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ABSTRACT

Recent advances in spatially resolved transcriptomics have enabled comprehensive
measurements of gene expression patterns while retaining the spatial context of the
tissue microenvironment. Deciphering the spatial context of spots in a tissue needs to
use their spatial information carefully. To this end, we developed a graph attention
auto-encoder framework STAGATE to accurately identify spatial domains by learning
low-dimensional latent embeddings via integrating spatial information and gene
expression profiles. To better characterize the spatial similarity at the boundary of
spatial domains, STAGATE adopts an attention mechanism to adaptively learn the
similarity of neighboring spots, and an optional cell type-aware module through
integrating the pre-clustering of gene expressions. We validated STAGATE on
diverse spatial transcriptomics datasets generated by different platforms with
different spatial resolutions. STAGATE could substantially improve the identification
accuracy of spatial domains, and denoise the data while preserving spatial
expression patterns. Importantly, STAGATE could be extended to multiple
consecutive sections to reduce batch effects between sections and extracting three-
dimensional (3D) expression domains from the reconstructed 3D tissue effectively.
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Introduction

The functions of complex tissues are fundamentally related to the spatial context of
different cell types'. The relative locations of transcriptional expressions in tissue are
critical for understanding its biological functions and describing interactive biological
networks?. Breakthrough technologies for spatially resolved transcriptomics (STs),
such as 10x Visium?, Slide-seq* °, and Stereo-seq®, have enabled genome-wide
profiling of gene expressions in captured locations (referred to as spots) at a
resolution of several cells or even subcellular levels.

Deciphering spatial domains (i.e., regions with similar spatial expression patterns)
is one of the great challenges from STs. Most existing clustering methods do not
efficiently use the available spatial information. These non-spatial methods can be
roughly divided into two categories. The first category uses traditional clustering
methods such as k-means and Louvain algorithm’. These methods are limited to the
small number of spots or the sparsity according to the different resolutions of ST
technologies, and clustering results may be discontinuous in the tissue section. The
second category utilizes the cell type signatures defined by single-cell RNA-seq to
deconvolute the spots® °. While these integration methods are appealing, as the
spatial resolution improving, they are not applicable to ST data at a resolution of
cellular or subcellular levels.

Some recent algorithms adapt the clustering methods by considering the similarity
between adjacent spots to better account for the spatial dependency of gene
expressions'®'2. These methods show significant improvements in identifying spatial
domains of sections from brain and cancer tissues. For example, BayesSpace is a
Bayesian statistical method that encourages neighboring spots to belong to the same
cluster by introducing spatial neighbor structure into the prior™. stLearn defines the
morphological distance based on features extracted from a histology image and
utilizes such distances as well as spatial neighbor structure to smooth gene
expressions’'. SEDR employs a deep auto-encoder network for learning gene
representations and uses a variational graph auto-encoder to simultaneously embed
spatial information'?. Although these methods consider the spatial structure of STs,
the similarity of neighboring spots defined by them is pre-defined before training and
cannot be learned adaptively. Moreover, these methods do not consider the spatial
similarity of spots at the boundary of spatial domains in more detail and do not well
integrate spatial information to impute and denoise gene expressions. More
importantly, these approaches cannot be applied to multiple consecutive sections to
reconstruct a three-dimensional (3D) ST model and extract 3D expression domains
(Supplementary Table S1).

To this end, we developed a graph attention auto-encoder framework STAGATE to
accurately identify spatial domains by learning low-dimensional latent embeddings
via integrating spatial information and gene expression profiles. Extensive tests and
comparison with existing methods on ST data generated by different platforms (e.g.,
10x Visium, Slide-seq, and Stereo-seq) as benchmarks demonstrated its superiorities
for downstream analysis tasks such as spatial domain identification, visualization,
spatial trajectory inference, data denoising, and 3D expression domain extraction.
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Results

Overview of STAGATE

STAGATE first constructs the spatial neighbor network (SNN) based on the spatial
locations, and optionally introduces the cell type-aware SNN by pruning the SNN
based on the pre-clustering of gene expressions (Fig. 1). The gene expression pre-
clustering can effectively identify regions containing distinct cell types, thus this cell
type-aware SNN can help to better characterize the spatial similarity at the boundary
of these distinct spatial domains for ST data with low spatial resolutions, such as 10x
Visium (Materials and Methods).

Then STAGATE learns low-dimensional latent embeddings with both spatial
information and gene expressions via a graph attention auto-encoder'® (Fig. 1). The
normalized expression of each spot is first transformed into a d-dimensional latent
embedding by an encoder and then reversed back into a reconstructed expression
profile via a decoder. Unlike the classic auto-encoder, STAGATE adopts an attention
mechanism in the middle layer of the encoder and decoder. It adaptively learns the
edge weights of SNNs (i.e., the similarity between neighboring spots) and further
uses them to update the spot representation by collectively aggregating information
from its neighbors. Finally, the latent embeddings are used to visualize the data with
UMAP™* and identify spatial domains with various clustering algorithms, such as
mclust' and Louvain’ (Fig. 1).

