

Defective ORF8 dimerization in delta variant of SARS CoV2 leads to abrogation of ORF8 MHC-I interaction and overcome suppression of adaptive immune response

Armi M Chaudhari¹□, Indra Singh¹□, Madhvi Joshi¹, Amrutlal Patel¹, and Chaitanya Joshi^{1*}

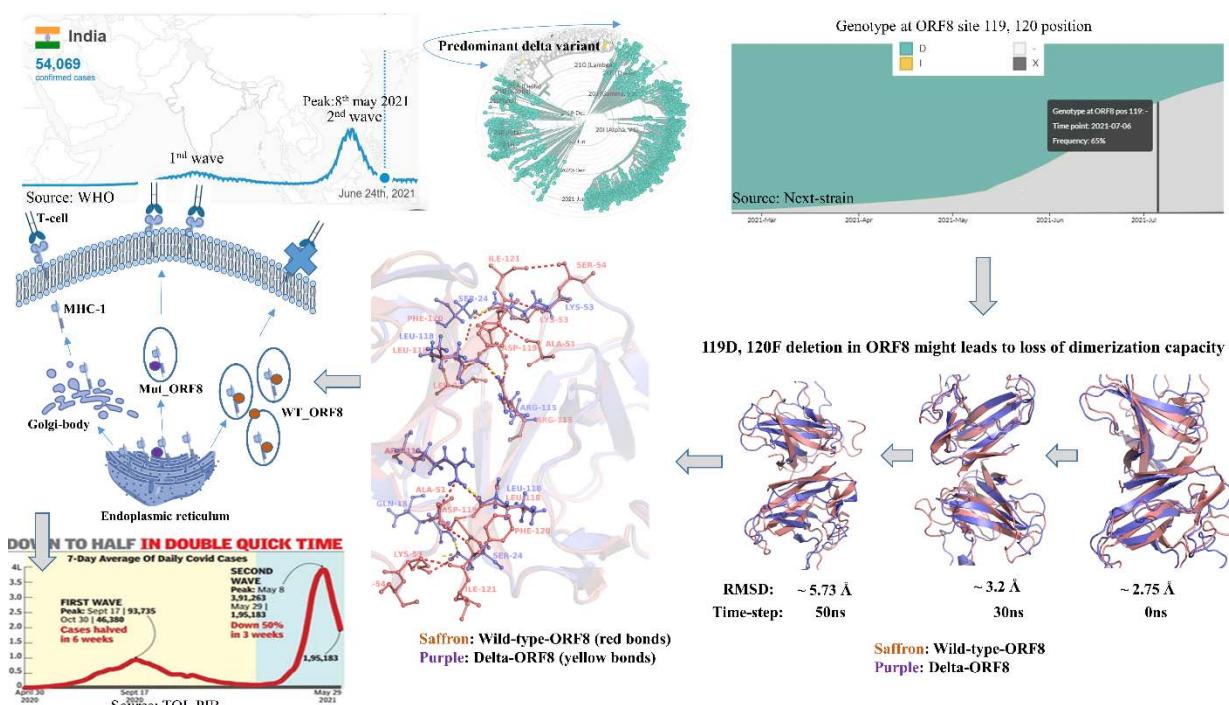
¹Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar-382011

Equal Contribution: Authors had contributed equally.

***Corresponding author:** Chaitanya Joshi, Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, 6th Floor, Block B&D, MS Building, Gandhinagar-382011. **Tel/Fax:** 079-232-58680; **E-mail:** director@gbrc.res.in

Abstract

In India, the breakthrough infections during second wave of COVID-19 pandemic was due to SARS-CoV-2 delta variant (B.1.617.2). It was reported that majority of the infections were caused by the delta variant and only 9.8% percent cases required hospitalization whereas, only 0.4% fatality was observed. Sudden dropdown in COVID-19 infections was observed within a short timeframe, suggesting better host adaptation with evolved delta variant. Down regulation of host immune response against SARS-CoV-2 by ORF8 induced MHC-I degradation has been reported earlier. The Delta variant carried mutations (deletion) at Asp119 and Phe120 amino acids which are critical for ORF8 dimerization. The deletions of amino acids Asp119 and Phe120 in ORF8 of delta variant results in structural instability of ORF8 dimer caused by disruption of hydrogen bonding and salt bridges as revealed by structural analysis and MD simulation studies of ORF8 dimer. Further, flexible docking of wild type and mutant ORF8 dimer revealed reduced interaction of mutant ORF8 dimer with MHC-I as compared to wild type ORF8 dimer with MHC-1, thus implicating its possible role in MHC-I expression and host immune response against SARS-CoV-2. We thus propose that mutant ORF8 may not hindering the MHC-I expression thereby resulting in better immune response against SARS-CoV-2 delta variant, which partly explains the sudden drop of SARS-CoV-2 infection rate in the second wave of SARS-CoV-2 predominated by delta variant in India


Key words: SARS-COV-2, Delta variant, COVID-19, MHC1, ORF8, Protein dimerization, Protein-Protein interactions, MD simulations.

32

33

34

35 Graphical Abstract

36

37

38

39

40 1 Introduction

41 SARS-CoV-2 pandemic had infected more than 199 million people and more than 4 million
42 deaths worldwide till 4th August 2021. During this pandemic, virus had mutated to evade the host
43 immune system and also to enhance its transmission. These variants were detected using high
44 throughput sequencing methods and their effect on virus is studied extensively. With these
45 evolving variants, SARS-CoV-2 Interagency Group (SIG) of US government come up with
46 Variant Classification scheme that defines three classes of SARS-CoV-2 variants, such as 1) VOI
47 2) VOC and 3) VOHC. Among them, delta variant belonging to the group of VOCs had surged
48 to sudden increases in infection during second wave in India. This delta variant is seeming to be
49 highly contagious due to mutations in spike. Several other mutations like D614G in modulating
50 higher spike infectivity and density, E484K for decreased antibody neutralization, N501Y and
51 K417N for altering spike interacting with ACE receptor and antibodies derived from human
52 were reported. [1–3]. Recent reports suggests that NTD (N-Terminal Domain) is known to be
53 supersite for antibody mediated binding[4–6]. Reports on rigidization in NTD of spike had led to
54 the antibody escape mechanism in this delta variant [7]. These examples are enough to show case

55 how lethal this variant is in terms of transmittance, infectivity and evading host immune
56 responses. Opposite to the same, some rare mutations like C241T was favoring host also [8]
57 In India second wave was persisted from middle of the march 2021, till June 2021[9].
58 Preliminary focus of this research lies on finding possible reason of sudden drop down of second
59 wave of SARS-CoV-2 in halved period compared to first wave with increased seroprevalence.
60 Virus genome is extensively studied and possible mutations favoring host were identified using
61 protein dynamics approach, among them ORF8 carrying mutations Δ 119Asp and Δ 120Phe had
62 grabbed our attention due to their direct involvement in dimerization of ORF8 by forming
63 hydrogen bonds and Salt-bridges. Crystal structure of ORF8 reported was taken as a reference
64 structure for analyzing effect of these deletions using molecular modelling and simulation
65 approach [10]. ORF8 is known to be important protein for SARS-CoV-2 mediated infection by
66 down regulation MHC-I molecule in ER (endoplasmic reticulum pathway) mediated protein
67 trafficking pathway [11]. ORF8 involvement in endoplasmic reticulum mediated stress and
68 antagonizing IF-beta (interferon beta) for immune evasion is also known [12]. Deletion of ORF8
69 leads to decreased severity of infection as reported [13,14]. These examples show case the
70 involvement of ORF8 in modulating host immune response and majorly by downregulating
71 MHC-I. Exact interface of MHC-I binding with ORF8 is not known yet. In this study effect of
72 these Δ 119Asp and Δ 120Phe deletions with respect to ORF8 dimerization is studied. Flexible
73 induced docking was performed to study the ORF8 mediated MHC-I binding. Mutations were
74 correlated with timeline of second wave and available cohort study on seroprevalence.

