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ABSTRACT  

Recent advances in spatially resolved transcriptomics have enabled comprehensive 

measurements of gene expression patterns while retaining the spatial context of the 

tissue microenvironment. Deciphering the spatial context of spots in a tissue needs to 

use their spatial information carefully. To this end, we developed a graph attention 

auto-encoder framework STAGATE to accurately identify spatial domains by learning 

low-dimensional latent embeddings via integrating spatial information and gene 

expression profiles. To better characterize the spatial similarity at the boundary of 

spatial domains, STAGATE adopts an attention mechanism to adaptively learn the 

similarity of neighboring spots, and an optional cell type-aware module through 

integrating the pre-clustering of gene expressions. We validated STAGATE on 

diverse spatial transcriptomics datasets generated by different platforms with 

different spatial resolutions. STAGATE could substantially improve the identification 

accuracy of spatial domains, and denoise the data while preserving spatial 

expression patterns. Importantly, STAGATE could be extended to multiple 

consecutive sections to reduce batch effects between sections and extracting three-

dimensional (3D) expression domains from the reconstructed 3D tissue effectively. 
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Introduction 

The functions of complex tissues are fundamentally related to the spatial context of 

different cell types1. The relative locations of transcriptional expressions in tissue are 

critical for understanding its biological functions and describing interactive biological 

networks2. Breakthrough technologies for spatially resolved transcriptomics (STs), 

such as 10x Visium3, Slide-seq4, 5, and Stereo-seq6, have enabled genome-wide 

profiling of gene expressions in captured locations (referred to as spots) at a 

resolution of several cells or even subcellular levels. 

Deciphering spatial domains (i.e., regions with similar spatial expression patterns) 

is one of the great challenges from STs. Most existing clustering methods do not 

efficiently use the available spatial information. These non-spatial methods can be 

roughly divided into two categories. The first category uses traditional clustering 

methods such as k-means and Louvain algorithm7. These methods are limited to the 

small number of spots or the sparsity according to the different resolutions of ST 

technologies, and clustering results may be discontinuous in the tissue section. The 

second category utilizes the cell type signatures defined by single-cell RNA-seq to 

deconvolute the spots8, 9. While these integration methods are appealing, as the 

spatial resolution improving, they are not applicable to ST data at a resolution of 

cellular or subcellular levels. 

Some recent algorithms adapt the clustering methods by considering the similarity 

between adjacent spots to better account for the spatial dependency of gene 

expressions10-12. These methods show significant improvements in identifying spatial 

domains of sections from brain and cancer tissues. For example, BayesSpace is a 

Bayesian statistical method that encourages neighboring spots to belong to the same 

cluster by introducing spatial neighbor structure into the prior10. stLearn defines the 

morphological distance based on features extracted from a histology image and 

utilizes such distances as well as spatial neighbor structure to smooth gene 

expressions11. SEDR employs a deep auto-encoder network for learning gene 

representations and uses a variational graph auto-encoder to simultaneously embed 

spatial information12. Although these methods consider the spatial structure of STs, 

the similarity of neighboring spots defined by them is pre-defined before training and 

cannot be learned adaptively. Moreover, these methods do not consider the spatial 

similarity of spots at the boundary of spatial domains in more detail and do not well 

integrate spatial information to impute and denoise gene expressions. More 

importantly, these approaches cannot be applied to multiple consecutive sections to 

reconstruct a three-dimensional (3D) ST model and extract 3D expression domains 

(Supplementary Table S1). 

To this end, we developed a graph attention auto-encoder framework STAGATE to 

accurately identify spatial domains by learning low-dimensional latent embeddings 

via integrating spatial information and gene expression profiles. Extensive tests and 

comparison with existing methods on ST data generated by different platforms (e.g., 

10x Visium, Slide-seq, and Stereo-seq) as benchmarks demonstrated its superiorities 

for downstream analysis tasks such as spatial domain identification, visualization, 

spatial trajectory inference, data denoising, and 3D expression domain extraction.  
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Results 

Overview of STAGATE  

STAGATE first constructs the spatial neighbor network (SNN) based on the spatial 

locations, and optionally introduces the cell type-aware SNN by pruning the SNN 

based on the pre-clustering of gene expressions (Fig. 1). The gene expression pre-

clustering can effectively identify regions containing distinct cell types, thus this cell 

type-aware SNN can help to better characterize the spatial similarity at the boundary 

of these distinct spatial domains for ST data with low spatial resolutions, such as 10x 

Visium (Materials and Methods).  

Then STAGATE learns low-dimensional latent embeddings with both spatial 

information and gene expressions via a graph attention auto-encoder13 (Fig. 1). The 

normalized expression of each spot is first transformed into a d-dimensional latent 

embedding by an encoder and then reversed back into a reconstructed expression 

profile via a decoder. Unlike the classic auto-encoder, STAGATE adopts an attention 

mechanism in the middle layer of the encoder and decoder. It adaptively learns the 

edge weights of SNNs (i.e., the similarity between neighboring spots) and further 

uses them to update the spot representation by collectively aggregating information 

from its neighbors. Finally, the latent embeddings are used to visualize the data with 

UMAP14 and identify spatial domains with various clustering algorithms, such as 

mclust15 and Louvain7 (Fig. 1). 