STAGATE improves the identification of known layers on the human
dorsolateral prefrontal cortex dataset.

To quantitatively evaluate the spatial clustering performance of STAGATE, we first
applied it onto a 10x Visium dataset containing spatial expressions of 12 human
dorsolateral prefrontal cortex (DLPFC) sections'®. Maynard et al.’® has manually
annotated DLPFC layers and white matter (WM) based on the morphological
features and gene markers (Fig. 2a). Considering it as the ground truth, we
compared the clustering accuracy of STAGATE with the non-spatial clustering
method implemented by SCANPY'” and three recently developed spatial clustering
approaches (BayesSpace'?, stLearn', and SEDR'?) in terms of adjusted rand index
(ARI) (Supplementary Notes).

STAGATE could effectively identify the expected cortical layer structures and
achieve significant improvement compared to other methods (Fig. 2b and
Supplementary Fig. S1). For example, in the DLPFC section 151676, STAGATE
delineated the layer borders clearly and achieved the best clustering accuracy
(ARI=0.60) (Fig. 2c). For comparison, the clustering assignment of the non-spatial
approach SCANPY could roughly follow the expected layer pattern in this section, but
the boundary of its clusters was discontinuous with many outliers, which impaired its
clustering accuracy. Interestingly, the performance of algorithms leveraging the
spatial information (STAGATE, BayesSpace, SEDR, and stLearn) are significantly
better than the non-spatial clustering method SCANPY. These results demonstrated
the superiority of STAGATE at spatial domain identification and the necessity of its
usage of spatial information.
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The integration of spatial information enables STAGATE to reveal the distance
between spatial domains and depict the spatial trajectory in a UMAP plot'*. For
example, in the DLPFC section 151676, cortical layers were well-organized and
showed consistent spatial trajectories (from layer 1 to layer 6 and white matter) in the
UMAP plots generated by the STAGATE embeddings (Fig. 2d and Supplementary
Fig. 82). This result is consistent with the functional similarity between adjacent
cortical layers as well as the chronological order'®. By contrast, in the UMAP plots of
SCANPY embeddings, spots belonging to distinct layers were not separated clearly.
As for the other two spatial clustering methods, stLearn did not distinguish WM and
cortex layers clearly, and SEDR mixed the spots of layer 1 and layer 6. We further
confirmed the inferred trajectory using a trajectory inference algorithm named
PAGA" (Fig. 2d). The PAGA graphs of both STAGATE and stLearn embeddings
showed a nearly linear development trajectory from layer 1 to layer 6 as well as the
similarity between adjacent layers, while the PAGA results of both SCANPY and
SEDR embeddings were mixed.

STAGATE enables the identification of tissue structures from ST data of
different spatial resolutions.

We further tested whether STAGATE can be applied to ST data of different spatial
resolutions. We first applied STAGATE onto a Slide-seqV2 dataset with 10um spatial
resolution from mouse hippocampus®. Compared to the 10x Visium platform with a
resolution of 55um, Slide-seqV2 can profile spatial expressions at a resolution of
cellular levels with more spots (>10,000 per section) but less sequence depth per
spot (Supplementary Table S2). As expected, using the Louvain clustering algorithm
with the same parameter, STAGATE can well characterize the tissue structures and
uncover the spatial domains, while the clusters identified by SCANPY and SEDR lack
clear spatial separation (Fig. 3a and Supplementary Fig. S3). For example,
STAGATE depicted a clear “cord-like” structure as well as an “arrow-like” structure in
the hippocampal region and identified four spatial domains of it. This result is
consistent with the annotation of hippocampus structures from the Allen Reference
Atlas? (Fig. 3b). Specifically, the “cord-like” structure corresponds to the pyramidal
layer of Ammon's horn, which can be further separated into fields CA1, CA2, and
CA3 (i.e., CA1sp, CA2sp, and CA3sp), and the “arrow-like” structure corresponds to
the granule cell layer of the dentate gyrus (i.e., DG-sg). Although the CA2sp domain
was not clustered separately due to the small spot number, it was separated in the
UMAP plot of STAGATE embeddings (Supplementary Fig. S4). Furthermore, the
expressions of many known gene markers also verified the cluster partition of
STAGATE (Fig. 3c and Supplementary Fig. S5). For example, ITPKA and BCL11B
showed differential expressions between domains of Ammon's horn and are highly
expressed at CA1sp as expected?! 22, The known molecular markers of hippocampal
CA2 such as AMIGO2 and PCP4 were specifically expressed in the identified
CA2sp domain?. In addition, LRRTM4 that has been found to mediate excitatory
synapse development on dentate gyrus granule cells was specifically expressed at
the identified DG-sg region?*. Besides these known tissue structures, STAGATE also
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identified many well-separated spatial domains and revealed their spatial gene
expression patterns via differential expression analysis (Supplementary Fig. S5).
For example, the domain within the hippocampus except for the “cord-like” and
“arrow-like” structures (domain 2) exhibited strong expression of astrocytes gene
markers DDN and CAMK2A?°, The domain surrounding the hippocampal region
(domain 7) expressed many oligodendrocytes-related gene markers such as TRF
and MOBP?5. Moreover, we also observed significant spatial expression patterns in
the spatial domains 3 and 4 with the dominant expression of ENPP2 and NWD2
respectively. These results demonstrated that STAGATE can dissect spatial
heterogeneity and further uncover spatial expression patterns. We also tested
STAGATE on the mouse hippocampus section profiled by Slide-seq and 10x Visium
technologies. As the initial version of Slide-seqV2, the transcript detection sensitivity
of Slide-seq is relatively lower* (Fig. 3d). STAGATE depicted the known tissue
structures well except CA2sp on the Slide-seq data (Fig. 3e) and 10x Visium data
(Fig. 3f) respectively.