75 **2 Material and Methods**

76 **2.1 Data retrieval**

77 Crystal structure of ORF8 (PDB ID: 7JTL) protein of SARS-CoV-2 (WT_ORF8) was retrieved
78 from protein data bank [10]. Protein sequence ORF8_GBRC_NCD_370 of SARS-CoV-2 delta
79 variant (MUT_ORF8) was obtained from inhouse sequencing (Sequence submitted to GAISAD
80 with accession number EPI_ISL_2001211) and fasta sequence of MHC-I protein (Accession no:
81 NP_005505.2) was downloaded from NCBI.

82 **2.2 Protein structure modelling and Molecular Dynamics Simulations studies**

83 3-Dimensional structures of MUT_ORF8 protein as well as of MHC-I protein were built using
84 homology modelling panel under the Schrodinger suite release 2021-2 [15]. The fasta sequences
85 of MUT_ORF8 and MHC-I protein were imported into the Schrodinger suite. Homology blast
86 search resulted in the templates 7JTL and 6AT5 corresponding to MUT_ORF8 and MHC-I
87 respectively. Protein preparation wizard was then used for the refinement of protein structures.
88 Additionally PRIME module was also used to add missing residues and pKa refinement of
89 proteins was done using epic module of Schrodinger suite [16].

90 Conformational stability of WT_ORF8 and MUT_ORF8 dimers were inspected using molecular
91 dynamic simulations studies in detail using DESMOND module implemented in Schrodinger

92 suite 2021-1 till 200 nanoseconds (ns)[17]. OPLS4 force field was applied to refine the
93 WT_ORF8 and MUT_ORF8 dimeric proteins as well as H-bonds were refilled using structure
94 refinement panel implemented in Schrodinger suite [18,19]. Particle mesh Ewald method was
95 applied for calculation of long-range electrostatic interactions [20]. Also, at every 1.2 ps intervals
96 the trajectories were recorded for the analysis. The proteins WT_ORF8 and MUT_ORF8 were
97 placed in the center of the dodecahedron water box of the TIP3P water model of size wild
98 353968Å and 360038Å respectively [21]. The whole system was neutralized using 1.5 mM Salt
99 concentration. A coupling constant of 2.0 ps under the Martyna–Tuckerman–Klein chain-
100 coupling scheme was used for pressure control and the Nosé–Hoover chain-coupling scheme at
101 310.3K was used for temperature control of the system [22]. The whole system was initially
102 energy minimized by steepest descent minimization. Total negative charges on the protein
103 structures of WT_ORF8 and MUT_ORF8 were balanced by appropriate number of Na⁺ ions to
104 make the whole system neutral. Further, energy-minimized protein structures were subjected to
105 position restrained dynamics for 200 ns, allowing water molecules to equilibrate and the whole
106 protein system was kept fixed. Optimized system was subjected to MD run for 200 ns at 310.5 K
107 and 1 atmospheric pressure (NPT ensemble). The binding energy of the system was calculated
108 for each of the protein structures and stability of complex was monitored by analyzing RMSD,
109 RMSF, radius of gyration and H-bonds of each dimer throughout simulation run time. High
110 resolution images were generated using Pymol and biovia Discovery studio (BIOVIA, Dassault
111 Systèmes, BIOVIA Workbook, Release 2020; Schrodinger, LLC. 2010. The PyMOL Molecular
112 Graphics System). Protein networking was studied into NASP server available online [25].
113 Ramachandran plots were generated into zlab Ramachandran plot server [26].

114 **2.3 Binding energy (MMGBSA) Calculation**

115 The binding free energy of WT_ORF8 and MUT_ORF8 dimers were calculated by Prime
116 Molecular Mechanics-Generalized Born Surface Area (MMGBSA) using thermal_mmgbasa.py
117 implemented under PRIME module of Schrodinger suite [27–29]. The binding free energy of
118 each protein provides a summary of the biomolecular interactions between monomeric chains of
119 protein dimer. OPLS4 force-field and VSEB solvation model were used for MMGBSA
120 calculation. The binding energy includes potential energy as well as polar and non-polar
121 solvation energies were calculated as following.

$$122 \Delta G_{\text{Bind}} = \Delta G_{\text{SA}} + \Delta G_{\text{Solv}} + \Delta E_{\text{MM}}$$

123 **2.4 Principal Component analysis (PCA) and Dynamics cross-correlation matrix (DCCM) 124 calculation**

125 To perform PCA, Primarily the covariance matrix C was calculated. The eigenvectors and
126 eigenvalues were obtained for the covariance matrix C [30]. The principal components (PCs) are
127 projections of a trajectory on the principal modes, of which usually the first few ones are largely
128 responsible for the most important motions. The elements C_{ij} in the matrix C are defined as:

129
$$C_{ij} = \langle (r_i - \langle r_i \rangle) * (r_j - \langle r_j \rangle) \rangle \quad \dots \text{eq: 1}$$

130 From equation 1, r_i and r_j are the instant coordinates of the i th or j th atom, $\langle r_i \rangle$ and $\langle r_j \rangle$ and mean
131 the average coordinate of the i th or j th atom over the ensemble.

132 Correlative and anti-correlative motions are playing a key role in the recognition as well as
133 binding in the biological-complex system. These motions can be prevailed through molecular
134 dynamics simulation trajectories by defining the covariance matrix about atomic fluctuation. The
135 magnitude of correlative motions of two residues can be represented by the cross-correlation
136 coefficient, C_{ij} . It is defined by following equation:

137
$$C_{ij} = \frac{\langle \Delta r_i * \Delta r_j \rangle}{(\langle \Delta r_i \rangle^2 \langle \Delta r_j \rangle^2)^{1/2}} \quad \dots \text{eq: 2}$$

138 Here, i (j) is i th (j th) two residues (or two atoms/proteins), Δr_i (Δr_j) is the displacement vector
139 corresponding to i th (j th) two residues (or two atoms/proteins), and $\langle \dots \rangle$ is for the ensemble
140 average. The value of C_{ij} ranges from +1 to -1. + C_{ij} denotes positive correlation movement
141 (same direction) shown in blue color, and - C_{ij} denotes anti-correlation movement (opposite
142 direction) shown in red color. The higher the absolute value of C_{ij} is, the more correlated (or
143 anti-correlated) the two residues (or two atoms or proteins). PCA and DCCM both were
144 evaluated by using run *trj_essential_dynamics.py*, a python script under Desmond module of
145 Schrodinger 2021-1[31].

