1 and
765 construct the corresponding phylogenetic tree. We performed the alignment of PilY1 amino acid
766 sequences using a series of BLOSUM80 to BLOSUM30 scoring matrices. We constructed the
767 phylogenetic tree of PilY1 sequences using a Jukes-Cantor maximum likelihood method to
768 estimate the number of substitutions between two sequences and an Unweighted Pair Group
769 Method Average (UPGMA) to construct the phylogenetic tree from the pairwise distances. 129
770 sequences of PilY1 belong to a clade with highly similar proteins, which includes PilY1 from
771 PA14. 723 sequences belong to a diverse clade that includes PilY1 from PAO1 and IPCD-83.
772 Within each of these two groups, we calculated the Shannon diversity in each position along the
773 aligned amino acid sequence using $H = -\sum p_i \ln(p_i)$, where p_i is the probability of each amino
774 acid (including gaps). Code is available at github.com/GeiselBiofilm.

775

776 **Growth assays.** Overnight cultures were inoculated in M8 salts/supplements at a starting OD₆₀₀
777 of ~0.05. Readings were taken every 40 mins for 16 h in a Synergy Neo2-multimode microplate
778 reader at the BioMT Core at the Geisel School of Medicine at Dartmouth.

779
780 **Cloning and protein expression of GST-vWA fusions.** The coding region of the WT and the
781 C152S mutant of the vWA domain (amino acids 30-369) from *P. aeruginosa* PA14-UCBPP were
782 PCR amplified and cloned into pGEX-6p-1 plasmid at the BamHI cut site by Gibson assembly.
783 *E. coli* BL21 (DE3) competent cells were transformed with plasmid and selected on LB plates
784 with 50 µg/mL carbenicillin grown at 30 °C overnight. A single colony was used to inoculate 5
785 mL of liquid LB and grown for 12-14 h at 30 °C. Each 5 mL seed culture was used to inoculate
786 500 mL LB in a 2 L flask and allowed to grow at 37 °C with shaking 200 rpm until the OD₆₀₀ was
787 0.6-0.8. A total of 6 L LB (12 flasks) were inoculated. Expression was induced with 0.1mM
788 isopropylβ-D-1-thiogalactopyranoside (IPTG) for 4 h at 37 °C. Bacteria were harvested at 5,000
789 × g for 10 min, washed with PBS buffer and stored at -20 °C until further use.

790
791 **Purification of wild-type GST-vWA and Cys152S mutant proteins.** *E. coli* cells expressing
792 WT GST-vWA and GST-vWA-C152S mutant proteins were resuspended in PBS supplemented
793 with 2 mM TCEP (Thermo scientific), 0.01 mg/mL lysozyme from chicken egg (SIGMA), EDTA-
794 free protease inhibitors cocktail (BImake) and 10U/mL benzonase nuclease (Millipore) and lysed
795 in a Microfluidizer LM10 (Microfluidics) at 18,000 psi. Nucleic acids were precipitated by addition
796 of 0.1% polyethylenimine branched (SIGMA). Crude cell lysates were cleared by centrifugation
797 at 200,000 × g for 1 hour at 4 °C in a Beckman Optima L-70 ultracentrifuge. Clear lysates were
798 incubated overnight with 5 mL Glutathione Sepharose 4B resin (Cytiva) previously equilibrated
799 with PBS containing 2 mM TCEP. Lysates and resin were transferred to a disposable plastic
800 column and allowed to drain fully (flow through). Resin was washed with at least 15 column
801 volumes of PBS, 2 mM TCEP buffer before elution of the GST-vWA proteins with 5 column

802 volumes of freshly prepared elution buffer 50 mM Tris -HCl pH 8, 10 mM reduced glutathione.
803 Elution fractions were concentrated using 30,000 MWCO 15 mL Amicon centrifugal filters
804 (Millipore) in a Beckman Allegra 6R centrifuge. Proteins were loaded in a HiLoad Superdex 75
805 pg (Cytiva) pre-packed column equilibrated with 50 mM Tris-HCl pH 8, 150 mM NaCl, 1 mM
806 TCEP using an AKTApure instrument (Cytiva). Fractions containing the fusion GST-vWA protein
807 were combined and concentrated as before and subjected to a second gel filtration step using a
808 high-resolution Superdex 200 increase 10/300 (Cytiva). Purified WT and C152S mutant GST-
809 vWA proteins were extensively dialyzed against 20 mM sodium phosphate pH 7.4 buffer Final
810 protein concentrations were determined using Bio-Rad protein assay reagent.