We also validated the performance of STAGATE for identifying tissue structures on
the mouse olfactory bulb, a widely used model tissue with the laminar organization.
We first tested STAGATE on a ST dataset generated by Stereo-seq from mouse
olfactory bulb tissues®. Stereo-seq is a newly emerging spatial omics technology that
can achieve the subcellular spatial resolution by DNA nanoball patterned array chips.
The data used here were binned into a resolution of cellular levels (~14um)®. Fu et
al.? has annotated the laminar organization of coronal mouse olfactory bulb in the
DAPI-stained image, containing the rostral migratory stream (RMS), granule cell
layer (GCL), internal plexiform layer (IPL), mitral cell layer (MCL), external plexiform
layer (EPL) and olfactory nerve layer (ONL) (Fig. 4a). Compared to the clusters
identified by SCANPY, those identified using both STAGATE and SEDR embeddings
better reflected the laminar organization and well corresponded to the annotated
layers (Fig. 4b and Supplementary Fig. S6). Importantly, STAGATE recognized the
narrow tissue structure MCL clearly, which was validated by the expression of mitral
cell marker GABRA1?” (Supplementary Fig. S7).

We also applied STAGATE onto a mouse olfactory bulb section profiled by Slide-
seqV2°® and found that the spatial domains identified by STAGATE were well
consistent with the annotation of coronal mouse olfactory bulb from Allen Reference
Atlas? (Fig. 4c). Specifically, compared to clusters produced by SCANPY and
SEDR, STAGATE identified two spatial domains corresponding to the accessory
olfactory bulb (AOB) and the granular layer of the accessory olfactory bulb (AOBgr)
respectively (Fig. 4d and Supplementary Fig. $8). These spatial domains
uncovered by STAGATE were clearly supported by known gene markers (Fig. 4e).
For example, FXYD6 showed strong expressions on the identified AOB domain,
which is consistent with its immunohistochemistry experiment?3. The granular cell
marker ATP2B42° showed strong expressions on the identified AOBgr domain. The
narrow MCL structure with the dominant expression of mitral cell marker GABRA1?7
was also identified by STAGATE. In addition, STAGATE identified a spatial
subpopulation of GCL named GCL_1 with the dominant expression of NRGN. NRGN
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is a well-documented schizophrenia risk gene®, implying that this domain is related
to cognition function. Moreover, we found that STAGATE delineated the spatial
trajectory among the mouse olfactory bulb (from AOBgr to RMS to ONL) in the UMAP
plots as well as the PAGA graphs (Supplementary Fig. S9). Collectively, these
results illustrated the ability of STAGATE to identify tissue structures and reveal their
organization from ST data of different spatial resolutions.

Attention mechanism and cell type-aware module help to better characterize
the similarity between neighboring spots.