146

147 **3 Results:**

148 **3.1 Effect of deletions on the binding affinity of MUT_ORF8 dimer**

149 WT_ORF8 protein comprises of two monomeric chains existing in the form of a dimeric
150 structure which is tightly packed with the help of various electrostatic interactions and H-bonds
151 (Supplementary figure S1). The key residues involved in the packing of WT_ORF8 dimers are
152 Lys53, Arg115, Asp119, Phe120 and Ile121. Other residues involved in intra chain bonds
153 between dimers of WT_ORF8 are Gln18, Ser24, Ala51, Arg52 and Ser54 (Figure 1A). These
154 dimers are closely held together with four salt bridges formed between A: Asp119-B: Arg115, A:
155 Arg115-B: Glu92, B: Asp119-A: Arg115 and B: Arg115-A: Glu92. Other interactions are
156 several H-bonds between Phe120 and Lys53, Lys53 and Ser24, Gln18-Lue22, Arg52 and Ile121
157 (Figure 1A). In WT_ORF8, amino acids Asp119 and Phe120 are predominantly involved in the
158 formation of salt bridges as well as Hydrogen bonds (Supplementary figure S1: C & D). The
159 detailed analysis of MUT_ORF8 dimer protein showed that its monomer is attached with each
160 other with only 1 salt bridge between C: Arg15-D: Glu92. Six H-bonds are formed between
161 amino acids C: Gln18-D: Ser24 (one H-bond), C: Arg115-D: Leu118 (two H-bonds) and C:
162 Ile119-D: Ala51 (three H-bonds) (Supplementary figure S1: C & D). Protein structural network
163 analysis shows reduced nodes (amino acids) and bonds (edges). WT_ORF have 722 edges while
164 Mut_ORF8 have only 714 (Figure 1B). Decreased edges correlated with reduced protein-protein

165 interactions (here in case of monomers). These decreased monomeric interactions in
166 MUT_ORF8 might leads to less stable dimer formation of ORF8. Ramachandran plot for both
167 variants of ORF8 is shown in figure 1C. WT_ORF8 possess majority of amino acids in highly
168 preferred region (green) with no questionable interactions, while mutant ORF8 possess two
169 questionable angles for amino acids C: E-64 and D: S-67 (shown in red dots), depicting decrease
170 in protein stability of MUT_ORF8 (Figure 1C). Contact plot generated for inter and intra
171 molecular interactions within ORF8 dimers where WT_ORF8 possess a higher inter-intra
172 molecular interactions compared to MUT_ORF8, and leads to more stable dimer (Figure 1D).
173 Overall structural studies of proteins suggests that WT-ORF8 seems to be stable dimer compared
174 to MUT_ORF8 by forming strong interactions like hydrogen bonds and salt bridges, these
175 observations were further confirmed using molecular dynamics approach.

176 **3.2 Molecular dynamics reveals breakdown/dissociation of ORF8 dimer in delta variant**

177 After execution of the classical molecular dynamics simulations for 200ns the root mean square
178 deviation (RMSD) of the trajectories were calculated, to identify the region of WT_ORF8 and
179 MUT_ORF8 dimers showing deviations with respect to the initial structure. The RMSD plot
180 clearly showed that the conformational stability of WT_ORF8 is greater than MUT_ORF8
181 (Figure 2C). The RMSD of MUT_ORF8 dimer is on higher side throughout the simulation run
182 time as compared to initial conformations. The RMSD of WT_ORF8 has fluctuation between
183 1.527-5.652Å throughout the simulation runtime of 0-200ns. Whereas RMSD of the
184 MUT_ORF8 is fluctuating from 1.73Å to 4.498 during 0-10ns, 5-10.47Å during 10-30ns,
185 10.478-12.049Å during 30-100ns and 12.049-14.79 during 100-200ns. Number of H-bonds were
186 plotted for the duration of 0-200ns simulation time (Figure 2D), showing that WT_ORF8 has
187 number of H-bonds between 3-22 throughout the simulation. Maximum number of bonds i.e. 22
188 H-bonds are formed in WT_ORF8 at 102ns simulation time. Number of H-bonds were also
189 calculated for MUT_ORF8 varying from 0 to 15. Radius of gyration was also studied to see the
190 compactness of protein structure of WT_ORF8 and MUT_ORF8. Δ119Asp and Δ120Phe were
191 not favoring dimer formation in ORF8 which is seen during simulation, Supplementary video 2
192 shows the dissociation/breakdown of ORF8 monomers in mutant ORF8. In wild type no such
193 breakdown occurs (See supplementary video 1) The highest radius of gyration of MUT_ORF8
194 throughout the simulation time, suggesting a less tight packing of MUT_ORF8 as compared to
195 WT_ORF8 (Figure 2E). The value of radius of gyration is ranges from 18.416 -24.386 in
196 WT_ORF8 whereas, from 18.492-25.444 in MUT_ORF8. To investigate the effect of mutation
197 on the dynamics of the backbone atoms, RMSF values for each dimer were calculated at each
198 time point of the trajectories. Root mean square fluctuation (RMSF) values of WT_ORF8 is
199 shifting from 0.737 to 11.997 Å. Only Residues 67, 68, 69 and 70 of WT_ORF8 are having high
200 RMSF value of 11.997Å, whereas other residues showing less RMSF value (Figure 2H). RMSF
201 values for MUT_ORF8 dimer is 1.3 to 7.078Å. it is on higher side throughout simulation as
202 compared to WT_ORF8. Dynamics cross-correlation matrix (DCCM) of WT_ORF8 and
203 MUT_ORF8 were plotted (Figure 2F & 2G) In DCCM WT_ORF8 holding higher intensity for

204 blue color as compared to MUT_ORF8. Positive Cij values signaling blue colors that leads to
205 improved interaction profile between residues.

206 The binding energy (MMGBSA) calculations were performed for both dimers WT_ORF8 and
207 MUT_ORF8. From figure 3A it is clearly seen that WT_ORF8_wt is more stable having higher
208 negative free energy as compared to MUT_ORF8. The electrostatic energy of WT_ORF8 and
209 MUT_ORF8 was -295.08 and -97.27, respectively. Similar pattern has been observed for ΔG
210 bind, Vander Waal energy, H-bond energy, lipophilic energy, covalent energy, and solvation
211 energy for WT_ORF8 and MUT_ORF8 (Figure 3A). It is evident that only three amino acids
212 i.e., Arg115, Val117 and Ile121 are involved in dimerization of MUT_ORF8 as compared to
213 WT_ORF8 where Val114, Arg115, Val116, Val117, Lue118, Asp119, Phe120 and Ile121 are
214 involved in the stabilization of the WT_ORF8 dimer (Figure 3C). Electrostatic potential are
215 major energies which were contributing in dimer formation. Energies were visualized in ABPS
216 module implemented in Pymol 1.8. As shown in figure 3B, WT_ORF8 have higher opposite
217 attraction (positive-negative) compare to MUT_ORF8. Box B1 and B2 shows the region where
218 these electrostatic potentials persist for both variants. Increased electrostatic potential among
219 amino-acids of WT_ORF8 shows favorable dimer formation compared to MUT_ORF8. Energy
220 minimized dimers obtained through MMGBSA were subjected to monomer interactions. From
221 figure 3D and 3F it is clearly depicting that WT-ORF8 have 16 combined hydrogen bonds and
222 salt bridges while MUT_ORF8 had only 8. Minimized dimers shows about difference of 2-fold
223 in bond formation. These results clearly indicates that Mutant ORF 8 is losing its dimer
224 formatting capacity which might affects the virus infectivity in the host.