 

STAGATE improves the identification of known layers on the human 

dorsolateral prefrontal cortex dataset. 

To quantitatively evaluate the spatial clustering performance of STAGATE, we first 

applied it onto a 10x Visium dataset containing spatial expressions of 12 human 

dorsolateral prefrontal cortex (DLPFC) sections16. Maynard et al.16 has manually 

annotated DLPFC layers and white matter (WM) based on the morphological 

features and gene markers (Fig. 2a). Considering it as the ground truth, we 

compared the clustering accuracy of STAGATE with the non-spatial clustering 

method implemented by SCANPY17 and three recently developed spatial clustering 

approaches (BayesSpace10, stLearn11, and SEDR12) in terms of adjusted rand index 

(ARI) (Supplementary Notes). 

STAGATE could effectively identify the expected cortical layer structures and 

achieve significant improvement compared to other methods (Fig. 2b and 

Supplementary Fig. S1). For example, in the DLPFC section 151676, STAGATE 

delineated the layer borders clearly and achieved the best clustering accuracy 

(ARI=0.60) (Fig. 2c). For comparison, the clustering assignment of the non-spatial 

approach SCANPY could roughly follow the expected layer pattern in this section, but 

the boundary of its clusters was discontinuous with many outliers, which impaired its 

clustering accuracy. Interestingly, the performance of algorithms leveraging the 

spatial information (STAGATE, BayesSpace, SEDR, and stLearn) are significantly 

better than the non-spatial clustering method SCANPY. These results demonstrated 

the superiority of STAGATE at spatial domain identification and the necessity of its 

usage of spatial information. 
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The integration of spatial information enables STAGATE to reveal the distance 

between spatial domains and depict the spatial trajectory in a UMAP plot14. For 

example, in the DLPFC section 151676, cortical layers were well-organized and 

showed consistent spatial trajectories (from layer 1 to layer 6 and white matter) in the 

UMAP plots generated by the STAGATE embeddings (Fig. 2d and Supplementary 

Fig. S2). This result is consistent with the functional similarity between adjacent 

cortical layers as well as the chronological order18. By contrast, in the UMAP plots of 

SCANPY embeddings, spots belonging to distinct layers were not separated clearly. 

As for the other two spatial clustering methods, stLearn did not distinguish WM and 

cortex layers clearly, and SEDR mixed the spots of layer 1 and layer 6. We further 

confirmed the inferred trajectory using a trajectory inference algorithm named 

PAGA19 (Fig. 2d). The PAGA graphs of both STAGATE and stLearn embeddings 

showed a nearly linear development trajectory from layer 1 to layer 6 as well as the 

similarity between adjacent layers, while the PAGA results of both SCANPY and 

SEDR embeddings were mixed. 

 

STAGATE enables the identification of tissue structures from ST data of 

different spatial resolutions. 

We further tested whether STAGATE can be applied to ST data of different spatial 

resolutions. We first applied STAGATE onto a Slide-seqV2 dataset with 10μm spatial 

resolution from mouse hippocampus5. Compared to the 10x Visium platform with a 

resolution of 55μm, Slide-seqV2 can profile spatial expressions at a resolution of 

cellular levels with more spots (>10,000 per section) but less sequence depth per 

spot (Supplementary Table S2). As expected, using the Louvain clustering algorithm 

with the same parameter, STAGATE can well characterize the tissue structures and 

uncover the spatial domains, while the clusters identified by SCANPY and SEDR lack 

clear spatial separation (Fig. 3a and Supplementary Fig. S3). For example, 

STAGATE depicted a clear “cord-like” structure as well as an “arrow-like” structure in 

the hippocampal region and identified four spatial domains of it. This result is 

consistent with the annotation of hippocampus structures from the Allen Reference 

Atlas20 (Fig. 3b). Specifically, the “cord-like” structure corresponds to the pyramidal 

layer of Ammon's horn, which can be further separated into fields CA1, CA2, and 

CA3 (i.e., CA1sp, CA2sp, and CA3sp), and the “arrow-like” structure corresponds to 

the granule cell layer of the dentate gyrus (i.e., DG-sg). Although the CA2sp domain 

was not clustered separately due to the small spot number, it was separated in the 

UMAP plot of STAGATE embeddings (Supplementary Fig. S4). Furthermore, the 

expressions of many known gene markers also verified the cluster partition of 

STAGATE (Fig. 3c and Supplementary Fig. S5). For example, ITPKA and BCL11B 

showed differential expressions between domains of Ammon's horn and are highly 

expressed at CA1sp as expected21, 22. The known molecular markers of hippocampal 

CA2 such as AMIGO2 and PCP4  were specifically expressed in the identified 

CA2sp domain23. In addition, LRRTM4 that has been found to mediate excitatory 

synapse development on dentate gyrus granule cells was specifically expressed at 

the identified DG-sg region24. Besides these known tissue structures, STAGATE also 
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identified many well-separated spatial domains and revealed their spatial gene 

expression patterns via differential expression analysis (Supplementary Fig. S5). 