Next, we tested whether STAGATE could provide insights into sections including
more biologically complex tissues, such as the whole brain. We applied STAGATE
onto a 10x Visium dataset, which profiled the spatial expressions of a coronal mouse
brain section (Fig. 5a). We found that the clustering results identified by SCANPY
roughly divided the tissue structures containing different cell types while lacking the
identification of small spatial domains (Fig. 5b and Supplementary Fig. S10). For
example, the clustering assignment of SCANPY failed to identify the “cord-like”
structure -- Ammon's horn and the “arrow-like” structure -- dentate gyrus within the
hippocampus. Moreover, SEDR only smoothed the domain border, but cannot depict
the small spatial domains either (Fig. 5b). The direct application of STAGATE
brought some improvements in spatial domain identification (Fig. 5b). Specifically, in
the hippocampal region, STAGATE without cell type-aware module identified the field
CA1 (domain 17) and CA3 (domain 19) of Ammon's horn, but did not depict the
dentate gyrus structure.

For ST data containing heterogeneous cell types with low spatial resolution,
STAGATE with the cell type-aware module could better learn the spatial similarity
(Fig. 1; Materials and Methods). Specifically, the pre-clustering process is based on
the Louvain algorithm with a small resolution parameter (set as 0.2 by default)
(Supplementary Fig. S10b). As expected, the usage of the cell type-aware module
aided in the identification of spatial domains (Fig. 5b). STAGATE identified the
Ammon's horn as well as the dentate gyrus structure in the hippocampus, and further
depicted the spatial domains CA1 (domain 17) and CA3 (domain 20) of the Ammon's
horn. In addition, STAGATE better depicted the layer structures of the cortex region
(domain 0, 4, and 12). Notably, we found that the cell type-aware module also
significantly improved the separation of tissue structures in the UMAP plot, while
those of SEDR and STAGATE without cell type-aware module were more like a
smooth version of the non-spatial method SCANPY (Fig. 5c).

We further evaluated whether the usage of attention mechanism indeed
contributed to better characterizing the heterogeneous similarity between neighboring
spots. We visualized the attention layer by arranging the nodes according to their
spatial locations and coloring the edges by their weights, and found that using the
attention mechanism alone could delineate the boundaries of main tissue structures
such as the cortex, hippocampus, and midbrain (Fig. 5d). Combining the attention
mechanism and the cell type-aware module enhanced the delineation of structure
boundaries, and further revealed the spatial similarity within small spatial domains
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(Fig. 5e). For example, in the hippocampal region, STAGATE adaptively learned the
spatial similarity within the Ammon's horn as well as the dentate gyrus structure (Fig.
5f). Collectively, these results indicated the importance of the attention mechanism
and cell type-aware module for depicting the similarity between neighboring spots.

STAGATE denoises gene expressions for better characterizing spatial
expression patterns.

STAGATE could denoise and impute gene expressions. We adopted STAGATE to
reduce noises in the DLPFC dataset to better show the spatial pattern of genes. We
compared the expressions of six layer-marker genes of the raw data to those
denoised ones by STAGATE in the DLPFC section 151676 (Fig. 6a). As expected,
the denoised ones by STAGATE exhibited the laminar enrichment of these layer-
marker genes clearly. For example, after denoising, the ATP2B4 gene showed
differential expressions in layers 2 and 6, which is consistent with previously reported
results’®®', while its raw spatial expression is completely messy. We validated the
laminar enrichment showed by STAGATE against publicly available in situ
hybridization (ISH) data from the Allen Human Brain Atlas?®® (Fig. 6b). Moreover, a
comparison of the raw expressions and the denoised ones by STAGATE using violin
plots demonstrated that STAGATE enhanced the spatial patterns of layer-marker
genes (Fig. 6¢, d). Notably, STAGATE obtained similar performance on the DLPFC
section 151507 (Supplementary Fig. $S11). Collectively, these results demonstrated
the ability of STAGATE to reduce noises and enhance spatial expression patterns. In
addition, we also compared the imputation performance of STAGATE with four widely
used single-cell RNA-seq imputation algorithms in terms of downsampling
experiments, and showed its superior in both imputation efficiency and preservation
of spatial expression patterns (Supplementary Notes; Supplementary Fig. S12).

The usage of 3D SNN leads to better extraction of 3D spatial patterns.

We applied STAGATE onto a pseudo-3D ST data constructed by aligning the spots of
the “cord-like” structure in seven hippocampus sections profiled by Slide-seq (Fig.
7a; Supplementary Table S3). We extended STAGATE for 3D spatial domain
identification by simultaneously considering the 2D SNN within each section and
neighboring spots between adjacent sections (Fig. 7b; Materials and Methods).
Due to the data sparsity, the clustering results generated using SCANPY were mixed
(Supplementary Fig. $13). When only adopting the 2D SNN, STAGATE failed to
identify the CA2sp domain due to the batch effects between sections (Fig. 7c, d).
After adding neighboring edges between adjacent sections, STAGATE depicted the
known tissue structures clearly, and spots tend to cluster by their spatial structures
rather than by section IDs in the UMAP plot (Fig. 7e, f). We verified the tissue
structures identified based on STAGATE by the known marker genes, including
ITPKA?', BCL11B*, AMIGO2?%, and LRRTM4?* (Supplementary Fig. S13d). These
results illustrated that STAGATE could help to reconstruct 3D tissue models and
accurately extract 3D expression patterns by incorporating 3D spatial information.
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Discussion