225 **3.3 Flexible docking between Variants of ORF8 and MHC-I complex**

226 As, the binding interface between ORF8 and MHC-I is not known yet, thus we used flexible
227 docking to study the molecular interactions between ORF8 and MHC-I using PIPER. As shown
228 in figure 4A, superimposed structure of docked pose of ORF8 and MHC-I were shown.
229 Maximum posses which were generated were showing binding of ORF8 between beta
230 macroglobulin chain and alpha 3 domain of MHC-I, where both dimers of ORF8 can easily
231 accommodate. Pivotal interactions among WT_ORF8 with respect to MHC-I complex are 18
232 and MUT_ORF8 with respect to MHC-I were only 11 (Figure 4B & 4C). Based on docking
233 results, we hypothesized that unstable dimeric structure of ORF8 (MUT_ORF8) might not be
234 able to bind efficiently to MHC-I complex, hence not able to capture it tightly for autophagy.
235 These correlations further lead to enhance expression of MHC-I compared to wild-type virus
236 infection.

237 **4 Discussion**

238 The molecular mechanism behind the severity and rapid spread of the COVID-19 disease is yet
239 to be investigated. It is reported that ORF8 is a rapidly evolving dimeric protein that interfere
240 with the immune responses in host [10]. There are some reports showing that ORF8 is interacting

241 with proteins such as IL17RA of MHC-I molecular pathway [32]. It was also reported that
242 SARS-CoV-2 virus infection leads to downregulation of MHC-I through direct interactions with
243 ORF8 and selectively targeted towards lysosomal autophagy, consequently immune evasion
244 [11]. The antigen presentation system of host will also be impaired due to ORF8-MHC-I
245 interactions. So ORF8 has now become a prime target for scientist to investigate the mechanism
246 behind ORF8-MHC-I interactions. During second wave of COVID-19 disease, although the
247 infection rate was very high, it was seen that hosts developed adaptability towards the COVID-
248 19 infection. Therefore, the study was planned with two objectives firstly, exhaustive analysis of
249 the molecular structures of ORF8 dimer of wild type and delta variant (WT_ORF8 and
250 MUT_ORF8) and secondly the interactions between WT_ORF8-MHC-I complex and
251 MUT_ORF8-MHC-I complex. The detailed analysis of dimeric structures of WT_ORF8 and
252 MUT_ORF8 showed a significant difference in interaction pattern between monomeric chain. In
253 WT_ORF8 the key interaction is formed between Asp119 and Phe120 (Figure 1C). Whereas,
254 due to deletion of Asp119 and Phe120 amino acids in MUT_ORF8 the interactions between
255 MUT_ORF8 monomeric chains were diluted (Figure 1A). Deletion of Asp119 and Phe120 in
256 MUT_ORF8 protein of SARS CoV2 delta variant caused loss of three salt bridges as well as H-
257 bonds. The structural instability of the MUT_ORF8 can be clearly witnessed through molecular
258 dynamics simulation studies. In MD studies RMSD, RMSF and radius of gyration of
259 MUT_ORF8 is always towards higher side as compared to WT_ORF8 (Figure 2C, 2D, & 2F). It
260 was also observed at many time points of simulation the number of hydrogen bonds tends to zero
261 in MUT_ORF8 indicating that there was loss of connectivity between the monomeric chains of
262 MUT_ORF8 (Figure 3D). But in WT_ORF8 there are constant interactions between the
263 monomeric chains reveling the conformational stability of the dimeric structure. Higher RMSF
264 values for MUT_ORF8 dimer throughout simulation indicates the greater flexibility.
265 Additionally, the radius of gyration was also calculated for ORF8_WT and MUT_ORF8 dimers
266 to study the compactness of these dimeric structure with protein folding and unfolding over
267 thermodynamic principals during the 200ns of the molecular dynamics simulation. It is evident
268 that only three amino acids i.e., In MUT_ORF8, amino acids Arg115, Ile119, Ala51, Ser24 are
269 involved in bond formation between the dimers, whereas Phe120 and Lys53, Lys53 and Ser24,
270 Gln18-Lue22, Arg52 and Ile121 in addition to A: Asp119-B: Arg115, A: ARG115-B: Glu92, B:
271 Asp119-A: Arg115 and B: Arg115-A: Glu92 are involved in the stabilization of the WT_ORF8.
272 Interestingly, in addition to these interaction two pi-Sulphur bonds were also observed between
273 A: Phe120-B: Cys90 and A: Phe120-B: Cys25 in WT_ORF8, which is totally absent in
274 MUT_ORF8 due to deletion of Phe120 amino acid. As Ala51 and Ser24 are major interacting
275 amino acid in case of MUT_ORF8 its detail interaction map was built that surprisingly showed
276 that it is these two amino acids are forming unfavorable bonds i.e. D: Ala51-D: Ser97 and C:
277 Ser24-D: Lys53, which is also contributing towards instability of MUT_ORF8.

278 The stability of ORF8 dimers seems to be one of the major reasons contributing towards the host
279 immune adaptability because the stable dimeric protein WT_ORF8 is able to tightly
280 accommodate on the surface of MHC-I complex, whereas MUT_ORF8 is unable to firmly

281 accommodate on the surface of MHC-I complex causing escape of MHC-I complex towards
282 lysosomal autophagy and contributing consequently in increased immune response.

283 Nationwide population weighted study of seroprevalence from May-June 2020 was conducted by
284 ICMR (Indian council of medical research), showing 0.75% among 21 states [33]. While in
285 second seroprevalence study using Abbott assay detecting IgG antibodies against SARS-CoV-2
286 nucleoprotein, in August 2020 showed increased seroprevalence to 6.6% (95% CI 5.8–7.4) [34].
287 Seroprevalence among adults increased by about ten times, from 0.7% in May, 2020, to 7.1% in
288 August, 2020 in India [35]. Supplementary figure 3A, showing number of SARS-CoV-2 cases
289 reported in India during first and second wave. Third seroprevalence data shows percentage
290 increase to 24.1% from December 2020 to January 2021 (Supplementary figure 3B). Drop down
291 of 50% cases SARS-CoV-2 cases during second wave was double quick time compared to first
292 wave. During first wave in 17th September 2020 cases were 93735 and cases were halved in 6
293 weeks, 30th October 2020 with 46380 cases (Supplementary figure 3C). While in second wave
294 higher number of cases (3, 91,261) where decreased (1, 95,183) in half time compared to first
295 wave. ICMR 4th seroprevalence data shows 70% of Indian population (unvaccinated) showing
296 IgG antibody titer against SARS-CoV-2 cases (ICMR 5th Seroprevalence data). Drastic increase in
297 seroprevalence after second wave, from 0.75% to 70% is unusual observation for high
298 transmittable delta variant. Delta variant have these D119, F120 deletions, which were disrupting
299 ORF8, responsible for downregulating MHC-I and suppressing host immune response. Results
300 of the study suggests that the dimerization of MUT_ORF8 is altered, that might be affecting the
301 ORF8 mediated MHC-I downregulation by autophagy in delta variant.

302 Second in India was not only due to predominant delta variant but other lineages were also
303 involved. In such cases strong case study or proof is required in support of this hypothesis that
304 antibody response was due to loss of dimerization capacity of ORF8. In nationwide study
305 seroprevalence was detected for all kind of SARS-CoV-2 lineage infections, but here we are
306 studying only delta mediated immune responses. To support this nationwide study, State wise
307 seroprevalence was also studied in region like Ahmedabad, Gujarat having higher number of
308 active cases of SARS-CoV-2 infection. Supplementary figure shows the genome sequencing data
309 of Gujarat biotechnology research center during second wave, where B.1.167.2 (red) lineage
310 (delta) was found to be 100% in samples collected from patients [37]. 5th seroprevalence data of
311 Ahmedabad city is shown in Supplementary figure S4B. Seroprevalence due to delta only was
312 81.93% (Ahmedabad Summary, 2021). We had hypothesized that altered dimer of ORF8 might
313 not able to perform autophagy of MHC-I molecule compared to wild-type ORF8, which might
314 lead to favoring host immune responses. This can be one possible reason for the sudden drop
315 down of cases during second wave in India.