For example, the domain within the hippocampus except for the “cord-like” and 

“arrow-like” structures (domain 2) exhibited strong expression of astrocytes gene 

markers DDN and CAMK2A25. The domain surrounding the hippocampal region 

(domain 7) expressed many oligodendrocytes-related gene markers such as TRF 

and MOBP26. Moreover, we also observed significant spatial expression patterns in 

the spatial domains 3 and 4 with the dominant expression of ENPP2 and NWD2 

respectively. These results demonstrated that STAGATE can dissect spatial 

heterogeneity and further uncover spatial expression patterns. We also tested 

STAGATE on the mouse hippocampus section profiled by Slide-seq and 10x Visium 

technologies. As the initial version of Slide-seqV2, the transcript detection sensitivity 

of Slide-seq is relatively lower4 (Fig. 3d). STAGATE depicted the known tissue 

structures well except CA2sp on the Slide-seq data (Fig. 3e) and 10x Visium data 

(Fig. 3f) respectively. 

We also validated the performance of STAGATE for identifying tissue structures on 

the mouse olfactory bulb, a widely used model tissue with the laminar organization. 

We first tested STAGATE on a ST dataset generated by Stereo-seq from mouse 

olfactory bulb tissues6. Stereo-seq is a newly emerging spatial omics technology that 

can achieve the subcellular spatial resolution by DNA nanoball patterned array chips. 

The data used here were binned into a resolution of cellular levels (~14μm)6. Fu et 

al.12 has annotated the laminar organization of coronal mouse olfactory bulb in the 

DAPI-stained image, containing the rostral migratory stream (RMS), granule cell 

layer (GCL), internal plexiform layer (IPL), mitral cell layer (MCL), external plexiform 

layer (EPL) and olfactory nerve layer (ONL) (Fig. 4a). Compared to the clusters 

identified by SCANPY, those identified using both STAGATE and SEDR embeddings 

better reflected the laminar organization and well corresponded to the annotated 

layers (Fig. 4b and Supplementary Fig. S6). Importantly, STAGATE recognized the 

narrow tissue structure MCL clearly, which was validated by the expression of mitral 

cell marker GABRA127 (Supplementary Fig. S7).  

We also applied STAGATE onto a mouse olfactory bulb section profiled by Slide-

seqV25 and found that the spatial domains identified by STAGATE were well 

consistent with the annotation of coronal mouse olfactory bulb from Allen Reference 

Atlas20 (Fig. 4c). Specifically, compared to clusters produced by SCANPY and 

SEDR, STAGATE identified two spatial domains corresponding to the accessory 

olfactory bulb (AOB) and the granular layer of the accessory olfactory bulb (AOBgr) 

respectively (Fig. 4d and Supplementary Fig. S8). These spatial domains 

uncovered by STAGATE were clearly supported by known gene markers (Fig. 4e). 

For example, FXYD6 showed strong expressions on the identified AOB domain, 

which is consistent with its immunohistochemistry experiment28. The granular cell 

marker ATP2B429 showed strong expressions on the identified AOBgr domain. The 

narrow MCL structure with the dominant expression of mitral cell marker GABRA127 

was also identified by STAGATE. In addition, STAGATE identified a spatial 

subpopulation of GCL named GCL_1 with the dominant expression of NRGN. NRGN 
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is a well-documented schizophrenia risk gene30, implying that this domain is related 

to cognition function. Moreover, we found that STAGATE delineated the spatial 

trajectory among the mouse olfactory bulb (from AOBgr to RMS to ONL) in the UMAP 

plots as well as the PAGA graphs (Supplementary Fig. S9). Collectively, these 

results illustrated the ability of STAGATE to identify tissue structures and reveal their 

organization from ST data of different spatial resolutions. 

 

Attention mechanism and cell type-aware module help to better characterize 

the similarity between neighboring spots. 

Next, we tested whether STAGATE could provide insights into sections including 

more biologically complex tissues, such as the whole brain. We applied STAGATE 

onto a 10x Visium dataset, which profiled the spatial expressions of a coronal mouse 

brain section (Fig. 5a). We found that the clustering results identified by SCANPY 

roughly divided the tissue structures containing different cell types while lacking the 

identification of small spatial domains (Fig. 5b and Supplementary Fig. S10). For 

example, the clustering assignment of SCANPY failed to identify the “cord-like” 

structure -- Ammon's horn and the “arrow-like” structure -- dentate gyrus within the 

hippocampus. Moreover, SEDR only smoothed the domain border, but cannot depict 

the small spatial domains either (Fig. 5b). The direct application of STAGATE 

brought some improvements in spatial domain identification (Fig. 5b). Specifically, in 

the hippocampal region, STAGATE without cell type-aware module identified the field 

CA1 (domain 17) and CA3 (domain 19) of Ammon's horn, but did not depict the 

dentate gyrus structure.  