Accurate identification of spatial domains and further extraction of spatially expressed
genes are essential for understanding tissue organization and biological functions.
Here, we developed a fast and user-friendly spatial domain identification method
STAGATE, which can be seamlessly integrated into the standard analysis workflow
by taking the “anndata” object of SCANPY package'’ as inputs. STAGATE
transforms spatial location information into SNNs and further adopts a graph
attention auto-encoder to integrate SNNs and expression profiles. We tested the
performance of STAGATE on diverse ST data generated by different platforms with
different spatial resolutions. We found that STAGATE accurately revealed the laminar
organization of DLPFC and mouse olfactory bulb. Moreover, STAGATE identified the
known tissue structures of the hippocampus clearly and uncovered spatial domains
of it. We additionally demonstrated the ability of STAGATE in expression denoising
by comparing it with the ISH images. Lastly, we illustrated the ability of STAGATE to
alleviate batch effects between consecutive sections and extract 3D expression
domains in a pseudo-3D ST model.

The success of STAGATE is mainly attributed to the usage of the graph attention
mechanism for considering spatial neighbor information. However, the current
STAGATE focuses on the integration of expression profiles and spatial information
and does not leverage the histological images. Existing methods taking histological
images as inputs, such as stLearn, did not achieve good performance in our
comparison. stLearn employs a pre-trained neural network to extract features from
images and further calculates the morphological distance by cosine distance. We
believe this pre-defined approach does not take advantage of the flexibility of deep
learning, and the attention mechanism can be extended to adaptively integrate the
histological image features conveniently.

STAGATE can handle ST data of diverse spatial resolutions. Generally, STAGATE
performs better for ST data of cellular or subcellular resolutions due to the high
similarity between neighboring spots. For technologies with relatively low spatial
resolution, we introduced the cell type-aware module to depict the heterogeneous
spatial similarity. However, a potential limitation of STAGATE is that it treats
neighboring spots from one section the same as those belonging to different
sections. Future work may employ heterogeneous networks to better depict 3D tissue
models.

With the increase of spatial resolution and data scale, the computational approach
should meet the basic requirement of efficiency and scalability. We recorded the
running time spent on real datasets by STAGATE (Supplementary Fig. S14a).
When dealing with the largest real dataset with more than 50k spots, STAGATE only
costs about 40 minutes. We also benchmarked the running time and memory usage
of STAGATE on simulated datasets of different scales where spots were arranged
according to the location of 10x Visium chips. Numerical experiments showed that
STAGATE was fast and only took less than 40 minutes with about 4GB GPU memory
usage for dealing with the dataset with 50k spots (Supplementary Fig. S14b).
However, the GPU memory usage is nearly linearly correlated to the number of spots
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and could be a bottleneck restricting the application of STAGATE to massive
datasets (Supplementary Fig. S14c). Future work is expected to improve the
scalability of STAGATE by introducing the subgraph-based training strategy.

Moreover, STAGATE enables the detection of spatially variable genes within
spatial domains. Existing spatially variable gene identification algorithms such as
SPARK-X*? do not consider the spatial domain information, which makes it difficult to
identify space-specifically expressed genes within small tissue structures. To
illustrate it, we compared differential expressed genes of STAGATE spatial domains
with those of SPARK-X on the Slide-seqV2 dataset from mouse olfactory bulb tissue.
Specifically, STAGATE identified 959 domain-specific genes, and SPARK-X searched
2,479 spatially variable genes with FDR<0.01. We found that many genes identified
by SPARK-X did not show significant differences between spatial domains
(Supplementary Fig. S15a). Furthermore, the spatial autocorrelations measured by
Moran’s | statistic were similar between the gene set identified by STAGATE and the
first 1,000 genes of SPARK-X (Supplementary Fig. S15b). The gene sets identified
by these two methods have a great overlap, but SPARK-X ignores some specific
genes of small tissue structures (Supplementary Fig. $15c¢). For example, the mitral
cell marker GABRA1 show significant enrichment in the MCL domain (Fig. 4e;
FDR=1e-34), but SPARK-X did not identify its spatial pattern (FDR =0.018).
Moreover, the NEFH gene also showed a strong expression in the MCL domain
(Supplementary Fig. $15d; FDR=1e-12), while SPARK-X ignored it (FDR=1). We
expect that STAGATE can facilitate the identification of tissue organization and the
discovery of corresponding gene markers.
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Materials and Methods