316 **5 Conclusion**

317 Frequency of delta variant during second wave in India was persisted 9.6-76.5% in India while in
318 Gujarat it was between 18.96 to 90% (Figure 5D). 5th seroprevalence study by ICMR shows
319 62.3% population have antibodies due to virus infection, while in Gujarat there 81.93%
320 seroprevalence was observed. These patterns leads to conclude that as the frequency of delta is
321 increasing seroprevalence among population had also increased (Figure 5C & 5D). These
322 seroprevalence study supports our hypothesis that loss in dimerization capacity of ORF8 (from
323 delta variant) leads to an abrogation of ORF8 MHC-I interaction and overcome suppression of
324 adaptive immune response.

325 **6 Conflict of Interest**

326 *The authors declare that the research was conducted in the absence of any commercial or financial
327 relationships that could be construed as a potential conflict of interest.*

328 **7. Authors contributions**

329 AC and IS performed Insilco experiments, Molecular dynamics, validated hypothesis and wrote the
330 manuscript. AP, MJ, and CJ provided funding, validated results, and corrected manuscript.

331 **8. Data Availability Statement**

332 Seroprevalence study were performed based on ICMR (Indian council of medical research), PIB
333 (Press information bureau), Times of India (TOI), Gujarat Biotechnology research center's
334 COVID19 portal (GBRC), MoHFW (Ministry of health and family welfare), Nextstrain and
335 GISAID data base.