For ST data containing heterogeneous cell types with low spatial resolution, 

STAGATE with the cell type-aware module could better learn the spatial similarity 

(Fig. 1; Materials and Methods). Specifically, the pre-clustering process is based on 

the Louvain algorithm with a small resolution parameter (set as 0.2 by default) 

(Supplementary Fig. S10b). As expected, the usage of the cell type-aware module 

aided in the identification of spatial domains (Fig. 5b). STAGATE identified the 

Ammon's horn as well as the dentate gyrus structure in the hippocampus, and further 

depicted the spatial domains CA1 (domain 17) and CA3 (domain 20) of the Ammon's 

horn. In addition, STAGATE better depicted the layer structures of the cortex region 

(domain 0, 4, and 12). Notably, we found that the cell type-aware module also 

significantly improved the separation of tissue structures in the UMAP plot, while 

those of SEDR and STAGATE without cell type-aware module were more like a 

smooth version of the non-spatial method SCANPY (Fig. 5c). 

We further evaluated whether the usage of attention mechanism indeed 

contributed to better characterizing the heterogeneous similarity between neighboring 

spots. We visualized the attention layer by arranging the nodes according to their 

spatial locations and coloring the edges by their weights, and found that using the 

attention mechanism alone could delineate the boundaries of main tissue structures 

such as the cortex, hippocampus, and midbrain (Fig. 5d). Combining the attention 

mechanism and the cell type-aware module enhanced the delineation of structure 

boundaries, and further revealed the spatial similarity within small spatial domains 
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(Fig. 5e). For example, in the hippocampal region, STAGATE adaptively learned the 

spatial similarity within the Ammon's horn as well as the dentate gyrus structure (Fig. 

5f). Collectively, these results indicated the importance of the attention mechanism 

and cell type-aware module for depicting the similarity between neighboring spots. 

 

STAGATE denoises gene expressions for better characterizing spatial 

expression patterns. 

STAGATE could denoise and impute gene expressions. We adopted STAGATE to 

reduce noises in the DLPFC dataset to better show the spatial pattern of genes. We 

compared the expressions of six layer-marker genes of the raw data to those 

denoised ones by STAGATE in the DLPFC section 151676 (Fig. 6a). As expected, 

the denoised ones by STAGATE exhibited the laminar enrichment of these layer-

marker genes clearly. For example, after denoising, the ATP2B4 gene showed 

differential expressions in layers 2 and 6, which is consistent with previously reported 

results16, 31, while its raw spatial expression is completely messy. We validated the 

laminar enrichment showed by STAGATE against publicly available in situ 

hybridization (ISH) data from the Allen Human Brain Atlas20 (Fig. 6b). Moreover, a 

comparison of the raw expressions and the denoised ones by STAGATE using violin 

plots demonstrated that STAGATE enhanced the spatial patterns of layer-marker 

genes (Fig. 6c, d). Notably, STAGATE obtained similar performance on the DLPFC 

section 151507 (Supplementary Fig. S11). Collectively, these results demonstrated 

the ability of STAGATE to reduce noises and enhance spatial expression patterns. In 

addition, we also compared the imputation performance of STAGATE with four widely 

used single-cell RNA-seq imputation algorithms in terms of downsampling 

experiments, and showed its superior in both imputation efficiency and preservation 

of spatial expression patterns (Supplementary Notes; Supplementary Fig. S12). 

 

The usage of 3D SNN leads to better extraction of 3D spatial patterns. 

We applied STAGATE onto a pseudo-3D ST data constructed by aligning the spots of 

the “cord-like” structure in seven hippocampus sections profiled by Slide-seq (Fig. 

7a; Supplementary Table S3). We extended STAGATE for 3D spatial domain 

identification by simultaneously considering the 2D SNN within each section and 

neighboring spots between adjacent sections (Fig. 7b; Materials and Methods). 

Due to the data sparsity, the clustering results generated using SCANPY were mixed 

(Supplementary Fig. S13). When only adopting the 2D SNN, STAGATE failed to 

identify the CA2sp domain due to the batch effects between sections (Fig. 7c, d). 

After adding neighboring edges between adjacent sections, STAGATE depicted the 

known tissue structures clearly, and spots tend to cluster by their spatial structures 

rather than by section IDs in the UMAP plot (Fig. 7e, f). We verified the tissue 

structures identified based on STAGATE by the known marker genes, including 

ITPKA21, BCL11B22, AMIGO223, and LRRTM424 (Supplementary Fig. S13d). These 

results illustrated that STAGATE could help to reconstruct 3D tissue models and 

accurately extract 3D expression patterns by incorporating 3D spatial information. 
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Discussion 

Accurate identification of spatial domains and further extraction of spatially expressed 

genes are essential for understanding tissue organization and biological functions. 