811 **Circular Dichroism (CD) and melting curves.** The far-UV circular dichroism (CD) spectra
812 (195–250 nm) were recorded with a JASCO J-815 spectrophotometer (Jasco, Inc.) equipped
813 with a CDF426S/15 Peltier temperature controller using a 2-mm path length quartz cuvette. CD
814 spectra of proteins were recorded at 20 °C using a step size of 0.1 mm. A time constant of 12 s
815 was used to improve the signal to noise ratio and to decrease the contribution of the solvent at
816 lower wavelengths. CD spectra were recorded using 1 µM of GST-vWA WT and GST-vWA-
817 C152S proteins in 20 mM sodium phosphate buffer, pH 7.4, and corrected by subtracting the
818 spectrum of the buffer alone.

819 Thermal unfolding curves were obtained by monitoring the ellipticity at 222 and 208 nm
820 of both fusion proteins at 1 µM concentration at a heating rate of 1 °C min⁻¹ in the temperature
821 range of 20 to 90 °C. A 1s integration time and 5s equilibration time were used for each
822 measurement and buffer ellipticities at the selected wavelengths were subtracted from the
823 samples data. Raw CD data were converted into the molar ellipticity $[\theta]_\lambda$ (deg cm² dmol⁻¹) at
824 each wavelength using the relation, $[\theta]_\lambda = \theta_\lambda / (10CNI)$, where θ_λ is the observed ellipticity in
825 millidegrees at wavelength λ , C is the molar protein concentration, N is the number of amino
826 acids of the protein, and I is the path length of the cuvette in cm. Following CD measurements,
827 protein samples were collected, and protein concentrations measured for accuracy.

828
829 **Acknowledgments.** We thank Roger Levesque for providing the IPCD strains used in this
830 report and Dr. Sherry Kuchma for building the ΔvWA_p strain. Also, thanks to Dr. Matt Wolfgang
831 for the PilY1 antibody, Emilie Shipman for help with protein purification, Dr. Paul Delfino for
832 technical assistance with CD, Kelsie Leary, Dr. Dean Madden and Dr. Holger Sondermann for
833 advice on analyzing the CD data. The authors would also like to thank rotation students who
834 worked on the project: Alexander Pastora and Rebecca Valls, other members of the O'Toole
835 lab: Chris Geiger, Dr. Sherry Kuchma and Fabrice Jean-Pierre for helpful discussions. This work
836 was supported by the NIH via awards R37 AI83256 (to G.A.O.), R01 AI43730 (to G.C.L.W.) and
837 COBRE/NIGMS 5 P20 GM130454-02 (to D.S.). This work was also supported by bioMT through
838 NIH NIGMS grant P20-GM113132. Work at UCLouvain was supported by the Excellence of
839 Science-EOS programme (Grant #30550343), the European Research Council (ERC) under the
840 European Union's Horizon 2020 research and innovation programme (grant agreement
841 n°693630), and the National Fund for Scientific Research (FNRS). Y.D. is a Research Director
842 at the FNRS.

843

844

845 **References**

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

1. Ellison, C.K., et al., *Obstruction of pilus retraction stimulates bacterial surface sensing*. *Science*, 2017. **358**(6362): p. 535-538.
2. Persat, A., et al., *Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa*. *Proc Natl Acad Sci U S A*, 2015. **112**(24): p. 7563-8.
3. Luo, Y., et al., *A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors*. *mBio*, 2015. **6**(1).
4. Siryaporn, A., et al., *Surface attachment induces Pseudomonas aeruginosa virulence*. *Proc Natl Acad Sci U S A*, 2014. **111**(47): p. 16860-5.
5. Treuner-Lange, A., et al., *PilY1 and minor pilins form a complex priming the type IVa pilus in Myxococcus xanthus*. *Nat Commun*, 2020. **11**(1): p. 5054.
6. Nguyen, Y., et al., *Pseudomonas aeruginosa minor pilins prime type IVa pilus assembly and promote surface display of the PilY1 adhesin*. *J Biol Chem*, 2015. **290**(1): p. 601-11.
7. Rossmann, M.G., D. Moras, and K.W. Olsen, *Chemical and biological evolution of nucleotide-binding protein*. *Nature*, 1974. **250**(463): p. 194-9.
8. Lee, J.O., et al., *Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18)*. *Cell*, 1995. **80**(4): p. 631-8.

863 9. Konto-Ghiorghi, Y., et al., *Dual role for pilus in adherence to epithelial cells and biofilm formation*
864 *in Streptococcus agalactiae*. PLoS Pathog, 2009. **5**(5): p. e1000422.