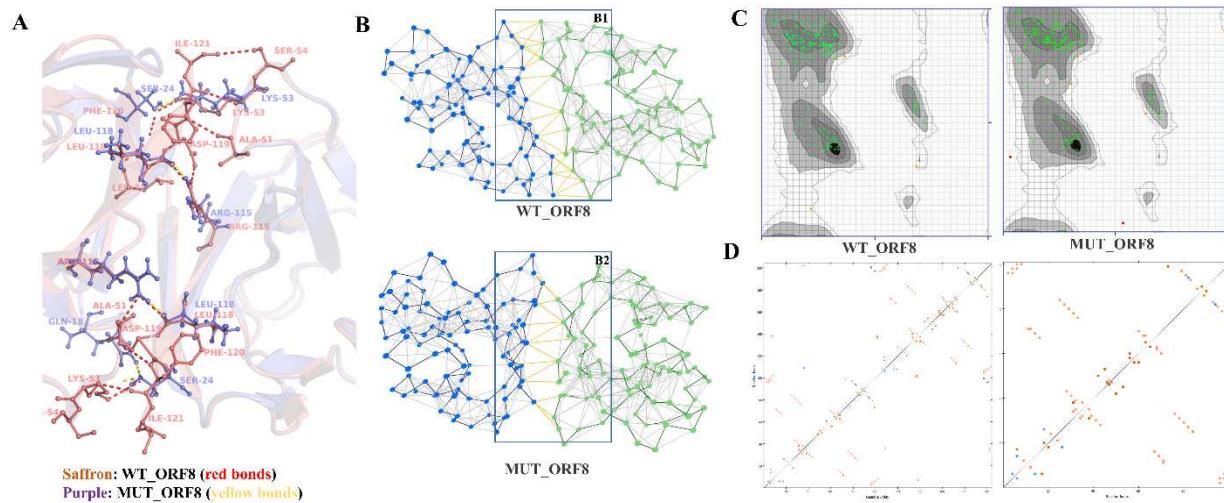
336 ICMR: <https://www.icmr.gov.in/>

337 PIB: <https://pib.gov.in/PressReleseDetail.aspx?PRID=1748351>

338 TOI: <https://timesofindia.indiatimes.com/>

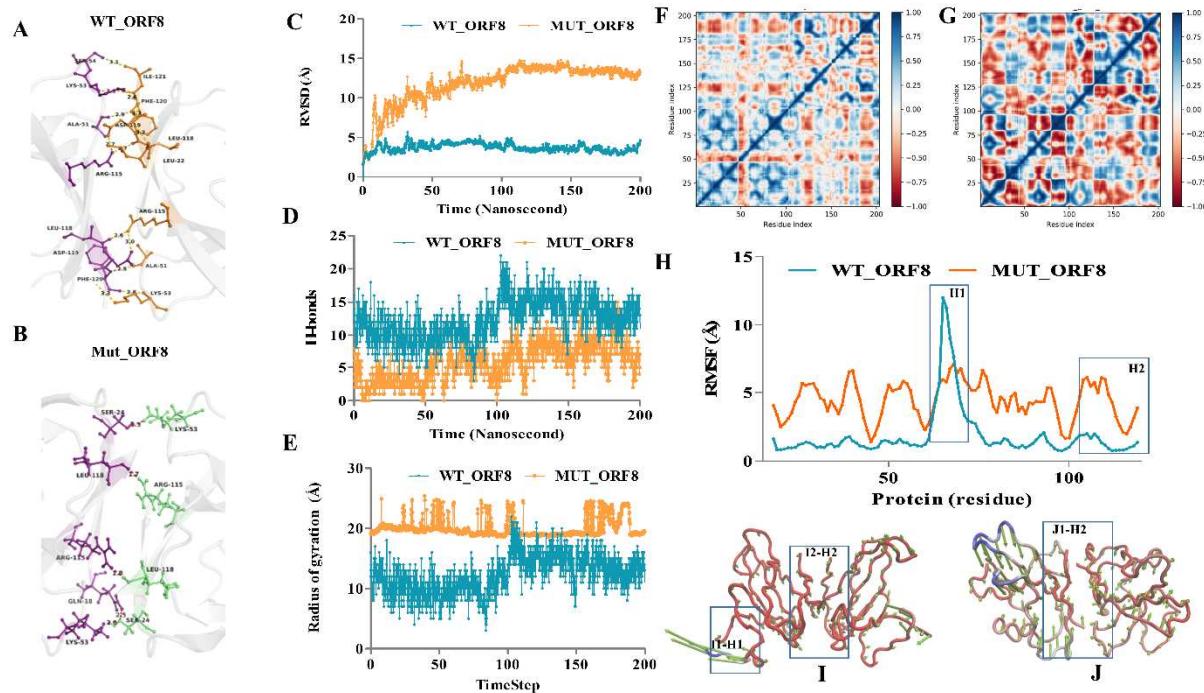
339 GBRC: <https://covid.gbrc.res.in/>

340 MoHFW: <https://www.mohfw.gov.in/>

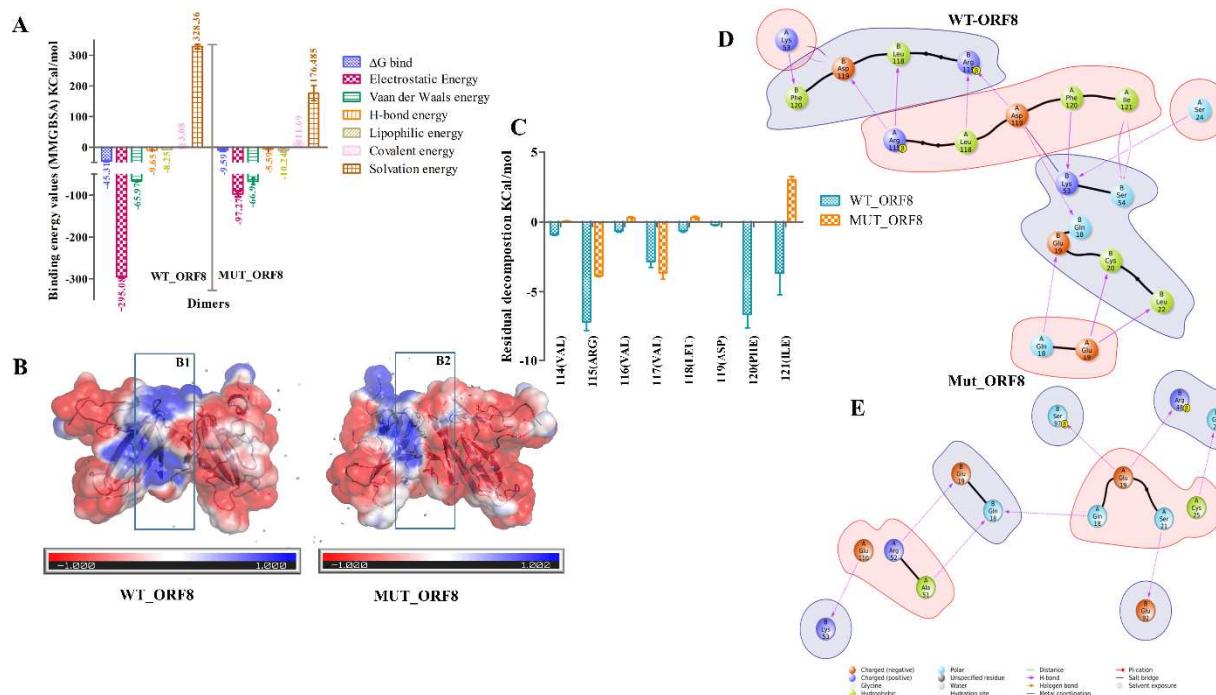

341 Nextstrain: <https://nextstrain.org/ncov/gisaid/global>

342 GISAID: <https://www.gisaid.org/index.php?id=209>

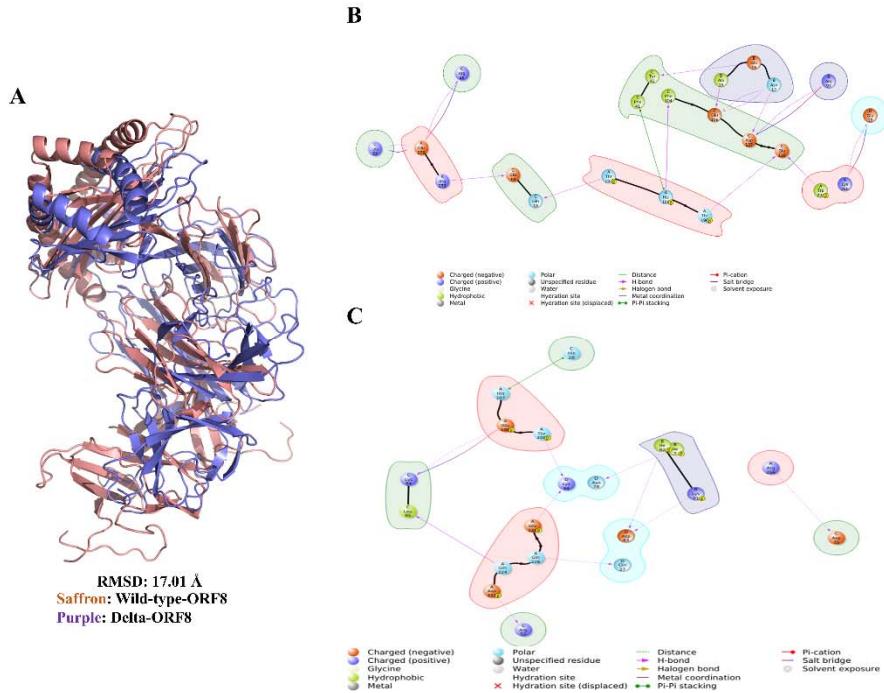
343 **9 Funding**


344 Funding is provided by Department of Science and Technology (DST) India.

345 **10. Figures**


346

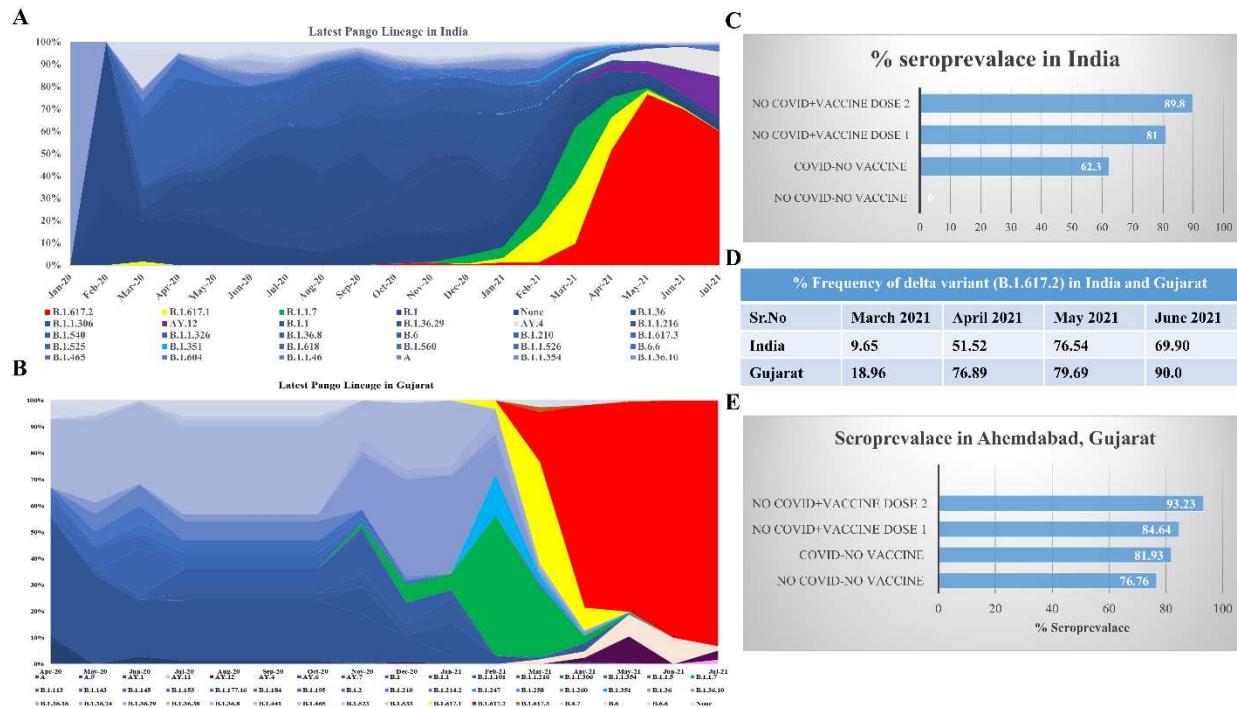
347 **Figure 1:** Change in bond formation within WT_ORF8 and MUT_ORF8 due to 119Asp and
348 120F deletion: **1A:** Superimposition of WT_ORF8 shown in saffron color and MUT_ORF8
349 shown in purple color. Hydrogen bond formation within two monomeric units of ORF8 is
350 illustrated using Pymol where red and yellow bonds representing bond formation within
351 WT_ORF8 and MUT_ORF8. **1B:** Network analysis of protein structures using NASP sever,
352 where B1 and B2 represent network between dots as a node (amino acids) and inter and
353 intramolecular bonds as an edge (yellow) for WT_ORF8 and MUT_ORF8 respectively.
354 WT_ORF8 possess 203 nodes and 722 edges while MUT_ORF8 possess 202 nodes and 714
355 edges. **1C:** Ramachandran plot for WT_ORF8 and MUT_ORF8. Green dots represent highly
356 preferred observations, yellow dots represent preferred observations and red dots represents
357 questionable observations. MUT_ORF8 possess two questionable observations which are C: E-
358 64 and D: S-67, while WT_ORF8 posses no such kind of observations. **1D:** Contact plot
359 showing amino-acids contacts between monomeric units of WT_ORF8 and MUT_ORF8. Blue
360 color shows main chain-side chain interactions, Saffron color shows main chain-main chain
361 interactions, and brown color shows side chain-side chain interactions within monomeric
362 subunits.