Here, we developed a fast and user-friendly spatial domain identification method 

STAGATE, which can be seamlessly integrated into the standard analysis workflow 

by taking the “anndata” object of SCANPY package17 as inputs. STAGATE 

transforms spatial location information into SNNs and further adopts a graph 

attention auto-encoder to integrate SNNs and expression profiles. We tested the 

performance of STAGATE on diverse ST data generated by different platforms with 

different spatial resolutions. We found that STAGATE accurately revealed the laminar 

organization of DLPFC and mouse olfactory bulb. Moreover, STAGATE identified the 

known tissue structures of the hippocampus clearly and uncovered spatial domains 

of it. We additionally demonstrated the ability of STAGATE in expression denoising 

by comparing it with the ISH images. Lastly, we illustrated the ability of STAGATE to 

alleviate batch effects between consecutive sections and extract 3D expression 

domains in a pseudo-3D ST model. 

The success of STAGATE is mainly attributed to the usage of the graph attention 

mechanism for considering spatial neighbor information. However, the current 

STAGATE focuses on the integration of expression profiles and spatial information 

and does not leverage the histological images. Existing methods taking histological 

images as inputs, such as stLearn, did not achieve good performance in our 

comparison. stLearn employs a pre-trained neural network to extract features from 

images and further calculates the morphological distance by cosine distance. We 

believe this pre-defined approach does not take advantage of the flexibility of deep 

learning, and the attention mechanism can be extended to adaptively integrate the 

histological image features conveniently. 

STAGATE can handle ST data of diverse spatial resolutions. Generally, STAGATE 

performs better for ST data of cellular or subcellular resolutions due to the high 

similarity between neighboring spots. For technologies with relatively low spatial 

resolution, we introduced the cell type-aware module to depict the heterogeneous 

spatial similarity. However, a potential limitation of STAGATE is that it treats 

neighboring spots from one section the same as those belonging to different 

sections. Future work may employ heterogeneous networks to better depict 3D tissue 

models. 

With the increase of spatial resolution and data scale, the computational approach 

should meet the basic requirement of efficiency and scalability. We recorded the 

running time spent on real datasets by STAGATE (Supplementary Fig. S14a). 

When dealing with the largest real dataset with more than 50k spots, STAGATE only 

costs about 40 minutes. We also benchmarked the running time and memory usage 

of STAGATE on simulated datasets of different scales where spots were arranged 

according to the location of 10x Visium chips. Numerical experiments showed that 

STAGATE was fast and only took less than 40 minutes with about 4GB GPU memory 

usage for dealing with the dataset with 50k spots (Supplementary Fig. S14b). 

However, the GPU memory usage is nearly linearly correlated to the number of spots 
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and could be a bottleneck restricting the application of STAGATE to massive 

datasets (Supplementary Fig. S14c). Future work is expected to improve the 

scalability of STAGATE by introducing the subgraph-based training strategy. 

Moreover, STAGATE enables the detection of spatially variable genes within 

spatial domains. Existing spatially variable gene identification algorithms such as 

SPARK-X32 do not consider the spatial domain information, which makes it difficult to 

identify space-specifically expressed genes within small tissue structures. To 

illustrate it, we compared differential expressed genes of STAGATE spatial domains 

with those of SPARK-X on the Slide-seqV2 dataset from mouse olfactory bulb tissue. 

Specifically, STAGATE identified 959 domain-specific genes, and SPARK-X searched 

2,479 spatially variable genes with FDR<0.01. We found that many genes identified 

by SPARK-X did not show significant differences between spatial domains 

(Supplementary Fig. S15a). Furthermore, the spatial autocorrelations measured by 

Moran’s I statistic were similar between the gene set identified by STAGATE and the 

first 1,000 genes of SPARK-X (Supplementary Fig. S15b). The gene sets identified 

by these two methods have a great overlap, but SPARK-X ignores some specific 

genes of small tissue structures (Supplementary Fig. S15c). For example, the mitral 

cell marker GABRA1 show significant enrichment in the MCL domain (Fig. 4e; 

FDR=1e-34), but SPARK-X did not identify its spatial pattern (FDR =0.018). 

Moreover, the NEFH gene also showed a strong expression in the MCL domain 

(Supplementary Fig. S15d; FDR=1e-12), while SPARK-X ignored it (FDR=1). We 

expect that STAGATE can facilitate the identification of tissue organization and the 

discovery of corresponding gene markers.  
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Materials and Methods  

Data description 

We applied STAGATE to ST datasets generated by different platforms including 10x 

Visium, Slide-seq, Slide-seqV2, and Stereo-seq (see Supplementary Table S2 for 

details). Specifically, the DLPFC dataset includes 12 human DLPFC sections 

sampled from three individuals experiments16. The number of spots ranges from 

3,498 to 4,789 for each section, and the original authors have manually annotated 

the area of DLPFC layers and white matter (WM). The Stereo-seq mouse olfactory 

bulb data has been binned into a resolution of cellular levels (~14μm) and contains 

19,109 spots12. The Slide-seqV2 mouse hippocampus data and mouse olfactory bulb 

data were profiled at a spatial resolution of 10μm, and contain 19,285 and 20,139 

spots respectively5.  