Data description

We applied STAGATE to ST datasets generated by different platforms including 10x
Visium, Slide-seq, Slide-seqV2, and Stereo-seq (see Supplementary Table S2 for
details). Specifically, the DLPFC dataset includes 12 human DLPFC sections
sampled from three individuals experiments'®. The number of spots ranges from
3,498 to 4,789 for each section, and the original authors have manually annotated
the area of DLPFC layers and white matter (WM). The Stereo-seq mouse olfactory
bulb data has been binned into a resolution of cellular levels (~14pm) and contains
19,109 spots'2. The Slide-seqV2 mouse hippocampus data and mouse olfactory bulb
data were profiled at a spatial resolution of 10um, and contain 19,285 and 20,139
spots respectively®.

Moreover, seven ST data profiled by Slide-seq were used to reconstruct the 3D
hippocampus model* (Supplementary Table S3). To generate the 3D hippocampus
model, we first extracted the “cord-like” structure and “arrow-like” structure based on
the STAGATE embeddings in the entire section. Then sections are aligned using the
Iterative Closest Point algorithm3® and manual fine-tuning.

We also downloaded publicly available ISH images and the annotation atlas
images from the Allen Brain Atlas website?® (Supplementary Table S4).

Data preprocessing

In all datasets, we first removed spots outside the main tissue area. Then raw gene
expressions were log-transformed and normalized according to library size using
SCANPY package'. Finally, the top 3,000 highly variable genes were selected as the
inputs of STAGATE.

Construction of SNN

To incorporate the similarity of neighboring spots of a given spot, STAGATE converts
the spatial information into an undirected neighbor network according to a pre-
defined radius r. Let A be the adjacency matrix of the SNN, then A;; = 1 if and only
if the Euclidean distance between spot j and spot j is less than r (Fig. 1). Specifically,
for 10x Visium data, we set the network to contain the six nearest neighbors for each
spot. For other data, we empirically choose r so that each spot contains 6-15
neighbors on average. The statistics of the number of neighbors for all the
experiments can be found in Supplementary Fig. $16. Self-loops are added for
each spot.

Construction of cell type-aware SNN (optional)

For ST data with relatively low spatial resolution, STAGATE adopts a cell type-aware
module by pruning the SNN according to pre-clustering of gene expressions.
Specifically, the pre-clustering of gene expressions is conducted by the Louvain
algorithm with a small resolution value (set as 0.2 by default) on the PCA
embeddings, and STAGATE prunes the edge if the spots of it belong to different
clusters (Fig. 1).
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Graph attention auto-encoder

The graph attention auto-encoder consists of three parts: encoder, decoder and
graph attention layer.

Encoder

The encoder in our architecture takes the normalized gene expressions as input and
generates the spot embedding by collectively aggregating information from its
neighbors. Let x; be the normalized expressions of spot i and L be the number of
layer of the encoder. By treating expression profiles as initial spot embeddings (i.e.

h® =x.,Vie{l,2,...,N}), the k-th (k e {1, 2,.., L—1}) encoder layer generates the

embedding of spot i in layer k as follows:
() _ () (kD)
h{ =Y attio(W,h{™),

jeS;

where W, is the trainable weight matrix, o is the nonlinear activation function, S;

is the neighbor set of spot i in SNN (including spot i itself) and att{ is the edge

weight between spot i and spot j in the output of the k-th graph attention layer. The L-
th encoder layer does not adopt the attention layer and is formulated as follows:

h = o (W h{?).

The output of encoder is considered as the final spot embedding.

Decoder

By contrast, the decoder reverses the latent embedding back into a reconstructed
normalized expression profile. By treating the output of the encoder as the input of
the

w
decoder (i.e. hi = h{"), the k-th (k {2,.., L—1, L}) decoder layer reconstructs the

embedding of spot i in layer k-1 as follows:

(k-1) (k-1) (k)
hi :Zattij G(thj )

ieS;

Similar to the encoder, the last layer of decoder is formulated as follows:

h = a(wlhfl’).

The output of decoder is considered as the reconstructed normalized expressions. To

(k) T (k)
avoid overfitting, STAGATE sets W =W and att ~=att™ respectively.