363

364 **Figure 2:** Molecular dynamics studies for both variants of ORF8 dimer. **2A:** Intramolecular
365 interactions between WT_ORF8 monomeric subunits **2B:** Intramolecular interactions between
366 MUT_ORF8 monomeric subunits. **2C:** RMSD (root mean square deviation) within WT-
367 ORF8(cyan) and MUT_ORF8 (orange) complex. **2D:** Hydrogen bonds formation within WT-
368 ORF8(cyan) and MUT_ORF8 (orange) complex. **2D:** Radius of gyration for WT-ORF8(cyan)
369 and MUT_ORF8 (orange) complex **2F & 2G:** Dynamics cross-correlation matrix obtained from
370 trajectories of WT_ORF8 and MUT_ORF8 complexes respectively. Blue to red color represents
371 the cij values between 1 to -1. No cross correlation was shown by white color. **2H:** RMSF (root
372 mean square fluctuation) in WT-ORF8(cyan) and MUT_ORF8 (orange) complex. **2I:** PCA1
373 mode of WT-ORF8, length of arrow is in linear relation between protein dynamics/fluctuation
374 during trajectories blue color shows highly dynamic regions, while red color shows less
375 dynamics regions. **2J:** PCA1 mode of MUT-ORF8.

376

377 **Figure 3: Binding energy studies within dimers of ORF8.** **3A:** Binding energy difference
378 between WT_ORF8 and MUT_ORF8. Major energies involved in dimer formation are shown in
379 different legends. **3B:** electrostatic interaction map drawn for 1st energy minimized dimer
380 obtained from MMGBSA approach. Blue, white and red colors represent positive, null, negative
381 electrostatic potential respectively, inform of surface representations. B1 & B2 represents
382 potential between two monomeric subunits of WT-ORF8 and MUT-ORF8 respectively. **3C:**
383 Thermal decomposition among amino-acids residues within both dimers. WT_ORF8 (cyan) and
384 MUT_ORF8 (Orange) showing decomposition energies for key residues involved in dimer
385 formations. **3D & 3E:** Interactions among energy minimized dimers obtained through
386 MMGBSA, legends for each type of bond is shown in under figure 3E.


387

388 **Figure 4:** Flexible docking of MHC-I with ORF8 dimer. **A:** Superimposed structure of
389 WT_ORF8_MHC-I(saffron) and MUT_ORF8_MHC-I (purple). **B:** Pivotal interaction among
390 WT_ORF8_MHC-I complex. **C:** Pivotal interaction among MUT_ORF8_MHC-I complex.

391

392

393

394

395 Figure 5: Nationwide and statewide seroprevalence study: **5A:** SARS-CoV-2 sequences
396 submitted to GAISAD database from India at different time scale with latest Pango lineage. **5B:**
397 SARS-CoV-2 sequences submitted to GAISAD database from Gujarat at different time scale
398 with latest Pango lineage. **5C:** 5th Seroprevalence data from ICMR (Indian council of medical
399 research). **5D:** Table narrating frequency of delta variant (B.1.617.2) during second wave in
400 India and Gujarat. **5E:** 5th Seroprevalence data FROM Ahmedabad city, Gujarat.

401

402

403

404

405

406

407

408

409

410 **11 References**

411 [1] Fratev F. The SARS-CoV-2 S1 spike protein mutation N501Y alters the protein
412 interactions with both hACE2 and human derived antibody: A Free energy of perturbation
413 study. *BioRxiv* 2020;2020.12.23.424283. <https://doi.org/10.1101/2020.12.23.424283>.

414 [2] Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD, et al. SARS-CoV-2 spike-
415 protein D614G mutation increases virion spike density and infectivity. *Nature*
416 *Communications* 2020;11:1–9. <https://doi.org/10.1038/s41467-020-19808-4>.

417 [3] Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Alshammary H, Amoako AA, et al.
418 SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. *The Lancet Microbe*
419 2021;1–2. [https://doi.org/10.1016/S2666-5247\(21\)00068-9](https://doi.org/10.1016/S2666-5247(21)00068-9).

420 [4] McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, et al. N-
421 terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. *Cell*
422 2021;184:2332–2347.e16. <https://doi.org/10.1016/j.cell.2021.03.028>.

423 [5] Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, et al. A neutralizing human antibody
424 binds to the N-terminal domain of the Spike protein of SARS-CoV-2. *Science*
425 2020;369:650–5. <https://doi.org/10.1126/science.abc6952>.

426 [6] Soh WT, Liu Y, Nakayama EE, Ono C, Torii S, Nakagami H, et al. The N-terminal
427 domain of spike glycoprotein mediates SARS-CoV-2 infection by associating with L-
428 SIGN and DC-SIGN. *BioRxiv* 2020;1–30.

429 [7] Chaudhari AM, Kumar D, Joshi M, Patel A, Joshi C. E156G and Arg158, Phe-157/del
430 mutation in NTD of spike protein in B.1.617.2 lineage of SARS-CoV-2 leads to immune
431 evasion through antibody escape. *BioRxiv* 2021.
432 <https://doi.org/10.1101/2021.06.07.447321>.

433 [8] Chaudhari A, Chaudhari M, Maher S, Saiyed Z, Nathani NM, Shukla S, et al. In-Silico
434 analysis reveals lower transcription efficiency of C241T variant of SARS-CoV-2 with
435 host replication factors MADP1 and hnRNP-1. *Informatics in Medicine Unlocked*
436 2021;100670. <https://doi.org/https://doi.org/10.1016/j.imu.2021.100670>.

437 [9] Wordometer. No Title. Worldometer COVID-19 Coronavirus Pandemic 2021; Published
438 Online August 2021.

439 [10] Flower TG, Buffalo CZ, Hooy RM, Allaire M, Ren X, Hurley JH. Structure of SARS-CoV-
440 2 ORF8, a rapidly evolving immune evasion protein. *Proceedings of the National*
441 *Academy of Sciences of the United States of America* 2021;118:1–6.
442 <https://doi.org/10.1073/pnas.2021785118>.