Moreover, seven ST data profiled by Slide-seq were used to reconstruct the 3D 

hippocampus model4 (Supplementary Table S3). To generate the 3D hippocampus 

model, we first extracted the “cord-like” structure and “arrow-like” structure based on 

the STAGATE embeddings in the entire section. Then sections are aligned using the 

Iterative Closest Point algorithm33 and manual fine-tuning. 

We also downloaded publicly available ISH images and the annotation atlas 

images from the Allen Brain Atlas website20 (Supplementary Table S4). 

 

Data preprocessing  

In all datasets, we first removed spots outside the main tissue area. Then raw gene 

expressions were log-transformed and normalized according to library size using 

SCANPY package17. Finally, the top 3,000 highly variable genes were selected as the 

inputs of STAGATE. 

 

Construction of SNN 

To incorporate the similarity of neighboring spots of a given spot, STAGATE converts 

the spatial information into an undirected neighbor network according to a pre-

defined radius r. Let A be the adjacency matrix of the SNN, then 𝐀𝑖𝑗 = 1 if and only 

if the Euclidean distance between spot i and spot j is less than r (Fig. 1). Specifically, 

for 10x Visium data, we set the network to contain the six nearest neighbors for each 

spot. For other data, we empirically choose r so that each spot contains 6-15 

neighbors on average. The statistics of the number of neighbors for all the 

experiments can be found in Supplementary Fig. S16. Self-loops are added for 

each spot. 

 

Construction of cell type-aware SNN (optional) 

For ST data with relatively low spatial resolution, STAGATE adopts a cell type-aware 

module by pruning the SNN according to pre-clustering of gene expressions. 

Specifically, the pre-clustering of gene expressions is conducted by the Louvain 

algorithm with a small resolution value (set as 0.2 by default) on the PCA 

embeddings, and STAGATE prunes the edge if the spots of it belong to different 

clusters (Fig. 1). 
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Graph attention auto-encoder 

The graph attention auto-encoder consists of three parts: encoder, decoder and 

graph attention layer. 

Encoder 

The encoder in our architecture takes the normalized gene expressions as input and 

generates the spot embedding by collectively aggregating information from its 

neighbors. Let 𝑥𝑖 be the normalized expressions of spot i and L be the number of 

layer of the encoder. By treating expression profiles as initial spot embeddings (i.e. 

(0) , {1,2, , }i i i N   h x ), the k-th ( {1,2,.., 1}k L  ) encoder layer generates the 

embedding of spot i in layer k as follows: 

 ( ) ( ) ( 1)

i

k k k

i ij k j

j S

 



h att W h , 

where 
kW  is the trainable weight matrix, σ is the nonlinear activation function, 𝑆𝑖 

is the neighbor set of spot i in SNN (including spot i itself) and 
( )k

ijatt  is the edge 

weight between spot i and spot j in the output of the k-th graph attention layer. The L-

th encoder layer does not adopt the attention layer and is formulated as follows: 

 ( ) ( 1)L L

i L i h W h . 

The output of encoder is considered as the final spot embedding. 

Decoder 

By contrast, the decoder reverses the latent embedding back into a reconstructed 

normalized expression profile. By treating the output of the encoder as the input of 

the 

decoder (i.e. 
( )

( )
L

L
i ih h ), the k-th ( {2,.., 1, }k L L  ) decoder layer reconstructs the 

embedding of spot i in layer k-1 as follows: 

 
( 1)( 1) ( )

i

kk k

i jij k

j S






h att W h . 

Similar to the encoder, the last layer of decoder is formulated as follows: 

 
(0) (1)

1i ih W h . 

The output of decoder is considered as the reconstructed normalized expressions. To 

avoid overfitting, STAGATE sets 
( )

( )Tk
kW W  and 

( )
( )

k
katt att  respectively. 

Graph attention layer 

To adaptively learn the similarity between neighboring spots, we employed a self-

attention mechanism that has been widely used for graph neural networks34. We first 

described it in the context of using SNN alone. Briefly, the attention mechanism is a 

single-layer feedforward neural network with shared parameters among nodes, 
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parametrized by a weight vector. In the k-th encoder layer, the edge weight from 

node i to its neighbor node j is computed as follows: 

    ( ) ( ) ( 1) ( ) ( 1)Sigmoid
T Tk k k k k

ij s k i r k je    v W h v W h , 

where 
( )k

sv  and ( )k

rv  are the trainable weight vectors, and Sigmoid represents the 

sigmoid activation function. 