865 10. Raynaud, C., et al., *PilB from Streptococcus sanguinis is a bimodular type IV pilin with a direct*
866 *role in adhesion*. Proc Natl Acad Sci U S A, 2021. **118**(22).

867 11. Shapiro, S.E., et al., *The von Willebrand factor predicted unpaired cysteines are essential for*
868 *secretion*. J Thromb Haemost, 2014. **12**(2): p. 246-54.

869 12. Schneider, S.W., et al., *Shear-induced unfolding triggers adhesion of von Willebrand factor fibers*.
870 Proc Natl Acad Sci U S A, 2007. **104**(19): p. 7899-903.

871 13. Zhang, Q., et al., *Structural specializations of A2, a force-sensing domain in the ultralarge*
872 *vascular protein von Willebrand factor*. Proc Natl Acad Sci U S A, 2009. **106**(23): p. 9226-31.

873 14. Aponte-Santamaria, C., et al., *Force-sensitive autoinhibition of the von Willebrand factor is*
874 *mediated by interdomain interactions*. Biophys J, 2015. **108**(9): p. 2312-21.

875 15. Gogia, S. and S. Neelamegham, *Role of fluid shear stress in regulating VWF structure, function*
876 *and related blood disorders*. Biorheology, 2015. **52**(5-6): p. 319-35.

877 16. Purvis, A.R., et al., *Two Cys residues essential for von Willebrand factor multimer assembly in the*
878 *Golgi*. Proc Natl Acad Sci U S A, 2007. **104**(40): p. 15647-52.

879 17. Rodesney, C.A., et al., *Mechanosensing of shear by Pseudomonas aeruginosa leads to increased*
880 *levels of the cyclic-di-GMP signal initiating biofilm development*. Proc Natl Acad Sci U S A, 2017.
881 **114**(23): p. 5906-5911.

882 18. Kuchma, S.L., et al., *Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas*
883 *aeruginosa: the pilY1 gene and its impact on surface-associated behaviors*. J Bacteriol, 2010.
884 **192**(12): p. 2950-64.

885 19. Cady, K.C., et al., *The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa*
886 *mediates resistance to naturally occurring and engineered phages*. J Bacteriol, 2012. **194**(21): p.
887 5728-38.

888 20. Webster, S.S., et al., *Interaction between the type 4 pili machinery and a diguanylate cyclase*
889 *fine-tune c-di-GMP levels during early biofilm formation*. Proc Natl Acad Sci U S A, 2021. **118**(26).

890 21. Butera, D., et al., *Autoregulation of von Willebrand factor function by a disulfide bond switch*. Sci
891 Adv, 2018. **4**(2): p. eaaq1477.

892 22. Ganderton, T., et al., *Lateral self-association of VWF involves the Cys2431-Cys2453*
893 *disulfide/dithiol in the C2 domain*. Blood, 2011. **118**(19): p. 5312-8.

894 23. Tripathi, P., et al., *Adhesion and nanomechanics of pili from the probiotic Lactobacillus*
895 *rhamnosus GG*. ACS Nano, 2013. **7**(4): p. 3685-97.

896 24. Mignolet, J., et al., *AFM Unravels the Unique Adhesion Properties of the Caulobacter Type IVc*
897 *Pilus Nanomachine*. Nano Lett, 2021. **21**(7): p. 3075-3082.

898 25. Beaussart, A., et al., *Nanoscale adhesion forces of Pseudomonas aeruginosa type IV Pili*. ACS
899 Nano, 2014. **8**(10): p. 10723-33.

900 26. Freschi, L., et al., *Clinical utilization of genomics data produced by the international*
901 *Pseudomonas aeruginosa consortium*. Front Microbiol, 2015. **6**: p. 1036.

902 27. Freundt, J.K. and W.A. Linke, *Titin as a force-generating muscle protein under regulatory control*.
903 J Appl Physiol (1985), 2019. **126**(5): p. 1474-1482.

904 28. Eckels, E.C., et al., *The Work of Titin Protein Folding as a Major Driver in Muscle Contraction*.
905 Annu Rev Physiol, 2018. **80**: p. 327-351.

906 29. Marszalek, P.E., et al., *Mechanical unfolding intermediates in titin modules*. Nature, 1999.
907 **402**(6757): p. 100-3.

908 30. Rack, K., et al., *Margination and stretching of von Willebrand factor in the blood stream enable*
909 *adhesion*. Sci Rep, 2017. **7**(1): p. 14278.

910 31. Sadler, J.E., *Biochemistry and genetics of von Willebrand factor*. Annu Rev Biochem, 1998. **67**: p. 911 395-424.