443 [11] Zhang Y, Zhang J, Chen Y, Luo B, Yuan Y, Huang F, et al. The ORF8 protein of SARS-
444 CoV-2 mediates immune evasion through potently downregulating MHC-I. *BioRxiv*
445 2020. <https://doi.org/10.1101/2020.05.24.111823>.

446 [12] Rashid F, Dzakah EE, Wang H, Tang S. The ORF8 protein of SARS-CoV-2 induced
447 endoplasmic reticulum stress and mediated immune evasion by antagonizing production
448 of interferon beta. *Virus Research* 2021;296:198350.
449 <https://doi.org/10.1016/j.virusres.2021.198350>.

450 [13] Zinzula L. Lost in deletion: The enigmatic ORF8 protein of SARS-CoV-2. *Biochemical*
451 and *Biophysical Research Communications* 2021;538:116–24.
452 <https://doi.org/10.1016/j.bbrc.2020.10.045>.

453 [14] Pereira F. SARS-CoV-2 variants combining spike mutations and the absence of ORF8
454 may be more transmissible and require close monitoring. *Biochemical and Biophysical*
455 *Research Communications* 2021;550:8–14. <https://doi.org/10.1016/j.bbrc.2021.02.080>.

456 [15] Madhavi Sastry G, Adzhigirey M, Day T, Annabhimmoju R, Sherman W. Protein and
457 ligand preparation: parameters, protocols, and influence on virtual screening enrichments.
458 *Journal of Computer-Aided Molecular Design* 2013;27:221–34.
459 <https://doi.org/10.1007/s10822-013-9644-8>.

460 [16] Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a
461 software program for pKaprediction and protonation state generation for drug-like
462 molecules. *Journal of Computer-Aided Molecular Design* 2007;21:681–91.
463 <https://doi.org/10.1007/s10822-007-9133-z>.

464 [17] SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, New York,
465 NY, USA: Association for Computing Machinery; 2006.

466 [18] Steinbrecher T, Abel R, Clark A, Friesner R. Free Energy Perturbation Calculations of the
467 Thermodynamics of Protein Side-Chain Mutations. *Journal of Molecular Biology*
468 2017;429:923–9. <https://doi.org/10.1016/j.jmb.2017.03.002>.

469 [19] van Zundert GCP, Moriarty NW, Sobolev O V, Adams PD, Borrelli KW. Macromolecular
470 refinement of X-ray and cryoelectron microscopy structures with Phenix/OPLS3e for
471 improved structure and ligand quality. *Structure* 2021.
472 <https://doi.org/10.1016/j.str.2021.03.011>.

473 [20] Toukmaji AY, Board JA. Ewald summation techniques in perspective: A survey.
474 *Computer Physics Communications* 1996;95:73–92. [https://doi.org/10.1016/0010-4655\(96\)00016-1](https://doi.org/10.1016/0010-4655(96)00016-1).

476 [21] Zielkiewicz J. Structural properties of water: Comparison of the SPC, SPCE, TIP4P, and
477 TIP5P models of water. *Journal of Chemical Physics* 2005;123.
478 <https://doi.org/10.1063/1.2018637>.

479 [22] Martyna GJ, Klein ML, Tuckerman M. Nosé-Hoover chains: The canonical ensemble via
480 continuous dynamics. *The Journal of Chemical Physics* 1992;97:2635–43.
481 <https://doi.org/10.1063/1.463940>.

482 [23] Schrodinger, LLC. 2010. The PyMOL Molecular Graphics System V 1. . pymol n.d.

483 [24] BIOVIA, Dassault Systèmes, BIOVIA Workbook, Release 2020; BIOVIA Pipeline Pilot,
484 Release 2020 SDDS. No Title n.d.

485 [25] Chakrabarty B, Parekh N. NAPS: Network analysis of protein structures. *Nucleic Acids*
486 *Research* 2016;44:W375–82. <https://doi.org/10.1093/nar/gkw383>.

487 [26] Anderson RJ, Weng Z, Campbell RK, Jiang X. Main-chain conformational tendencies of
488 amino acids. *Proteins: Structure, Function and Genetics* 2005;60:679–89.
489 <https://doi.org/10.1002/prot.20530>.

490 [27] Lyne PD, Lamb ML, Saeh JC. Accurate prediction of the relative potencies of members of
491 a series of kinase inhibitors using molecular docking and MM-GBSA scoring. *Journal of*
492 *Medicinal Chemistry* 2006;49:4805–8. <https://doi.org/10.1021/jm060522a>.

493 [28] Greenidge PA, Kramer C, Mozziconacci JC, Wolf RM. MM/GBSA binding energy
494 prediction on the PDBbind data set: Successes, failures, and directions for further
495 improvement. *Journal of Chemical Information and Modeling* 2013;53:201–9.
496 <https://doi.org/10.1021/ci300425v>.

497 [29] Beard H, Cholleti A, Pearlman D, Sherman W, Loving KA. Applying Physics-Based
498 Scoring to Calculate Free Energies of Binding for Single Amino Acid Mutations in
499 Protein-Protein Complexes 2013;8:1–11. <https://doi.org/10.1371/journal.pone.0082849>.

500 [30] Kormos BL, Baranger AM, Beveridge DL. A study of collective atomic fluctuations and
501 cooperativity in the U1A-RNA complex based on molecular dynamics simulations.
502 *Journal of Structural Biology* 2007;157:500–13. <https://doi.org/10.1016/j.jsb.2006.10.022>.

503 [31] Chang S, Hu J, Lin P, Jiao X, Tian X. Substrate recognition and transport behavior
504 analyses of amino acid antiporter with coarse-grained models. *Molecular BioSystems*
505 2010;6:2430—2438. <https://doi.org/10.1039/c005266c>.

506 [32] Lin X, Fu B, Yin S, Li Z, Liu H, Zhang H, et al. ORF8 contributes to cytokine storm
507 during SARS-CoV-2 infection by activating IL-17 pathway. *IScience* 2021;24:102293.
508 <https://doi.org/10.1016/j.isci.2021.102293>.

509 [33] Res M, Ruts C, Hospital CR, Sciences M, Committee IE, Crh-smims S. Prevalence of
510 2018:517–20. <https://doi.org/10.4103/ijmr.IJMR>.

511 [34] John J, Kang G. Tracking SARS-CoV-2 infection in India with serology. *The Lancet*
512 *Global Health* 2021;9:e219–20. [https://doi.org/10.1016/S2214-109X\(20\)30546-5](https://doi.org/10.1016/S2214-109X(20)30546-5).

513 [35] Murhekar M V., Bhatnagar T, Selvaraju S, Saravanakumar V, Thangaraj JWV, Shah N, et
514 al. SARS-CoV-2 antibody seroprevalence in India, August–September, 2020: findings
515 from the second nationwide household serosurvey. *The Lancet Global Health*
516 2021;9:e257–66. [https://doi.org/10.1016/S2214-109X\(20\)30544-1](https://doi.org/10.1016/S2214-109X(20)30544-1).

517 [36] Research ICOM. <https://pib.gov.in/PressReleasePage.aspx?PRID=1739902> 2021.

518 [37] Gujarat Biotechnology Research center, Gandhinagar G. covid.gbrc.res.in 2021.

519 [38] Summary E. 5 th Serosurveillance study in Ahmedabad EXECUTIVE SUMMARY
520 TITLE□: ASSESSING POPULATION BASED SEROPOSITIVITY FOR ANTIBODIES
521 Aim□: Objectives□: 2021.

522

523