To make the spatial similarity weights comparable, we normalized them by a 

softmax function as follows: 

 
 

( )

( )

( )

exp

exp
i

k

ijk

ij k

ij

i

e
att

e





. 

These learned weights are further used to update the latent embedding in the 

encoder and decoder. 

In addition, when the cell type-aware module is used, STAGATE adopts self-

attention mechanism for the two types of SNNs respectively. Let 
spatial

ijatt  and 

aware

ijatt  represent the learned spatial similarity based on SNN and the cell type-

aware SNN respectively (the layer symbol is omitted here), and the spatial similarity 

finally adopted is the linear addition of them (α=0.5 by default): 

spatial aware (1 )ij ij ij   att att att . 

We discussed the selection of α on the 10x Visium coronal mouse brain data in 

Supplementary Notes and Supplementary Fig. S17. 

Loss function 

The objective of STAGATE is to minimize the reconstruction loss of normalized 

expressions as follows: 

0

21

N

ii

i

 x h . 

 

The overall architecture of STAGATE 

In all experiments, the encoder of STAGATE is set as a two-layer neural network 

(512-30) with the graph attention layer, and the decoder is set as the same number of 

layers as the encoder. Adam optimizer35 is used to minimize the reconstruction loss 

with an initial learning rate of 1e-4. The weight decay is set as 1e-4. The activation 

function is set as the exponential linear unit (ELU)36. The number of iterations is set 

as 500 by default, and 1,000 when using the cell type-aware module. 

 

Clustering 

We used different strategies to identify spatial domains based on STAGATE 

embeddings. When the number of the label is known, we employ the mclust 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 25, 2021. ; https://doi.org/10.1101/2021.08.21.457240doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.21.457240
http://creativecommons.org/licenses/by-nc-nd/4.0/


clustering algorithm15. For data without prior information, we use the Louvain 

algorithm implemented by SCANPY package17. The resolutions of the Louvain 

algorithm are manually selected. For fairness, we also displayed the results of the 

Louvain algorithm under different resolutions. 

 

Spatial trajectory inference 

We employed the PAGA algorithm19 implemented in the SCANPY package17 to depict 

spatial trajectory. The PAGA graphs were visualized by the 

scanpy.pl.paga_compare() function.  

 

Identifying differentially expressed genes  

We used the Wilcoxon test implemented in SCANPY package17 to identify 

differentially expressed genes for each spatial domain with a 1% FDR threshold 

(Benjamin-Hochberg adjustment). 

 

Identification of 3D spatial domains using STAGATE. 

All current ST technologies profile gene expression patterns in the context of 2D 

tissue sections, which limits the accurate depiction of 3D ST in the real world. A 

conventional solution is to reconstruct gene expressions in 3D space by stacking 

consecutive 2D sections4, 37. However, the batch effect between sections hinders the 

extraction of 3D spatial patterns. Here, we introduced a 3D SNN by incorporating the 

2D SNN of each section and the SNN between adjacent sections to alleviate the 

batch effect between consecutive sections (Fig. 7b). Specifically, the SNN between 

adjacent sections is constructed based on the aligned coordinates and a pre-defined 

radius. The key idea of the usage of 3D SNN is that the biological differences 

between consecutive sections should be continuous, so we can enhance the 

similarity between adjacent sections to eliminate the discontinuous independent 

technical noises. 

 

Data availability 

All data analyzed in this paper are available in raw form from their original authors. 

Specifically, the DLPFC dataset is accessible within the spatialLIBD package 

(http://spatial.libd.org/spatialLIBD). The MouseBrain dataset is collected from the 10x 

Genomics website (https://support.10xgenomics.com/spatial-gene-

expression/datasets). Slide-seqV2 datasets are available at 

https://singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-

transcriptomics-at-near-cellular-resolution-with-slide-seqv2#study-summary. Slide-

seq datasets are available at https://portals.broadinstitute.org/single_cell/study/slide-

seq-study. The processed Stereo-seq data from mouse olfactory bulb tissue is 

accessible on https://github.com/JinmiaoChenLab/SEDR_analyses.  
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Figure captions: 

 

Figure 1. Overview of STAGATE. STAGATE first constructs a spatial neighbor 

network (SNN) based on a pre-defined radius, and another optional one in the 

dashed box for 10x Visium data by pruning it according to the pre-clustering of gene 

expressions to better characterize the spatial similarity at the boundary of spatial 

domains. STAGATE further learns low-dimensional latent representations with both 

spatial information and gene expressions via a graph attention auto-encoder. The 

input of the auto-encoder is the normalized expression matrix, and the graph 

attention layer is adopted in the middle of the encoder and decoder. The output of 

STAGATE can be applied for identifying spatial domains, data denoising, and 

extracting 3D spatial domains.   