912 32. Giganti, D., et al., *Disulfide isomerization reactions in titin immunoglobulin domains enable a*
913 *mode of protein elasticity*. Nat Commun, 2018. **9**(1): p. 185.

914 33. Marti, T., et al., *Identification of disulfide-bridged substructures within human von Willebrand*
915 *factor*. Biochemistry, 1987. **26**(25): p. 8099-109.

916 34. Eckels, E.C., et al., *The Mechanical Power of Titin Folding*. Cell Rep, 2019. **27**(6): p. 1836-1847 e4.

917 35. Jones, C.H., et al., *FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the*
918 *Enterobacteriaceae*. Proc Natl Acad Sci U S A, 1995. **92**(6): p. 2081-5.

919 36. Nilsson, L.M., et al., *The cysteine bond in the Escherichia coli FimH adhesin is critical for adhesion*
920 *under flow conditions*. Mol Microbiol, 2007. **65**(5): p. 1158-69.

921 37. Dufrene, Y.F., et al., *AFM in cellular and molecular microbiology*. Cell Microbiol, 2021. **23**(7): p. 922 e13324.

923 38. Arbruster, C.R., et al., *Heterogeneity in surface sensing suggests a division of labor in*
924 *Pseudomonas aeruginosa populations*. Elife, 2019. **8**.

925 39. Lee, C.K., et al., *Multigenerational memory and adaptive adhesion in early bacterial biofilm*
926 *communities*. Proc Natl Acad Sci U S A, 2018. **115**(17): p. 4471-4476.

927 40. Kulasekara, B.R., et al., *c-di-GMP heterogeneity is generated by the chemotaxis machinery to*
928 *regulate flagellar motility*. Elife, 2013. **2**: p. e01402.

929 41. Skerker, J.M. and H.C. Berg, *Direct observation of extension and retraction of type IV pili*. Proc
930 Natl Acad Sci U S A, 2001. **98**(12): p. 6901-4.

931 42. Cowles, K.N. and Z. Gitai, *Surface association and the MreB cytoskeleton regulate pilus*
932 *production, localization and function in Pseudomonas aeruginosa*. Mol Microbiol, 2010. **76**(6): p. 933 1411-26.

934 43. Kelly, N.M., et al., *Pseudomonas aeruginosa pili as ligands for nonopsonic phagocytosis by*
935 *fibronectin-stimulated macrophages*. Infect Immun, 1989. **57**(12): p. 3841-5.

936 44. Speert, D.P., et al., *Nonopsonic phagocytosis of nonmucoid Pseudomonas aeruginosa by human*
937 *neutrophils and monocyte-derived macrophages is correlated with bacterial piliation and*
938 *hydrophobicity*. Infect Immun, 1986. **53**(1): p. 207-12.

939 45. Bradley, D.E., *Evidence for the retraction of Pseudomonas aeruginosa RNA phage pili*. Biochem
940 Biophys Res Commun, 1972. **47**(1): p. 142-9.

941 46. Laventie, B.J., et al., *A Surface-Induced Asymmetric Program Promotes Tissue Colonization by*
942 *Pseudomonas aeruginosa*. Cell Host Microbe, 2019. **25**(1): p. 140-152 e6.

943 47. Shanks, R.M., et al., *Saccharomyces cerevisiae-based molecular tool kit for manipulation of*
944 *genes from gram-negative bacteria*. Appl Environ Microbiol, 2006. **72**(7): p. 5027-36.

945 48. Silayeva, O. and A.C. Barnes, *Gibson Assembly facilitates bacterial allelic exchange mutagenesis*.
946 J Microbiol Methods, 2018. **144**: p. 157-163.

947 49. Bachman, J., *Site-directed mutagenesis*. Methods Enzymol, 2013. **529**: p. 241-8.

948 50. O'Toole, G.A. and R. Kolter, *Flagellar and twitching motility are necessary for Pseudomonas*
949 *aeruginosa biofilm development*. Mol Microbiol, 1998. **30**(2): p. 295-304.

950 51. O'Toole, G.A., *Microtiter dish biofilm formation assay*. J Vis Exp, 2011(47).

951 52. Bradford, M.M., *A rapid and sensitive method for the quantitation of microgram quantities of*
952 *protein utilizing the principle of protein-dye binding*. Anal Biochem, 1976. **72**: p. 248-54.

953 53. Li, L., et al., *Charge Calibration Standard for Atomic Force Microscope Tips in Liquids*. Langmuir,
954 2020. **36**(45): p. 13621-13632.

955