Graph attention layer

To adaptively learn the similarity between neighboring spots, we employed a self-
attention mechanism that has been widely used for graph neural networks3*. We first
described it in the context of using SNN alone. Briefly, the attention mechanism is a
single-layer feedforward neural network with shared parameters among nodes,
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parametrized by a weight vector. In the k-th encoder layer, the edge weight from
node i to its neighbor node j is computed as follows:

el = Sigmoid(vgk’Ta(thi‘k’”)+v§">Ta(th(jk—1) ))

where v and v are the trainable weight vectors, and Sigmoid represents the

sigmoid activation function.
To make the spatial similarity weights comparable, we normalized them by a
softmax function as follows:

att® = exp(e]”)

DT Y exp(e®)
ies,
These learned weights are further used to update the latent embedding in the
encoder and decoder.
In addition, when the cell type-aware module is used, STAGATE adopts self-

spatial

attention mechanism for the two types of SNNs respectively. Let attij and

att;™™ represent the learned spatial similarity based on SNN and the cell type-

aware SNN respectively (the layer symbol is omitted here), and the spatial similarity
finally adopted is the linear addition of them (a=0.5 by default):

spatial aware
att; = (1-a)att™ +aatt™ .

We discussed the selection of a on the 10x Visium coronal mouse brain data in
Supplementary Notes and Supplementary Fig. S17.

Loss function

The objective of STAGATE is to minimize the reconstruction loss of normalized
expressions as follows:

N

2

i=1

0
X. —hi

2

The overall architecture of STAGATE

In all experiments, the encoder of STAGATE is set as a two-layer neural network
(512-30) with the graph attention layer, and the decoder is set as the same number of
layers as the encoder. Adam optimizer® is used to minimize the reconstruction loss
with an initial learning rate of 1e-4. The weight decay is set as 1e-4. The activation
function is set as the exponential linear unit (ELU)*. The number of iterations is set
as 500 by default, and 1,000 when using the cell type-aware module.

Clustering
We used different strategies to identify spatial domains based on STAGATE
embeddings. When the number of the label is known, we employ the mclust
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clustering algorithm®. For data without prior information, we use the Louvain
algorithm implemented by SCANPY package'’. The resolutions of the Louvain
algorithm are manually selected. For fairness, we also displayed the results of the
Louvain algorithm under different resolutions.

Spatial trajectory inference

We employed the PAGA algorithm'® implemented in the SCANPY package'’ to depict
spatial trajectory. The PAGA graphs were visualized by the
scanpy.pl.paga_compare() function.

Identifying differentially expressed genes

We used the Wilcoxon test implemented in SCANPY package'’ to identify
differentially expressed genes for each spatial domain with a 1% FDR threshold
(Benjamin-Hochberg adjustment).

Identification of 3D spatial domains using STAGATE.

All current ST technologies profile gene expression patterns in the context of 2D
tissue sections, which limits the accurate depiction of 3D ST in the real world. A
conventional solution is to reconstruct gene expressions in 3D space by stacking
consecutive 2D sections* 3”. However, the batch effect between sections hinders the
extraction of 3D spatial patterns. Here, we introduced a 3D SNN by incorporating the
2D SNN of each section and the SNN between adjacent sections to alleviate the
batch effect between consecutive sections (Fig. 7b). Specifically, the SNN between
adjacent sections is constructed based on the aligned coordinates and a pre-defined
radius. The key idea of the usage of 3D SNN is that the biological differences
between consecutive sections should be continuous, so we can enhance the
similarity between adjacent sections to eliminate the discontinuous independent
technical noises.

Data availability

All data analyzed in this paper are available in raw form from their original authors.
Specifically, the DLPFC dataset is accessible within the spatialLIBD package
(http://spatial.libd.org/spatialLIBD). The MouseBrain dataset is collected from the 10x
Genomics website (https://support.10xgenomics.com/spatial-gene-
expression/datasets). Slide-seqV2 datasets are available at
https://singlecell.broadinstitute.org/single cell/study/SCP815/highly-sensitive-spatial-
transcriptomics-at-near-cellular-resolution-with-slide-seqv2#study-summary. Slide-
seq datasets are available at https://portals.broadinstitute.org/single cell/study/slide-
seg-study. The processed Stereo-seq data from mouse olfactory bulb tissue is
accessible on https://github.com/JinmiaoChenLab/SEDR _analyses.
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Figure captions:

Figure 1. Overview of STAGATE. STAGATE first constructs a spatial neighbor
network (SNN) based on a pre-defined radius, and another optional one in the
dashed box for 10x Visium data by pruning it according to the pre-clustering of gene
expressions to better characterize the spatial similarity at the boundary of spatial
domains. STAGATE further learns low-dimensional latent representations with both
spatial information and gene expressions via a graph attention auto-encoder. The
input of the auto-encoder is the normalized expression matrix, and the graph
attention layer is adopted in the middle of the encoder and decoder. The output of
STAGATE can be applied for identifying spatial domains, data denoising, and
extracting 3D spatial domains.