 

Figure 2. STAGATE improves the identification of layer structures in the human 

dorsolateral prefrontal cortex (DLPFC) tissue. a, Ground-truth segmentation of 

cortical layers and white matter (WM) in the DLPFC section 151676. b, Boxplot of 

clustering accuracy in all 12 sections of the DLPFC dataset in terms of adjusted rand 

index (ARI) scores for five methods. c, Cluster assignments generated by SCANPY, 

stLearn, SEDR, BayesSpace, and STAGATE in the DLPFC section 151676. d, 

UMAP visualizations and PAGA graphs generated by SCANPY, stLearn, SEDR, and 

STAGATE embeddings respectively in the DLPFC section 151676. As an end-to-end 

clustering approach, BayesSpace cannot be visualized using UMAP and PAGA. 

 

Figure 3. STAGATE improves the identification of known tissue structures in 

the mouse hippocampus tissue. a, Spatial domains generated by Louvain 

clustering with resolution=0.3 on the low-dimensional SCANPY, SEDR, and 

STAGATE embeddings in the Slide-seqV2 hippocampus section. b, The annotation 

of hippocampus structures from the Allen Reference Atlas of an adult mouse brain. c, 

Visualization of CA1sp, CA2sp, CA3sp, and DG-sg domains identified by STAGATE 

and the corresponding marker genes. Spatial domains were annotated by the 

structure annotation showed in the Allen Reference Atlas. d, Number of total UMIs 

per spot in the mouse hippocampus sections generated by Slide-seq and Slide-

seqV2 respectively. e and f, Spatial domains generated by STAGATE on the 

hippocampus section profiled by Slide-seq (e) and 10x Visium (f) technologies 

respectively. 

 

Figure 4. STAGATE identifies the laminar organization in the mouse olfactory 

bulb tissue sections profiled by Stereo-seq and Slide-seqV2 respectively. a, 

Laminar organization of mouse olfactory bulb annotated in the DAPI-stained image 

generated by Stereo-seq. b, Spatial domains generated by Louvain clustering with 

resolution=0.8 on the low-dimensional SCANPY, SEDR, and STAGATE embeddings 

in the Stereo-seq mouse olfactory bulb tissue section. c, Laminar organization of 

mouse olfactory bulb annotated by the Allen Reference Atlas. d, Spatial domains 

generated by Louvain clustering with resolution=0.5 on the low-dimensional 
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SCANPY, SEDR, and STAGATE embeddings in the Slide-seqV2 mouse olfactory 

bulb tissue section. e, Visualization of spatial domains identified by STAGATE and 

the corresponding marker genes. Spatial domains were annotated by the laminar 

organization showed in the Allen Reference Atlas. 

 

Figure 5. STAGATE reveals spatial domains in adult mouse brain section 

profiled by 10x Visium. a, Immunofluorescent imaging of the tissue section stained 

with DAPI and Anti-NeuN. b, Spatial domains generated by Louvain clustering with 

resolution=1 on the low-dimensional embeddings of SCANPY, SEDR, STAGATE, and 

STAGATE with cell type-aware module. c, UMAP visualizations of the low-

dimensional embeddings of SCANPY, SEDR, STAGATE, and STAGATE with cell 

type-aware module respectively. d and e, Visualizations of the attention layer of 

STAGATE without (d) or with (e) cell type-aware module. The nodes of the attention 

layer are arranged according to the spatial position of spots. The edges of the 

attention layer are colored by corresponding weights. f, Zoomed-in views of 

immunofluorescent imaging of the hippocampus region and the visualization of 

attention layer in (e). 

 

Figure 6. STAGATE enhances the spatial patterns of layer-marker genes in the 

DLPFC dataset. a, Visualizations of the raw spatial expressions and STAGATE 

denoised ones of six layer-marker genes in the DLPFC section 151676. b, ISH 

images from visual cortex (ATP2B4, RASGRF2, NEFH, NTNG2, and B3GALT2) or 

temporal cortex (LAMP5) of the adult human brain from the Allen Human Brain Atlas. 

c, Violin plots of the raw expression of layer-marker genes. d, Violin plots of the 

STAGATE denoised expressions of layer-marker genes. The cortical layer 

corresponding to the layer-marker gene is marked with a red box. 

 

Figure 7. STAGATE can alleviate the batch effect between consecutive sections 

by incorporating a 3D spatial network. a, Visualization of the 3D hippocampal 

volume stacked by seven aligned consecutive sections profiled by Slide-seq. b, The 

3D SNN is a combination of the 2D SNN within each section and the spatial network 

between consecutive sections. c, Cluster assignments generated by STAGATE-2D 

with the 2D SNN. d, The UMAP plots generated by STAGATE-2D embeddings. The 

spots are colored by the identified spatial domains (left) and the section IDs (right) 

respectively. e, Cluster assignments generated by STAGATE-3D with the 3D SNN. f, 

The UMAP plots generated by STAGATE-3D embeddings. The spots are colored by 

the identified spatial domains (left) and the section IDs (right) respectively.  
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