Figure 2. STAGATE improves the identification of layer structures in the human
dorsolateral prefrontal cortex (DLPFC) tissue. a, Ground-truth segmentation of
cortical layers and white matter (WM) in the DLPFC section 151676. b, Boxplot of
clustering accuracy in all 12 sections of the DLPFC dataset in terms of adjusted rand
index (ARI) scores for five methods. ¢, Cluster assignments generated by SCANPY,
stLearn, SEDR, BayesSpace, and STAGATE in the DLPFC section 151676. d,
UMAP visualizations and PAGA graphs generated by SCANPY, stLearn, SEDR, and
STAGATE embeddings respectively in the DLPFC section 151676. As an end-to-end
clustering approach, BayesSpace cannot be visualized using UMAP and PAGA.

Figure 3. STAGATE improves the identification of known tissue structures in
the mouse hippocampus tissue. a, Spatial domains generated by Louvain
clustering with resolution=0.3 on the low-dimensional SCANPY, SEDR, and
STAGATE embeddings in the Slide-seqV2 hippocampus section. b, The annotation
of hippocampus structures from the Allen Reference Atlas of an adult mouse brain. c,
Visualization of CA1sp, CA2sp, CA3sp, and DG-sg domains identified by STAGATE
and the corresponding marker genes. Spatial domains were annotated by the
structure annotation showed in the Allen Reference Atlas. d, Number of total UMIs
per spot in the mouse hippocampus sections generated by Slide-seq and Slide-
seqV2 respectively. e and f, Spatial domains generated by STAGATE on the
hippocampus section profiled by Slide-seq (e) and 10x Visium (f) technologies
respectively.

Figure 4. STAGATE identifies the laminar organization in the mouse olfactory
bulb tissue sections profiled by Stereo-seq and Slide-seqV2 respectively. a,
Laminar organization of mouse olfactory bulb annotated in the DAPI-stained image
generated by Stereo-seq. b, Spatial domains generated by Louvain clustering with
resolution=0.8 on the low-dimensional SCANPY, SEDR, and STAGATE embeddings
in the Stereo-seq mouse olfactory bulb tissue section. ¢, Laminar organization of
mouse olfactory bulb annotated by the Allen Reference Atlas. d, Spatial domains
generated by Louvain clustering with resolution=0.5 on the low-dimensional
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SCANPY, SEDR, and STAGATE embeddings in the Slide-seqV2 mouse olfactory
bulb tissue section. e, Visualization of spatial domains identified by STAGATE and
the corresponding marker genes. Spatial domains were annotated by the laminar
organization showed in the Allen Reference Atlas.

Figure 5. STAGATE reveals spatial domains in adult mouse brain section
profiled by 10x Visium. a, Immunofluorescent imaging of the tissue section stained
with DAPI and Anti-NeuN. b, Spatial domains generated by Louvain clustering with
resolution=1 on the low-dimensional embeddings of SCANPY, SEDR, STAGATE, and
STAGATE with cell type-aware module. ¢, UMAP visualizations of the low-
dimensional embeddings of SCANPY, SEDR, STAGATE, and STAGATE with cell
type-aware module respectively. d and e, Visualizations of the attention layer of
STAGATE without (d) or with (e) cell type-aware module. The nodes of the attention
layer are arranged according to the spatial position of spots. The edges of the
attention layer are colored by corresponding weights. f, Zoomed-in views of
immunofluorescent imaging of the hippocampus region and the visualization of
attention layer in (e).

Figure 6. STAGATE enhances the spatial patterns of layer-marker genes in the
DLPFC dataset. a, Visualizations of the raw spatial expressions and STAGATE
denoised ones of six layer-marker genes in the DLPFC section 151676. b, ISH
images from visual cortex (ATP2B4, RASGRF2, NEFH, NTNG2, and B3GALT?2) or
temporal cortex (LAMPS5) of the adult human brain from the Allen Human Brain Atlas.
¢, Violin plots of the raw expression of layer-marker genes. d, Violin plots of the
STAGATE denoised expressions of layer-marker genes. The cortical layer
corresponding to the layer-marker gene is marked with a red box.

Figure 7. STAGATE can alleviate the batch effect between consecutive sections
by incorporating a 3D spatial network. a, Visualization of the 3D hippocampal
volume stacked by seven aligned consecutive sections profiled by Slide-seq. b, The
3D SNN is a combination of the 2D SNN within each section and the spatial network
between consecutive sections. ¢, Cluster assignments generated by STAGATE-2D
with the 2D SNN. d, The UMAP plots generated by STAGATE-2D embeddings. The
spots are colored by the identified spatial domains (left) and the section IDs (right)
respectively. e, Cluster assignments generated by STAGATE-3D with the 3D SNN. f,
The UMAP plots generated by STAGATE-3D embeddings. The spots are colored by
the identified spatial domains (left) and the section IDs (right) respectively.
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Fig. 6
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Fig. 7
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